
5294 | Soft Matter, 2018, 14, 5294--5305 This journal is©The Royal Society of Chemistry 2018

Cite this: SoftMatter, 2018,

14, 5294

Size-dependence of the flow threshold in
dense granular materials

Daren Liu and David L. Henann *

The flow threshold in dense granular materials is typically modeled by local, stress-based criteria.

However, grain-scale cooperativity leads to size effects that cannot be captured with local conditions. In

a widely studied example, flows of thin layers of grains down an inclined surface exhibit a size effect

whereby thinner layers require more tilt to flow. In this paper, we consider the question of whether the

size-dependence of the flow threshold observed in inclined plane flow is configurationally general.

Specifically, we consider three different examples of inhomogeneous flow – planar shear flow with gravity,

annular shear flow, and vertical chute flow – using two-dimensional discrete-element method

calculations and show that the flow threshold is indeed size-dependent in these flow configurations,

displaying additional strengthening as the system size is reduced. We then show that the nonlocal granular

fluidity model – a nonlocal continuum model for dense granular flow – is capable of quantitatively

capturing the observed size-dependent strengthening in all three flow configurations.

1 Introduction

A rheology for dense granular flows, relating the stress state to

the shear strain-rate, may be extracted from homogeneous,

planar shear flow data.1,2 For example, consider a two-

dimensional, quasi-monodisperse, dense granular system composed

of dry, stiff, frictional disks with average disk diameter d and

grain-material area-density rs, so that the characteristic grain

mass ism = rspd
2/4. The inertial rheology then relates the stress

state – specifically, the pressure P and the shear stress t (both

with units of force per length in two-dimensional settings) –

to the consequent shear strain-rate _g. The aforementioned

quantities may be expressed through the dimensionless groups

I ¼ _g
ffiffiffiffiffiffiffiffiffiffi

m=P
p

and m = t/P, where I is referred to as the inertial

number – representing the ratio of the microscopic time-scale

associated with particle motion
ffiffiffiffiffiffiffiffiffiffi

m=P
p

to the macroscopic

time-scale of applied deformation 1/ _g – and m is the stress

ratio. The inertial rheology then relates I and m through a one-

to-one functional relationship m = mloc(I), which is empirically

fit. A common feature among different functional forms

of the inertial rheology is a static yield value of the stress

ratio – mloc(I - 0) = ms. Consequently, the inertial rheology

possesses a flow threshold in which steady flow is not possible

when m o ms but steady flow becomes possible whenever m

exceeds ms.†

A logical next step is to apply this flow threshold to more

complex flow configurations. A dense granular flow configuration

that is more complex than homogeneous, planar shear – but still

quite simple – is flow down a rough inclined surface. In inclined

plane flow, the ratio of the shear stress to the pressure is a constant

value at every point in the granular layer – as in planar shear – and

is given through the inclination angle y by m = tany. Therefore, the

flow threshold associated with the inertial rheology predicts

that flowing and non-flowing states are separated by a thickness-

independent angle of repose yr = tan�1ms. However, extensive

experiments and discrete-element method (DEM) simulations

have shown that this is not the case.1,6–10 Instead, thin granular

layers do not flow for a range of y greater than yr with

additional strengthening as the layer thickness is decreased.

The inability of the inertial rheology to capture this size effect

stems from its local nature – local in the sense that it relates the

stress state to the strain-rate at a point. The size-dependence of

the flow threshold in inclined plane flow arises due to nonlocal,

cooperative effects at the microscopic grain level, which are not

accounted for in the inertial rheology. In a thin granular layer, the

proximity of the grains to the fixed, rough, inclined surface

imbues the granular layer with additional strength. The converse

manifestation of cooperativity may also be observed. Flow in one

region of a granular medium can induce flow in far-away regions –

even when these regions experience stress states that are beneath

the flow threshold extracted from homogeneous, planar shearing.

For example, in steady, non-uniform flows – such as annular

shear,11,12 split-bottom flow,13 or gravity-driven heap flow14 – a

decaying flow field is observed, whereas the stress-based flow

threshold of the inertial rheology would predict a sharp flow

School of Engineering, Brown University, Providence, RI, USA.

E-mail: david_henann@brown.edu

Received 24th April 2018,

Accepted 4th June 2018

DOI: 10.1039/c8sm00843d

rsc.li/soft-matter-journal

† In the common generalization of the inertial rheology to three-dimensions,3,4

the flow threshold takes the form of a Drucker–Prager yield condition.5
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cutoff. An additional example of this effect is the ‘‘secondary

rheology’’ of intruders, whereby the motion of a boundary

removes the flow threshold of the material everywhere, permitting

far-away loaded objects to creep through the grains when other-

wise they would remain static.15

While the effect of cooperativity on steady flow fields has been

investigated in a diverse set of geometric configurations, studies

exploring the size-dependence of the flow threshold in dense

granular materials have been limited to inclined plane flow. To

better elucidate the role of the stress field, the first purpose of this

paper is to systematically explore the size-dependence of the flow

threshold in different flow configurations with more complex stress

fields. Specifically, we consider dense two-dimensional flows of stiff,

frictional disks using DEM simulations in three flow configurations:

(1) planar shear flow with gravity, (2) annular shear flow, and

(3) vertical chute flow, and show that additional strengthening is

observed as the system size is reduced in all three cases.

The second purpose of this paper is to rationalize the depen-

dence of the flow threshold on the system size in the presence of

different stress fields with a continuum model. A number of

nonlocal continuum constitutive theories have been proposed,

which are aimed at capturing various cooperative effects.16–23 Among

these, several have been applied to the flow threshold in inclined

plane flow, such as integral equations representing a self-activated

process;16 Ginzberg–Landau theories based on a partial-fluidization

order parameter,17 the granular fluidity,24 or the inertial number;20

and extensions of kinetic theory.23 In particular, our recent work24

has shown that the nonlocal granular fluidity (NGF) model is

capable of capturing the size-dependence of the flow threshold in

inclined plane flows of glass beads. In this paper, we utilize the NGF

model to obtain predictions of the size-dependence of the flow

threshold in planar shear flow with gravity, annular shear flow, and

vertical chute flow. Specifically, in each case, we calculate the

analytical flow threshold predicted by the NGF model. Importantly,

we show that the NGF model is capable of quantitatively describing

the observed size-dependent strengthening in all three flow con-

figurations, while simultaneously capturing steady flow fields.

The remainder of this paper is organized as follows. In

Section 2, we discuss the specifics of our two-dimensional

DEM simulations and verify our simulations against existing

DEM data for stiff, frictional disks in planar shear flow from the

literature.2,25 In Section 3, we discuss the NGF model and its

attendant description of the flow threshold. Then, in Section 4,

we present the results of our DEM simulations in planar shear

flow with gravity, annular shear flow, and vertical chute flow

along with the predictions of the NGF model, comparing

predictions of both the size-dependent flow threshold and

steady flow fields to DEM data. We close with discussion and

concluding remarks in Section 5.

