
Reliability-AwareDataPlacement
forHeterogeneousMemoryArchitecture

ManishGupta1VilasSridharan2DavidRoberts3AndreasProdromou1

AshishVenkat1DeanTullsen1RajeshGupta1
1CSEDept. 2RASArchitecture 3AMDResearch

UniversityofCaliforniaSanDiego AdvancedMicroDevices,Inc.
{manishg,aprodrom,asvenkat,tullsen,rgupta}@cs.ucsd.edu {Vilas.Sridharan,David.Roberts}@amd.com

ABSTRACT
Systemreliabilityisafirst-classconcernastechnologycon-
tinuestoshrink,resultinginincreasedvulnerabilitytotradi-
tionalsourcesoferrorssuchassingleeventupsets.Bytrack-
ingaccesscountsandtheArchitecturalVulnerabilityFactor
(AVF),applicationdatacanbepartitionedintogroupsbased
onhowfrequentlyitisaccessed(its“hotness”)anditslike-
lihoodtocauseprogramexecutionerror(its“risk”).Thisis
particularlyusefulformemorysystemswhichexhibithet-
erogeneityintheirperformanceandreliabilitysuchasHet-
erogeneousMemoryArchitectures–withatypicalconfigu-
rationcombiningslow,highlyreliablememorywithfaster,
lessreliablememory.Thisworkdemonstratesthatcurrent
stateoftheart,performance-focuseddataplacementtech-
niquesaffectreliabilityadversely.Itshowsthatpagerisk
isnotnecessarilycorrelatedwithitshotness;thismakesit
possibletoidentifypagesthatarebothhotandlowrisk,en-
ablingpageplacementstrategiesthatcanfindagoodbalance
ofperformanceandreliability.
Thisworkexploresheuristicstoidentifyandmonitorboth

hotnessandriskatrun-time,andfurtherproposesstatic,dy-
namic,andprogramannotation-basedreliability-awaredata
placementtechniques.Thisenablesanarchitecttochoose
amongavailablememorieswithdiverseperformanceandre-
liabilitycharacteristics.Theproposedheuristic-basedreliability-
awaredataplacementimprovesreliabilitybyafactorof1.6x
comparedtoperformance-focusedstaticplacementwhilelim-
itingtheperformancedegradationto1%.Adynamicreliability-
awaremigrationscheme,whichdoesnotrequirepriorknowl-
edgeabouttheapplication,improvesreliabilitybyafactorof
1.5xonaveragewhilelimitingtheperformancelossto4.9%.
Finally,programannotation-baseddataplacementimproves
thereliabilityby1.3xataperformancecostof1.1%.

1. INTRODUCTION
Transientfaultsduetosingleeventupsets(SEUs)areof

criticalconcerninthereliabilityofcomputersystems[5,
15,41].Technologyscalingandreducedoperatingvoltages
haveincreasedthesusceptibilityofsemiconductordevices
toSEUs[18,67].Thesefaultscanresultinspuriousbitflips
thatcancorruptthearchitecturalstateleadingtocatastrophic
systemcrashes[3,47],unexpectedlossofdata,andcritical
securityvulnerabilitiesandexposures[14,36,66].
Priorresearchhasproposedtheuseoferrorcorrection

codes(ECC)tohandlesucherrorsforconventionalDDRx

memory[10,21].ECChasenabledefficienttechnologyscal-
ingforconventionalDDRxmemory,packingmorebitsper
unitareawhilemaintainingasustainablerateofuncorrectable
errors[52,59,60].DespiteadvancesinthecapacityofDDRx
memory,theever-evolvingbandwidthrequirementsofemerg-
ingmanycoreCPU,GPU,andacceleratorarchitectureshave
promptedarchitectstoexplorealternativememorytechnolo-
giesandwaystoorganizememory/computesystems[65].
The3Ddie-stackingtechnologyhasenabledthestacking

ofDRAMchipsdirectlyoncomputeunitsusingThrough-
SiliconVias(TSVs)[4,11,27,29,39,57].Thesedie-stacked
memoryorganizationsprovide4X-8Xhigherbandwidththan
conventionalDDRxmemory[7,9]. However,die-stacked
memoryislimitedintermsofcapacity,highercost,and
higherpowerdissipation[17].Inordertoobtainthedual
benefitsofhighbandwidthandgreatercapacity,architects
haveproposedamemoryorganizationthatcombinesdiffer-
enttypesofmemoryintoasingleHeterogeneousMemory
Architecture(HMA)[22,40].Forexample,anHMAsys-
temcouldemployon-packagedie-stackedmemorytopro-
videhighbandwidth,andyetenablegreatercapacityvia
anoff-packageDDRxmemory.Manydataplacementtech-
niqueshavebeenproposedforsucharchitecturesinorderto
maximizeperformanceinspiteofthelatencyandthroughput
differencesofthecomponentmemories[2,7,23,32].
Priorworkontheseheterogeneousmemorysystemshave
focusedonthetwoaxesofheterogeneity:capacityandper-
formance.However,thesesystemsarealsohighlyheteroge-
neousintheirreliabilitycharacteristics,i.e.,errorrateand
faulttolerance. Dataplacementstrategiesthatonlycon-
siderthefirsttwoaxesofheterogeneitycanhaveadramati-
callynegativeeffectonreliability.Die-stackedmemoryhas
higherfaultrateowingtohigherbitdensityandnewfailure
modes(e.g.,TSVfailure)[43,44]. Moreover,die-stacked
memorytypicallyemploysweakererrorcorrectionthancon-
ventionalDDRxmemoryduetocostandcomplexitycon-
straints[24]. Thispapermakesthecaseforareliability-
awaredataplacementstrategythatenablessustainedopera-
tiononanHMAsystematpeakbandwidth,andsimultane-
ouslymitigatesriskduetotransientfaults.
Thispapershowsthatanaïveperformance-focuseddata
placementtechniquewhichplacesfrequentlyaccessedmem-
orypages(hotpages)indie-stackedmemoryresultsinlower
overallreliability.Figure1showstheperformanceandre-
liabilitycharacteristicsofavarietyofplacementtechniques
thatplacedifferentproportionsofhotpagesindie-stacked

1

memory – the loss in reliability to achieve full performance
can be quite extreme. By analyzing memory pages for their
hotness and vulnerability, we devise effective reliability-aware
placement strategies for HMA.
To quantify the vulnerability of memory pages we useAr-
chitectural Vulnerability Factor(AVF) analysis [42]. The
AVF of a memory page is defined as the probability that
a transient fault will result in an observable program error.
Hence, a page with higher AVF(high-risk)is more likely
to result in incorrect program execution than a page with
lower AVF(low-risk).A key result of this research is that
page hotness (access rate) is not necessarily correlated with
AV F.In fact, we show that applications can have as much as
39% of their memory pages that are both hot and low-risk.
This property raises the possibility of devising placement
schemes that preserve both reliability and performance on
a heterogeneous memory architecture – that is, we can oper-
ate in the top right region of Figure 1, a region inaccessible
to purely performance-focused placements. Consequently,
we make the following contributions:
•By quantitative categorization of application data into
quadrants in the hotness-risk spectrum, we show that
applications can have as much as 39% of their memory
footprint in thehotandlow-riskcategory.
•We establish simple heuristics to allow for low-cost
hotness and risk monitors for data in memory, and fur-
ther develop aheuristic-basedstatic data placement
technique that improves reliability by 1.6x, sacrificing
only 1% in performance.
•The reliability-awaredynamic migrationschemes we
propose eliminates the need for prior profiling and im-
prove reliability by 1.5x on average, while limiting per-
formance loss to 4.9%.
•We demonstrate the efficacy of program annotation-
baseddata placement. We show that by annotating
only a handful of program structures, typically 1 - 6,
we improve reliability by 1.3x on average, while in-
curring a marginal performance loss of 1.1%.

2. BACKGROUND
In this section, we review several key reliability terms, for-

mulas, and derive specific equations important to this work.
Furthermore, we discuss relevant background on Heteroge-
neous Memory Architecture (HMA). While this work uses
the specific example of the AMD HBM and DDRx mem-
ory, we note that the reliability-aware techniques developed
in this work are general to any memory architecture which
exhibits heterogeneity in terms of both performance and reli-
ability. For example, these techniques are applicable to sys-
tems that integrate non-volatile and other emerging mem-
ory technologies into the hierarchy since they exhibit het-
erogeneity along both axes.

