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strongly dependent on the overall flow rate. Due to cooperative effects, the rapid
surface flow induces creeping flow beneath (Komatsu et al. 2001). (Following the
terminology of Komatsu et al. (2001), we use the term creep to describe very slow,
quasi-static flow.) The creeping flow decays exponentially with the distance from the
free surface. In contrast to the thickness of the surface layer, the characteristic decay
length of the creeping flow is independent of the overall flow rate (Jop et al. 2007).

Simultaneously capturing both the rapid surface flow and the quasi-static creeping
flow with a continuum model has posed a significant challenge and remains an open
research question in granular physics. A well-regarded approach, which serves as our
starting point, is the inertial rheology (MiDi 2004; da Cruz et al. 2005; Jop et al.
2005; Kamrin 2010), which may be understood through basic dimensional arguments.
Consider a quasi-monodisperse granular system with mean grain diameter, d, and grain
material density, ρs, subjected to homogeneous planar shear with pressure, P, and
shear stress, τ . The consequent shear strain rate, γ̇ , may be non-dimensionalized as
I = γ̇

√

d2ρs/P – referred to as the inertial number. The inertial number operates as a
normalized strain rate and represents the ratio of the microscopic time scale associated
with particle motion,

√

d2ρs/P, to the macroscopic time scale of applied deformation,
1/γ̇ (MiDi 2004). The local inertial rheology – local in the sense that it relates the
local stress state to the local state of strain rate at a point – then asserts that the stress
ratio, µ= τ/P, and the inertial number, I, are related through a one-to-one constitutive
relationship, µ = µloc(I). A common functional form for the local inertial rheology –
appropriate for modelling the rapidly flowing surface layers described above – was
proposed by Jop et al. (2005):

µ = µloc(I) = µs +
µ2 − µs

I0/I + 1
, (1.1)

where µs = µloc(I → 0) is the static yield value, µ2 = µloc(I → ∞) is the maximum
value of µ asymptotically approached as I increases and I0 is a dimensionless
parameter characterizing the nonlinear, rate-dependent response. The subsequent
work of Jop, Forterre & Pouliquen (2006) generalized the local rheology (1.1) to
three-dimensional flow settings as follows. Denote the symmetric strain-rate tensor as
γ̇ij = (1/2)(∂vi/∂xj + ∂vj/∂xi) with vi the velocity vector and xi the spatial coordinate.
Jop et al. (2006) began by assuming that steady, dense flow proceeds at approximately
constant volume, so that the strain-rate tensor is deviatoric and γ̇kk = 0. The equivalent
shear strain rate is then defined as γ̇ = (2γ̇ijγ̇ij)

1/2. Next, to generalize the stress-related
quantities involved in the inertial rheology (1.1) to three dimensions, denote the
symmetric Cauchy stress as σij = σji and define the pressure P = −(1/3)σkk, the stress
deviator σ ′

ij = σij + Pδij, the equivalent shear stress τ = (σ ′
ijσ

′
ij/2)1/2 and the stress ratio

µ = τ/P. Jop’s three-dimensional form of the local inertial rheology then takes the
following form:

σij = −Pδij + 2µloc(I)P
γ̇ij

γ̇
, (1.2)

which assumes that the strain-rate tensor and stress deviator are codirectional. When
this constitutive model is applied to steady, dense granular heap flow, aspects of
the rapidly flowing surface layer may be accurately captured; however, as evidenced
by the calculations of Jop et al. (2006, 2007) and Kamrin (2010), the model also
predicts a static zone beneath the rapidly flowing surface layer. This is because the
constitutive relation (1.2) possesses a yield condition in the form of a Drucker–Prager
criterion (Drucker & Prager 1952), in which flow does not occur for µ < µs.
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214 D. Liu and D. L. Henann

Since µ < µs in the region deep beneath the free surface in dense granular heap
flow, the rheology (1.2) predicts that this region is frozen, contrary to experimental
observations of exponentially decaying creep flow. In addition to dense heap flow, a
decaying flow profile is experimentally observed in creeping regions where µ < µs

across a variety of configurations, such as annular shear flow (Losert et al. 2000;
Mueth et al. 2000; Koval et al. 2009), planar shear flow with gravity (Siavoshi, Orpe
& Kudrolli 2006) and split-bottom flow (Fenistein & van Hecke 2003; Fenistein
et al. 2004). When applied to these cases, the inertial rheology (1.2) will continue to
predict frozen regions with a sharp flow cutoff occurring where µ = µs. The failure
of the local inertial rheology to capture creeping flow when µ < µs stems from the
fact that it does not mathematically account for non-local, cooperative effects, which
become dominant in this regime.

