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Size-dependence of the flow threshold in
dense granular materials
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The flow threshold in dense granular materials is typically modeled by local, stress-based criteria.
However, grain-scale cooperativity leads to size effects that cannot be captured with local conditions. In
a widely studied example, flows of thin layers of grains down an inclined surface exhibit a size effect
whereby thinner layers require more tilt to flow. In this paper, we consider the question of whether the
size-dependence of the flow threshold observed in inclined plane flow is configurationally general.
Specifically, we consider three different examples of inhomogeneous flow — planar shear flow with gravity,
annular shear flow, and vertical chute flow - using two-dimensional discrete-element method
calculations and show that the flow threshold is indeed size-dependent in these flow configurations,
displaying additional strengthening as the system size is reduced. We then show that the nonlocal granular
fluidity model - a nonlocal continuum model for dense granular flow - is capable of quantitatively
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1 Introduction

A rheology for dense granular flows, relating the stress state to
the shear strain-rate, may be extracted from homogeneous,
planar shear flow data.'? For example, consider a two-
dimensional, quasi-monodisperse, dense granular system composed
of dry, stiff, frictional disks with average disk diameter d and
grain-material area-density ps, so that the characteristic grain
mass is m = psnd®/4. The inertial rheology then relates the stress
state — specifically, the pressure P and the shear stress 7 (both
with units of force per length in two-dimensional settings) -
to the consequent shear strain-rate j. The aforementioned
quantities may be expressed through the dimensionless groups
I =79y/m/P and u = t/P, where I is referred to as the inertial
number - representing the ratio of the microscopic time-scale
associated with particle motion /m/P to the macroscopic
time-scale of applied deformation 1/y — and u is the stress
ratio. The inertial rheology then relates I and p through a one-
to-one functional relationship p = pjoc(I), which is empirically
fit. A common feature among different functional forms
of the inertial rheology is a static yield value of the stress
ratio - poc(l = 0) = us. Consequently, the inertial rheology
possesses a flow threshold in which steady flow is not possible
when p < pg but steady flow becomes possible whenever p
exceeds pg.T
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 In the common generalization of the inertial rheology to three-dimensions,**
the flow threshold takes the form of a Drucker-Prager yield condition.”
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capturing the observed size-dependent strengthening in all three flow configurations.

A logical next step is to apply this flow threshold to more
complex flow configurations. A dense granular flow configuration
that is more complex than homogeneous, planar shear - but still
quite simple - is flow down a rough inclined surface. In inclined
plane flow, the ratio of the shear stress to the pressure is a constant
value at every point in the granular layer — as in planar shear - and
is given through the inclination angle 6 by x = tan 6. Therefore, the
flow threshold associated with the inertial rheology predicts
that flowing and non-flowing states are separated by a thickness-
independent angle of repose 0, = tan ' i, However, extensive
experiments and discrete-element method (DEM) simulations
have shown that this is not the case."*'° Instead, thin granular
layers do not flow for a range of O greater than 0, with
additional strengthening as the layer thickness is decreased.

The inability of the inertial rheology to capture this size effect
stems from its local nature - local in the sense that it relates the
stress state to the strain-rate at a point. The size-dependence of
the flow threshold in inclined plane flow arises due to nonlocal,
cooperative effects at the microscopic grain level, which are not
accounted for in the inertial rheology. In a thin granular layer, the
proximity of the grains to the fixed, rough, inclined surface
imbues the granular layer with additional strength. The converse
manifestation of cooperativity may also be observed. Flow in one
region of a granular medium can induce flow in far-away regions -
even when these regions experience stress states that are beneath
the flow threshold extracted from homogeneous, planar shearing.
For example, in steady, non-uniform flows - such as annular
shear,"""? split-bottom flow,"® or gravity-driven heap flow'* - a
decaying flow field is observed, whereas the stress-based flow
threshold of the inertial rheology would predict a sharp flow
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cutoff. An additional example of this effect is the ‘“secondary
rheology” of intruders, whereby the motion of a boundary
removes the flow threshold of the material everywhere, permitting
far-away loaded objects to creep through the grains when other-
wise they would remain static.'®

While the effect of cooperativity on steady flow fields has been
investigated in a diverse set of geometric configurations, studies
exploring the size-dependence of the flow threshold in dense
granular materials have been limited to inclined plane flow. To
better elucidate the role of the stress field, the first purpose of this
paper is to systematically explore the size-dependence of the flow
threshold in different flow configurations with more complex stress
fields. Specifically, we consider dense two-dimensional flows of stiff,
frictional disks using DEM simulations in three flow configurations:
(1) planar shear flow with gravity, (2) annular shear flow, and
(3) vertical chute flow, and show that additional strengthening is
observed as the system size is reduced in all three cases.

The second purpose of this paper is to rationalize the depen-
dence of the flow threshold on the system size in the presence of
different stress fields with a continuum model. A number of
nonlocal continuum constitutive theories have been proposed,
which are aimed at capturing various cooperative effects.'®>* Among
these, several have been applied to the flow threshold in inclined
plane flow, such as integral equations representing a self-activated
process;'® Ginzberg-Landau theories based on a partial-fluidization
order parameter,"” the granular fluidity,* or the inertial number;*°
and extensions of kinetic theory.>® In particular, our recent work™
has shown that the nonlocal granular fluidity (NGF) model is
capable of capturing the size-dependence of the flow threshold in
inclined plane flows of glass beads. In this paper, we utilize the NGF
model to obtain predictions of the size-dependence of the flow
threshold in planar shear flow with gravity, annular shear flow, and
vertical chute flow. Specifically, in each case, we calculate the
analytical flow threshold predicted by the NGF model. Importantly,
we show that the NGF model is capable of quantitatively describing
the observed size-dependent strengthening in all three flow con-
figurations, while simultaneously capturing steady flow fields.

The remainder of this paper is organized as follows. In
Section 2, we discuss the specifics of our two-dimensional
DEM simulations and verify our simulations against existing
DEM data for stiff, frictional disks in planar shear flow from the
literature.>** In Section 3, we discuss the NGF model and its
attendant description of the flow threshold. Then, in Section 4,
we present the results of our DEM simulations in planar shear
flow with gravity, annular shear flow, and vertical chute flow
along with the predictions of the NGF model, comparing
predictions of both the size-dependent flow threshold and
steady flow fields to DEM data. We close with discussion and
concluding remarks in Section 5.