2.1 FIT-Rate, AVF, and SER
FIT-Rate.A device’s Failure-in-Time (FIT-Rate) or raw

failure rate due to single event upsets (SEUs) depends on
circuit characteristics and the neutron flux in its environ-
ment. For example, the Cielo super computer, located in Los
Alamos, New Mexico, is exposed to six times higher neutron
flux than Hopper, located in Oakland, California [12]. The

Figure 1: Reliability vs. Performance for HMA averaged over astar,
cactusADM, mix1 benchmarks (methodology in Section 4) running on
a 16 core multicore. Individual points reflect different proportions of
hot pages placed in the faster stacked RAM.

circuit characteristics that affect FIT rates are cross-section
area, the amount of charge required to toggle a bit (cause
fault), and charge collection efficiency [55]. Shrinking tech-
nology results in a smaller amount of charge to toggle a bit
and a reduced cross-section area. With every new process
technology, the number of bits per unit area increases expo-
nentially resulting in a rise in raw FIT rates due to SEUs [18].
Architectural Vulnerability Factor (AVF).AVF of a hard-

ware structure is defined as the probability that a transient
fault will result in an observable program error. Mukher-
jee, et al. propose a technique to estimate AVF of a proces-
sor [42]. That work tracks and groups the bits of a hardware
structure into two categories: (a) those necessary for archi-
tecturally correct execution (ACE bits), and (b) the remain-
ing as un-ACE bits. A fault in an ACE bit will result in a
program-observable error in the absence of error-correction
techniques, while a fault in un-ACE bits will go unnoticed.
For example, all branch predictor bits are un-ACE because a
fault in the predictor bits does not impact correctness. Fur-
thermore, a bit can be ACE for only a fraction of the total
program execution time and un-ACE for the rest of the time.
For example, a physical register (R1) written at the begin-
ning of the execution, read half-way, and dead thereafter is
in ACE state for only half of the total execution time. The
AVF forR1 is the fraction of the total execution time it is
in ACE state. Similarly, the AVF of a hardware structureMi
with bit sizeBMiover a period ofNcycles is expressed using
the following equation.

AV FMi=
∑Nn=0(ACE bits in Mi at cycle n)

BMi×N
(1)

Soft Error Rate (SER).SER of a hardware structureMi
is the product of its FIT rate and AVF (see Equation 2). SER
is the probability of an uncorrectable error resulting in incor-
rect program execution.

SERMi=FITMi×AV FMi (2)

Equation 2 scales the FIT for transient uncorrectable er-
rors with AVF. The FIT and AVF values in the equation cap-
ture the probability of a transient uncorrectable error and of
the application reading the erroneous bit, respectively. In
Equation 2, then, the probability of incorrect program exe-
cution scales down with the incidence of erroneous bits that
are never read or overwritten before being read.

2

2.2 HeterogeneousMemoryArchitecture
AHeterogeneousMemoryArchitectureconsistsofmul-

tiplememorymodules(e.g.,anHMAsystemcouldcom-
bineon-packagedie-stackedDRAMwithoff-packagecon-
ventionalDDRxmemory).ThegenesisofHMAisaresult
ofthehighbandwidthandcapacityrequirementofemerg-
ingworkloadsrunningonahighlyparallelmanycoreCPU,
GPU,andacceleratorarchitectures,promptinghardwarear-
chitectstomix-and-match3Dhigh-bandwidthmemorieswith
conventionaloff-packageDDRx.
Off-packagememoryisa2DarrangementofDRAMchips,

whereeachchiprendersafixednumberofbitseveryclock
cycle(e.g.,4bitsarerenderedinanx4arrangementand8
bitsarerenderedinanx8arrangement).Acollectionofx8
DRAMchipsoperatinginlocksteprendersa64-bitword
onthedatabus,witheachchipcontributingan8-bitsub-
set.Anadditional8-bitchipprovidessingle-bitcorrection
anddouble-bitdetection(ECC).Moreover,inanx4DRAM
arrangement,astrongersymbol-basedcorrectioncanbeen-
abledusingtheChipKill[10]technologywhichdistributes
ECCbitsacrossdifferentDRAMchips.
Die-stackedmemorywithasingleDRAMchipiscapa-

bleofrenderinga128-bitwordeveryclockcycle,thereby
providinghigherbandwidth. However,directimplemen-
tationofECC-andChipKill-basedReliability,Availability
andServiceability(RAS)haveproventobeinefficientfor
die-stackedmemoryowingtosignificantbandwidthlossand/or
areaoverhead[25].Sim,etal.[58]proposeamodificationto
theconventionalECC-baseddesignfordie-stackedDRAM
toprovideChipKill-levelRASatamoderatecostinperfor-
mance,buttheyincurahighcapacityoverheadduetothe
duplicationofdirtyblocksinadjacentbanks.Micron’sHy-
bridMemoryCube(HMC)[49]providesstrongreliability
forits3Ddie-stackedmemory. However,itrequiresspe-
cialDRAMchipsandcustommemorycontrollerdesigns.
Althoughconsiderableprogresshasbeenmadeintermsof
low-costinnovativesolutionsforimprovingthereliabilityof
die-stackedmemories[24,28,43],thegapbetweentherelia-
bilitycharacteristicsofdie-stackedandoff-packageDRAM
hascontinuedtowiden[45],therebysuggestingthatthehet-
erogeneityinreliabilitywillcontinuetoexistbetweendif-
ferentmemoriesinanHMAsystem.

3. EXPERIMENTALMETHODOLOGY
Inthefollowingsubsections,wedescribeoursimulation

frameworkandworkloadsusedinthisstudy. Wealsoex-
plaintheusageofreal-worldmemoryfailuredatafroma
fieldstudyonalarge-scalesystem.

3.1 SimulationFramework
Inthissubsection,wedescribeoursimulationframework

whichestimatesbothperformanceandreliabilityusingRa-
mulator[35],atrace-drivenDRAMsimulatorthatprovides
cycle-accurateperformancemodelsfordifferentmemorystan-
dardssuchasDDR3/4,LPDDR3/4,GDDR5,andHBM.The
tracefileincludesthenumberofinterveningnon-memory
instructions,programcounter,memoryaddress,andrequest
type(instruction/data,read/write,etc)foreverymemoryre-
quest.WegeneratememorytracesusingSimPoints[54]and
PinPlay[34]tocapturetherepresentativeregionsofanap-

Processor Values

Numberofcores 16
CoreFrequency 3.2GHz
Issuewidth 4-wideout-of-order
ROBsize 128entries
Caches Values

L1I-cache(private) 32KB,2-wayset-associative
L1D-cache(private) 16KB,4-wayset-associative
L2cache(shared) 16MB,16-wayset-associative
Low-reliabilityMemory Values(HBM)

Capacity 1GB
Busfrequency 500Mhz(DDR1.0GHz)
Buswidth 128bits
Channels 8
Rank 1RankperChannel
Banks 8BanksperRank
ECC SEC-DED[21]
High-reliabilityMemory Values(DDR3)

Capacity 16GB
Busfrequency 800MHz(DDR1.6GHz)
Buswidth 64bits
Channels 2
Ranks 1Rankperchannel
Banks 8BanksperRank
ECC single-ChipKill[10]

Table1:SystemConfigurations.

plication.Furthermore,toonlycapturethemainmemory
activity,weperformcachefilteringusingMoola[53].
WeextendRamulatortosimulatetwolevelsofheteroge-

neousmemoryandcomputetheAVFofthedatainmem-
oryata4KBpagegranularity. Wespecificallytargeta16-
coresystemthatresemblesAMD’sOpteronwithahetero-
geneousmemoryarchitecturethatconsistsofAMD’sHigh
BandwidthMemory(HBM)andconventionalDDRxmem-
oryason-packageandoff-packagememories,respectively.
ThedetailedsystemconfigurationisoutlinedinTable1.

3.2 FIT-RateAnalysis
WeusememoryFITratesfromanAMDfieldstudyon

alarge-scalesystem(Jaguar)locatedatOakRidgeNational
Laboratory[60].TheJaguarsystemconsistsof18,688two-
socketnodes.Eachsocketcontainsa6-coreAMDOpteron
processor.Thesystemhas2.69millionDRAMdevices[48].
TheaverageFITRateforvariousDRAMcomponents(bit,
row,column,word,bank,rank)arereportedoveraperiod
of11months,forbothtransientandpermanentfaults. We
usethetransientFITratedataasaninputtoanevent-based
DRAMfaultsimulator,i.e.,FaultSim[44].FaultSim’sevent-
baseddesignandreal-worldfailurestatisticsmakeitafast
andaccuratetoolforourreliabilitystudies. Weconfigure
FaultSimforourmemoryarchitectureandrun100Kand1
millionfaultsimulationsforSEC-DEDandChipKillrespec-
tivelytoensurehighprecisionlevels.Ineachsimulation,a
faultisinjectedinabit,word,column,row,orbankbased
ontheirFITrates,aselectederror-correctionschemeisap-
plied,andtheoutcomeisrecordedasdetected,corrected,or
uncorrectederror.Anerroroccurswhenthefailedbitisused
inthesoftware.Weusetheprobabilityofuncorrectederrors

3

Bench/Mix mix1 mix2 mix3 mix4 mix5

mcf 3x 2x 1x
lbm 2x 3x 1x
milc 2x 1x
omnetpp 1x 2x
astar 2x 1x
sphinx 1x 2x
soplex 2x 3x 3x
deaIII 3x 1x 1x 3x
libquantum 2x 1x 3x
leslie3d 2x 1x 3x
gcc 1x 2x 1x
GemsFDTD 2x 2x 1x 1x
bzip 1x 1x 2x 3x
bwaves 1x
cactusADM 2x 2x 1x 5x

Table 2: Mixed workload description.

Figure 2: Average AVF of memory for the SPEC [19] benchmarks,
ProxyApps [20], and mix workloads using only DDRx memory. The
AVF of memory varies from 1.7% (astar) to 22.5% (milc).

due to transient faults to measure the failure probability of
our HMA architecture.

3.3 Workloads
We evaluate our reliability-aware techniques using seven

benchmarks from the SPEC CPU2006 [19] benchmark suite.
We also use two benchmarks from the US Department of
Energy (DoE) for evaluating HPC systems: XSBench [61]
and LULESH [1]. We create homogeneous workloads from
these nine benchmarks, where 16 copies of the same bench-
mark are run in parallel. Each copy has its own memory
pages and different copies of the same workload don’t share
pages. Additionally, we mix benchmarks from high, medium,
and low AVF applications to create five realistic datacenter
workloads as shown in Table 2.