Motivated by this shortcoming, in recent years, non-local continuum constitutive
models for dense granular flow have been developed, aimed at accounting for
cooperative effects (e.g. Savage 1998; Aranson & Tsimring 2002; Mohan, Rao & Nott
2002; Berzi & Jenkins 2011; Bouzid et al. 2013). While these approaches incorporate
non-locality and some have had success in individual geometries, none have been
shown to capture the salient aspects of steady, dense granular heap flow. Recently, we
proposed a non-local continuum model – called the non-local granular fluidity (NGF)
model – inspired by related modelling work in the emulsion community (Goyon et al.

2008; Bocquet, Colin & Ajdari 2009), which is capable of quantitatively describing
a diverse set of slow, boundary-driven inhomogeneous flows (Kamrin & Koval 2012;
Henann & Kamrin 2013), the secondary rheology of intruders (Henann & Kamrin
2014a) and the size dependence of the flow threshold in inclined plane flow (Kamrin
& Henann 2015). The purpose of this paper is to show that the non-local granular
fluidity model is capable of capturing steady, dense granular heap flow – in particular,
the coexistence of a rapidly flowing surface layer and a creeping bulk.

The remainder of this paper is organized as follows. In § 2, we discuss the specifics
of the NGF model, and in § 3, we apply the model to steady, dense granular flows
on a heap between two smooth, frictional side walls. Specifically, in § 3.2, we
compare velocity fields predicted by the model with experimentally measured flow
fields from the literature for glass beads (Jop 2006; Jop et al. 2007). Importantly, the
material parameters appearing in the NGF model have previously been determined for
glass beads (Forterre & Pouliquen 2003; Jop et al. 2005; Henann & Kamrin 2013),
allowing the NGF model to be applied without parameter adjustment. Then, in § 3.3,
we examine the relationships between total flow rate, maximum velocity and surface
inclination angle, and in § 3.4, we explore the length scales that characterize the
coexistent rapidly flowing and creeping zones. Throughout, our results demonstrate
a level of agreement between model predictions and experiments that has not been
previously reported. We close with a discussion of the limits of the modelling
approach and future research directions in § 4.

2. The non-local granular fluidity model

In this section, we summarize the NGF model for dense, steady granular flow (see
Kamrin & Koval 2012; Henann & Kamrin 2013, 2014a,b; Kamrin & Henann 2015).
Similar to the local inertial rheology, the NGF model is valid for granular systems
consisting of grains that are (i) spherical, (ii) quasi-monodisperse with constant
mean grain diameter d and (iii) stiff and is intended for steady, well-developed flow
conditions. (Incorporating particle stiffness into granular rheology is an open research
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Non-local continuum modelling of steady, dense granular heap flows 215

problem. For recent progress on this point, see the works of Campbell (2014), Singh
et al. (2015) and Roy, Luding & Weinhart (2017).) The model consists of three main
ingredients: (i) a state parameter, called the granular fluidity, (ii) the flow rule and
(iii) the non-local rheology, described in detail below.

(i) Granular fluidity: Central to the model is the granular fluidity field – a positive,
scalar state variable, denoted as g. This state variable is kinematic in nature
and characterizes microscopic fluctuations in a flowing granular media. More
precisely, Zhang & Kamrin (2017) showed that the granular fluidity is a
kinematic state variable given through the velocity fluctuation, δv, the solid
volume fraction, φ, and the grain size, d, through the relation g = (δv/d)F(φ),
where F(φ) is a function of only φ.

(ii) Flow rule: For the case of homogeneous planar shear, the granular fluidity relates
the stress ratio, µ = τ/P, to the consequent shear strain rate, γ̇ , through the
following constitutive relation:

γ̇ = gµ. (2.1)

This one-dimensional version of the flow rule may be generalized to three
dimensions following a procedure analogous to that used by Jop et al. (2006) to
generalize the inertial rheology, discussed in § 1. We define the strain-rate tensor
as γ̇ij = (∂vi/∂xj + ∂vj/∂xi)/2 – where vi is the velocity field and xi is the spatial
coordinate. Next, we make the common approximation that well-developed steady
flow proceeds at constant volume, so that γ̇kk = 0 (Jop et al. 2006; Koval et al.
2009; Rycroft, Kamrin & Bazant 2009; Kamrin 2010) and define the equivalent
shear strain rate as γ̇ = (2γ̇ijγ̇ij)

1/2. (Recent work has shown that dilatancy can
have an effect on steady flows, leading to secondary flow with magnitude of the
order of ∼5 % of the primary flow (Krishnaraj & Nott 2016). Since this effect
has not yet been reported for steady, dense granular heap flow, we neglect it in
the present work.) The Cauchy stress tensor and stress deviator are denoted as
σij = σji and σ ′

ij = σij − (1/3)(σkk)δij. Then, the equivalent shear stress, pressure
and stress ratio are defined through stress-tensor invariants as τ = (σ ′

ijσ
′
ij/2)1/2,

P = −σkk/3, and µ = τ/P, respectively. Finally, assuming that the strain-rate
tensor and stress deviator are codirectional (Jop et al. 2006; Rycroft et al. 2009;
Kamrin 2010), the one-dimensional flow rule (2.1) may be expressed in tensorial
form as

σij = −Pδij + 2
P

g
γ̇ij. (2.2)

Slight deviations from codirectionality have been observed in discrete element
simulations, namely ∼1–2 % non-coaxiality between γ̇ij and σ ′

ij (Weinhart et al.
2013) and the normal stress differences (Depken et al. 2007). For recent work
incorporating these effects into a rheological model, see Weinhart et al. (2013).