2 Discrete-element method
simulations

In this section, we provide details of our two-dimensional

DEM methodology and briefly describe simulations of planar

shear flow in order to verify our simulations against existing

literature data.2,25

2.1 Simulated granular system

Following several previous works,2,11,18,25 we consider a simu-

lated, two-dimensional granular system consisting of a dense

collection of circular disks. As in Section 1, the average disk

diameter and the grain-material area-density are denoted as d

and rs, respectively, so that we may define a characteristic grain

mass asm = rspd
2/4. The distribution of disk diameters involves

a polydispersity of �20% to prevent crystallization. We utilize a

standard DEM grain interaction model.2 Specifically, there is no

force between non-overlapping grains, but when two grains

overlap, they interact through a spring/dashpot contact law

that accounts for elasticity, damping, and sliding friction. With

dn Z 0 and dt denoting the normal and tangential components

of the contact displacement, the normal contact force Fn is given

linearly through the normal contact displacement with stiffness

kn and the relative normal velocity with damping coefficient gn,

i.e., Fn ¼ kndn þ gn _dn. The normal damping coefficient is speci-

fied through the coefficient of restitution for binary collisions e

by gn ¼
ffiffiffiffiffiffiffiffiffi

mkn
p

ð�2 ln eÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðp2 þ ln 2 eÞ
p

. Tangential interactions

are described by a stiffness kt and damping coefficient gt, which

we take to be zero, so that the tangential contact force is Ft = ktdt.

Importantly, the tangential contact force is limited by Coulomb

friction, described by the inter-particle sliding friction coefficient

msurf. Therefore, grain interactions are fully described through

the parameter set {kn, kt, e, msurf}. In order to simulate stiff, quasi-

rigid grains, the normal stiffness is taken to be sufficiently

large throughout, i.e., kn/P 4 104, where P is the characteristic

confining pressure for a given flow configuration. Next, it is

well-appreciated that the precise values of kt/kn and e have a

negligible impact on the phenomenology of dense flows of stiff

disks,2 and as in previous works,11 we take kt/kn = 1/2 and e = 0.1.

Finally, among the interaction parameters, msurf plays the most

important role.25 Exploring the effect of msurf on the flow thresh-

old is beyond the scope of the present work, so we restrict

attention to the case of msurf = 0.4. The equations of motion for

each particle are solved using standard molecular dynamics

techniques using the open-source software LAMMPS.26 For

the most part, we restrict the time step to be 0.01 of the

binary collision time, tc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðp2 þ ln 2 eÞ=4kn
p

, to ensure stable,

accurate simulation results.‡

2.2 Planar shear flow

First, we perform simulations of planar shear flow in order to

verify our DEM results against existing data reported in the

literature. We consider a configuration consisting of a rectangular

region of length L = 60d in the x-direction and height H = 60d in

the z-direction that is filled with a dense collection of 3806 flowing

grains and subjected to shearing through the relative motion of

two parallel, rough walls, as shown in Fig. 1(a). The dense

‡ A larger time step is used for certain DEM simulations of planar shear flow and

planar shear flow with gravity to save computation time. The time step is never

taken to be greater than 0.1 of tc and has been verified to not affect results.
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granular system is generated by allowing grains to sediment

under the action of gravity, but gravity is absent in subsequent

simulations of planar shear. Each of the two rough walls on top

and bottom consists of a thin layer of touching glued grains,

which are denoted as black in Fig. 1(a), while the flowing grains

between the walls are denoted as gray. Regarding wall condi-

tions, the bottom wall is fixed, and the velocity of the top wall in

the x-direction is specified to be vwall. Following da Cruz et al.2

and subsequent works,11,25 the velocity of the top wall in the

z-direction is not zero – i.e., H is not fixed. Instead, in order to

maintain a target wall normal stress of szz(z = 0) = �Pwall, the

vertical position of the wall is continuously adjusted so that the

value of H evolves through
:
H = (�szz(z = 0) � Pwall)L/gp, where

gp is a damping parameter for vertical wall motion. Throughout,

we take gp ¼ 100
ffiffiffiffiffiffiffiffiffi

mkn
p

. Periodic boundary conditions are utilized

in the x-direction.

Next, we extract steady velocity and stress fields from DEM

simulations of planar shear flow for a range of wall velocities,

vwall, and fixed wall pressure, Pwall. To ensure that steady flow is

achieved, each simulation of planar shear is first run to a top-

wall shear displacement of at least 400H.§ Then, we consider

1000 system snapshots uniformly distributed in time over an

additional top-wall shear displacement of 250H. Anticipating

that the velocity and stress fields are homogeneous along the

x-direction, we average along the x-direction at discrete

z-positions for each snapshot. We utilize the spatial averaging

technique described by Koval and coworkers,11,25 which is

briefly summarized in Appendix A. The instantaneous velocity

and stress fields are then arithmetically averaged over all

snapshots to obtain steady fields that depend only upon the

z-coordinate. In all cases of planar shear flow, the steady

velocity field vx(z) is linear with very little wall slip, allowing

us to define a corresponding, spatially-constant shear strain-

rate _g = |dvx/dz|. All stress components are spatially constant as

well. Moreover, the normal stresses sxx and szz are approxi-

mately equal. Therefore, the shear stress and pressure may be

denoted as t = |sxz| = |szx| and P = �szz E �sxx, respectively,

and we may calculate the inertial number I ¼ _g
ffiffiffiffiffiffiffiffiffiffi

m=P
p

and

stress ratio m = t/P corresponding to each prescribed wall

velocity. The relationship between m and I extracted from our

DEM simulations is plotted in Fig. 1(b) as gray symbols, along

with the DEM data of da Cruz et al.2 and Kamrin and Koval25 for

stiff, frictional disks with msurf = 0.4 as black symbols. The DEM

results are consistent, verifying our methodology. The DEM

data for two-dimensional granular systems consisting of disks

may be fit by a simple Bingham-like functional form of the

inertial rheology:2

mloc(I) = ms + bI, (1)

where ms and b are dimensionless material parameters. The

relation (1) – using fitted parameter values of ms = 0.272 and

b = 1.168 – is plotted in Fig. 1(b), demonstrating that the linear

form (1) captures DEM data for homogeneous planar shear.

3 Granular rheology and the flow
threshold

In this section, we discuss the nonlocal granular fluidity model

for steady, dense granular flow and its attendant description of

the flow threshold. Motivated by experimental observations

of cooperative effects, a number of nonlocal continuum

approaches have been pursued. For example, Ginzberg–Landau

theories based on a partial-fluidization order parameter17 or

the inertial number20 and extensions of kinetic theory23 have

been used to make predictions of the flow threshold for

inclined plane flow. Recently, an alternative nonlocal conti-

nuum model for dense granular flow, based on the concept of

‘‘granular fluidity’’ – a concept inspired by nonlocal fluidity

models for emulsions27,28 – has shown promise in capturing

cooperative effects observed in experiments, including flow

fields in a variety of boundary-driven and gravity-driven

flows,18,29,30 the secondary rheology of intruders,31 as well as

the thickness-dependence of the flow threshold in inclined

plane flow.24

Fig. 1 (a) Configuration for two-dimensional DEM simulations of planar shear flow. Black grains denote rough walls, and gray grains denote flowing

grains. (b) The local inertial rheology – m versus I – for frictional disks with inter-particle sliding friction coefficient of msurf = 0.4. Black symbols denote

the DEM data of da Cruz et al.
2 and Kamrin and Koval,25 and gray symbols denote the DEM data of the present work. The solid line denotes the fit

of (1) with ms = 0.272 and b = 1.168.