4. MOTIVATION
In this section, we motivate the use of AVF to evaluate

the vulnerability of a memory page, and then quantitatively
show that page vulnerability and hotness have a weak corre-
lation.

4.1 AVF Analysis of Memory Pages
The AVF of a bit is the fraction of time that bit is in Archi-

tecturally Correct Execution (ACE) state (see Equation 1).
While in an ACE state, any extraneous changes to the bit’s
value will result in incorrect execution. Figure 3 (a) shows
a bit in memory written and read twice during program ex-

WR1 RD1 RD2 WR2
Particle
strike

tR1 tR2
ttotal

WR1 RD1WR2
Particle strike
(masked by WR2)

tR1

WR1 RD1WR2 RD2 WR1 RD1 WR2 RD2

(a) (b)

(c) (d)

Figure 3: Architectural vulnerability factor (AVF) of four different
cache lines in memory. While (a) shows an unmasked error, (b) illus-
trates how a write from CPU to memory overwrites its state masking
the effect of particle strike. Figure (c) and (d) show that two lines of
memory could have the same hotness levels, but different AVF depend-
ing upon the sequence of reads and writes.

ecution. After the bit is written for the first time, by request
WR1, it is in the ACE state until it is read by request RD1.
Any transient error (particle strike) in between WR1 and
RD1 could result in incorrect execution. Hence, the AVF
of the bit goes up by a fraction of(tRD1/ttotal). The bit is
read again by RD2 which further adds(tRD2/ttotal)to the ef-
fective AVF. The bit is in non-ACE state from RD2 to WR2.
The AVF of this bit in memory for the entire execution can
be given by the following equation.

AV Fi=
tRD1+tRD2
ttotal

(3)

Figure 3(b) shows a particle strike in between two writes,
which will be masked as the correct value for RD1 will be
over-written by WR2. Hence, the bit in Figure 3 (b) is in
non-ACE state between WR1 and WR2. Two bits with the
same number of reads and writes could potentially have very
different AVFs, as shown by Figure 3 (c) and (d). However,
a page placement policy that only takes into account page
hotness will place these pages into die-stacked memory with
equal likelihood, potentially hurting the overall RAS goals
of the system.
In this work, we perform AVF analysis on memory at a

cache line granularity because memory reads and writes oc-
cur at cache line granularity. We sum the AVF of individual
cache lines to compose the AVF of a page and divide it by
the size of the hardware structure as per Equation 1. Fig-
ure 2 shows the AVF of applications in increasing order. The
figure demonstrates that the AVF varies significantly among
applications. Thus, motivating potential reliability benefits
from AVF-aware application-specific data placements.

4.2 Hotness-Risk Correlation
In order to obtain the upper bound on performance for

HMA systems, we first explore a profile-guided static page
placement that profiles each workload to obtain page-granularity
hotness statistics, and subsequently selects and places the
top 1GB of hot pages in HBM, with the remaining pages go-
ing into the DDRx memory.

Figure 5 shows the results of performance-focused static
placement. We observe that all workloads show an increase
in performance (IPC on left y-axis) with performance-focused
placement for HMA relative to only DDRx memory. On
average, applications show 1.6x boost in performance over
only DDRx memory. However, we also observe a drastic in-

4

(a) lbm. (b) milc. (c) astar. (d) mix1.

Figure 4: Page distribution of the entire memory footprint for four different workloads. Different workloads have different span across mean hotness
and AVF. For the mix1 workload, there are 29.4% (1.66GB) of the total pages (5.64GB) that are bothhotandlow-risk. These pages are ideal candidates
for memories with higher FIT rates and/or weaker correction.

Figure 5: Performance-focused Data Placement for HMAs result in
1.6x boost in performance (IPC) and 287x increase in soft error rate
(SER) relative to only DDRx memory.

Figure 6: Page vulnerability (AVF) and page hotness (access counts) for
1000 most hot pages of a workload (mix1). Page AVF and hotness have
a weak correlation(ρ=0.08).

crease in soft error rate (SER on right y-axis) – 287x relative
to only DDRx memory, potentially severely impacting sys-
tem scalability. Thus, placing hot pages in stacked memory
greatly exposes the system to the less reliable memory. If
hotness and AVF are highly correlated, as these results seem
to indicate, then we are forced to make difficult trade-offs
between reliability and performance.
To understand the relationship between page hotness and

vulnerability (risk), we measure both metrics on a single
memory architecture that uses only DDRx memory. We
place the entire memory footprint of a workload in DDRx
memory and run the simulation using our modified Ramu-
lator. We estimate page hotness using raw access counts
(reads and writes) and page vulnerability by AVF analysis
as described in Section 4.1.
Figure 6 shows the top 1000 hottest pages of a workload

(mix1) arranged in decreasing order of their hotness. The
left y-axis represents the page hotness measured using raw
access counts and the right y-axis represents the page vulner-
ability measured as AVF percentage. The graph shows that

most of the hot pages have AVF at around 80%. However,
there are pages (in the top 1000 hot pages) which have AVF
below 60% and as low as 5%. Hence, we conclude from
Figure 6 that page hotness and AVF have a weak correlation.
The correlation coefficient between hotness and AVF for the
entire memory footprint is 0.08. Thus, there exists an oppor-
tunity of identifying hot pages with low-AVF (low-risk).
In order to quantify this opportunity, we divide the entire

memory footprint into hot & cold pages and high- & low-
AVF pages. We split the memory footprint of each workload
around mean hotness and mean AVF values as shown by the
scatter plots in Figure 4. Each memory page of the work-
load is plotted as a point on the scatter plot with its AVF
along the x-axis and hotness along y-axis. The horizontal
line represents mean hotness (access count) and the vertical
line divides the memory footprint into low-AVF (low-risk)
and high-AVF (high-risk) pages. These two lines divide the
memory footprint into four sections: (i) hot and high-risk,
(ii) hot and low-risk, (iii) cold and high-risk, (iv) cold and
low-risk. We observe the presence of pages in all four quad-
rants in all workloads, althoughlbmis an outlier with few
pages in the upper left. In general, we find a considerable
number of pages in the upper left quadrant (hot and low-
risk). For themix1workload, we find 1.66 GB of pages to
qualify as hot and low-risk pages. Such pages are ideal can-
didates for high-bandwidth low-reliability memory, such as
HBM, to allow for a performance-focused and reliability-
aware operation. For workloads we study in this work, we
find that hot and low-risk pages account for anywhere be-
tween 9% and 39% of the entire memory footprint.

5. ORACULAR DATA PLACEMENT
An ideal data placement for an HMA system operates near

the IPC of a performance-focused placement and near the
SER of only DDRx memory. In this section, we explore
oracular page placement schemes for HMAs with respect
to both hotness (using raw access counts) and risk (using
AVF). Specifically, we explore two oracular data placement
schemes: (1) a highly reliability-focused scheme that mini-
mizes SER by placing onlylow-riskpages in HBM, and (2)
a more balanced scheme that aims at simultaneously mini-
mizing SER while maintaining high IPC, by placing pages
in thehotandlow-riskquadrant in HBM. Finally, we sug-
gest proxies for AVF estimation and evaluate data placement
schemes based on these AVF proxies which do not require

5

Figure 7: Naïve Reliability-focused data placement for HMAs reduces
the SER by 5x, but suffers from 17% loss in performance relative to
performance-focused data placement.

the full complex calculation of per-cache-line AVF over a
page lifetime.

5.1 Reliability-focused Data Placement
In contrast to performance-focused data placement, a naïve

reliability-focused data placement scheme profiles each work-
load to obtain page-granularity AVF statistics and subsequently
places alllow-riskpages (i.e., pages with AVF below a cer-
tain threshold) in HBM with the remaining pages going into
DDRx memory. These pages correspond to the leftmost
quadrants on the scatter plots shown in Figure 4. Note that an
AVF-focused placement does not take hotness into account
and could potentially end up selecting pages from both the
top-left and bottom-left quadrants.
Figure 7 shows the performance (IPC on left x-axis) and
reliability (SER on right x-axis) of reliability-focused data
placements for all workloads. On average, we observe that
the soft error rate is reduced by 5x, but the performance de-
grades by 17% relative to performance-focused data place-
ment (described in Section 4.2). This performance loss is
due primarily to the placement ofcoldandlow-riskpages
in HBM, and the number of such pages depends on the indi-
vidual bandwidth requirement and hotness span across pages
for each workload.
We further note that the workloads in Figure 7 are ar-

ranged in decreasing order of their MPKI (Misses Per Kilo
Instructions). Therefore, workloads in the left half of the
graph are bandwidth-intensive and the ones on the right half
are latency-sensitive. Moving hot pages from HBM to off-
package DDRx memory affects the performance of bandwidth-
intensive workloads more than latency-sensitive workloads,
thereby explaining the greater performance loss of work-
loads in the left half of Figure 7. Outliers includelbmand
milcthat lose only 6% and 1% in performance respectively,
due to reliability-focused data placement. This is due to uni-
form access counts to most pages, as shown in Figure 4,
making their performance relatively insensitive to which pages
get moved to HBM.