(iii) Non-local rheology: With the introduction of the granular fluidity field, g, an
additional field equation is required to relate the fluidity field to the stress field.
In a local constitutive approach, the fluidity would be given as an algebraic
function of the stress through the stress invariants µ and P. In contrast, in our
non-local approach, the granular fluidity, g, is governed by the following partial
differential equation (PDE) (Henann & Kamrin 2014b):

t0
Dg

Dt
= A2d2 ∂2g

∂xk∂xk

−
[

1µ

(

µs − µ

µ2 − µ

)

g + b

√

ρsd2

P
µg2

]

, (2.3)
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216 D. Liu and D. L. Henann

where D(•)/Dt is the material time derivative. (Note that the non-local rheology
(2.3) shows mathematical similarities to the order-parameter-based rheological
approach of Aranson & Tsimring (2002).) In (2.3), t0 is a constant time scale
associated with the dynamics of g, A is a constant dimensionless material
parameter characterizing non-local effects called the non-local amplitude and the
constants 1µ = µ2 − µs and b = 1µ/I0 are given through the three constant
material parameters {µs, µ2, I0} appearing in the local inertial rheology (1.1).
The mean grain diameter and grain material density continue to be denoted by
d and ρs, respectively, and are constants. During steady, homogeneous flow, the
non-local rheology (2.3) reduces to the local inertial rheology, (1.1) and (1.2).
To see this, consider homogenous flow in the absence of spatial gradients in g

(∂2g/∂xk∂xk = 0) and for a fixed state of stress (µ, P). Then, at sufficiently long
time (t � t0), g evolves to a stable Lagrangian steady state (Dg/Dt ≈ 0), which
we denote as gloc(µ, P). The nature of the stable steady state, gloc(µ, P), depends
on the sign of (µs − µ). For µ6µs, the only steady solution is gloc = 0, and it
is stable under perturbation in g. For µ > µs, gloc = 0 remains a steady solution;
however, it becomes unstable under perturbation in g. The stable, steady solution
for µ > µs is gloc =

√

P/ρsd2I0(µ − µs)/(µ(µ2 − µ)). Putting the stable solutions
together, we have

gloc(µ, P) =







√

P/ρsd2I0
(µ − µs)

µ(µ2 − µ)
if µ > µs,

0 if µ6µs.

(2.4)

We call the stress-dependent function gloc(µ, P) the local fluidity, since if the
granular fluidity, g, is taken to be given through the function gloc(µ, P) and
combined with the flow rule (2.2), we recover the local inertial rheology, (1.1)
and (1.2). Then, in the case of inhomogeneous flows involving spatial gradients
in g, the Laplacian term appearing in (2.3) introduces an intrinsic length scale
given through d, and hence the rheology is non-local in character. In the present
work, we are concerned with dense granular flows that are steady in a Lagrangian
sense, in which t � t0 so that Dg/Dt ≈ 0. However, reducing the dynamical PDE
(2.3) to the steady-state case is not as simple as setting the left-hand side to
zero because the stability of the g = 0 solution depends on the sign of (µs − µ).
In order to obtain a differential relation for g specialized to the case of steady
flow, we allow for gradients in g but limit attention to small deviation of g from
gloc for a given state of stress (µ, P). The result of such a simplification (see
§ 4.3.1 of Henann & Kamrin (2014b) for the details of this calculation) is

g = gloc + ξ 2 ∂2g

∂xk∂xk

, (2.5)

where gloc(µ, P) is the local fluidity function, given through (µ, P) as in (2.4),
and ξ(µ) is a stress-dependent length scale called the cooperativity length, given
by

ξ(µ) = A

√

µ2 − µ

1µ|µ − µs|
d. (2.6)

Note that in the absence of any stress or flow gradients (∂2g/∂xk∂xk = 0), the
steady-state form (2.5) simply reduces to g = gloc(µ, P), and the local inertial
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Non-local continuum modelling of steady, dense granular heap flows 217

rheology is recovered, as should be the case for homogeneous steady flow.
However, for inhomogeneous flow, the presence of the Laplacian term gives rise
to non-local effects – with predictions of the NGF model being size dependent
due to the cooperativity length (2.6) being directly proportional to the grain
size, d. In particular, in regions where µ 6 µs, the local fluidity (2.4) is zero,
and (2.5) reduces to g = ξ 2(∂2g/∂xk∂xk), which gives rise to creeping flow
predictions with a decay length determined by ξ rather than a sharp flow cutoff.
In the simulations of § 3, with a few noted exceptions, we utilize the steady-state
form of the NGF model, (2.5) with (2.4) and (2.6), rather than the dynamical
form (2.3). We note that the dimensionless parameter A appearing in (2.6) is
the only new material parameter introduced in the steady-state form of the NGF
model beyond the local parameters, {µs, µ2, I0}.