§ Experience tells us that flow typically reaches steady state within a top-wall

shear displacement of 100H after a short transient.
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In the NGF model, a positive, scalar field quantity – the

granular fluidity – is introduced and denoted as g. The works of

Zhang and Kamrin32 and Bhateja and Khakhar33 have established

that the granular fluidity has an unambiguous kinematic defini-

tion that holds across a wide variety of inhomogeneous flow

configurations and is given through the relation g = (dv/d )F (f),

where dv is the velocity fluctuation, f is the solid fraction, d is

the grain size, and F (f) is a function of only f. Then, instead of

relating the stress state to the strain-rate through a single

constitutive equation as in the inertial rheology (1), the NGF

model relates the stress state, the strain-rate, and the granular

fluidity through two constitutive equations as follows:

_g = gm, (2)

t0 _g ¼ A2d2r2g� ðms � mÞg� b

ffiffiffiffi

m

P

r

mg2; (3)

where t0 4 0 is a constant timescale associated with the

dynamics of g, A 4 0 is a constant dimensionless material

parameter characterizing nonlocal effects, called the nonlocal

amplitude, and the dimensionless constants ms and b are the

same as those appearing in the local inertial rheology (1). The

duel constitutive roles of the granular fluidity become clear in

(2) and (3). First, in (2), g operates as a fluidity-like quantity,

relating the stress ratio m to the consequent shear strain-rate _g,

and second, in (3), g operates as a nonlocal order parameter

governed by a dynamical system – in a manner that bears a

mathematical similarity to other Ginzberg–Landau-based

approaches.17,20 When the flow field is homogeneous (r2g = 0),

the granular fluidity evolves to the stable, steady, stress-dependent

solution of the dynamical system (3), which is given by

glocðm;PÞ ¼

ffiffiffiffi

P

m

r

ðm� msÞ
bm

if m4ms;

0 if m � ms;

8

>

<

>

:

(4)

and referred to as the local fluidity. When the granular fluidity

is given through (4) and combined with (2), the local inertial

rheology (1) is recovered, and hence, the NGF model reduces to

the inertial rheology for steady, homogeneous flow. However,

when flow gradients are present, the Laplacian term in (3)

introduces an intrinsic length-scale given through the grain

size d, and the NGF model produces nonlocal predictions.

Several comments on the dynamical relation (3) are in order:

1. As discussed in Henann and Kamrin,34 the last two terms

in (3) arise through the derivative of a coarse-grain Ginzburg–

Landau-type free energy. Since these terms then determine the

stable, steady solution for g in the absence of flow gradients –

i.e., the local fluidity (4) – the choices of the Ginzburg–Landau-

type free energy and the fitting function for the local inertial

rheology are one and the same. Hence, if one were to utilize

a different functional form for the inertial rheology than the

Bingham-like form (1), it would be necessary to modify these

terms in (3). Indeed, as I increases, deviation from the linear

form (1) is often observed, leading to the use of nonlinear

fitting functions.3,35 In our previous work applying the NGF

model to dense flows of spheres down inclines,24 we chose to

work with the commonly-utilized, nonlinear fitting function

of Jop et al.,35 which involves an upper-limiting value of m, and

hence, the dynamical relation (3) took on a slightly different

form. In the present work, focusing on two-dimensional

granular systems of disks, the Bingham-like form of the inertial

rheology works well up to a stress ratio of 0.5 (see Fig. 1(b)), so

we utilize the corresponding dynamical form (3), while limiting

attention to situations in which the stress ratio remains less

than 0.5.

2. The dynamics embodied by (3) does not involve bistability,

in which two stable, steady-state values of g exist for some range

of m. This feature would lead to a non-monotonic local rheology

and hysteresis of the predicted flow threshold. There is some

experimental evidence for a non-monotonic local rheology

in dense flows of spheres;36 however, non-monotonicity is not

observed in our DEM simulations of disks, so we neglect the

possibility of this effect in the present work.

3. The time-dependent term appearing in (3) is not intended

to quantitatively describe the approach to steady state, such as

the transient variations in flow resistance that accompany

Reynolds dilatancy or the transient effects reported by Ries

et al.37 However, the model does provide an accurate description

of the long-term dynamical behavior – i.e., steady flow – as well

as the flow threshold. In these cases, the numerical value of the

positive parameter t0 appearing in (3) is irrelevant.

4. The differential relation (3) may be reduced to a steady-

state-only form under the approximation that deviations of

the granular fluidity g from the local fluidity gloc are small.

The result of such an approximation – the details of which are

discussed in Henann and Kamrin34 – is

g ¼ gloc þ x2r2g with xðmÞ ¼ Ad
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jm� msj
p ; (5)

where gloc(m,P) is the local fluidity function (4) and x(m) is a

stress-dependent length-scale called the cooperativity length.

The steady-state form of the NGF model (5) may be straight-

forwardly applied to obtain accurate predictions of non-

uniform steady flow fields in a variety of geometric configura-

tions, such as split-bottom flow29 and chute flow.30 However,

(5) cannot capture the size-dependence of the flow threshold.

To see this, note that the local fluidity function (4) mathe-

matically acts as a source term in (5) and is non-zero whenever

m 4 ms. Then, when m exceeds ms at any point in a dense

granular medium, (5) will predict flowing solutions, regardless

of the size of the granular medium. This deficiency arises

because the approximation that g is close to gloc breaks down

as the size of a granular medium decreases. For example, in

dense granular flows down an incline, flow arrests in thin layers

when m is significantly greater than ms and hence gloc is

significantly greater than zero. Therefore, to obtain predictions

of the size-dependence of the flow threshold, we utilize the

primitive, dynamical form of the NGF model (3) exclusively

throughout the remainder of this paper.

Next, we discuss how predictions of the flow threshold

may be obtained from the NGF model. For the local inertial

rheology, the flow threshold is determined by simply comparing
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the maximum value of the stress ratio m occurring in a flow

configuration to the critical value ms. However, for the nonlocal

model (3), this method of assessing the flow threshold is no

longer sufficient. Instead, we reframe the question of whether or

not steady flow is possible as whether or not the g = 0 solution is

linearly stable under perturbation. Starting from (3) and linearizing

about the g = 0 solution renders the g2 term negligible, and we

assume a perturbed solution ĝ of the form ĝ(x,t) = Cexp(lt/t0)ǧ(x),

where l is the dimensionless growth rate of the perturbation, ǧ(x) is

a time-independent function, x is the spatial coordinate, and C is

an arbitrary constant. Substituting the perturbed solution ĝ into the

linearized form of (3) and simplifying, we obtain the following

linear differential relation for ǧ:

A2d2r2ǧ � (l + ms � m)ǧ = 0. (6)

Then, for a given flow configuration, the field m(x) is specified

along with appropriate homogeneous boundary conditions

for ǧ, and the growth rate l may be calculated. If l o 0, the

perturbation decays, and steady flow is not possible. If l 4 0,

the perturbation grows, and steady flow may occur. The flow

threshold may be identified as the case in which l = 0. In

subsequent discussions of the theoretically predicted flow

threshold, we denote ǧ as g for notational simplicity.