5.2 Balanced Data Placement
In order to optimize for both performance and reliability,

we next explore a balanced data placement scheme that se-
lects and placeshotandlow-riskpages in HBM. Figure 8
shows the performance (IPC on left x-axis) and reliability
(SER on right y-axis) of such a balanced scheme for all

Figure 8: Balanced data placement for HMAs reduces the SER by 3x,
but suffers from 14% performance loss relative to performance-focused
data placement.

(a) Top 1000 hot pages. (b) Histogram.

Figure 9: (a) The graph shows the write ratio for the corresponding
pages in Figure 4d. The graph suggests that there is a negative correla-
tion between page AVF and write ratio (ρ=−0.32). (b) The histogram
shows number of pages with write ratio categorized into bins – 1-20%,
21-40%, and so on. The workload has mostly read heavy pages. How-
ever, there are 125K and 200K pages which are write heavy as shown
in the final two bins.

workloads. We observe that the SER is reduced by 3x, but
the performance drops by an average of 14%. This perfor-
mance result is only slightly better than the naïve reliability-
focused placement, due in large part to restricting ourselves
to a single quadrant, even if not many pages exist in that
quadrant. Thus, this is still a conservative policy, never putting
high-risk pages in HBM.
Moreover, such a static policy relies on oracular knowl-

edge of AVF, but exact AVF estimation or prediction is a
hard problem. Walcott, et al. [64] use IPC as a heuristic
to estimate AVF of instruction queue, load-store queue, and
register files. They demonstrate that higher IPC leads to
lower AVF. However, that heuristic is not useful for evalu-
ating individual memory pages.

5.3 Heuristics for AVF Estimation
A memory page that has been written more often than read

is likely to have lower AVF than a page that has mostly reads.
Recall that most periods of data “deadness” end in a write,
so more writes indicate more dead intervals. A high ratio of
writes to reads indicates the likelihood of longer dead inter-
vals. Figure 9a shows the write ratio (Wr/Rd ratio) on the left
y-axis and AVF on the right y-axis of the top 1000 hot pages
for themix1workload. We see a much stronger correlation
between AVF and write ratio than we see between AVF and
hotness. We measure a negative correlation between write
ratio and AVF of -0.32, which is not a heavy correlation, but
strong enough to give us some opportunity to easily get a
rough approximation of AVF. Using this correlation infor-
mation, we classify a page with low writes relative to reads

6

Figure 10:Wrratio data placement for HMAs reduces the SER by 1.8x,
while experiencing 8.1% loss in performance relative to performance-
focused data placement.

as a high-risk page, and a page with high writes relative to
reads as low-risk. Therefore, we propose using write ratio as
a proxy for AVF to estimate the risk rating of memory pages.

5.4 AVF Heuristic-based Data Placement
In this section, we demonstrate the efficacy of two data

placement techniques based on (a)Wrratio, and (b)Wr2

ratio. The former is measured asWr/Rdand the latter is
measured asWr2/Rd. While both serve as proxies for AVF,
the latter places an additional weight on page hotness. While
this may not be immediately obvious, consider that theWr
ratio is unitless, but theWr2ratio has a unit ofaccesses.We
find pages with highWrandWr2ratio (for the two respec-
tive heuristics), which place the identified pages in HBM
while the rest go into DDRx memory.

5.4.1 TopWrRatio Data Placement

Our AVF heuristic-based placement scheme leverages page-
levelWrratio statistics obtained from prior profile runs in
order to fill the HBM memory with pages with highWrra-
tio, while placing the rest in off-package DDRx memory. As
shown in Figure 10, a topWrratio-based data placement re-
sults in an average improvement of 1.8x in SER, while sacri-
ficing 8.1% in performance, relative to performance-focused
data placement. Although the topWrratio-based data place-
ment does improve performance relative to a reliability-focused
data placement, it still sometimes selects cold, albeit low-
risk, pages for HBM, thereby limiting the potential perfor-
mance gains.

5.4.2 TopWr2Ratio Data Placement.

As discussed earlier, theWr2ratio still serves as a proxy
for AVF, but also biases more heavily towards pages with
a higher absolute number of writes, thereby avoiding cold
pages. For example, consider two pages p1 and p2 with
write-read ratios as 4:1 and 400:200 respectively. AWr
ratio-based placement favors placing p1 in HBM over p2,
while aWr2ratio-based placement favors placing p2 in HBM
over p1, owing to the higher absolute number of accesses.
From Figure 11, we observe an average reduction of 1.6x in
SER, with the performance gap narrowing to just 1%, when
compared to performance-focused data placement.
While the techniques we describe in this section are oracu-

lar (assume full knowledge of data access before placement),
in Section 7 we show the viability and effectiveness of a

Figure 11:Wr2ratio for HMAs reduces the SER by 1.6x, at a marginal
performance loss of 1% relative to performance-focused placement.

static placement that is driven by minimal annotation of a
program’shotandlow-riskstructures.

6. DYNAMIC MIGRATION MECHANISMS
While our heuristics allow AVF approximation without

full AVF modeling, any static technique is inherently limited
by pre-execution profiling. This section seeks to explore the
opportunity for dynamic reliability-aware migration mecha-
nisms. Specifically, we leverage insights developed in Sec-
tion 5 to transform a state-of-the-art performance-focused
migration mechanism into a reliability-aware migration mech-
anism. We also examine the applicability of a recently pro-
posed algorithm for memory activity tracking to reduce hard-
ware cost in our scenario.

6.1 Performance-focused Migration
We model our performance-focused migration mechanism

based on the HMA architecture proposed by Meswani, et
al. [40]. The migration scheme employs a set of hardware
counters that keep track of raw access counts (reads and
writes combined) for each page in memory. At the end of
pre-defined intervals, these counters are used to generate mi-
gration pairs to replace cold pages from on-package HBM
with hot pages in off-package DDRx memory. The hotness
criteria is determined using a threshold – any page with raw
access counts greater than the set threshold value is deemed
to be hot and therefore, eligible for migration.
Migration Interval. Migrating pages at run-time has a

performance cost. The cost of migrating a page from one
memory to another is governed by the slowest memory in
the system. Therefore, it is important to select migration
intervals carefully. We perform a sweep over the interval
length to evaluate its impact on performance. We select three
different workloads for our evaluation. Each workload is
characterized by different memory intensities (low, medium
and high), and different memory access patterns. Our results
(shown in Figure 13) reveal that an interval length of 100ms
leads to the best performance, in agreement with the identi-
fied interval by Meswani, et al. [40].
To eliminate cold start effects in our simulations (which

emulate a period in the middle of execution), we assume a
good pre-measurement placement, in this case one that starts
with the top hot pages from our oracular static placement
scheme in HBM, before we begin execution of a simpoint.
While this is a good overall placement, it is not necessarily
the best per-interval placement. The set of top hot pages

7

Figure 12: Performance-focused migrations improve IPC by 1.52x rel-
ative only DDRx memory. However, the soft error rate is increases by
268x relative to only DDRx memory.

Figure 13: Interval sweep to determine suitable migration frequency.

changes considerably from interval to interval, triggering an
average of 47,014 migrations every interval.
Hotness Threshold. The total number of migrations is
also a function of the defined hotness threshold, i.e. how
hot a page has to be in order to be eligible for migration to
HBM. One of the insights from our static exploration is that
there is significant variation in page hotness across different
workloads. Hence, choosing a hardwired value as a thresh-
old cannot serve every application fairly. We use dynamic
mean page hotness levels during each interval to determine
the threshold to be used during migration. All pages in slow
memory above mean page hotness are marked as candidates
for migration to faster high-bandwidth memory.
Performance and Reliability.Figure 12 shows the IPC

(left y-axis) and SER (right y-axis) for our performance-
focused migration scheme. We observe that the dynamic
migration scheme is only 5.8% slower (1.52x vs. 1.6x),
and achieves a minor reduction of 1.11x in SER relative
to our static oracular performance-focused data placement.
The performance degradation comes from both the migra-
tion cost and the inability to react quickly to execution changes
due to a long measurement interval. Note that subsequent
results in this section will be normalized to these values (dy-
namic performance-based migration) since that represents
the current state of the art for dynamic schemes.

6.2 Reliability-aware Migration
In this section, we propose minor modifications to the

performance-focused migration mechanism, in order to trans-
form it into a reliability-aware mechanism, by leveraging in-
sights from Section 5.3. By simply splitting the hardware
counters into two sets, one for reads and one for writes, it is
possible to measure a page’s hotness (reads + writes) as well
as its risk, defined asWr/Rd. Since we have a precise mea-
surement for page hotness, we no longer need to calculate

Figure 14: Reliability-aware dynamic migration (FullCounters): On
average reliability-aware migration using FullCounters reduces the
soft error rate 1.8x at a cost of 6.0% relative to performance-focused
migrations.