The system of equations described above are then closed by the standard equations
of motion

∂σij

∂xj

+ φρsGi = φρs

Dvi

Dt
, (2.7)

with Gi the acceleration of gravity (denoted as G to differentiate it from the
granular fluidity g) and φ the solid volume fraction, taken to be 0.62 for randomly
close-packed, quasi-monodisperse, spherical grains (Scott 1960). Consistent with our
assumption of steady, well-developed flow, we neglect the effect of macroscopic
inertia, so that (2.7) reduces to

∂σij

∂xj

+ φρsGi = 0i. (2.8)

The boundary conditions accompanying this boundary-value problem are discussed in
the next section in the context of the specific problem of steady dense granular heap
flow.

In our previous work, the NGF model has been shown to quantitatively describe
a broad set of experimental steady flow data, including all variations of the complex
split-bottom family of geometries in addition to annular shear flow and planar
shear flow with gravity (Henann & Kamrin 2013). The model has also been shown
to correctly capture other non-local phenomena such as non-locally induced material
weakening, i.e. ‘secondary rheology’ (Nichol et al. 2010; Reddy et al. 2011), whereby
the motion of a boundary removes the yield strength of the material everywhere,
permitting far-away loaded objects to creep through the grains when otherwise they
would remain static (Henann & Kamrin 2014a). Finally, in Kamrin & Henann (2015),
the model has also shown itself able to describe the size-dependent strengthening seen
in experiments of gravity-driven flow down a rough inclined plane (Pouliquen 1999;
Silbert et al. 2003; Weinhart et al. 2012). When discussing the successes of the NGF
model, it is also important to note its limits. Although the NGF model can model
developing flows and the approach to steady state, it has not been designed to be
quantitatively predictive in this regard. In particular, it is not yet known whether the
time-dependent term appearing in the dynamical form (2.3) is able to quantitatively
capture transient effects, such as those reported by Ries, Brendel & Wolf (2016).
Hence, at present, the NGF model is only appropriate for steady-state conditions. It
is also limited to granular systems, in which grains are spherical, quasi-monodisperse
and stiff. In what follows, we will apply the model to situations in which these
assumptions are valid.
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FIGURE 1. (a) Schematic and (b) computational domain for steady, dense granular heap
flow, following the flow configurations used in the experiments of Komatsu et al. (2001)
and Jop et al. (2005, 2007).

3. Numerical simulations of dense, steady granular heap flow

In this section, we turn to applying the NGF model to the problem of dense,
steady granular heap flow. We will compare predictions of the NGF model to
experiments in the literature using glass beads (Jop 2006; Jop et al. 2007). Regarding
the dimensionless material parameters for glass beads {µs, µ2, I0, A}, the local
parameters are taken from well-established data (Forterre & Pouliquen 2003; Jop
et al. 2005):

µs = 0.3819, µ2 = 0.6435, and I0 = 0.279. (3.1a−c)

In our previous work (Henann & Kamrin 2013), the non-local amplitude for glass
beads was calibrated to be

A = 0.48 (3.2)

by fitting NGF model predictions to experimental flow fields for dense, quasi-static
granular flow in the split-bottom cell (Fenistein & van Hecke 2003; Fenistein et al.
2004). Since the heap flows reported by Jop and coworkers (Jop 2006; Jop et al.
2007) also involve dense flows of spherical glass beads, we expect that these
material parameter values remain valid and in what follows we continue to use these
parameters without adjustment. Further, we take ρs = 2450 kg m−3 and d = 0.5 mm
in our calculations; however, all results in subsequent sections will be presented in
dimensionless form, and hence, the numerical values of ρs and d are inconsequential.