The NGF-model-predicted flow threshold for inclined plane

flow has been derived in our previous work.24 Here, we briefly

recap the linear perturbation process that will subsequently be

applied to the more complex flow configurations in Section 4.

The m-field in inclined plane flow is spatially constant and

given through the angle of inclination by tan y, i.e., m = tan y.

Therefore, (6) takes the form of an ordinary differential equation

(ODE) with constant coefficients:

d2g

dz2
þ tan y� l� ms

A2d2

� �

g ¼ 0; (7)

where z is the distance from the free surface. Anticipating that

the quantity (tan y � l � ms) is positive, the solution to (7) is

g¼C1 sin½ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tany�l�ms
p

=AdÞz�þC2 cos½ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tany�l�ms
p

=AdÞz� ,
where C1 and C2 are arbitrary constants. As discussed in our

previous work,24 the choice of homogeneous boundary condi-

tions is important. For inclined plane flow, we based this choice

on observations of existing DEM flow data of spheres.7 In

particular, in the region near the free surface (z = 0), the DEM

data of Silbert et al.7 shows that the strain-rate approximately

levels off, implying a zero strain-rate gradient. Accordingly, we

enforce that dg/dz = 0 at z = 0, which requires that C1 = 0. Second,

Silbert et al.7 observed that adjacent to a fully rough boundary,

the strain-rate approaches an approximately vanishing state, and

hence, we take g = 0 at z = H. The lowest value of tany that

satisfies this boundary condition corresponds to

H

d
¼p

2

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tany�ms
p : (8)

In (8), l has been set to zero, so that (8) represents the size-

dependent flow threshold for inclined plane flow. For thick

layers, the flow threshold approaches the size-independent

value tan y = ms; however, for thinner layers, flow ceases at

higher inclination angles. To obtain the flow thresholds corres-

ponding to the more complex flow configurations considered

in Section 4, we apply the same linear perturbation process –

albeit involving more complex stress ratio fields. The details of

these calculations and the resulting theoretical flow thresholds

are given in Section 4.

A deeper discussion of the role of fluidity boundary condi-

tions in NGF model predictions of the flow threshold is

warranted. In the case of inclined plane flow, it is the choice of

a homogeneous Dirichlet fluidity boundary condition at the rough

base that leads to predictions of size-dependent strengthening.

Indeed, if a homogeneous Neumann condition were employed, a

size-independent angle of repose would be predicted. However,

as will be shown in Section 4, NGF model predictions of size-

dependent strengthening do not arise solely due to wall condi-

tions. In a flow configuration with a spatially varying m-field, in

which some spatial regions experience m 4 ms while others

experience moms, the NGF model also predicts size-dependent

strengthening, regardless of the choice of wall boundary condi-

tion. In such a case, the region experiencing m o ms serves to

stabilize the region experiencing m 4 ms through nonlocal

effects, while a local model would simply predict the region

experiencing m 4 ms to flow. The flow configurations considered

in Section 4 involve both spatially varying m-fields and rough

walls. In the DEM simulations reported in Section 4, we are

unable to extract clear evidence justifying a homogeneous

Dirichlet boundary condition for the fluidity at walls. Therefore,

for the sake of simplicity, following our previous work,29–31 we

employ homogeneous Neumann fluidity boundary conditions at

walls throughout – both in calculating theoretical flow thresholds

and steady flow fields. We note that a similar choice of wall

fluidity boundary condition was employed by Chaudhuri et al.38

in their investigation of vertical chute flow of soft, frictionless

disks. In spite of this rather naive choice of fluidity boundary

condition, the results of Section 4 demonstrate that good agree-

ment between DEM data and NGF model predictions may be

obtained, indicating that the specifics of the stress field may play

a larger role than wall conditions.

4 Flow threshold in other
configurations

In this section, we present DEM simulation results in three flow

configurations – planar shear flow with gravity, annular shear

flow, and vertical chute flow – characterizing the size-dependence

of the flow threshold in each case. To be clear, in the context of

our DEM simulations, the flow threshold refers to the condition

for flow cessation and not the condition for flow start-up, which is

typically greater than the flow cessation condition and is depen-

dent on the preparation history. In this section, we also compare

DEM results with corresponding predictions of the NGF model.

Throughout, we use a single set of material parameters {ms, b, A}

in obtaining NGF model predictions. Based on the fit of the

Bingham-like functional form of the inertial rheology (1) to
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DEM data of homogeneous planar shearing (Fig. 1(b)), we utilize

local parameter values of ms = 0.272 and b = 1.168. In contrast,

the nonlocal amplitude is not obtained by fitting to a single data

set – rather, we choose a value of A = 0.90 in order to provide the

best collective description of all subsequently reported data. We

note that this numerical value is similar to the value A = 0.80,

which was reported by Kamrin and Koval25 for disks with an

inter-particle sliding friction coefficient msurf = 0.4.

4.1 Planar shear flow with gravity

First, we consider planar shear flow with gravity acting ortho-

gonal to the shearing direction. We note that size-dependent

strengthening in this configuration was first suggested by

Pouliquen and Forterre16 in the context of their modeling work,

but to our knowledge, this effect has not been reported in

experiments or DEM simulations. The DEM set-up for this case

is shown in Fig. 2(a) and is achieved by introducing a gravita-

tional body force along the z-direction to the configuration used

in planar shear flow, described in Section 2.2. The parallel,

rough walls are separated by a distance H = 60d, and the top

wall moves in the x-direction with a velocity vwall, while the

bottom wall remains fixed. The top wall imposes a compressive

normal stress Pwall on the granular material, using the control

procedure described in Section 2.2, and the gravitational body

force is frsG, where f is the mean solid area fraction and G is

the acceleration of gravity. Periodic boundary conditions are

employed along the x-direction, and the length of the region in

the x-direction is L = 60d.

The expected stress field in this flow configuration may be

deduced from a quasi-static force balance. As in planar shear

flow without gravity, the shear stress is spatially constant

and given by the shear stress imparted by the moving wall – i.e.,

t(z) = |sxz(z)| = |szx(z)| = twall. The pressure field is a combination

of the prescribed wall pressure Pwall and the gravitational pressure

gradient, so that P(z) =�szz(z) = Pwall + frsGz. As in planar shear

flow, we assume that sxx(z) E szz(z), which is consistent with

the results of our DEM simulations. Therefore, the stress ratio

field in planar shear flow with gravity varies as

mðzÞ ¼ tðzÞ
PðzÞ ¼

mwall
1þ z=‘

; (9)

where mwall = twall/Pwall is the maximum value of m, occurring at

the wall (z = 0), and c = Pwall/frsG is the loading length-scale,

which is defined as the ratio of the wall pressure to the

gravitational body force and is distinct from the dimensions H

and L. Importantly, since the loading length-scale c is the only

length-scale appearing in the stress ratio field (9), c – rather

than the dimensions H or L – is the relevant length-scale that

characterizes the system size in this problem. The loading

length-scale c may be interpreted as the distance beneath the

Fig. 2 (a) Configuration for two-dimensional DEM simulations of planar shear flow with gravity. (b) The dependence of the stress ratio at the wall mwall on

ṽwall for loading length-scales c/d = Pwall/frsGd = 11.75, 23.5, 47, and 93.5. (c) Flow threshold locus. (d) Normalized steady velocity fields in the plateau

regime (ṽwall E 10�3) for the four loading length-scales in (b). Inset: Steady stress ratio fields corresponding to each case. Throughout, symbols represent

the steady-state results of DEM simulations. In (b and d), solid lines are the calculated steady results of the NGF model, (2) and (3). In (c), the solid line is the

analytical flow threshold predicted by the NGF model (12). In the inset of (d), the solid lines are the anticipated m-fields (9) used as input in calculations

involving the NGF model.