Wr2/Rd. We use mean hotness and risk values as thresholds
to divide memory pages accessed during the interval into hot
and cold, and high-risk and low-risk, respectively. Similar
to the performance-focused migration scheme, to eliminate
cold start effects, we assume an initial placement of the top
hot and low-risk pages from our static oracular placement
in HBM, before we begin the execution of a simpoint. Fur-
ther, at each interval, our mechanism attempts to exchange
all cold or high-risk pages currently residing in HBM with
hot and low-risk pages from DDRx memory. We refer to
this reliability-aware migrations mechanism as Full Counter-
based (FC-based) mechanism.
Figure 14 shows the IPC (left y-axis) and SER (right y-

axis) for reliability-aware migrations using Full Counters (FC)
relative to performance-focused migrations. We observe vary-
ing levels of performance loss across different workloads.
Themilcworkload shows a slight speedup because it incurs
fewer migrations than a performance-focused scheme. On
average, we observe a reduction of 1.8x in SER, at a perfor-
mance loss of 6% when compared to performance-focused
migrations. Therefore, we show that at a very nominal cost
in performance, a heuristic-based run-time risk estimation
technique such as our migration scheme can substantially
improve the reliability of an HMA system.

6.3 Hardware Cost Analysis
In this section, we discuss the hardware cost of the pro-

posed dynamic reliability-aware migration scheme that uses
Full Counters (FC). Our FC-based reliability-aware migra-
tion mechanism maintains two sets of counters for each page
in memory to count the number of reads and writes. Our ex-
ploration reveals that 6-bit counters are sufficient to hold the
largest access counts we observe. For generality, we em-
ploy 8-bit counters in our design. We further assume the
counters to be saturating, so they do not overflow after an
access count exceeds the maximum possible value. Given
our assumptions, the activity tracking (identifying migration
candidates) part of this mechanism requires 16 bits per 4K
pages. In our example 17 GB HMA, (1 GB HBM and 16
GB DDRx – See Table 1), we have a total of 4.25M pages,
for which we need 8.5 MB to store our Full Counters. This
implies that our reliability-aware migration scheme requires
an additional storage of 4.25 MB for activity tracking than a
fully performance-focused migration scheme.

8

Sta$c	(Oracle)	 Heuris$c	(Oracle)	 Dynamic	Migra$ons	

Reliability-focused	
[Sec$on	5.1]	

Balanced	
[Sec$on	5.2]	

Wr	ra$o	
[Sec$on	5.4.1]	

Wr2	ra$o	
[Sec$on	5.4.2]	

Reliability-aware	
(Full	Counters)	
[Sec$on	6.2]	

Reliability-aware	
(Cross	Counter)	
[Sec$on	6.4]	

Program	
Annota$ons	
[Sec$on		7]	

IPC	 SER	 IPC	 SER	 IPC	 SER	 IPC	 SER	 IPC	 SER	 IPC	 SER	 IPC	 SER	

17%	 5.0x	 14%	 3.0x	 8.1%	 1.8x	 1%	 1.6x	 6%	 1.8x	 4.9%	 1.5x	 1.1%	 1.3x	

Table3:Summaryofstatic,heuristic,dynamicmigration,andprogrammerannotationbaseddataplacement. Allstaticplacements/migration
schemesarenormalizedtothatoftheperformance-focusedstaticplacement/migrationscheme.IPCandSERnumbersshowtheIPCdegradation
andSERimprovementrelativetorespectiveperformance-focusedplacement.

6.4 HardwareCostOptimization
Inthissection,weexploretechniquestoreducetheover-

allhardwarecostofourreliability-awaremigrationscheme,
bycombiningourFC-basedtrackingmechanismwithalow
costhotnesstrackingapproachbasedonthe“MajorityEle-
mentAlgorithm”(MEA)[50].

6.4.1 DynamicMigrationsviaCrossCounters

Todesignacost-effectivemigrationmechanism,wefirst
deconstructourdynamicreliability-awaremechanisminto
twodistinctcomponentunitsthatoptimizetwodifferentas-
pects–performanceandreliability. Whileaperformance
unitreplacescoldpagesresidinginHBMwithhotpages
fromslowerDDRxmemorytoprovidehigheroverallband-
width,thereliabilityunitreplaceshigh-riskpagesresidingin
HBMwithlow-riskpagesfromDDRxmemorytoimprove
theoverallsofterrorrate.Tothisend,weproposethe“Cross
Counters”(CC)reliability-awaremigrationmechanismthat
implementsacombinationofMEAandFullCounters.
MEAisshowntobeamorecost-effectivehotnesstrack-

ingapproachsinceitfavorsrecencybytrackingrelativeup-
datestoalimitedsetofmostrecentlyusedpages,incom-
parisontoaFullCounter-basedapproachthatkeepstrackof
rawaccesscountsforeveryaddressablepageinthesystem.
WemodelourMEA-basedcountermechanismbasedonthe
MemPodarchitectureproposedbyProdromou,etal.[50].
Specifically,usinga32-entryMEAmapanda64KBremap
tablecache,ourperformanceunitcanidentifyupto32glob-
allyhotpagesevery50µs.
Despitethepotentialforoverallhardwarecostreduction,

anMEA-basedtrackingapproach(oranymodificationthereof)
doesnotefficiently(intermsofbothperformanceandhard-
warecost)captureabsolutereadandwritecountsoverlarge
intervals,whichisespeciallyimportantforareliability-aware
mechanismthattrackspagerisk.Therefore,wecontinueto
useFullCounter-basedtrackinginourreliabilityunit,albeit
onlyforasmallfractionofthepagesinHBM.Thesecoun-
tersoperateasdescribedinthepreviousreliability-awaredy-
namicmechanism,trackingbothreadandwritecounts.

6.4.2 HardwareCostofCrossCounters

IncontrasttoourFC-basedreliability-awaremigration
scheme,ourCC-basedschemeemploysFullCountersfor
onlyrisktrackinginHBM.Specifically,ourCC-basedscheme
uses16-bitcounterstotrackriskinall262Kpagesinourex-
ample1GBHBM,therebysignificantlyreducingthehard-
warecostofFullCounterstojust512KB.TheMEA-based
trackingmechanismwemodelfrompriorworkrequiresno

morethan100KBofstoragetotrackhotnessofthemostre-
centlyusedpages,anda64KBcacheforitsremaptablethat
keepstrackofrecentlymigratedpages.Overall,ourCross
Counters-basedmigrationmechanismrequires676KBof
additionalstorage,asignificantreductionfromthe4.25MB
additionalstoragerequiredbyourFC-basedmechanism.

6.4.3 CrossCountersImplementation

Inordertodeterminetheappropriatemigrationinterval
fortheMEA-basedtrackingmechanism,wefirstperforman
intervalsweepsimilartotheoneweperformforourFC-
basedtrackingmechanism(seeFigure13).However,inthis
case,weusesmallerintervalssetat50and100µs,since
priorworkshowsthatMEA-basedmigrationmechanisms
workwellwithsmallerintervalsthatallowthemtopusha
smallnumberofpagesfrequentlytoHBM[50].Ourinterval
sweeprevealsanoptimalmigrationintervalof50µsforan
MEA-basedmechanismwith32countersand4KBpages,
whichisinagreementwiththemigrationintervalidentified
bypriorwork.WecallthisintervaltheMEA-interval.
Ontheotherhand,FC-basedmigrationmechanismshave

beenshowntoworkwellwithlargerintervals.Thisisdue
tothefactthattheyattempttomigrateaverylargenumber
ofpagesatonce[40].Inourspecificcaseofrun-timerisk
estimationwhereweinspectthedynamicWrratio,itisim-
portanttoaccumulateaconsiderablenumberofreadsand
writestomakeaccurateassessments,whichisonlypossible
vialargerintervals.InourCrossCounter-basedmigration
scheme,wesetthetwomanagingunitstooperateatdiffer-
entintervals.Theperformanceunit(MEA)migratesavery
smallsetofhotpagestoHBMevery50µs(MEA-interval).
Thereliabilityunit,ontheotherhand,performsrun-time
riskestimationforeverypageinHBM,every100ms(FC-
interval).
Inourimplementation,migrationsareorchestratedbythe

performanceunit.Basedonthehotnesscriteriaestablished
byMEA,theperformanceunitmigrateshotpagesintoHBM
fromDDRxmemory. However,theperformanceunitalso
queriesthereliabilityunittocheckiftherearehigh-risk
pageswaitingtobemovedtoDDRxmemory.Ifsuchpages
exist,migrationsareperformedinbothdirections–theper-
formanceunitmigratesidentifiedhotpagesfromDDRxmem-
orytoHBM,andthereliabilityunitmigratesidentifiedhigh-
riskpagesintheotherdirection.Incasenopendinghigh-
riskpagesexist(forexampleduringthefirstFC-interval),
theperformanceunitcontinuestomigratehotpagesevery
MEA-interval,butthereliabilityunitonlymakesthecoun-
tersavailableeveryFC-interval.AtFC-interval,bothperfor-
manceandreliabilityunitsworktogethertomovecoldand

9

Figure 15: Reliability-aware dynamic migration (CrossCounter): On
average reliability-aware migration using CrossCounters reduces the
soft error rate 1.5x at a cost of 4.9% relative to performance-focused
migrations.