3.1. Flow configuration

To study gravity-driven, dense granular heap flow, we consider the system shown in
figure 1(a), consisting of a granular layer of depth, H, at an inclination angle, θ ,
flowing between two smooth, frictional side walls separated by a distance, W. The
coefficient of sliding friction between the granular media and the side walls, µwall, is
taken to be a constant value and the floor is rough. The component of the acceleration
of gravity in the y-direction – G sin θ – then drives flow down the channel – which is
very long in the y-direction. The expected consequent steady-state flow field – which
is invariant along the length of the channel, i.e. the y-direction, and decays with depth

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

ro
w

n 
U

ni
ve

rs
ity

 L
ib

ra
ry

, o
n 

25
 O

ct
 2

01
7 

at
 0

0:
58

:5
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s .
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
55

4



Non-local continuum modelling of steady, dense granular heap flows 219

beneath the surface, i.e. the z-direction – is sketched schematically in figure 1(a). The
total volume flow rate of granular material down the channel is denoted by Q. (In
the present work, we use Q to denote the total volume flow rate rather than the flow
rate per unit width as in Jop et al. (2005, 2007).) Note that in experiments the flow
rate, Q, is typically prescribed, and the free surface inclination angle, θ , follows as a
consequence (Jop et al. 2005).

To apply the NGF model to flow in this configuration, we take advantage of the
invariance of the steady flow field in the y-direction and make an antiplane shear
idealization, in which the only non-zero component of velocity is in the y-direction,
denoted by v, and only depends on the x and z coordinates, i.e. v(x, z), thereby
reducing the problem to two dimensions. Under the antiplane shear assumption, the
constitutive equation (2.2) implies that the non-zero stress components are σxx = σyy =
σzz = −P, σxy = (P/g)∂v/∂x and σyz = (P/g)∂v/∂z, and hence for steady (Dvi/Dt = 0i)
antiplane shear flow, the pressure field is simply hydrostatic, P(z) = φρsG(cos θ)z, and
the one remaining equilibrium equation (2.8) reduces to

∂σxy

∂x
+

∂σyz

∂z
+ φρsG(sin θ) = 0. (3.3)

The fields v(x, z) and g(x, z) may be solved through the coupled partial differential
equations (2.5) and (3.3) along with appropriate boundary conditions. Solutions to
this boundary-value problem are obtained via our custom finite-element approach,
described in Henann & Kamrin (2016) and implemented in the commercial
finite-element program Abaqus (2015). In our implementation, we include a stiff
elastic response, which does not affect the calculated steady flow fields, and as such,
the finite-element degrees of freedom are the displacement in the y-direction – rather
than v – and the granular fluidity. For details on this point, see Henann & Kamrin
(2016). A sample computational domain for the case of W = 19d and H = 20d is
shown in figure 1(b). Based on the mesh convergence study for our finite-element
implementation described in Henann & Kamrin (2016), we choose a fine mesh
resolution of 0.125d to ensure accurate calculation results.

Regarding mechanical boundary conditions – indicated in figure 1(b) – the
top surface is traction-free, σyz(x) = 0 at z = 0, the side walls are frictional,
σxy(z)6−µwallσxx(z)=µwallP(z) at x = 0 and x = W, and the bottom is rough, v(x)= 0
at z = H. Regarding the frictional side wall boundary condition, as in the bulk, there
is a stiff elastic component to the wall slip, so that the shear traction on the granular
media at a point on the surface, σxy(z), may be less than µwallP(z); however, for
steady wall slip, σxy(z) = µwallP(z). Throughout, we take a constant value of the
wall friction coefficient of µwall = 0.32, obtained by treating µwall as an adjustable
parameter in our subsequent comparisons with experiments. More specifically, as will
be pointed out in § 3.3, µwall is determined by fitting to the overall flow-rate data of
figure 4(a) rather than any specific flow field. Note that since the material parameters
{µs, µ2, I0, A} have been previously calibrated to experimental flow fields in other flow
configurations and subsequently fixed, µwall represents the only adjustable parameter
in our simulations of dense heap flow. This simple picture of side wall friction is
an idealization (see Richard et al. 2008; Artoni & Richard 2015). In particular, the
recent work of Artoni & Richard (2015) has shown that the sliding friction coefficient
is not constant. Instead, it depends on both the slip velocity as well as the velocity
fluctuation, δv. In spite of this simplification, our comparisons with experiments
will show that good agreement may still be obtained under this idealization. For the
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FIGURE 2. (Colour online) Flow fields in a narrow channel of width W/d = 19. Contour
plots of the normalized, steady-state velocity field, v/

√
Gd, in the x–z-plane for (a) θ =

26.1◦ and (b) θ = 28.0◦ calculated using the steady-state NGF model (2.5). Normalized
velocity field at the wall, vwall/

√
Gd, as a function of the depth beneath the free surface, z,

for each surface inclination angle, θ , in (c) linear and (d) semi-logarithmic scale. Symbols
represent the experimental data of Jop et al. (2007); solid lines are the calculated results
of the steady-state NGF model (2.5); dotted lines are the calculated steady results of
the dynamical NGF model (2.3); and dashed lines are the calculated results of the local
inertial rheology (1.2).

granular fluidity boundary conditions, we invoke homogeneous Neumann boundary
conditions on all boundaries. This is based on our past work, which has shown that
such a boundary condition provides an excellent description of experiments, provided
that the size of the flow geometry is greater than approximately 10d (see Henann &
Kamrin (2016) for an expanded discussion of this point).