Paper Soft Matter

P
u
b
li

sh
ed

 o
n
 0

6
 J

u
n
e 

2
0
1
8
. 
D

o
w

n
lo

ad
ed

 b
y
 B

ro
w

n
 U

n
iv

er
si

ty
 o

n
 7

/1
3
/2

0
1
8
 9

:0
5
:4

8
 P

M
. 

View Article Online



5300 | Soft Matter, 2018, 14, 5294--5305 This journal is©The Royal Society of Chemistry 2018

top wall at which the pressure due to gravity frsGc is equal to

the pressure applied by the top wall Pwall – i.e., P(z = c) = 2Pwall.

We have verified that the dimensions H = 60d and L = 60d are

sufficiently large so that they do not affect the subsequently

reported DEM results.

We run DEM simulations of planar shear flow with gravity

for different values of the top-wall speed vwall and loading

length-scale c. Each DEM simulation is run to steady state

through a top-wall shear displacement of at least 5500d, and

the steady fields vx(z), t(z), and P(z) are calculated using 2000

system snapshots – evenly spaced over an additional top-wall

shear displacement of at least 5500d – as described in Appendix

A. In each case, we verify that the resulting shear stress field is

indeed constant – thereby extracting the corresponding value

of twall – and that the pressure field matches the intended

dependence P(z) = Pwall + frsGz. In presenting results, we utilize

a dimensionless wall velocity ~vwall ¼ ðvwall=‘Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=Pwall

p

, in which

vwall is non-dimensionalized through the loading length-scale

and the microscopic time-scale associated with particle motion.

First, we probe the dependence of the stress ratio at the wall

mwall = twall/Pwall on ṽwall for loading length-scales c/d = 11.75,

23.5, 47, and 93.5, which is plotted as symbols in Fig. 2(b). For

sufficiently high wall speed – i.e., ṽwall \ 3 � 10�2 – the

relationship between mwall and ṽwall is size-independent, indi-

cating that the response is dominated by local, inertial effects.

However, as the wall speed is decreased, a rate-independent

plateau emerges, which is dependent on the system-size c/d.

Therefore, for a given c/d, steady flow is not possible for mwall
less than the plateau value, enabling the construction of a

phase diagram of flowing and non-flowing states. As shown in

Fig. 2(c), we create a phase diagram with c/d on the vertical axis

and mwall on the horizontal axis. Then, the DEM-calculated flow

threshold locus is plotted as symbols on the phase diagram – in

which each point consists of a given c/d and the corresponding

plateau value of mwall. Steady flow is possible for combinations

of c/d and mwall to the right of the flow threshold locus, while

steady flow cannot occur for combinations to the left of the

locus. For a large system-size, the flow threshold approaches

the size-independent value ms; however, as c/d decreases the

flow threshold increases.

We have also numerically computed corresponding steady

solutions of the NGF model, (2) and (3). Model predictions of

steady velocity fields are calculated for a given combination

of c/d and mwall, by evolving (3) to steady state, using finite

differences in MATLAB with m-field given through (9), a very

fine spatial resolution Dz { d, and the solution of (5) as the

initial guess. The calculated relationships between the wall stress

ratio mwall and the dimensionless wall speed ṽwall are plotted as

solid lines in Fig. 2(b) for c/d = 11.75, 23.5, 47, and 93.5. The NGF

model quantitatively captures both the size-independent but rate-

dependent regime observed in DEM simulations at sufficiently

high wall speed and the size-dependent but rate-independent

plateau regime – an observation that may be understood in terms

of the dynamical relation (3) as follows. At sufficiently high wall

speed, the Laplacian term in (3) contributes negligibly, yielding

size-independent model predictions. Consequently, the para-

meters ms and b – but not A – set the model predictions in the

rate-dependent regime. In contrast, for sufficiently slow flows,

the g2 term plays a negligible role, rendering the dynamical

relation (3) linear in g which leads to rate-independent model

predictions. The parameters ms and A – but not b – determine

NGF model predictions in the rate-independent regime.

The plateau value of mwall calculated using the NGF model

for a given value of c/d then represents a point on the predicted

flow threshold locus. Instead of constructing the locus using

discrete points determined in this way, we have calculated the

analytical flow threshold predicted by the NGF model for planar

shear flow with gravity using the linear perturbation procedure

described in Section 3. We define a dimensionless transformed

coordinate z̃ and a positive, dimensionless constant a as

~z ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

lþ ms
p ðzþ ‘Þ

Ad
and a ¼ mwall

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

lþ ms
p

‘

Ad
: (10)

Then, upon substituting the m-field for planar shear flow with

gravity (9) into (6), the resulting linear ODE for g(z̃) is

d2g

d~z2
þ � 1

4
þ a

~z

� �

g ¼ 0: (11)

The solution of (11) is g = C1Ma,1/2(z̃) + C2Wa,1/2(z̃), where

Ma,1/2(z̃) and Wa,1/2(z̃) are Whittaker functions, and C1 and C2

are constants. The homogeneous boundary conditions consist

of a Neumann condition at the moving wall, dg/dz|z=0 = 0, and the

far-field boundary condition, lim
z!1

g ¼ 0. Since the functionMa,1/2(z̃)

diverges as z̃ - N, while Wa,1/2(z̃) - 0, the far-field boundary

condition requires that C1 = 0. Then, applying the wall boundary

condition, making use of the identityWa,1/2
0(z̃) = ((z̃� 2a)Wa,1/2(z̃)�

2Wa+1,1/2(z̃))/2z̃, and simplifying, we obtain

ffiffiffiffiffi

ms
p ‘

Ad
� a

� �

Wa;1=2 2
ffiffiffiffiffi

ms
p ‘

Ad

� �

�Waþ1;1=2 2
ffiffiffiffiffi

ms
p ‘

Ad

� �

¼ 0 with a ¼ mwall
2
ffiffiffiffiffi

ms
p

‘

Ad
:

(12)

In the above expression, we have set l to the threshold value of

l = 0, so that (12) represents the size-dependent flow threshold

for planar shear with gravity. For a given value of the dimension-

less system size c/d and the material parameters ms and A, the

smallest, positive value of mwall that satisfies the transcendental

eqn (12) gives the flow threshold. The analytical flow threshold

(12) is plotted as a solid line in Fig. 2(c) – displaying a favorable

quantitative comparison with the DEM data.

Finally, we compare steady velocity fields extracted from

DEM simulations to corresponding NGF model predictions.

Steady normalized velocity fields vx(z)/vwall in the plateau

regime (ṽwall E 10�3) for loading length-scales c/d = 11.75,

23.5, 47, and 93.5 are shown in Fig. 2(d) with symbols denoting

DEM data and solid lines representing NGF model predictions.