Figure 16: Program annotation reduces SER by 1.3x at a cost of 1.1%
relative to perf-focused migration oracular placement.

high-risk pages out of HBM.
Figure 15 shows the IPC (left y-axis) and SER (right y-

axis) results for the CC-based reliability-aware migration mech-
anism. On average, we observe that the SER is reduced
by 1.5x, at a performance loss of 4.9% when compared to
performance-focused migrations. In contrast, an FC-based
reliability-aware migration mechanism incurs a 6% loss in
performance, but achieves an overall SER reduction of 1.8x
(See Table 3). The relative increase in SER is a direct con-
sequence of allowing hot and potentially high-risk pages to
migrate to HBM at the smaller MEA-intervals. However, if
a page gets classified as high-risk at a later FC-interval, it is
migrated back to DDRx memory, thereby mitigating risk as
much as possible, at a coarser granularity.
While this policy works well with high-risk pages that are

hot over short bursty intervals and tend to stay in DDRx
memory for most of the execution, workloads such asas-
tarhave a great number of high-risk pages that stay hot for
the entire execution. For such workloads, we keep bring-
ing pages in and then removing them after an interval, once
we have the opportunity to measure risk, resulting in some
reliability exposure and greater migration overhead.
Furthermore, since MEA counters favor the temporal be-
havior of an access pattern, we observe significant perfor-
mance improvement in workloads with striding patterns. For
example, we observe an 11% performance improvement with
thecactusADMworkload compared to FC-based migrations.
However, owing to CC’s coarse-grained risk mitigation, we
observe a 20% increase in SER for that workload. On aver-
age, CC effectively reduces the soft error rate by 1.5x at less

Figure 17: Number of annotated program structures. For most work-
loads annotating only a handful of program structures provides 1GB of
potentially hot and low-risk pages.

than 4.9% loss in performance, with a minimal hardware
cost of 676 KB, when compared to a fully performance-
focused migration mechanism.

7. RELIABILITY-AWARE PROGRAM
ANNOTATIONS

This section explores the viability of risk mitigation via
program annotations that allow pinning of hot and low-risk
data structures in HBM, with no significant performance degra-
dation and hardware cost. These program annotations can
be made by identifying data structures that are frequently
accessed and yet do not remain live for a substantial dura-
tion of the program’s execution. In our implementation, the
program’s ELF loader instructs the memory controller to pin
annotated data structures to HBM, and further mark them as
“pinned pages”, so that they are unaffected by the migration
policies implemented in the system.
As shown in Figure 16, it is possible to achieve a signifi-

cant reduction of 1.3x in SER by minimal annotation of pro-
gram structures, at a mere 1.1% degradation in performance,
and with no additional hardware overhead, when compared
to a fully performance-focused static oracular data place-
ment. In fact, as shown in Figure 17, we can achieve this
level of SER reduction with as few as 1 program annotation
for most workloads and with an average of 8 annotations
across all workloads. Note that this is highly influenced by
two outliers,cactusADMandmix1that need 39 and 45 anno-
tations respectively. We note that the annotations themselves
can be performed either using domain expertise, and/or with
the help of profile-guided compilation. In this work, we take
advantage of prior profiling to perform minimal program an-
notation.
These results suggest that with careful program annota-

tion, we can achieve a significant reduction in SER, close
to that of a heuristics-based static oracular data placement.
Supplementing such an annotation-driven static data place-
ment scheme with a reliability-aware migration mechanism
could potentially further improve the overall reliability of the
system.

8. RELATED WORK
Naithani, et al. demonstrate that reliability-aware schedul-

ing for heterogeneous multicores increases system reliability
by as much as 60.2% when applications are scheduled using
application vulnerability among available core choices [46].
Jiao, et al. propose techniques that consider the effect of
data to predict and reduce SEUs in functional units [30, 31].

10

Venkat,etal.demonstratethatheterogeneityinmulticores
canbeexploitednotonlyforimprovedperformance[63]but
alsoforincreasedsecurity[62].
Gupta,etal.presentanaging-awaremechanismtohan-

dletheaccumulationofpermanentfaultsforanHMAsys-
tembytuningtheaccessrateasthesystemages[16].How-
ever,theydon’tconsidertheeffectofdatavulnerabilityon
transienterrors.Gottscho,etal.proposeSoftware-Defined
ECC(SWD-ECC).SWD-ECCusesinformationtheoryto
heuristicallyrecoverfromdetectableunrecoverableerrors
(DUEs)[13].Flikker[38]lowerstherefreshrateforlow-
riskdataforDDRxmemory.Flikkerrequireslow-riskdata
tobeannotatedusingprogrammerhints,astrategyweusein
thispaperformoreoptimaldataplacement,intermsofboth
performanceandreliability.
ThemotivationforHMAconfigurationsstemfromthe

needformorecapacityandbandwidththanwhatcurrent
die-stackedDRAMtechnologycanprovide[65].Thedie-
stackedportionofHMAsistypicallymanagedaseithera
large,high-bandwidthLastLevelCache(LLC),orasPart-
of-Memory(PoM),inwhichcasethestackedcapacityis
availabletothesoftware.Severalstudiesexplorecacheor-
ganizationsforHMAs[9,26,37,51]. Whenorganizedas
acache,stackedDRAMintroducesnewchallengeswhen
comparedtotraditionalSRAMcaches.Qureshi,etal.[51]
demonstratethattraditionaloptimizationstailoredforSRAM
memoriesarenotapplicableforDRAMcachesandresult
indegradedperformance,requiringengineerstorevisitand
reconsidercacheoptimizationswithDRAMtechnologyin
mind.AcriticalDRAMcacheoptimizationisthedesignof
intelligenttagstoresthatavoidmultiplecacheaccessesfor
taganddata.
Whiledie-stackedDRAMcachesareshowntosignifi-

cantlyimprovetheperformanceoflatency-limitedapplica-
tions,theyonlymarginallyimprovecapacity-limitedappli-
cations.Whenthestackedcapacityisinsteadexposedtothe
applicationinaPoMconfiguration,capacity-limitedappli-
cationsalsobenefitinperformance. Recentworks[8,40,
50,56]proposemechanismstomanagestackedmemoryin
aPoMconfiguration.Theseproposalsfollowasimilarap-
proachtothememorymanagementproblem:Identifydata
thatarepredictedtobehot(frequentlyaccessed)inthenear
futureandmoveittofastmemory.Sincestackedmemoryis
PoM,thesemechanismsneedtomovesomedataoutoffast
andintoslowmemorybeforereplacingitwiththepredicted
hotdata.CAMEO[8]attemptstostrikeabalancebetween
managingstackedmemoryasacache/PoMhybrid.
Meswani,etal.[40]proposeamigrationmechanismthat

employsHWaswellasSWtomanageHMAs.Predicting
futurehotdata(4KBpages)isdoneviaasetofaccesscoun-
terskeepinganaccesscountperpage.Atpredefinedtime
intervals,thepageswiththehighestaccesscountsexceed-
ingasetthresholdaremigrated(swapped)intofastmem-
ory.MemPod[50]isarecentlyproposedHW-basedmecha-
nismformemorymanagementinPoMconfigurations.The
proposedarchitectureclustersfastandslowmemorychan-
nelsintoindependently-operatingmemory“Pods”andonly
permitsintra-Podmigrations. Whileflexibilityisstilltech-
nicallyrestricted,MemPod’sarchitectureoffersenoughop-
tionsforpagestomigrateleadingtobetterfastmemoryuti-

lization. MemPod’spredictionforfuturehotdataisdone
viathe“MajorityElementAlgorithm”(MEA)algorithm[6,
33].Inthispaper,wecross-breedboththeabovetechniques
(HMAandMemPod)toimplementacost-effectiveCross
Counters-basedreliability-awaremigrationmechanism.
Sim,etal.[56]proposeahardwarememorymanagement
mechanismdesignedtooperatewithouthighareaoverheads
forbookkeepingstructures. Memoryisgroupedinto“seg-
ments”withonlyonefastmemorylocationpersegment.
Memorypagescanonlymigratetothefastlocationoftheir
segment,replacingthecurrently-residingpage. Thisseg-
mentedapproachsignificantlyrestrictstheflexibilityofthis
migrationmechanism,occasionallyleadingtocounterpro-
ductiveoperation–multiplehotpagesinthesamesegment
willkeepevictingeachotherfromfastmemory,whilethe
fastmemoryofacoldsegmentdoesnotcontributetowards
improvingperformance.However,restrictingmigrationsin
thisfashionrequiresverysmallbookkeepingstructures,and
removesthecomplexityoffindingafastmemorylocation
basedonpossiblymorecomplexalgorithms.

9. CONCLUSIONS
Thispaperpresentslow-costheuristicstomarkriskypages

tobettermanageaheterogeneousmemorysystem,balancing
bothperformanceandoverallreliability.Ourstaticheuristic-
basedreliability-awarepolicythatselectshotandlow-risk
pagesforhigh-bandwidthlow-reliabilitymemoryreduces
SERby1.6xcomparedtoaconventionalperformance-focused
dataplacementpolicyatacostof1%inperformance. We
devisetwodynamicdatamigrationpolicies. Weshowthat
monitoringhotnessviaFullCountersandriskviarun-time
heuristicsresultsin1.8xreductioninsofterrorrateataper-
formancelossof6%andanadditionalhardwareoverhead
of4.25MB,ascomparedtoaperformance-focuseddynamic
migrationpolicy.Toreducethehardwareoverhead,wepro-
pose“CrossCounters”,thatusefullcountersforriskestima-
tioninHBMandMEAcounterstotrackhotnessthroughout
thesystem. WedemonstratethatCrossCountersreducethe
softerrorrateby1.5xataperformancelossof4.9%with
anominalhardwareoverheadof676KB,ascomparedtoa
performance-focuseddynamicmigrationpolicy. Wefurther
showthatitispossibletoachieveasignificantreductionof
1.3xinSERwithminimalprogramannotation.Theseresults
openupnewopportunitiesforoptimizationofperformance,
capacity,andreliability.