3.2. Flow fields

In this section, we compare simulated flow fields with experiments. To do so, we must
first specify the geometry – most importantly, the dimensionless channel width, W/d.
Throughout, we take the depth of the granular layer, H/d, to be large enough that it
does not affect the flow field. Second, we must specify either the inclination of the
free surface, θ , or the volume flow rate, non-dimensionalized as Q/Wd

√
Gd. (This

dimensionless flow rate is denoted as Q∗ in Jop et al. (2005, 2006).)
Following the experiments of Jop et al. (2007), we begin by considering narrow

channels of width W/d = 19 for two values of the free surface inclination angle – θ =
26.1◦ and θ = 28.0◦ – and calculate steady flow predictions using the steady-state form
of the NGF model (2.5) and the computational set-up of figure 1(b). Contour plots of
the normalized velocity field at steady state, v/

√
Gd, in the x–z-plane for each case are

shown in figure 2(a,b). As expected, flow is at its most rapid at the free surface with
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Non-local continuum modelling of steady, dense granular heap flows 221

the velocity decaying into the bulk (in the z-direction). In the cross-channel direction
(the x-direction), the velocity field has a clear bowed shape due to the frictional side
walls. As is clear from the contour plots of figure 2(a,b), flow for the θ = 28.0◦ case is
considerably more rapid. For the purpose of comparing to experiments, we introduce
the wall velocity field, vwall(z), at an x-position of x=d – one grain diameter inside the
side wall. Figure 2(c) displays the good quantitative agreement between the simulated
wall flow fields (solid lines) and the experimental data of Jop et al. (2007) (symbols)
for the two inclination angles considered. In particular, the NGF model captures both
the rapid flow near the free surface as well as the exponentially decaying, creeping
velocity field deep beneath the surface – made clear in the semi-logarithmic-scale plot
of the wall velocity field in figure 2(d).

For comparison, we have also calculated steady flow predictions of the dynamical
form of the NGF model (2.3) in a narrow channel of width W/d = 19. To obtain
steady flow predictions for the dynamical form of the NGF model, an initial condition
for the fluidity field, g, is required due to the presence of the time derivative in
(2.3). Since steady (t � t0) solutions of the dynamical form of the NGF model (2.3)
are expected to be similar to the solutions of the steady-state NGF model (2.5), we
utilize the respective solutions of the steady-state form as the initial condition for the
dynamical form for each case. Then, we choose an arbitrary value of the time scale
t0 and run the simulation to a final time of 1000t0 to ensure that the steady state
is attained. The material parameters and boundary conditions remain unchanged. The
calculated steady wall velocity fields for the dynamical form of the NGF model for
the cases of θ = 26.1◦ and θ = 28.0◦ are included in figure 2(c,d) as dotted lines. For
both free surface inclination angles, the calculated steady predictions of both forms
of the NGF model are quite similar in both the rapidly flowing surface layer and the
creeping bulk. Since solutions are much more easily obtained through the steady-state
form of the NGF model (2.5), it is typically preferable to use this form in practice.

As a second comparison, we have calculated steady flow predictions of the local
inertial rheology (1.2) in a narrow channel of width W/d = 19. Steady flow predictions
of the local inertial rheology (1.2) are obtained by setting the non-local amplitude to
zero, i.e. A = 0, and leaving all other material parameters and boundary conditions
unchanged. The calculated wall velocity fields for the local inertial rheology for the
cases of θ = 26.1◦ and θ = 28.0◦ are plotted in figure 2(c,d) as dashed lines. In the
rapidly flowing surface layer, the NGF model and the local inertial rheology offer
similar flow field predictions, which are both in agreement with experimental data.
However, beneath the surface, the local inertial rheology predicts a sharp flow cutoff,
clearly observed in the semi-logarithmic-scale plot of figure 2(d), whereas the NGF
model is capable of capturing the exponentially decaying, creeping bulk. The NGF
model clearly provides significantly improved predictions of steady, dense granular
heap flow fields compared to the local inertial rheology.