In the inset of Fig. 2(d), symbols denote the corresponding

normalized stress ratio fields m(z)/mwall measured in the DEM

simulations, and solid lines represent the anticipated stress

ratio fields (9) used as input in calculations involving the NGF
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model, confirming that the intended stress fields are achieved in

the DEM simulations. Overall, the NGF model is able to quanti-

tatively capture the salient aspects of the flow fields in planar

shear flow with gravity over a range of loading length-scales.

Importantly, the nonlocal amplitude A is the operative material

parameter that determines NGFmodel predictions of steady flow

fields in the plateau regime, and using a single numerical value

of A, the NGF model simultaneously captures DEM data of both

the size-dependence of the flow threshold and steady flow fields.

4.2 Annular shear flow

Next, we consider annular shear flow – the DEM set-up for

which is shown in Fig. 3(a) with inner radius R and outer radius

R0. For the most part, the details of our DEM simulations of

annular shear flow follow the procedures of Koval and

coworkers.11,25 The walls in our DEM simulations of annular

shear flow consist of rings of glued grains of diameter 2d,¶ and

the inner radius R corresponds to the radial position of the

outermost points of the inner wall grains. At the inner wall, we

prescribe the circumferential wall velocity vwall, and the radial

position of the inner wall grains is fixed. While the outer wall

does not rotate, the value of R0 fluctuates slightly so as to

impose a prescribed radial compressive normal stress Pwall on

the granular material, using a control procedure analogous to

that used in Section 2.2 and described by Koval et al.11 We do

not utilize periodic boundary conditions, instead modeling

the full annular shear cell, as shown in Fig. 3(a) for the case

of R/d = 26. In total, we consider inner wall radii of R/d = 11, 26,

51, and 101. Throughout, we take the outer radius to be

sufficiently large so that the value of R0 does not affect the

subsequently reported results – R0 = 2R for R/d = 26, 51, and 101

and R0 = 4R for R/d = 11. The DEM configurations for R/d = 11,

26, 51, and 101 contain 4640, 5715, 23 900, and 97 696 flowing

grains, respectively.

Analogous to planar shear with gravity, we may deduce

the steady stress field from quasi-static force and moment

balances. The moment balance gives the shear stress field to

be t(r) = |sry(r)| = |syr(r)| = twall(R/r)
2, where r is the radial

coordinate and twall is the inner wall shear stress, and the radial

force balance gives that P(r) = �srr(r) = Pwall is spatially constant.

Again, we assume that the normal stresses are equal – i.e., syyE srr –

which is consistent with DEM simulation results. Therefore, for

annular shear flow, the stress ratio field varies as

mðrÞ ¼ tðrÞ
PðrÞ ¼ mwall

R

r

� �2

; (13)

Fig. 3 (a) Configuration for two-dimensional DEM simulations of annular shear flow for the case of R/d = 26. (b) The dependence of the stress ratio at thewall

mwall on ṽwall for inner wall radii R/d = 26, 51, and 101. (c) Flow threshold locus. (d) Normalized steady velocity fields in the quasi-static regime (ṽwall E 10�4) for

the three loading length-scales in (b). Inset: Steady stress ratio fields corresponding to each case. Throughout, symbols represent the steady-state results of

DEM simulations. In (b and d), solid lines are the calculated steady results of the NGF model, (2) and (3). In (c), the solid line is the analytical flow threshold

predicted by the NGF model (16). In the inset of (d), the solid lines are the anticipated m-fields (13) used as input in calculations involving the NGF model.

¶ Rough walls consisting of glued grains of diameter 2d were also used in the

annular shear flow simulations of Kamrin and Koval.25 We utilize this type of

rough wall for our annular shear flow simulations rather than the rough walls

described in Section 2.2 in order to more easily construct the annular DEM

configuration.
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where mwall = twall/Pwall is the maximum value of m, occurring

at the inner wall (r = R).

Our discussion of simulation results for annular shear flow

mirrors that of Section 4.1 for planar shear flow with gravity.

We run DEM simulations for different values of the inner wall

speed vwall and radius R. Each simulation is first run to steady

state through an inner-wall tangential displacement of at least

48d,8 and the steady fields vy(r), t(r), and P(r) are then extracted

using 1000 system snapshots, which are evenly spaced over an

additional inner-wall tangential displacement of an equal

amount as in the preceding step. Further, twall is measured

by way of the average torque applied to the inner wall at steady

state. First, we explore the dependence of the inner wall stress

ratio mwall on ~vwall ¼ ðvwall=RÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=Pwall

p

in DEM simulations for

R/d = 26, 51, and 101, which is plotted as symbols in Fig. 3(b).

Again, a transition is observed from a rate-dependent but size-

independent regime at sufficiently high wall speed (ṽwall \ 10�2)

to a size-dependent plateau regime as ṽwall is decreased. Here, we

have restricted attention to a slightly lower range of ṽwall than

considered in Section 4.1 to ensure that centripetal acceleration

plays no role in our DEM simulations – a point which is verified

by checking that the normal stress srr is spatially constant. A

phase diagram of flowing and non-flowing states for annular

shear flow is shown in Fig. 3(c), in which pairs of R/d and the

corresponding plateau value of mwall are plotted as symbols and

denote the DEM-calculated flow threshold locus. Again, we

observe strengthening as the system-size R/d is reduced.

Steady-state predictions of the NGF model are numerically

calculated for given combinations of R/d and mwall as described in

Section 4.1 except with m-field given through (13). The calculated

relationships between mwall and ṽwall are plotted as solid lines in

Fig. 3(b) for R/d = 26, 51, and 101, demonstrating good quantitative

agreement with DEM data and – most importantly – displaying a

size-dependent plateau value of mwall. As in Section 4.1, we calculate

the theoretical flow threshold locus for annular shear flow via the

linear perturbation procedure described in Section 3. Substituting

the m-field (13) into (6), defining a dimensionless transformed

coordinate r̃ and a positive, dimensionless constant a as

~r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

lþ ms
p r

Ad
and a ¼ ffiffiffiffiffiffiffiffiffi

mwall
p R

Ad
; (14)

and simplifying, we obtain the following linear ODE for g(r̃):

~r2
d2g

d~r2
þ ~r

dg

d~r
� ~r2 � a2
� �

g ¼ 0: (15)

The solution of (15) is g = C1Iia(r̃) + C2Kia(r̃), where Iia(r̃) and Kia(r̃) are

themodified Bessel functions of the first and second kind of purely

imaginary order, and C1 and C2 are constants. We consider

the following homogeneous boundary conditions: a Neumann

condition at the inner wall, dg/dr|r=R = 0, and the far-field condition,

lim
r!1

g ¼ 0. For r̃ and a positive, the function Iia(r̃) is complex-valued,

and its real part diverges as r̃-N. In contrast, Kia(r̃) is real-valued

for r̃ and a positive, and Kia(r̃)- 0 as r̃-N. Therefore, the far-

field boundary condition requires that C1 = 0. Then, applying the

wall boundary condition, setting l = 0, and simplifying leads to the

size-dependent flow threshold for annular shear flow:

Kia

0 ffiffiffiffiffi

ms
p R

Ad

� �

¼ 0 with a ¼ ffiffiffiffiffiffiffiffiffi

mwall
p R

Ad
: (16)

For a given value of the dimensionless inner wall radius R/d and

the material parameters ms and A, the smallest, positive value of

mwall that satisfies (16) gives the flow threshold. The theoretical

flow threshold locus (16) is plotted as a solid line in Fig. 3(c),

showing that the NGF model captures the size-dependent flow

threshold in this flow configuration.