Acknowledgements

Theauthorswouldliketothanktheanonymousreviewers
fortheirhelpfulinsights.Thisresearchwassupportedby
theU.S.DepartmentofEnergy(DoE).Thisworkisalso
supportedbytheNSFExpeditioninComputinggrantCCF-
1029783andNSFgrantCNS-1652925.Anyopinions,find-
ings,andconclusionsorrecommendationsexpressedherein
arethoseoftheauthorsanddonotnecessarilyreflectthe
viewsoftheDoEorNSF.AMD,theAMDArrowlogo,
andcombinationsthereofaretrademarksofAdvancedMicro
Devices,Inc.Otherproductnamesusedinthispublication
areforidentificationpurposesonlyandmaybetrademarks
oftheirrespectivecompanies.

11

10. REFERENCES
[1]HydrodynamicsChallengeProblem,LawrenceLivermoreNational
Laboratory.TechnicalReportLLNL-TR-490254.

[2]NehaAgarwal,DavidNellans,MarkStephenson,MikeO’Connor,
andStephenW.Keckler.Pageplacementstrategiesforgpuswithin
heterogeneousmemorysystems.ASPLOS,2015.

[3]R.Baumann.SoftErrorsinCommercialSemiconductorTechnology:
OverviewandScalingTrends.IEEE2002ReliabilityPhysics
TutorialNotes,ReliabilityFundamentals,2002.

[4]BryanBlack,MuraliAnnavaram,NedBrekelbaum,JohnDeVale,Lei
Jiang,GabrielH.Loh,DonMcCaule,PatMorrow,DonaldW.
Nelson,DanielPantuso,PaulReed,JeffRupley,SadasivanShankar,
JohnShen,andClairWebb.DieStacking(3D)Microarchitecture.In
MICRO,Washington,DC,USA,2006.IEEEComputerSociety.

[5]FranckCappelloetal.TowardExascaleResilience.Int.J.High
Perform.Comput.Appl.,2009.

[6] MosesCharikar,KevinChen,andMartinFarach-Colton.Finding
frequentitemsindatastreams.TheoreticalComputerScience,2004.

[7] MoinuddinK.QureshiChiachenChou,AamerJaleel.BATMAN:
Maximizingbandwidthutilizationofhybridmemorysystems.Tech
Report,TR-CARET-2015-01(1):297–310,March2015.

[8]ChiachenChou,AamerJaleel,andMoinuddinK.Qureshi.Cameo:
Atwo-levelmemoryorganizationwithcapacityofmainmemoryand
flexibilityofhardware-managedcache.InProceedingsofthe47th
AnnualIEEE/ACMInternationalSymposiumonMicroarchitecture,
MICRO-47,pages1–12,Washington,DC,USA,2014.IEEE
ComputerSociety.

[9]ChiachenChou,AamerJaleel,andMoinuddinK.Qureshi.BEAR:
TechniquesforMitigatingBandwidthBloatinGigascaleDRAM
Caches.InISCA,NewYork,NY,USA,2015.ACM.

[10]T.J.Dell.AWhitePaperontheBenefitsofChipkill-correctECCfor
PCserverMainMemory.IBM,TechnicalReport,November,1997.

[11]XiangyuDong,YuanXie,NaveenMuralimanohar,andNormanP.
Jouppi.SimplebutEffectiveHeterogeneousMainMemorywith
On-ChipMemoryControllerSupport.InProceedingsofthe2010
ACM/IEEEInternationalConferenceforHighPerformance
Computing,Networking,StorageandAnalysis,SC,Washington,DC,
USA,2010.IEEEComputerSociety.

[12]FluxCalculator.http://www.seutest.com/fluxcalculator.htm.

[13] MarkGottscho.OpportunisticMemorySystemsinPresenceof
HardwareVariability.PhDthesis,UniversityofCalifornia,Los
Angeles,2017.

[14]SudhakarGovindavajhalaandAndrewW.Appel.Usingmemory
errorstoattackavirtualmachine.InProceedingsofthe2003IEEE
SymposiumonSecurityandPrivacy,SP’03,pages154–,
Washington,DC,USA,2003.IEEEComputerSociety.

[15] ManishGupta,DanielLowell,JohnKalamatianos,StevenRaasch,
VilasSridharan,DeanTullsen,andRajeshGupta.Compiler
techniquestoreducethesynchronizationoverheadofgpuredundant
multithreading.InProceedingsofthe54thAnnualDesign
AutomationConference2017,DAC’17,pages65:1–65:6,NewYork,
NY,USA,2017.ACM.

[16] ManishGupta,DavidRoberts,MiteshMeswani,VilasSridharan,
DeanTullsen,andRajeshGupta.ReliabilityandPerformance
Trade-offStudyofHeterogeneousMemories.InMEMSYS,New
York,NY,USA,2016.ACM.

[17]PerHammarlund,AlbertoJ.Martinez,AtiqA.Bajwa,DavidL.Hill,
ErikHallnor,HongJiang,MartinDixon,MichaelDerr,Mikal
Hunsaker,RajeshKumar,RandyB.Osborne,RaviRajwar,Ronak
Singhal,ReynoldD’Sa,RobertChappell,ShivKaushik,Srinivas
Chennupaty,StephanJourdan,SteveGunther,TomPiazza,andTed
Burton.Haswell:Thefourth-generationintelcoreprocessor.IEEE
Micro,2014.

[18]JörgHenkel,LarsBauer,NikilDutt,PuneetGupta,SaniNassif,
MuhammadShafique,MehdiTahoori,andNorbertWehn.Reliable
On-chipSystemsintheNano-era:LessonsLearntandFutureTrends.
DAC’13,NewYork,NY,USA,2013.ACM.

[19]JohnL.Henning.Speccpu2006benchmarkdescriptions.SIGARCH
Comput.Archit.News.

[20] MikeHeroux,RobNeely,andSriramSwaminarayan.ASC
Co-designProxyAppStrategy.2016.

[21] M.Y.Hsiao.AClassofOptimalMinimumOdd-weight-column
SEC-DEDCodes.1970.

[22]Intel.Knightslanding.InProceedingsofthe47thAnnualIEEE/ACM
InternationalSymposiumonMicroarchitecture,MICRO-47,pages
1–12,Washington,DC,USA,2014.IEEEComputerSociety.

[23]PradeepRamachandranJayeshGaur,MainakChaudhuriand
SreenivasSubramoney.Near-optimalaccesspartitioningformemory
hierarchieswithmultipleheterogeneousbandwidthsources.HPCA,
2017.

[24]HyeranJeon,GabrielH.Loh,andMuraliAnnavaram.EfficientRAS
supportfordie-stackedDRAM.In2014InternationalTest
Conference,ITC2014,Seattle,WA,USA,October20-23,2014,
pages1–10,2014.

[25]HyeranJeon,GabrielHLoh,andMuraliAnnavaram.Efficientras
supportfordie-stackeddram.InTestConference(ITC),2014IEEE
International,pages1–10.IEEE,2014.

[26]DjordjeJevdjic,GabrielHLoh,CansuKaynak,andBabakFalsafi.
Unisoncache:Ascalableandeffectivedie-stackedDRAMcache.In
MICRO.IEEE,2014.

[27]DjordjeJevdjic,StavrosVolos,andBabakFalsafi.Die-stackeddram
cachesforservers:Hitratio,latency,orbandwidth?haveitallwith
footprintcache.InISCA,NewYork,NY,USA,2013.ACM.

[28]XunJian,VilasSridharan,andRakeshKumar.Parityhelix:Efficient
protectionforsingle-dimensionalfaultsinmulti-dimensional
memorysystems.InHighPerformanceComputerArchitecture
(HPCA),2015IEEE21stInternationalSymposiumon,HPCA’16,
2016.

[29]XiaoweiJiang,NitiMadan,LiZhao,MikeUpton,RavishankarIyer,
SrihariMakineni,DonaldNewell,YanSolihin,andRajeev
Balasubramonian.CHOP:Adaptivefilter-basedDRAMcachingfor
CMPserverplatforms.2010.

[30]XunJiao,YuJiang,AbbasRahimi,andRajeshK.Gupta.Slot:A
supervisedlearningmodeltopredictdynamictimingerrorsof
functionalunits.InDesign,Automation&TestinEuropeConference
&Exhibition,DATE2017,Lausanne,Switzerland,March27-31,
2017,pages1183–1188,2017.

[31]XunJiao,AbbasRahimi,YuJiang,JianguoWang,HamedFatemi,
JosePinedadeGyvez,andRajeshKGupta.Clim:Across-level
workload-awaretimingerrorpredictionmodelforfunctionalunits.
IEEETransactionsonComputers,preprint.

[32]SudarsunKannan,AdaGavrilovska,VishalGupta,andKarsten
Schwan.Heteroos:Osdesignforheterogeneousmemory
managementindatacenter.InProceedingsofthe44thAnnual
InternationalSymposiumonComputerArchitecture,pages521–534.
ACM,2017.

[33]RichardMKarp,ScottShenker,andChristosHPapadimitriou.A
simplealgorithmforfindingfrequentelementsinstreamsandbags.
ACMTransactionsonDatabaseSystems(TODS),2003.