2 Discrete-element method
simulations

In this section, we provide details of our two-dimensional
DEM methodology and briefly describe simulations of planar
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shear flow in order to verify our simulations against existing
literature data.>*®

2.1 Simulated granular system

2111825 e consider a simu-

Following several previous works,
lated, two-dimensional granular system consisting of a dense
collection of circular disks. As in Section 1, the average disk
diameter and the grain-material area-density are denoted as d
and py, respectively, so that we may define a characteristic grain
mass as m = pgnd’/4. The distribution of disk diameters involves
a polydispersity of £20% to prevent crystallization. We utilize a
standard DEM grain interaction model.” Specifically, there is no
force between non-overlapping grains, but when two grains
overlap, they interact through a spring/dashpot contact law
that accounts for elasticity, damping, and sliding friction. With
Jn = 0 and J; denoting the normal and tangential components
of the contact displacement, the normal contact force F,, is given
linearly through the normal contact displacement with stiffness
k, and the relative normal velocity with damping coefficient g,
Le., Fy =kno, + gnén. The normal damping coefficient is speci-
fied through the coefficient of restitution for binary collisions e

by g, = Vnk,(—2Ine)//2(n? +In2e). Tangential interactions
are described by a stiffness k. and damping coefficient g;, which
we take to be zero, so that the tangential contact force is F; = kJy.
Importantly, the tangential contact force is limited by Coulomb
friction, described by the inter-particle sliding friction coefficient
Usurr- Therefore, grain interactions are fully described through
the parameter set {ky,, k, €, Usurf}- In order to simulate stiff, quasi-
rigid grains, the normal stiffness is taken to be sufficiently
large throughout, ie., k,/P > 10%, where P is the characteristic
confining pressure for a given flow configuration. Next, it is
well-appreciated that the precise values of k/k, and e have a
negligible impact on the phenomenology of dense flows of stiff
disks,? and as in previous works,** we take k/k, = 1/2 and e = 0.1.
Finally, among the interaction parameters, p,¢ plays the most
important role.>® Exploring the effect of jg,¢ on the flow thresh-
old is beyond the scope of the present work, so we restrict
attention to the case of ¢ = 0.4. The equations of motion for
each particle are solved using standard molecular dynamics
techniques using the open-source software LAMMPS.*® For
the most part, we restrict the time step to be 0.01 of the

binary collision time, 7. = y/m(n? + In2 ¢) /4k,, to ensure stable,

accurate simulation results.:

2.2 Planar shear flow

First, we perform simulations of planar shear flow in order to
verify our DEM results against existing data reported in the
literature. We consider a configuration consisting of a rectangular
region of length L = 60d in the x-direction and height H = 60d in
the z-direction that is filled with a dense collection of 3806 flowing
grains and subjected to shearing through the relative motion of
two parallel, rough walls, as shown in Fig. 1(a). The dense

i Alarger time step is used for certain DEM simulations of planar shear flow and
planar shear flow with gravity to save computation time. The time step is never
taken to be greater than 0.1 of 7. and has been verified to not affect results.
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Fig. 1 (a) Configuration for two-dimensional DEM simulations of planar shear flow. Black grains denote rough walls, and gray grains denote flowing
grains. (b) The local inertial rheology — u versus | — for frictional disks with inter-particle sliding friction coefficient of pg,¢ = 0.4. Black symbols denote
the DEM data of da Cruz et al.?2 and Kamrin and Koval,?® and gray symbols denote the DEM data of the present work. The solid line denotes the fit

of (1) with pus = 0.272 and b = 1.168.

granular system is generated by allowing grains to sediment
under the action of gravity, but gravity is absent in subsequent
simulations of planar shear. Each of the two rough walls on top
and bottom consists of a thin layer of touching glued grains,
which are denoted as black in Fig. 1(a), while the flowing grains
between the walls are denoted as gray. Regarding wall condi-
tions, the bottom wall is fixed, and the velocity of the top wall in
the x-direction is specified to be v,y Following da Cruz et al.”
and subsequent works,""*> the velocity of the top wall in the
z-direction is not zero - i.e., H is not fixed. Instead, in order to
maintain a target wall normal stress of 0,,(z = 0) = —Py.y;, the
vertical position of the wall is continuously adjusted so that the
value of H evolves through H = (—0y,(z = 0) — Pyan)L/gp, where
gp is a damping parameter for vertical wall motion. Throughout,
we take g, = 100+/nik,. Periodic boundary conditions are utilized
in the x-direction.

Next, we extract steady velocity and stress fields from DEM
simulations of planar shear flow for a range of wall velocities,
Vwall, and fixed wall pressure, Py.;. To ensure that steady flow is
achieved, each simulation of planar shear is first run to a top-
wall shear displacement of at least 400H.§ Then, we consider
1000 system snapshots uniformly distributed in time over an
additional top-wall shear displacement of 250H. Anticipating
that the velocity and stress fields are homogeneous along the
x-direction, we average along the x-direction at discrete
z-positions for each snapshot. We utilize the spatial averaging
technique described by Koval and coworkers,'’*> which is
briefly summarized in Appendix A. The instantaneous velocity
and stress fields are then arithmetically averaged over all
snapshots to obtain steady fields that depend only upon the
z-coordinate. In all cases of planar shear flow, the steady
velocity field v,(z) is linear with very little wall slip, allowing
us to define a corresponding, spatially-constant shear strain-
rate 7 = |dv,/dz|. All stress components are spatially constant as
well. Moreover, the normal stresses g, and ¢,, are approxi-
mately equal. Therefore, the shear stress and pressure may be

§ Experience tells us that flow typically reaches steady state within a top-wall
shear displacement of 100H after a short transient.
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denoted as T = |0y| = |0,x| and P = —0,, & —oy,, respectively,
and we may calculate the inertial number 7 = j/m/P and
stress ratio u = t/P corresponding to each prescribed wall
velocity. The relationship between p and I extracted from our
DEM simulations is plotted in Fig. 1(b) as gray symbols, along
with the DEM data of da Cruz et al.> and Kamrin and Koval®® for
stiff, frictional disks with pg,,t = 0.4 as black symbols. The DEM
results are consistent, verifying our methodology. The DEM
data for two-dimensional granular systems consisting of disks
may be fit by a simple Bingham-like functional form of the
inertial rheology:*

ﬂloc(l) = us *+ bI, (1)

where ug and b are dimensionless material parameters. The
relation (1) - using fitted parameter values of us; = 0.272 and
b =1.168 - is plotted in Fig. 1(b), demonstrating that the linear
form (1) captures DEM data for homogeneous planar shear.