Lastly, we compare DEM data and NGF model predictions of

steady velocity fields. Steady normalized velocity fields vy(r)/vwall
in the plateau regime (ṽwall E 10�4) for inner wall radii R/d = 26,

51, and 101 are shown in Fig. 3(d) with symbols denoting DEM

data and solid lines representing NGF model predictions.

Corresponding steady normalized stress ratio fields m(r)/mwall
are shown in the inset of Fig. 3(d), confirming that the m-fields

measured from DEM data are consistent with the anticipated

stress ratio fields (13). The NGF model quantitatively captures

both steady flow fields and the size-dependence of the flow

threshold in annular shear flow – while using the same set of

material parameters as in planar shear flow with gravity.

4.3 Vertical chute flow

Finally, we consider vertical chute flow. The size-dependence of

the flow threshold in this configuration was first explored by

Chaudhuri et al.38 for a simulated, two-dimensional system of

soft, frictionless particles. Here, we perform an analogous

analysis for our system of stiff, frictional disks. Our DEM set-

up is shown in Fig. 4(a), which is generated by first creating a

dense granular system between two parallel, rough walls as

described for planar shear in Section 2.2 and then rotating the

system clockwise by 901 and applying a gravitational body force

along the z-direction. The rough walls – consisting of layers of

glued grains as in the planar shear flow simulations of Section

2.2 – are separated by a distance denoted by W, which is varied

in our simulations. The left vertical wall is fixed, and the right

vertical wall is fixed in the z-direction but can move slightly in

the x-direction so as to impose a compressive normal stress

Pwall on the granular material, using the control procedure

described in Section 2.2. Periodic boundary conditions are

prescribed along the z-direction. In all cases, the length of the

vertical chute L is taken to be 60d, which is in a range that does

not affect DEM results.** We consider nominal chute widths of

8 Koval and coworkers11,25 report that transients fully subside after an inner-wall

tangential displacement of approximately 50d in their simulations of annular

shear flow and conservatively adopt an inner-wall displacement of 100d as their

steady-state condition. Our observation of transients is similar, and for efficiency

– since we simulate the full annular shear cell rather than an angular section – we

adopt a steady-state condition of 48d for the inner-wall displacement.

** If the vertical chute is taken to be too long, alternating dense and sparse

regions will develop along the chute. This is because the procedure employed to

control the pressure cannot account for variations along the length of the vertical

chute due to the rigid nature of the walls. We have verified that our chute length L

is sufficiently short so that this issue does not arise while also being sufficiently

long so that the reported results do not depend upon L.
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W/d = 10, 20, 30, 40, and 60 – however, these values do vary

slightly during flow – and the DEM configurations contain 633,

1270, 1900, 2539, and 3806 flowing grains, respectively.

From a quasi-static force balance, we expect the shear stress

field to be t(x) = |sxz(x)| = |szx(x)| = frsG|x|, where x is measured

from the centerline of the chute, and the pressure field to be

P(x) = �sxx(x) = Pwall. Again, we assume that the normal stresses

are equal – i.e., szzE sxx – and verify this assumption against the

DEM results. Therefore, for vertical chute flow, the m-field is

mðxÞ ¼ mwall
jxj
W=2

� �

; (17)

where mwall = frsGW/2Pwall is the maximum value of m, occur-

ring at the walls (x = �W/2).

Since vertical chute flow is gravity-driven – while planar

shear flow with gravity and annular shear flow are boundary-

driven – our process for determining the flow threshold from

DEM simulations is different than previously described. In

boundary-driven flow, we specify arbitrarily-low wall velocities

and extract the flow threshold from the steady-state plateau

forces applied to the wall. In contrast, for gravity-driven

flow, we consider various conditions – namely, combinations

of W/d and mwall – and determine whether steady flow may

be sustained, and in this way, the flow threshold is bounded.

Our process is as follows. Motivated by the methodology of

Weinhart et al.10 for assessing flow arrest in DEM simulations

of inclined plane flow, we utilize a criteria based on the kinetic

energy. First, for a given chute width W/d, a sufficiently large

value of mwall is applied so that steady flow is attained.

Next, mwall is decreased to a target value – in practice, this is

achieved by decreasing the acceleration of gravity G – and the

system is allowed to reach steady state over a time period of

19 470
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=Pwall

p

. We confirm that the m-fields measured from

steady-state DEM data are consistent with the intended m-fields

(17). Then, the mean kinetic energy per flowing grain as a

function of time – denoted as Ekin(t) – is extracted from 5000

system snapshots distributed evenly over an additional time

period of 19 470
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=Pwall

p

after reaching steady state. For values

of mwall in which the arithmetic average of the kinetic energy

hEkin(t)i is greater than 10�2Pwalld
2,†† flow is continuous, and

Ekin(t) is nearly time-independent with fluctuations – defined as

(h(Ekin(t) � hEkin(t)i)2i)1/2 – smaller than hEkin(t)i. When mwall is

decreased to a value for which hEkin(t)i = 10�2Pwalld
2, fluctua-

tions increase to be roughly equal to hEkin(t)i, and accordingly,

we identify this condition and the corresponding value of mwall
as the upper bound of the flow threshold for a given W/d.

As mwall is further decreased, flow becomes intermittent,

and kinetic energy fluctuations further increase. In this inter-

mittent regime, it is important to acknowledge the effect that

the wall damping parameter gp has on flow. If gp is too low

gp=
ffiffiffiffiffiffiffiffiffi

mkn
p

�o 1
� �

, wall motion is underdamped, and the asso-

ciated wall oscillations prevent flow from ceasing, even when

mwall is arbitrarily small. If gp is too high gp=
ffiffiffiffiffiffiffiffiffi

mkn
p

�4 104
� �

, wall

motion is overdamped, and the target wall pressure Pwall is not

achieved. We find that for our choice of gp=
ffiffiffiffiffiffiffiffiffi

mkn
p

¼ 100, static

states may be achieved while maintaining the target wall

pressure. That said, using this value of gp, at low values of

mwall, wall motion can still induce isolated, infrequent grain

rearrangements that are not associated with steady flow but

do contribute to the kinetic energy. To remove this effect,

we median filter the measured kinetic energy data Ekin(t) for

values of mwall in the intermittent regime prior to arithmetically

averaging the kinetic energy data over time. When the average

value of the filtered kinetic energy data decreases to a very low

value of 10�7Pwalld
2 we deem flow to have ceased and denote

the corresponding value of mwall as the lower bound of the

flow threshold.