Next, returning to the steady-state NGF model (2.5), we consider a wider channel
with W/d = 142 and compare to the experimental data of Jop (2006). For this set of
experiments, the flow rate, Q/Wd

√
Gd, was reported rather than the inclination angle,

θ . Accordingly, we consider flow rates of Q/Wd
√

Gd = 4.4, 15, 40 and 91. (In our
calculations, the inclination angle, θ , is prescribed, so for the W/d = 142 simulations,
θ is iteratively adjusted to achieve the desired volume flow rate. We utilize a channel
depth of H/d = 140 and a mesh resolution of 0.5d.) Contour plots of the normalized,
steady-state velocity field, v/

√
Gd, in the x–z-plane are shown in figure 3(a,b) for the

least rapid and most rapid flow rates, Q/Wd
√

Gd =4.4 and 91, respectively. Again, we
observe that the velocity decays with the depth beneath the surface and is greater in
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FIGURE 3. (Colour online) Flow fields in a wide channel of width W/d = 142.
Contour plots of the normalized, steady-state velocity field, v/

√
Gd, in the x–z-plane

for (a) Q/Wd
√

Gd = 4.4 and (b) Q/Wd
√

Gd = 91 calculated using the NGF model. (c)
Normalized velocity field at the wall, vwall/

√
Gd, as a function of the depth beneath the

free surface, z, and (d) normalized velocity field on the surface, vsurf /
√

Gd, as a function
of x for each volume flow rate, Q/Wd

√
Gd. Symbols represent the experimental data of

Jop (2006) and solid lines are the calculated results of the steady-state NGF model.

the centre of the channel than at the walls. In the contour plots, it is clear that the size
of the rapidly flowing surface layer is larger for the higher flow rate. Figure 3(c) then
shows the comparison of the calculated wall velocity field, vwall(z), to the experimental
data of Jop (2006) for all four volume flow rates, and again the quantitative agreement
is good both for the rapid flow near the surface as well as the creeping bulk. Defining
the surface flow field as vsurf (x, z = 0), figure 3(d) shows that the calculated surface
flow field is also in agreement with experiments – both at the wall and in the centre
of the channel. Overall, the NGF model is able to capture the salient aspects of the
flow fields in steady, dense granular heap flow over a range of channel widths.

3.3. Volume flow rate and maximum velocity

Additional insight may be obtained by comparing the predicted relationships between
global quantities – such as the relationships between volume flow rate, Q, maximum
velocity, vmax =v(x=W/2, z=0) and free surface inclination angle, θ – to experiments.
Before making such comparisons, we first consider some consequences of dimensional
analysis. The dense granular heap flow configuration of figure 1(a) relates the
following quantities – W, d, ρs, ρsG and θ – to the consequent volume flow rate,
Q, and maximum velocity, vmax. However, the analysis of Jop et al. (2005) showed
that the scaling suggested by the local inertial rheology (1.1) could account for
the observed scalings between Q, vmax and θ , and importantly, in the local inertial
rheology, the grain size does not appear independently – instead combined with the
grain material density as ρsd

2. Consequently, the reduced set of quantities – W, ρsd
2,
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FIGURE 4. Relationships between (a) free surface inclination angle, θ , and dimensionless
volume flow rate, Q′, and (b) dimensionless maximum velocity, v′

max, and dimensionless
flow rate, Q′, for steady, dense granular heap flow. Symbols represent the experimental
data of Jop et al. (2005) and lines are calculated predictions of the steady-state NGF
model.

ρsG and θ – should give Q and vmax. Straightforward dimensional analysis leads
to the conclusion that the local inertial rheology suggests a one-to-one relationship
between the following three dimensionless quantities:

Q′ =
Qd

G1/2W7/2
, v′

max =
vmaxd

G1/2W3/2
, and θ. (3.4a−c)

Such a collapse was observed in experimental data by Jop et al. (2005), and their
data in the form tan θ versus Q′ and v′

max versus Q′ are reproduced in figure 4(a,b),
respectively, for several channel widths. Also plotted in figure 4 are the respective
calculated relationships obtained from the NGF model for W/d = 19 and 142 – both
a narrow and a wide channel. We note that the constant wall friction coefficient,
µwall, was determined by fitting to the data of figure 4(a), rather than by fitting to
individual flow fields of § 3.2. We observe first that agreement with experiments may
be obtained as a result. Second, while the local inertial rheology predicts a perfect
collapse between Q′, v′

max and θ , the collapse for the NGF model is approximate with
the differences between the simulated relationships for the two channel widths being
small, indicating that non-local effects – i.e. the presence of the creeping bulk – are
secondary in these scaling relationships. Therefore, the NGF model is able to account
for the most significant deficiency in the predictions of the local inertial rheology
applied to steady, dense heap flow – i.e. the existence of the creeping bulk – while
approximately maintaining its greatest success – i.e. the scalings between Q′, v′

max,
and θ .