3 Granular rheology and the flow
threshold

In this section, we discuss the nonlocal granular fluidity model
for steady, dense granular flow and its attendant description of
the flow threshold. Motivated by experimental observations
of cooperative effects, a number of nonlocal continuum
approaches have been pursued. For example, Ginzberg-Landau
theories based on a partial-fluidization order parameter'’” or
the inertial number® and extensions of kinetic theory*® have
been used to make predictions of the flow threshold for
inclined plane flow. Recently, an alternative nonlocal conti-
nuum model for dense granular flow, based on the concept of
“granular fluidity” - a concept inspired by nonlocal fluidity
models for emulsions®”*® - has shown promise in capturing
cooperative effects observed in experiments, including flow
fields in a variety of boundary-driven and gravity-driven
flows,'®>%?° the secondary rheology of intruders,*" as well as
the thickness-dependence of the flow threshold in inclined
plane flow.**

This journal is © The Royal Society of Chemistry 2018
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In the NGF model, a positive, scalar field quantity - the
granular fluidity - is introduced and denoted as g. The works of
Zhang and Kamrin®* and Bhateja and Khakhar®® have established
that the granular fluidity has an unambiguous kinematic defini-
tion that holds across a wide variety of inhomogeneous flow
configurations and is given through the relation g = (dv/d )F(¢),
where dv is the velocity fluctuation, ¢ is the solid fraction, d is
the grain size, and F(¢) is a function of only ¢. Then, instead of
relating the stress state to the strain-rate through a single
constitutive equation as in the inertial rheology (1), the NGF
model relates the stress state, the strain-rate, and the granular
fluidity through two constitutive equations as follows:

7 =gu, (2)
X m
tw:aﬁfV%AIA*ukfb¢;%% (3)

where ¢, > 0 is a constant timescale associated with the
dynamics of g, A > 0 is a constant dimensionless material
parameter characterizing nonlocal effects, called the nonlocal
amplitude, and the dimensionless constants us and b are the
same as those appearing in the local inertial rheology (1). The
duel constitutive roles of the granular fluidity become clear in
(2) and (3). First, in (2), g operates as a fluidity-like quantity,
relating the stress ratio u to the consequent shear strain-rate 7y,
and second, in (3), g operates as a nonlocal order parameter
governed by a dynamical system - in a manner that bears a
mathematical similarity to other Ginzberg-Landau-based
approaches.'”** When the flow field is homogeneous (Vg = 0),
the granular fluidity evolves to the stable, steady, stress-dependent
solution of the dynamical system (3), which is given by

P(u— .
PU=m) e s
gloc(,uﬁ P) = m b'u
0 if p < g,

4)

and referred to as the local fluidity. When the granular fluidity
is given through (4) and combined with (2), the local inertial
rheology (1) is recovered, and hence, the NGF model reduces to
the inertial rheology for steady, homogeneous flow. However,
when flow gradients are present, the Laplacian term in (3)
introduces an intrinsic length-scale given through the grain
size d, and the NGF model produces nonlocal predictions.
Several comments on the dynamical relation (3) are in order:
1. As discussed in Henann and Kamrin,** the last two terms
in (3) arise through the derivative of a coarse-grain Ginzburg-
Landau-type free energy. Since these terms then determine the
stable, steady solution for g in the absence of flow gradients -
i.e., the local fluidity (4) - the choices of the Ginzburg-Landau-
type free energy and the fitting function for the local inertial
rheology are one and the same. Hence, if one were to utilize
a different functional form for the inertial rheology than the
Bingham-like form (1), it would be necessary to modify these
terms in (3). Indeed, as I increases, deviation from the linear
form (1) is often observed, leading to the use of nonlinear
fitting functions.>*> In our previous work applying the NGF
model to dense flows of spheres down inclines,** we chose to

This journal is © The Royal Society of Chemistry 2018
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work with the commonly-utilized, nonlinear fitting function
of Jop et al.,®® which involves an upper-limiting value of x, and
hence, the dynamical relation (3) took on a slightly different
form. In the present work, focusing on two-dimensional
granular systems of disks, the Bingham-like form of the inertial
rheology works well up to a stress ratio of 0.5 (see Fig. 1(b)), so
we utilize the corresponding dynamical form (3), while limiting
attention to situations in which the stress ratio remains less
than 0.5.

2. The dynamics embodied by (3) does not involve bistability,
in which two stable, steady-state values of g exist for some range
of u. This feature would lead to a non-monotonic local rheology
and hysteresis of the predicted flow threshold. There is some
experimental evidence for a non-monotonic local rheology
in dense flows of spheres;*® however, non-monotonicity is not
observed in our DEM simulations of disks, so we neglect the
possibility of this effect in the present work.

3. The time-dependent term appearing in (3) is not intended
to quantitatively describe the approach to steady state, such as
the transient variations in flow resistance that accompany
Reynolds dilatancy or the transient effects reported by Ries
et al.>” However, the model does provide an accurate description
of the long-term dynamical behavior - i.e., steady flow - as well
as the flow threshold. In these cases, the numerical value of the
positive parameter ¢, appearing in (3) is irrelevant.

4. The differential relation (3) may be reduced to a steady-
state-only form under the approximation that deviations of
the granular fluidity g from the local fluidity gj,. are small.
The result of such an approximation - the details of which are
discussed in Henann and Kamrin®* - is

Ad
V ‘/4 - Aus‘7

where gio.(1t,P) is the local fluidity function (4) and &(y) is a
stress-dependent length-scale called the cooperativity length.
The steady-state form of the NGF model (5) may be straight-
forwardly applied to obtain accurate predictions of non-
uniform steady flow fields in a variety of geometric configura-
tions, such as split-bottom flow> and chute flow.>® However,
(5) cannot capture the size-dependence of the flow threshold.
To see this, note that the local fluidity function (4) mathe-
matically acts as a source term in (5) and is non-zero whenever
u > ps. Then, when u exceeds g at any point in a dense
granular medium, (5) will predict flowing solutions, regardless
of the size of the granular medium. This deficiency arises
because the approximation that g is close to gj,. breaks down
as the size of a granular medium decreases. For example, in
dense granular flows down an incline, flow arrests in thin layers
when pu is significantly greater than ps and hence gy is
significantly greater than zero. Therefore, to obtain predictions
of the size-dependence of the flow threshold, we utilize the
primitive, dynamical form of the NGF model (3) exclusively
throughout the remainder of this paper.

Next, we discuss how predictions of the flow threshold
may be obtained from the NGF model. For the local inertial
rheology, the flow threshold is determined by simply comparing

2 = Zloc + §2v2g with é(:u) =

(5)
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the maximum value of the stress ratio x4 occurring in a flow
configuration to the critical value ;. However, for the nonlocal
model (3), this method of assessing the flow threshold is no
longer sufficient. Instead, we reframe the question of whether or
not steady flow is possible as whether or not the g = 0 solution is
linearly stable under perturbation. Starting from (3) and linearizing
about the g = 0 solution renders the g” term negligible, and we
assume a perturbed solution g of the form g{x,t) = Cexp(At/t,)g(x),
where 1 is the dimensionless growth rate of the perturbation, g(x) is
a time-independent function, x is the spatial coordinate, and C is
an arbitrary constant. Substituting the perturbed solution ¢ into the
linearized form of (3) and simplifying, we obtain the following
linear differential relation for g:

APV~ (ot s — 0§ = 0. (6)

Then, for a given flow configuration, the field u(x) is specified
along with appropriate homogeneous boundary conditions
for ¢, and the growth rate 2 may be calculated. If . < 0, the
perturbation decays, and steady flow is not possible. If 1 > 0,
the perturbation grows, and steady flow may occur. The flow
threshold may be identified as the case in which 4 = 0. In
subsequent discussions of the theoretically predicted flow
threshold, we denote ¢ as g for notational simplicity.