[34]ChikeungLuk,RobertCohn,RobertMuth,HarishPatil,Artur
Klauser,GeoffLowney,StevenWallace,VijayJanapa,and
ReddiKimHazelwood.Pin:buildingcustomizedprogramanalysis
toolswithdynamicinstrumentation.InInPLDIâ̆ÁZ05:Proceedings
ofthe2005ACMSIGPLANconferenceonProgramminglanguage
designandimplementation,pages190–200.ACMPress,2005.

[35]Y.Kim,W.Yang,andO.Mutlu.Ramulator:Afastandextensible
dramsimulator.IEEEComputerArchitectureLetters,PP(99):1–1,
2015.

[36]YoonguKim,RossDaly,JeremieKim,ChrisFallin,JiHyeLee,
DonghyukLee,ChrisWilkerson,KonradLai,andOnurMutlu.
Flippingbitsinmemorywithoutaccessingthem:Anexperimental
studyofdramdisturbanceerrors.InProceedingofthe41stAnnual
InternationalSymposiumonComputerArchitecuture,ISCA’14,
pages361–372,Piscataway,NJ,USA,2014.IEEEPress.

[37]YongjunLee,JongwonKim,HakbeomJang,HyunggyunYang,
JangwooKim,JinkyuJeong,andJaeWLee.AFullyAssociative,
TaglessDRAMCache.InISCA.ACM,2015.

[38]SongLiu,KarthikPattabiraman,ThomasMoscibroda,and
BenjaminG.Zorn.Flikker:SavingDRAMRefresh-powerThrough
CriticalDataPartitioning.ASPLOS,2011.

[39]GabrielH.LohandMarkD.Hill.EfficientlyEnablingConventional

12

BlockSizesforVeryLargeDie-stackedDRAMCaches.InMICRO,
NewYork,NY,USA,2011.ACM.

[40] M.R.Meswani,S.Blagodurov,D.Roberts,J.Slice,M.Ignatowski,
andG.H.Loh.HeterogeneousMemoryArchitectures:AHW/SW
ApproachforMixingDie-stackedandoff-packageMemories.In
HPCA,2015.

[41]SarahE.Michalak,KevinW.Harris,NicolasW.Hengartner,
BruceE.Takala,StephenWender,andOthers.Predictingthenumber
offatalsofterrorsinLosAlamosNationalLaboratory’sASCQ
supercomputer.DeviceandMaterialsReliability,IEEETransactions
on,2005.

[42]ShubhenduS.Mukherjee,ChristopherWeaver,JoelEmer,StevenK.
Reinhardt,andToddAustin.Asystematicmethodologytocompute
thearchitecturalvulnerabilityfactorsforahigh-performance
microprocessor.InProceedingsofthe36thAnnualIEEE/ACM
InternationalSymposiumonMicroarchitecture,MICRO36,pages
29–,Washington,DC,USA,2003.IEEEComputerSociety.

[43]PrashantJ.Nair,DavidA.Roberts,andMoinuddinK.Qureshi.
Citadel:Efficientlyprotectingstackedmemoryfromlarge
granularityfailures.InProceedingsofthe47thAnnualIEEE/ACM
InternationalSymposiumonMicroarchitecture,MICRO-47,pages
51–62,Washington,DC,USA,2014.IEEEComputerSociety.

[44]PrashantJ.Nair,DavidA.Roberts,andMoinuddinK.Qureshi.
Faultsim:Afast,configurablememory-reliabilitysimulatorfor
conventionaland3d-stackedsystems.ACMTrans.Archit.Code
Optim.,12(4):44:1–44:24,December2015.

[45]PrashantJ.Nair,VilasSridharan,andMoinuddinK.Qureshi.XED:
ExposingOn-DieErrorDetectionInformationforStrongMemory
Reliability.ISCA,2016.

[46]AjeyaNaithani,StijnEyerman,andLievenEeckhout.
Reliability-AwareSchedulingonHeterogeneousMulticore
Processors.InHPCA,2015.

[47]EugeneNormand.SingleEventUpsetatGroundLevel.IEEE
TransactiononNuclearScience,1996.

[48]ORNL.OakRidge’Jaguar’SupercomputerisWorld’sFastest.Oak
RidgeNationalLaboratory,2009.

[49]J.T.Pawlowski.Hybridmemorycube:Breakthroughdram
performancewithafundamentallyre-architecteddramsubsystem.
HotChips,2011.

[50]AndreasProdromou,MiteshMeswani,NuwanJayasena,GabrielH.
Loh,andDeanM.Tullsen.MemPod:AClusteredArchitecturefor
EfficientandScalableMigrationinFlatAddressSpaceMulti-Level
Memories.HPCA,2017.

[51] MoinuddinK.QureshiandGabeH.Loh.FundamentalLatency
Trade-offinArchitectingDRAMCaches:OutperformingImpractical
SRAM-TagswithaSimpleandPracticalDesign.InMICRO,
Washington,DC,USA,2012.IEEEComputerSociety.

[52]BiancaSchroeder,EduardoPinheiro,andWolf-DietrichWeber.
Dramerrorsinthewild:Alarge-scalefieldstudy.InProceedingsof
theEleventhInternationalJointConferenceonMeasurementand
ModelingofComputerSystems,SIGMETRICS’09,pages193–204,
NewYork,NY,USA,2009.ACM.

[53]CharlesF.ShelorandKrishnaM.Kavi.Moola:Multicorecache
simulator.In30thInternationalConferenceonComputersandTheir
ApplicationsCATA-2015,2015.

[54]TimothySherwood,ErezPerelman,GregHamerly,andBradCalder.
Automaticallycharacterizinglargescaleprogrambehavior.SIGOPS
Oper.Syst.Rev.,36(5):45–57,October2002.

[55]PremkishoreShivakumar,MichaelKistler,StephenW.Keckler,
DougBurger,andLorenzoAlvisi.ModelingtheEffectof
TechnologyTrendsontheSoftErrorRateofCombinationalLogic.
InProceedingsofthe2002InternationalConferenceonDependable
SystemsandNetworks,DSN’02,Washington,DC,USA,2002.IEEE
ComputerSociety.

[56]JaewoongSim,AlaaR.Alameldeen,ZeshanChishti,Chris
Wilkerson,andHyesoonKim.Transparenthardwaremanagementof
stackeddramaspartofmemory.InMICRO,Washington,DC,USA,
2014.IEEEComputerSociety.

[57]JaewoongSim,GabrielH.Loh,HyesoonKim,MikeO’Connor,and
MithunaThottethodi.AMostly-CleanDRAMCacheforEffective
HitSpeculationandSelf-BalancingDispatch.InMICRO,
Washington,DC,USA,2012.IEEEComputerSociety.

[58]JaewoongSim,GabrielH.Loh,VilasSridharan,andMike
O’Connor.Resilientdie-stackeddramcaches.InProceedingsofthe
40thAnnualInternationalSymposiumonComputerArchitecture,
ISCA’13,pages416–427,NewYork,NY,USA,2013.ACM.

[59]VilasSridharan,NathanDeBardeleben,SeanBlanchard,KurtB.
Ferreira,JonStearley,JohnShalf,andSudhanvaGurumurthi.
Memoryerrorsinmodernsystems:Thegood,thebad,andtheugly.
SIGARCHComput.Archit.News,43(1):297–310,March2015.

[60]VilasSridharanandDeanLiberty.Astudyofdramfailuresinthe
field.InProceedingsoftheInternationalConferenceonHigh
PerformanceComputing,Networking,StorageandAnalysis,SC’12,
pages76:1–76:11,LosAlamitos,CA,USA,2012.IEEEComputer
SocietyPress.

[61]JohnRTramm,AndrewRSiegel,TanzimaIslam,andMartinSchulz.
XSBench-TheDevelopmentandVerificationofaPerformance
AbstractionforMonteCarloReactorAnalysis.InPHYSOR2014-
TheRoleofReactorPhysicstowardaSustainableFuture,Kyoto.

[62]AshishVenkat,SriskandaShamasunder,HovavShacham,and
DeanM.Tullsen.Hipstr:Heterogeneous-isaprogramstate
relocation.SIGPLANNot.,51(4):727–741,March2016.

[63]AshishVenkatandDeanM.Tullsen.Harnessingisadiversity:Design
ofaheterogeneous-isachipmultiprocessor.InProceedingofthe41st
AnnualInternationalSymposiumonComputerArchitecuture,ISCA
’14,pages121–132,Piscataway,NJ,USA,2014.IEEEPress.

[64]KristenR.Walcott,GregHumphreys,andSudhanvaGurumurthi.
Dynamicpredictionofarchitecturalvulnerabilityfrom
microarchitecturalstate.SIGARCHComput.Archit.News,
35(2):516–527,June2007.

[65] Wm.A.WulfandSallyA.McKee.HittingtheMemoryWall:
ImplicationsoftheObvious.SIGARCHComput.Archit.News,
23(1):20–24,March1995.

[66]JunXu,ShuoChen,ZbigniewKalbarczyk,andRavishankarK.Iyer.
Anexperimentalstudyofsecurityvulnerabilitiescausedbyerrors.In
2001InternationalConferenceonDependableSystemsand
Networks(DSN2001)(formerly:FTCS),1-4July2001,Göteborg,
Sweden,Proceedings,pages421–432,2001.

[67]J.F.Ziegler,H.W.Curtis,H.P.Muhlfeld,C.J.Montrose,and
B.Chin.IBMExperimentsinSoftFailsinComputerElectronics
(1978&Ndash;1994).IBMJ.Res.Dev.,1996.

13