3.4. Two length scales

Finally, to explore the qualitative difference between the rapidly flowing surface layer
and the creeping bulk, we introduce two characteristic length scales. Following Jop
et al. (2007), the rapidly flowing surface layer is characterized by the mean flow
depth, h, defined as h = Q/Wvmax. The creeping bulk is characterized by the decay
length of the exponential tail in the mid-channel velocity field, λ, defined through
v(x = W/2, z)∼ exp(−z/λ) for large z. Figure 5(a) shows both h/d and λ/d versus the
dimensionless flow rate, Q′, for the calculated results of the NGF model for W/d = 19.
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FIGURE 5. (a) Calculated dependence of the size of the flowing zone, h/d, and the
creeping zone decay length, λ/d, on the dimensionless volume flow rate, Q′, for W/d = 19.
(b) Relationship between creeping zone decay length, λ/d, and the channel width, W/d.
The dashed line represents a 1/4 power law included for reference.

Importantly, h is flow-rate dependent while λ is flow-rate independent, which agrees
both qualitatively and quantitatively with experiments (see figure 4(b) of Jop et al.

(2007) in which λ/d extracted from the wall flow field is approximately 2 for W/d =
19). This observation may be understood mathematically as follows. In the rapidly
flowing layer where µ>µs, the local contribution to (2.5), gloc, dominates, introducing
the rate dependence of the local rheology. Conversely, in the creeping bulk where
µ < µs, gloc = 0, rendering (2.5) rate independent (Kamrin & Koval 2012) and leading
to the rate independence of λ. Regarding the dependence of the length scales h and
λ on the channel width W, since h is defined through Q and vmax, its scaling may be
understood through the arguments of § 3.3; however, due to the rate independence of λ,
we expect that λ/d will only depend upon W/d (see figure 2(b) of Henann & Kamrin
(2013) for the analogous relationship between a flow length scale and geometry in
split-bottom flow). Figure 5(b) shows λ/d versus W/d calculated by the NGF model
for channel widths ranging from W/d = 12 to 142. The observed relationship appears
close to a 1/4 power law (plotted as a dashed line for reference); however, appropriate
experimental data to verify this point have not been reported.

4. Discussion and conclusion

In this work, we have shown that the NGF model is capable of capturing several
important experimentally observed aspects of steady, dense granular heap flow,
including (i) wall and surface flow fields for a range of channel widths; (ii) the
relationships between volume flow rate, maximum velocity and surface inclination;
and (iii) the rate-dependent thickness of the rapidly flowing surface layer and the
rate-independent decay length of the exponentially decaying velocity field in the
creeping bed. Importantly, the NGF model offers improved flow predictions over the
local inertial rheology while involving only one new dimensionless material parameter,
the non-local amplitude A. In our previous work, we determined the value of A for
glass beads by applying the NGF model to slow boundary-driven flows (Henann &
Kamrin 2013), and in the present work, we have continued to use this numerical
value and demonstrated that good agreement with experiments is maintained in the
case of steady, dense granular heap flow.

There remain several avenues for improvement and refinement. A major idealization
of our modelling work is treating the friction coefficient between the granular material
and the side walls as constant – instead of dependent on the slip velocity and velocity
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Non-local continuum modelling of steady, dense granular heap flows 225

fluctuation as shown by Artoni & Richard (2015). The recent work of Zhang &
Kamrin (2017) relating the granular fluidity to the velocity fluctuation suggests a path
forward on this point, in which the wall friction coefficient is taken to be dependent
on both the slip velocity and the granular fluidity.

We have limited attention to the case of steady, well-developed flow. To apply the
NGF model to transient, developing flows, the incorporation of additional physics
is required. The work of Jop et al. (2007) showed that accounting for macroscopic
inertia in conjunction with the local inertial rheology was sufficient to obtain a
reasonable description of the approach to steady state in dense granular heap flow,
quantified by the overall flow rate and free surface velocity as a function of time.
Since the inertial rheology and the NGF model provide comparable predictions in
the rapid flow regime, if macroscopic inertia effects are reintroduced to (3.3), we
expect to obtain similar results with the NGF model. Transient effects are not solely
due to macroscopic inertia. For example, Reynolds dilation during shear initiation
induces transient variations in the flow resistance, which are commonly described
using critical-state models (Schofield & Wroth 1968) but which are not yet included
in the NGF model. Further, Ries et al. (2016) recently reported an exponential-type
transient during the initiation of dense simple shearing of spheres, and it is not yet
known whether this transient may be captured using the time-dependent, dynamical
form of the non-local rheology (2.3).

In closing, the ability of the NGF model to capture steady, dense granular heap
flow in a channel is an encouraging indication that the model might successfully be
applied to other types of surface flow, such as the flows that arise in rotating drums.
The essential physics of steady, dense granular flow in a rotating drum is expected to
be the same as that in channel flows (MiDi 2004), but the geometric complexity of
the rotating drum configuration gives rise to additional characteristics in the flow field,
such as the S-shape of the free surface. Applying the NGF model to steady, dense
flows in a rotating drum will possibly require more elaborate numerical techniques
than our finite-element-based approach, such as the material point method (Dunatunga
& Kamrin 2015), and is a task which is left to future work.
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