The NGF-model-predicted flow threshold for inclined plane
flow has been derived in our previous work.>* Here, we briefly
recap the linear perturbation process that will subsequently be
applied to the more complex flow configurations in Section 4.
The p-field in inclined plane flow is spatially constant and
given through the angle of inclination by tan0, ie., u = tan0.
Therefore, (6) takes the form of an ordinary differential equation
(ODE) with constant coefficients:

d’g  (tan0 — ) — pq
o (M )e=o 2

where z is the distance from the free surface. Anticipating that
the quantity (tanf — 4 — yg) is positive, the solution to (7) is
g=Csin[(y/tan0— 2 — u,/Ad)z]+ Crcos[(y/tant — A — p, / Ad)z]
where C; and C, are arbitrary constants. As discussed in our
previous work,>* the choice of homogeneous boundary condi-
tions is important. For inclined plane flow, we based this choice
on observations of existing DEM flow data of spheres.” In
particular, in the region near the free surface (z = 0), the DEM
data of Silbert et al.” shows that the strain-rate approximately
levels off, implying a zero strain-rate gradient. Accordingly, we
enforce that dg/dz = 0 at z = 0, which requires that C; = 0. Second,
Silbert et al.” observed that adjacent to a fully rough boundary,
the strain-rate approaches an approximately vanishing state, and
hence, we take g = 0 at z = H. The lowest value of tan0 that
satisfies this boundary condition corresponds to

H_
d

i A
Ew/tan()—,us‘

In (8), 4 has been set to zero, so that (8) represents the size-
dependent flow threshold for inclined plane flow. For thick
layers, the flow threshold approaches the size-independent

8
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value tan @ = ug however, for thinner layers, flow ceases at
higher inclination angles. To obtain the flow thresholds corres-
ponding to the more complex flow configurations considered
in Section 4, we apply the same linear perturbation process —
albeit involving more complex stress ratio fields. The details of
these calculations and the resulting theoretical flow thresholds
are given in Section 4.

A deeper discussion of the role of fluidity boundary condi-
tions in NGF model predictions of the flow threshold is
warranted. In the case of inclined plane flow, it is the choice of
a homogeneous Dirichlet fluidity boundary condition at the rough
base that leads to predictions of size-dependent strengthening.
Indeed, if a homogeneous Neumann condition were employed, a
size-independent angle of repose would be predicted. However,
as will be shown in Section 4, NGF model predictions of size-
dependent strengthening do not arise solely due to wall condi-
tions. In a flow configuration with a spatially varying p-field, in
which some spatial regions experience u > us while others
experience u<us, the NGF model also predicts size-dependent
strengthening, regardless of the choice of wall boundary condi-
tion. In such a case, the region experiencing u < pug serves to
stabilize the region experiencing pu > us through nonlocal
effects, while a local model would simply predict the region
experiencing u > u to flow. The flow configurations considered
in Section 4 involve both spatially varying u-fields and rough
walls. In the DEM simulations reported in Section 4, we are
unable to extract clear evidence justifying a homogeneous
Dirichlet boundary condition for the fluidity at walls. Therefore,
for the sake of simplicity, following our previous work,>*" we
employ homogeneous Neumann fluidity boundary conditions at
walls throughout - both in calculating theoretical flow thresholds
and steady flow fields. We note that a similar choice of wall
fluidity boundary condition was employed by Chaudhuri et al.>®
in their investigation of vertical chute flow of soft, frictionless
disks. In spite of this rather naive choice of fluidity boundary
condition, the results of Section 4 demonstrate that good agree-
ment between DEM data and NGF model predictions may be
obtained, indicating that the specifics of the stress field may play
a larger role than wall conditions.

4 Flow threshold in other
configurations

In this section, we present DEM simulation results in three flow
configurations - planar shear flow with gravity, annular shear
flow, and vertical chute flow - characterizing the size-dependence
of the flow threshold in each case. To be clear, in the context of
our DEM simulations, the flow threshold refers to the condition
for flow cessation and not the condition for flow start-up, which is
typically greater than the flow cessation condition and is depen-
dent on the preparation history. In this section, we also compare
DEM results with corresponding predictions of the NGF model.
Throughout, we use a single set of material parameters {us, b, A}
in obtaining NGF model predictions. Based on the fit of the
Bingham-like functional form of the inertial rheology (1) to

This journal is © The Royal Society of Chemistry 2018
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DEM data of homogeneous planar shearing (Fig. 1(b)), we utilize
local parameter values of us = 0.272 and b = 1.168. In contrast,
the nonlocal amplitude is not obtained by fitting to a single data
set — rather, we choose a value of A = 0.90 in order to provide the
best collective description of all subsequently reported data. We
note that this numerical value is similar to the value A = 0.80,
which was reported by Kamrin and Koval®® for disks with an
inter-particle sliding friction coefficient g, = 0.4.

4.1 Planar shear flow with gravity

First, we consider planar shear flow with gravity acting ortho-
gonal to the shearing direction. We note that size-dependent
strengthening in this configuration was first suggested by
Pouliquen and Forterre'® in the context of their modeling work,
but to our knowledge, this effect has not been reported in
experiments or DEM simulations. The DEM set-up for this case
is shown in Fig. 2(a) and is achieved by introducing a gravita-
tional body force along the z-direction to the configuration used
in planar shear flow, described in Section 2.2. The parallel,
rough walls are separated by a distance H = 60d, and the top
wall moves in the x-direction with a velocity vy, while the
bottom wall remains fixed. The top wall imposes a compressive
normal stress P,y on the granular material, using the control
procedure described in Section 2.2, and the gravitational body
force is ¢psG, where ¢ is the mean solid area fraction and G is

T
lG I
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o
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v
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(¢) 200 :

150 | ]
= 100 f ;
D

50 ]
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the acceleration of gravity. Periodic boundary conditions are
employed along the x-direction, and the length of the region in
the x-direction is L = 60d.

The expected stress field in this flow configuration may be
deduced from a quasi-static force balance. As in planar shear
flow without gravity, the shear stress is spatially constant
and given by the shear stress imparted by the moving wall - ie.,
7(2) = |6x(2)| = |022)| = Twan- The pressure field is a combination
of the prescribed wall pressure P,,; and the gravitational pressure
gradient, so that P(z) = —0,,(2) = Pyan + ¢psGz. As in planar shear
flow, we assume that o,.(z) & 0,,(z), which is consistent with
the results of our DEM simulations. Therefore, the stress ratio
field in planar shear flow with gravity varies as

_(2) M
O = b T2zt ©)

where fiwan = Twan/Pwan is the maximum value of x4, occurring at
the wall (z = 0), and 7 = P.n/¢ppsG is the loading length-scale,
which is defined as the ratio of the wall pressure to the
gravitational body force and is distinct from the dimensions H
and L. Importantly, since the loading length-scale / is the only
length-scale appearing in the stress ratio field (9), 7/ — rather
than the dimensions H or L - is the relevant length-scale that
characterizes the system size in this problem. The loading
length-scale / may be interpreted as the distance beneath the