Once upper and lower bounds of the flow threshold have

been determined, we may construct a phase diagram of flowing

and non-flowing states for vertical chute flow, which is shown

in Fig. 4(b). For a given W/d, the �-symbols denote the upper

and lower bounds determined as described in the preceding

paragraph, and the range of mwall between the symbols corre-

sponds to the intermediate regime of intermittent flow and is

denoted by a dotted line. While the exact value of the chute

Fig. 4 (a) Configuration for two-dimensional DEM simulations of vertical chute flow for the case of W/d = 60. (b) Flow threshold locus. Symbols

represent upper and lower bound estimates of the flow threshold based on the results of DEM simulations, and the solid line is the analytical flow

threshold predicted by the NGF model (19).

†† Since kn = 104Pwall in our simulations, the normalization factor Pwalld
2 is

related to the elastic potential energy scale, as in Weinhart et al.10
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width varies in our simulations, we find that the differences

between actual values of W near the flow threshold and the

corresponding nominal values are less than one grain diameter

in all cases, so the values of W/d appearing in Fig. 4(b)

correspond to the nominal values. Due to the presence of the

intermittent regime, our determination of the flow threshold in

vertical chute flow is less precise than for the flow configura-

tions considered in Sections 4.1 and 4.2; however, the increase

of the measured flow threshold with decreasing system size

remains clear.

To calculate the theoretical flow threshold locus predicted

by the NGF model for vertical chute flow, we substitute the

m-field (17) into (6) to obtain

d2g

d~x2
� ~xg ¼ 0 where ~x ¼ lþ ms � mwallx=ðW=2Þ

ð2Admwall=WÞ2=3 (18)

is a dimensionless transformed coordinate. The solution of (18)

is g = C1Ai(x̃) + C2Bi(x̃), where Ai(x̃) and Bi(x̃) are the Airy

functions of the first and second kind, and C1 and C2 are

constants. The homogeneous boundary conditions consist of the

symmetry condition at x = 0, dg/dx|x=0 = 0, and a homogeneous

Neumann condition at the wall, dg/dx|x=W/2 = 0. Enforcing the

boundary conditions and setting l = 0 yields the size-dependent

flow threshold for vertical chute flow:

Ai0
ms

ð2Admwall=WÞ2=3
� �

Bi0
ms � mwall

ð2Admwall=WÞ2=3
� �

� Bi0
ms

ð2Admwall=WÞ2=3
� �

Ai0
ms � mwall

ð2Admwall=WÞ2=3
� �

¼ 0:

(19)

For a given value of the dimensionless chute width W/d and the

material parameters ms and A, the smallest, positive value of

mwall that satisfies (19) gives the flow threshold. The theoretical

flow threshold locus (19) is plotted as a solid line in Fig. 4(b),

using the same material parameters ms and A as in Sections 4.1

and 4.2. The theoretical flow threshold locus does a reasonably

good job of quantitatively capturing the DEM data for vertical

chute flow.

5 Concluding remarks

In this paper, we have studied the size-dependence of the flow

threshold in three different dense granular flow configurations – (1)

planar shear flow with gravity, (2) annular shear flow, and (3)

vertical chute flow. Importantly, the flow threshold measured in

DEM simulations shows substantial size-dependence across all

configurations – the details of which are affected by the form of

the stress field. We have also applied the NGF model to all three

flow configurations to obtain predictions of both the flow

threshold and steady flow fields. Notably, we have obtained

analytical solutions for the predicted size-dependent flow thresh-

old in all three cases. The theory – using a single set of material

parameters – predicts size-dependent flow thresholds that

match DEM data rather well in all cases. Further, the theory

simultaneously predicts steady flow fields that are quantita-

tively consistent with corresponding DEM data.

For illustrative purposes, a comparison of the analytical flow

thresholds predicted by the NGF model for all four flow

configurations discussed in this paper – inclined plane flow (8),

planar shear flow with gravity (12), annular shear flow (16), and

vertical chute flow (19) – is plotted in Fig. 5 with the appropriate

length-scale on the vertical axis and the maximum value of m

associated with the flow configuration on the horizontal axis.

Notably, size-dependent strengthening in all three configurations

considered in Section 4 is significantly greater than the

strengthening predicted for inclined plane flow. Recall that

the strengthening predicted by the theoretical flow threshold

for inclined plane flow is entirely due to boundary effects,

since the m-field is spatially constant, while the additional

strengthening associated with the other three theoretical flow

thresholds is due to the spatial-dependence of the stress field,

rather than boundary effects. This observation illustrates that

the precise nature of the m-field has a crucial effect on the

resulting flow threshold and must be accounted for when

considering other size-sensitive flow stoppage phenomena.

As a final comment, providing physical justification for

fluidity boundary conditions at walls remains an open issue.

In the present work, our choice of a homogeneous Neumann

condition was based on pragmatic grounds – since a homo-

geneous Dirichlet fluidity boundary condition was not directly

observed in our DEM simulations – and past experience – which

has shown that such a boundary condition enables an excellent

description of experiments of split-bottom flow29 and chute

flow.30 In spite of the lack of a physical underpinning for this

choice, the favorable agreement between the flow thresholds

measured in DEM simulations and the corresponding analytical

flow thresholds predicted by the NGF model provides support for

this choice of fluidity boundary condition. From a broader per-

spective, the issue of specifying non-standard boundary conditions

arises in virtually all nonlocal constitutive approaches,17,20,27,38

and motivating the choice of these boundary conditions from a

physical perspective remains an open challenge. In the context of

nonlocal fluidity models, some recent progress has been made

on this point for dense emulsions,39 and future work of this type

is needed to develop a clearer microscopic understanding of

granular fluidity boundary conditions.

Fig. 5 Comparison of the analytical flow thresholds predicted by the NGF

model for inclined plane flow (8), planar shear flow with gravity (12),

annular shear flow (16), and vertical chute flow (19).
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A Averaging method

In this appendix, we briefly summarize the spatial averaging

method utilized to extract steady, continuum velocity and stress

fields from our DEM data. The method follows the work of

Koval and coworkers11,25 and is described for the cases of

planar shear flow and planar shear flow with gravity, in which

quantities are averaged over the x-coordinate shown in Fig. 1(a)

and 2(a). First, for a snapshot at time t, we draw a horizontal

line at a given z-position, and assign each intersected grain i

a weight Li defined as the length of the horizontal line

passing through grain i. Then, with the instantaneous velocity

of grain i denoted as vi(t), the instantaneous velocity field

is vðz; tÞ ¼
P

i

LiviðtÞ
�

P

i

Li. Regarding the stress field, the

instantaneous stress tensor associated with grain i is

riðtÞ ¼
P

jai

rij � f ij

 !,

Ai, where rij is the position vector from

the center of grain i to the center of grain j, fij is the contact

force applied on grain i by grain j, and Ai = pdi
2/4 is the area of

grain i. The instantaneous stress field follows as

rðz; tÞ ¼
P

i

LiriðtÞ=L, where L is the total length of the domain

in the x-direction. The instantaneous velocity and stress fields

are then arithmetically averaged in time over many snapshots

to obtain steady fields that only depend upon the z-coordinate,

such as those shown in Fig. 2(d). This process may be adapted

to spatial averaging over the angular coordinate in a polar

coordinate system, as described in Appendix B of Koval et al.,11

and used to obtain steady fields in annular shear flow, such as

those shown in Fig. 3(d).
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