(b) 0.55 . '
—4—/d=1175
05 e r/a=235
0.45 p —Pp—£/d =47 -
E —A—0/d=935
I 04} :

0.35

Vg / Vwall
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z/d

Fig. 2 (a) Configuration for two-dimensional DEM simulations of planar shear flow with gravity. (b) The dependence of the stress ratio at the wall zy,a On

Vwau for loading length-scales //d = Pyau/dpsGd = 11.75, 23.5, 47, and 93.5. (c) Flow threshold locus. (d) Normalized steady velocity fields in the plateau
regime (V.y & 1073) for the four loading length-scales in (b). Inset: Steady stress ratio fields corresponding to each case. Throughout, symbols represent
the steady-state results of DEM simulations. In (b and d), solid lines are the calculated steady results of the NGF model, (2) and (3). In (c), the solid line is the
analytical flow threshold predicted by the NGF model (12). In the inset of (d), the solid lines are the anticipated u-fields (9) used as input in calculations
involving the NGF model.
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top wall at which the pressure due to gravity ¢psG/ is equal to
the pressure applied by the top wall Py, — i.e., P(z = /) = 2Pyuy.
We have verified that the dimensions H = 60d and L = 60d are
sufficiently large so that they do not affect the subsequently
reported DEM results.

We run DEM simulations of planar shear flow with gravity
for different values of the top-wall speed v, and loading
length-scale /. Each DEM simulation is run to steady state
through a top-wall shear displacement of at least 5500d, and
the steady fields v,(z), t(z), and P(z) are calculated using 2000
system snapshots - evenly spaced over an additional top-wall
shear displacement of at least 5500d - as described in Appendix
A. In each case, we verify that the resulting shear stress field is
indeed constant - thereby extracting the corresponding value
of 74an — and that the pressure field matches the intended
dependence P(z) = Py + ¢ppsGz. In presenting results, we utilize
a dimensionless wall velocity ¥wan = (Vwan/¢)\/m/ Pywan, in which
Vwan is non-dimensionalized through the loading length-scale
and the microscopic time-scale associated with particle motion.
First, we probe the dependence of the stress ratio at the wall
Uwall = Twall/Pwan ON Vyay for loading length-scales //d = 11.75,
23.5, 47, and 93.5, which is plotted as symbols in Fig. 2(b). For
sufficiently high wall speed - ie., Vyay = 3 x 107> - the
relationship between pya. and 7V, is size-independent, indi-
cating that the response is dominated by local, inertial effects.
However, as the wall speed is decreased, a rate-independent
plateau emerges, which is dependent on the system-size //d.
Therefore, for a given //d, steady flow is not possible for pyan
less than the plateau value, enabling the construction of a
phase diagram of flowing and non-flowing states. As shown in
Fig. 2(c), we create a phase diagram with //d on the vertical axis
and pyay on the horizontal axis. Then, the DEM-calculated flow
threshold locus is plotted as symbols on the phase diagram - in
which each point consists of a given //d and the corresponding
plateau value of jiy.). Steady flow is possible for combinations
of //d and [y to the right of the flow threshold locus, while
steady flow cannot occur for combinations to the left of the
locus. For a large system-size, the flow threshold approaches
the size-independent value pg; however, as //d decreases the
flow threshold increases.

We have also numerically computed corresponding steady
solutions of the NGF model, (2) and (3). Model predictions of
steady velocity fields are calculated for a given combination
of //d and py.n, by evolving (3) to steady state, using finite
differences in MATLAB with u-field given through (9), a very
fine spatial resolution Az « d, and the solution of (5) as the
initial guess. The calculated relationships between the wall stress
ratio /4.y and the dimensionless wall speed 7, are plotted as
solid lines in Fig. 2(b) for //d = 11.75, 23.5, 47, and 93.5. The NGF
model quantitatively captures both the size-independent but rate-
dependent regime observed in DEM simulations at sufficiently
high wall speed and the size-dependent but rate-independent
plateau regime - an observation that may be understood in terms
of the dynamical relation (3) as follows. At sufficiently high wall
speed, the Laplacian term in (3) contributes negligibly, yielding
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size-independent model predictions. Consequently, the para-
meters s and b - but not A - set the model predictions in the
rate-dependent regime. In contrast, for sufficiently slow flows,
the g” term plays a negligible role, rendering the dynamical
relation (3) linear in g which leads to rate-independent model
predictions. The parameters us and A - but not b — determine
NGF model predictions in the rate-independent regime.

The plateau value of . calculated using the NGF model
for a given value of //d then represents a point on the predicted
flow threshold locus. Instead of constructing the locus using
discrete points determined in this way, we have calculated the
analytical flow threshold predicted by the NGF model for planar
shear flow with gravity using the linear perturbation procedure
described in Section 3. We define a dimensionless transformed
coordinate Z and a positive, dimensionless constant « as

~ (Z+ﬁ) Hywall 14
-2/ ¥n and o=t © 10
: T 1d W surrr S

Then, upon substituting the p-field for planar shear flow with
gravity (9) into (6), the resulting linear ODE for g(2) is

d’g 1 «
@‘F(—Z-’-?)gfo' (11)

The solution of (11) is g = CiM,15(2) + CyW,152(2), where
M, 1/2(2) and W, 1/,(Z) are Whittaker functions, and C; and C,
are constants. The homogeneous boundary conditions consist
of a Neumann condition at the moving wall, dg/dz|,-, = 0, and the
far-field boundary condition, lgglo g = 0. Since the function M, 15(2)

diverges as £ — oo, while W,,,(2) — 0, the farfield boundary
condition requires that C; = 0. Then, applying the wall boundary
condition, making use of the identity W, ,,'(2) = (€ — 20)W,,12(2) —
2W,11,12(2))/22, and simplifying, we obtain

l 14
(\/“—STd - 0‘) W2 <2de>

(12)
L )
= Wair12 (2\/,113@) =0 with o=

Hwall i
2/ Ad

In the above expression, we have set 4 to the threshold value of
A =0, so that (12) represents the size-dependent flow threshold
for planar shear with gravity. For a given value of the dimension-
less system size //d and the material parameters ps and A, the
smallest, positive value of .,y that satisfies the transcendental
eqn (12) gives the flow threshold. The analytical flow threshold
(12) is plotted as a solid line in Fig. 2(c) - displaying a favorable
quantitative comparison with the DEM data.

Finally, we compare steady velocity fields extracted from
DEM simulations to corresponding NGF model predictions.
Steady normalized velocity fields v,(z)/vwan in the plateau
regime (V,ay ~ 10°°%) for loading length-scales //d = 11.75,
23.5,47, and 93.5 are shown in Fig. 2(d) with symbols denoting
DEM data and solid lines representing NGF model predictions.
In the inset of Fig. 2(d), symbols denote the corresponding
normalized stress ratio fields u(z)/twan measured in the DEM
simulations, and solid lines represent the anticipated stress
ratio fields (9) used as input in calculations involving the NGF

This journal is © The Royal Society of Chemistry 2018
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Fig. 3 (a) Configuration for two-dimensional DEM simulations of annular shear flow for the case of R/d = 26. (b) The dependence of the stress ratio at the wall

Liwal ON gy for inner wall radii R/d = 26, 51, and 101. (c) Flow threshold locus. (d) Normalized steady velocity fields in the quasi-static regime (yq &~ 10~

4) for

the three loading length-scales in (b). Inset: Steady stress ratio fields corresponding to each case. Throughout, symbols represent the steady-state results of
DEM simulations. In (b and d), solid lines are the calculated steady results of the NGF model, (2) and (3). In (c), the solid line is the analytical flow threshold
predicted by the NGF model (16). In the inset of (d), the solid lines are the anticipated u-fields (13) used as input in calculations involving the NGF model.

model, confirming that the intended stress fields are achieved in
the DEM simulations. Overall, the NGF model is able to quanti-
tatively capture the salient aspects of the flow fields in planar
shear flow with gravity over a range of loading length-scales.
Importantly, the nonlocal amplitude 4 is the operative material
parameter that determines NGF model predictions of steady flow
fields in the plateau regime, and using a single numerical value
of A, the NGF model simultaneously captures DEM data of both
the size-dependence of the flow threshold and steady flow fields.

4.2 Annular shear flow

Next, we consider annular shear flow - the DEM set-up for
which is shown in Fig. 3(a) with inner radius R and outer radius
R,. For the most part, the details of our DEM simulations of
annular shear flow follow the procedures of Koval and
coworkers.**> The walls in our DEM simulations of annular
shear flow consist of rings of glued grains of diameter 24,9 and
the inner radius R corresponds to the radial position of the
outermost points of the inner wall grains. At the inner wall, we
prescribe the circumferential wall velocity vy, and the radial

€ Rough walls consisting of glued grains of diameter 2d were also used in the
1.>® We utilize this type of
rough wall for our annular shear flow simulations rather than the rough walls

annular shear flow simulations of Kamrin and Koval

described in Section 2.2 in order to more easily construct the annular DEM
configuration.

This journal is © The Royal Society of Chemistry 2018

position of the inner wall grains is fixed. While the outer wall
does not rotate, the value of R, fluctuates slightly so as to
impose a prescribed radial compressive normal stress Py, on
the granular material, using a control procedure analogous to
that used in Section 2.2 and described by Koval et al.'* We do
not utilize periodic boundary conditions, instead modeling
the full annular shear cell, as shown in Fig. 3(a) for the case
of R/d = 26. In total, we consider inner wall radii of R/d = 11, 26,
51, and 101. Throughout, we take the outer radius to be
sufficiently large so that the value of R, does not affect the
subsequently reported results — R, = 2R for R/d = 26, 51, and 101
and R, = 4R for R/d = 11. The DEM configurations for R/d = 11,
26, 51, and 101 contain 4640, 5715, 23 900, and 97 696 flowing
grains, respectively.

Analogous to planar shear with gravity, we may deduce
the steady stress field from quasi-static force and moment
balances. The moment balance gives the shear stress field to
be (1) = |0,4(F)| = |0oA7)| = Twan(R/)?, where r is the radial
coordinate and T,y is the inner wall shear stress, and the radial
force balance gives that P(r) = —0,,{r) = Pyay is spatially constant.
Again, we assume that the normal stresses are equal - i.e., 5gg & 7, —
which is consistent with DEM simulation results. Therefore, for
annular shear flow, the stress ratio field varies as

,U(r) = ;)(r,) = :uwall(

R>2

r

(13)
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where fiwan = Twan/Pwan i the maximum value of u, occurring
at the inner wall (r = R).

Our discussion of simulation results for annular shear flow
mirrors that of Section 4.1 for planar shear flow with gravity.
We run DEM simulations for different values of the inner wall
speed vy, and radius R. Each simulation is first run to steady
state through an inner-wall tangential displacement of at least
48d, || and the steady fields vy(r), 7(r), and P(r) are then extracted
using 1000 system snapshots, which are evenly spaced over an
additional inner-wall tangential displacement of an equal
amount as in the preceding step. Further, 7., is measured
by way of the average torque applied to the inner wall at steady
state. First, we explore the dependence of the inner wall stress

ratio pyan ON Py = (Vwai/R)+/M/ Pyan in DEM simulations for
R/d = 26, 51, and 101, which is plotted as symbols in Fig. 3(b).
Again, a transition is observed from a rate-dependent but size-
independent regime at sufficiently high wall speed (Vo = 1072)
to a size-dependent plateau regime as ¥, is decreased. Here, we
have restricted attention to a slightly lower range of 7, than
considered in Section 4.1 to ensure that centripetal acceleration
plays no role in our DEM simulations - a point which is verified
by checking that the normal stress o,, is spatially constant. A
phase diagram of flowing and non-flowing states for annular
shear flow is shown in Fig. 3(c), in which pairs of R/d and the
corresponding plateau value of j,y are plotted as symbols and
denote the DEM-calculated flow threshold locus. Again, we
observe strengthening as the system-size R/d is reduced.

Steady-state predictions of the NGF model are numerically
calculated for given combinations of R/d and i,y as described in
Section 4.1 except with yu-field given through (13). The calculated
relationships between .y and vy, are plotted as solid lines in
Fig. 3(b) for R/d = 26, 51, and 101, demonstrating good quantitative
agreement with DEM data and - most importantly - displaying a
size-dependent plateau value of i,y As in Section 4.1, we calculate
the theoretical flow threshold locus for annular shear flow via the
linear perturbation procedure described in Section 3. Substituting
the p-field (13) into (6), defining a dimensionless transformed
coordinate 7 and a positive, dimensionless constant o as

r

5 R
F= 7+ g 1 and o=/ Fat o (14)

and simplifying, we obtain the following linear ODE for g(7):
P +io— (P —a?)g=0. (15)

The solution of (15) is g = C.1;,(7) + CKi,(7), where I,(7) and K;,(7) are
the modified Bessel functions of the first and second kind of purely
imaginary order, and C; and C, are constants. We consider
the following homogeneous boundary conditions: a Neumann
condition at the inner wall, dg/dr|,— = 0, and the far-field condition,

| Koval and coworkers'"?® report that transients fully subside after an inner-wall

tangential displacement of approximately 50d in their simulations of annular
shear flow and conservatively adopt an inner-wall displacement of 100d as their
steady-state condition. Our observation of transients is similar, and for efficiency
- since we simulate the full annular shear cell rather than an angular section - we
adopt a steady-state condition of 48d for the inner-wall displacement.
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lim g = 0. For 7 and o positive, the function I;,(7) is complex-valued,

and its real part diverges as # — co. In contrast, K,(7) is real-valued
for 7 and o positive, and K;,(7) — 0 as 7 — oo. Therefore, the far-
field boundary condition requires that C; = 0. Then, applying the
wall boundary condition, setting 4 = 0, and simplifying leads to the
size-dependent flow threshold for annular shear flow:

!

R . R
K (de) =0 with a= i (16)

For a given value of the dimensionless inner wall radius R/d and
the material parameters ps and A, the smallest, positive value of
Uwan that satisfies (16) gives the flow threshold. The theoretical
flow threshold locus (16) is plotted as a solid line in Fig. 3(c),
showing that the NGF model captures the size-dependent flow
threshold in this flow configuration.

Lastly, we compare DEM data and NGF model predictions of
steady velocity fields. Steady normalized velocity fields vo(r)/Van
in the plateau regime (Vo ~ 10~*) for inner wall radii R/d = 26,
51, and 101 are shown in Fig. 3(d) with symbols denoting DEM
data and solid lines representing NGF model predictions.
Corresponding steady normalized stress ratio fields u(r)/twan
are shown in the inset of Fig. 3(d), confirming that the p-fields
measured from DEM data are consistent with the anticipated
stress ratio fields (13). The NGF model quantitatively captures
both steady flow fields and the size-dependence of the flow
threshold in annular shear flow - while using the same set of
material parameters as in planar shear flow with gravity.

4.3 Vertical chute flow

Finally, we consider vertical chute flow. The size-dependence of
the flow threshold in this configuration was first explored by
Chaudhuri et al.?® for a simulated, two-dimensional system of
soft, frictionless particles. Here, we perform an analogous
analysis for our system of stiff, frictional disks. Our DEM set-
up is shown in Fig. 4(a), which is generated by first creating a
dense granular system between two parallel, rough walls as
described for planar shear in Section 2.2 and then rotating the
system clockwise by 90° and applying a gravitational body force
along the z-direction. The rough walls - consisting of layers of
glued grains as in the planar shear flow simulations of Section
2.2 — are separated by a distance denoted by W, which is varied
in our simulations. The left vertical wall is fixed, and the right
vertical wall is fixed in the z-direction but can move slightly in
the x-direction so as to impose a compressive normal stress
Py on the granular material, using the control procedure
described in Section 2.2. Periodic boundary conditions are
prescribed along the z-direction. In all cases, the length of the
vertical chute L is taken to be 60d, which is in a range that does
not affect DEM results.** We consider nominal chute widths of

** If the vertical chute is taken to be too long, alternating dense and sparse
regions will develop along the chute. This is because the procedure employed to
control the pressure cannot account for variations along the length of the vertical
chute due to the rigid nature of the walls. We have verified that our chute length L
is sufficiently short so that this issue does not arise while also being sufficiently
long so that the reported results do not depend upon L.

This journal is © The Royal Society of Chemistry 2018



Published on 06 June 2018. Downloaded by Brown University on 7/13/2018 9:05:48 PM.

Paper

View Article Online

Soft Matter

0 L 1 L
A 0.3 0.35 0.4 0.45

s
Hall

Fig. 4 (a) Configuration for two-dimensional DEM simulations of vertical chute flow for the case of W/d = 60. (b) Flow threshold locus. Symbols
represent upper and lower bound estimates of the flow threshold based on the results of DEM simulations, and the solid line is the analytical flow

threshold predicted by the NGF model (19).

w/d = 10, 20, 30, 40, and 60 — however, these values do vary
slightly during flow — and the DEM configurations contain 633,
1270, 1900, 2539, and 3806 flowing grains, respectively.

From a quasi-static force balance, we expect the shear stress
field to be 7(x) = |04(x)| = |022(x)| = PpsG|x|, where x is measured
from the centerline of the chute, and the pressure field to be
P(x) = —0 (%) = Pyan- Again, we assume that the normal stresses
are equal - i.e., 6,, & 0y, — and verify this assumption against the
DEM results. Therefore, for vertical chute flow, the p-field is

X

) = (3773 ) (17)

where pywan = ¢psGW/2Pyq is the maximum value of u, occur-
ring at the walls (x = £W/2).

Since vertical chute flow is gravity-driven - while planar
shear flow with gravity and annular shear flow are boundary-
driven - our process for determining the flow threshold from
DEM simulations is different than previously described. In
boundary-driven flow, we specify arbitrarily-low wall velocities
and extract the flow threshold from the steady-state plateau
forces applied to the wall. In contrast, for gravity-driven
flow, we consider various conditions — namely, combinations
of W/d and pw.n - and determine whether steady flow may
be sustained, and in this way, the flow threshold is bounded.
Our process is as follows. Motivated by the methodology of
Weinhart et al.'® for assessing flow arrest in DEM simulations
of inclined plane flow, we utilize a criteria based on the kinetic
energy. First, for a given chute width W/d, a sufficiently large
value of .y is applied so that steady flow is attained.
Next, uwan is decreased to a target value - in practice, this is
achieved by decreasing the acceleration of gravity G — and the
system is allowed to reach steady state over a time period of
19 470\/m/ Pyan. We confirm that the u-fields measured from
steady-state DEM data are consistent with the intended u-fields
(17). Then, the mean kinetic energy per flowing grain as a
function of time - denoted as Ey,(f) - is extracted from 5000
system snapshots distributed evenly over an additional time
period of 19 470/m/ Py, after reaching steady state. For values
of pwan in which the arithmetic average of the kinetic energy

This journal is © The Royal Society of Chemistry 2018

(Eyin(t)) is greater than 10 *Py,;d, 1+ flow is continuous, and
Eyin(t) is nearly time-independent with fluctuations - defined as
((Exin(®) — (Exin(t)))*)"? - smaller than (Eyq(£)). When piyay is
decreased to a value for which (Eyn(t)) = 10 *Pyand’, fluctua-
tions increase to be roughly equal to (Eys(t)), and accordingly,
we identify this condition and the corresponding value of pyay
as the upper bound of the flow threshold for a given Wid.
As pway is further decreased, flow becomes intermittent,
and kinetic energy fluctuations further increase. In this inter-
mittent regime, it is important to acknowledge the effect that
the wall damping parameter g, has on flow. If g, is too low
(gp/ Vmky < 1), wall motion is underdamped, and the asso-
ciated wall oscillations prevent flow from ceasing, even when
[iwan is arbitrarily small. If g, is too high (g,/v/mky = 10), wall
motion is overdamped, and the target wall pressure Py, is not
achieved. We find that for our choice of g,/+/mk, = 100, static
states may be achieved while maintaining the target wall
pressure. That said, using this value of g, at low values of
Uwan, Wall motion can still induce isolated, infrequent grain
rearrangements that are not associated with steady flow but
do contribute to the kinetic energy. To remove this effect,
we median filter the measured kinetic energy data E,(¢) for
values of i, in the intermittent regime prior to arithmetically
averaging the kinetic energy data over time. When the average
value of the filtered kinetic energy data decreases to a very low
value of 10~ 7P,;d*> we deem flow to have ceased and denote
the corresponding value of p. as the lower bound of the
flow threshold.

Once upper and lower bounds of the flow threshold have
been determined, we may construct a phase diagram of flowing
and non-flowing states for vertical chute flow, which is shown
in Fig. 4(b). For a given W/d, the x-symbols denote the upper
and lower bounds determined as described in the preceding
paragraph, and the range of py.y between the symbols corre-
sponds to the intermediate regime of intermittent flow and is
denoted by a dotted line. While the exact value of the chute

+F Since k, = 10°P,,; in our simulations, the normalization factor Py,d* is
related to the elastic potential energy scale, as in Weinhart et al.'’
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width varies in our simulations, we find that the differences
between actual values of W near the flow threshold and the
corresponding nominal values are less than one grain diameter
in all cases, so the values of W/d appearing in Fig. 4(b)
correspond to the nominal values. Due to the presence of the
intermittent regime, our determination of the flow threshold in
vertical chute flow is less precise than for the flow configura-
tions considered in Sections 4.1 and 4.2; however, the increase
of the measured flow threshold with decreasing system size
remains clear.

To calculate the theoretical flow threshold locus predicted
by the NGF model for vertical chute flow, we substitute the
u-field (17) into (6) to obtain

dg o _ At — pyarx/(W/2)
=R _ h _ s wa
a0 VR T /W)

(18)

is a dimensionless transformed coordinate. The solution of (18)
is g = C,Ai(%) + C,Bi(x), where Ai(%¥) and Bi(X) are the Airy
functions of the first and second kind, and C, and C, are
constants. The homogeneous boundary conditions consist of the
symmetry condition at x = 0, dg/dx|,—, = 0, and a homogeneous
Neumann condition at the wall, dg/dx|,-w;, = 0. Enforcing the
boundary conditions and setting 4 = 0 yields the size-dependent
flow threshold for vertical chute flow:

A~/ Hs B~/ Hs — Hwall
1 ((2Ad:uwull/W)2/3) 1 ((2Ad'uWélH/W)2/3

o B1,< Hg )All( Hs — Hyall ) —0.
(24d )/ W)*3 (2A4dpy/ W)*3

For a given value of the dimensionless chute width W/d and the
material parameters us and A, the smallest, positive value of
Uwan that satisfies (19) gives the flow threshold. The theoretical
flow threshold locus (19) is plotted as a solid line in Fig. 4(b),
using the same material parameters ys and A4 as in Sections 4.1
and 4.2. The theoretical flow threshold locus does a reasonably
good job of quantitatively capturing the DEM data for vertical
chute flow.

(19)

5 Concluding remarks

In this paper, we have studied the size-dependence of the flow
threshold in three different dense granular flow configurations - (1)
planar shear flow with gravity, (2) annular shear flow, and (3)
vertical chute flow. Importantly, the flow threshold measured in
DEM simulations shows substantial size-dependence across all
configurations - the details of which are affected by the form of
the stress field. We have also applied the NGF model to all three
flow configurations to obtain predictions of both the flow
threshold and steady flow fields. Notably, we have obtained
analytical solutions for the predicted size-dependent flow thresh-
old in all three cases. The theory - using a single set of material
parameters - predicts size-dependent flow thresholds that
match DEM data rather well in all cases. Further, the theory
simultaneously predicts steady flow fields that are quantita-
tively consistent with corresponding DEM data.
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For illustrative purposes, a comparison of the analytical flow
thresholds predicted by the NGF model for all four flow
configurations discussed in this paper - inclined plane flow (8),
planar shear flow with gravity (12), annular shear flow (16), and
vertical chute flow (19) - is plotted in Fig. 5 with the appropriate
length-scale on the vertical axis and the maximum value of u
associated with the flow configuration on the horizontal axis.
Notably, size-dependent strengthening in all three configurations
considered in Section 4 is significantly greater than the
strengthening predicted for inclined plane flow. Recall that
the strengthening predicted by the theoretical flow threshold
for inclined plane flow is entirely due to boundary effects,
since the u-field is spatially constant, while the additional
strengthening associated with the other three theoretical flow
thresholds is due to the spatial-dependence of the stress field,
rather than boundary effects. This observation illustrates that
the precise nature of the p-field has a crucial effect on the
resulting flow threshold and must be accounted for when
considering other size-sensitive flow stoppage phenomena.

As a final comment, providing physical justification for
fluidity boundary conditions at walls remains an open issue.
In the present work, our choice of a homogeneous Neumann
condition was based on pragmatic grounds - since a homo-
geneous Dirichlet fluidity boundary condition was not directly
observed in our DEM simulations - and past experience - which
has shown that such a boundary condition enables an excellent
description of experiments of split-bottom flow®® and chute
flow.?° In spite of the lack of a physical underpinning for this
choice, the favorable agreement between the flow thresholds
measured in DEM simulations and the corresponding analytical
flow thresholds predicted by the NGF model provides support for
this choice of fluidity boundary condition. From a broader per-
spective, the issue of specifying non-standard boundary conditions
arises in virtually all nonlocal constitutive approaches,'”>%>8
and motivating the choice of these boundary conditions from a
physical perspective remains an open challenge. In the context of
nonlocal fluidity models, some recent progress has been made
on this point for dense emulsions,*® and future work of this type
is needed to develop a clearer microscopic understanding of
granular fluidity boundary conditions.
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Fig. 5 Comparison of the analytical flow thresholds predicted by the NGF
model for inclined plane flow (8), planar shear flow with gravity (12),
annular shear flow (16), and vertical chute flow (19).

This journal is © The Royal Society of Chemistry 2018
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A Averaging method

In this appendix, we briefly summarize the spatial averaging
method utilized to extract steady, continuum velocity and stress
fields from our DEM data. The method follows the work of
Koval and coworkers'"** and is described for the cases of
planar shear flow and planar shear flow with gravity, in which
quantities are averaged over the x-coordinate shown in Fig. 1(a)
and 2(a). First, for a snapshot at time ¢, we draw a horizontal
line at a given z-position, and assign each intersected grain i
a weight L; defined as the length of the horizontal line
passing through grain i. Then, with the instantaneous velocity
of grain i denoted as v{¢), the instantaneous velocity field

is v(z,1) :ZL,-V,-(I)/ZL,. Regarding the stress field, the

instantaneous stress tensor associated with grain i is

6;(1) = (Z rj ® f,-,-) /A,-, where r;; is the position vector from
J#i

the center of grain i to the center of grain j, f; is the contact

force applied on grain i by grain j, and 4; = nd;*/4 is the area of

grain i. The instantaneous stress field follows as

a(z,1) =) Lio;(t)/ L, where L is the total length of the domain
1

in the x-direction. The instantaneous velocity and stress fields
are then arithmetically averaged in time over many snapshots
to obtain steady fields that only depend upon the z-coordinate,
such as those shown in Fig. 2(d). This process may be adapted
to spatial averaging over the angular coordinate in a polar
coordinate system, as described in Appendix B of Koval et al.,""
and used to obtain steady fields in annular shear flow, such as
those shown in Fig. 3(d).
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