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Abstract—Unified Virtual Memory (UVM) was recently intro-
duced on recent NVIDIA GPUs. Through software and hardware
support, UVM provides a coherent shared memory across the en-
tire heterogeneous node, migrating data as appropriate. The older
CUDA programming style is akin to older large-memory UNIX
applications which used to directly load and unload memory
segments. Newer CUDA programs have started taking advantage
of UVM for the same reasons of superior programmability that
UNIX applications long ago switched to assuming the presence of
virtual memory. Therefore, checkpointing of UVM will become
increasingly important, especially as NVIDIA CUDA continues
to gain wider popularity: 87 of the top 500 supercomputers in
the latest listings are GPU-accelerated, with a current trend of
ten additional GPU-based supercomputers each year.

A new scalable checkpointing mechanism, CRUM
(Checkpoint-Restart for Unified Memory), is demonstrated
for hybrid CUDA/MPI computations across multiple computer
nodes. CRUM supports a fast, forked checkpointing, which
mostly overlaps the CUDA computation with storage of the
checkpoint image in stable storage. The runtime overhead
of using CRUM is 6% on average, and the time for forked
checkpointing is seen to be a factor of up to 40 times less than
traditional, synchronous checkpointing.

Index Terms—CUDA, GPU, UVM, checkpoint-restart,
DMTCP

I. INTRODUCTION

The advent of virtual memory automated the task of
managing a program’s memory segments. Hence, for large,
complex programs, the use of virtual memory becomes more
efficient in practice, since few programmers wish to spend
development time manually squeezing out the most efficient
memory management. In much the same way, NVIDIA has
introduced Unified Virtual Memory (UVM) into their recent
GPUs. CUDA UVM is analogous to the virtual memory with
hardware support found on traditional computers.

UVM is especially important for workloads with memory
footprints that are too large to entirely fit in device memory.
In this case, UVM allows the application to allocate its data
within a UVM region that is directly visible to a kernel running
on the device. A “working set” of memory is automatically
paged into the device as needed. Furthermore, the use of a
unified virtual address space enables deployment of complex
data structures for GPU-based computation, with the same
pointers being valid on the host as well as on the GPU.
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Fig. 1: NVIDIA GPUs in Top 500 list.

The use of GPUs continues to grow as seen in recent TOP-
500 lists [1] (see Figure 1), and the advent of a unified shared
address space is expected to further lower the entry barrier
and widen the adoption of GPUs in HPC systems.

Unfortunately, GPUs have been shown to suffer from a high
rate of Detected Unrecoverable Errors (DUEs) [2]–[7]. The
mean time between failures (MTBF) is expected to become
much worse as the number of compute nodes increases in the
exascale generation.

Thus, efficient checkpointing for the UVM model is impor-
tant for the future exascale generation. Unfortunately, previous
checkpointing research [8]–[13] assumes the older (non-UVM)
memory model.

A naı̈ve approach to support checkpoint-restart would be to:
(a) introspect and save the application process state (including
the CUDA user-space library) and the GPU device driver; and
(b) restore the process memory (including the CUDA user-
space library) and restore the GPU device driver state. Unfor-
tunately, the CUDA user-space library, which is checkpointed
and restored as part of the process memory, is non-reentrant.
Thus, it cannot restore the GPU device driver state.

To address these challenges, this paper proposes a novel
framework, CRUM (Checkpoint-Restart for Unified Memory),
which decouples the application process state from the device
driver state (see Section III) by using a proxy process. Thus,
CRUM can transparently checkpoint the application without
involving any active driver state. (This could potentially al-
low a CUDA application to be checkpointed on one ver-
sion of CUDA and GPU hardware, and restarted on another
CUDA/GPU version.)

To optimize checkpointing of applications with large mem-



ory footprints, CRUM uses fork-based, copy-on-write mech-
anism. There are two phases. The first, and relatively fast,
phase is the transfer of data resident on the GPU hardware to
the application process through a proxy process. In the second
phase, the application process disconnects from the proxy and
forks a child process that writes the checkpoint data to stable
storage. Meanwhile, the application process re-connects to the
proxy, which resumes using the GPU for computation.

This work makes the following two novel contributions:
1) An algorithm for shadow page synchronization (see Al-

gorithm 1), which ensures the isolation of an application
process from the GPU device, while allowing the UVM
memory regions to be shared between the two; and

2) A forked checkpointing model for UVM memory that
overlaps writing a checkpoint image to stable storage
while the application continues. This was difficult previ-
ously due to the need to share memory between the GPU
device and host (UVM), and simultaneously between
parent and forked child process.

Experimental results show that CRUM provides an effective
and scalable approach for checkpoint-restart of real-world,
high-performance computing workloads that take advantage
of CUDA 8’s UVM (Section IV). These hybrid CUDA/MPI
applications include the DOE benchmarks HPGMG-FV and
HYPRE. An average runtime overhead of 6% was observed.
Further, CRUM’s fast, forked checkpointing reduces the time
to checkpoint up to a factor of 40 times less than a traditional
checkpoint that writes out process memory to stable storage.
CRUM is open source software that will be freely available.

Section II presents the background and motivation, includ-
ing both the need for UVM support and the need for greater
GPU reliability as we approach the exascale generation. Sec-
tion III describes the design of CRUM, while Section IV
presents an experimental evaluation. Section V presents an
analysis of the current limitations of the current approach, and
the potential impact on future generations of NVIDIA GPUs.
Finally, Section VI describes the related work, and Section VII
presents the conclusion.

II. BACKGROUND AND MOTIVATION

A. History and Motivation for Unified Virtual Memory (UVM)
Unified Virtual Memory (UVM) and its predecessor, Unified

Virtual Addressing (UVA), are major CUDA features that are
incompatible with prior CUDA checkpointing approaches. Yet,
UVM is an important innovation for future CUDA applica-
tions.

Through software and hardware support, UVM provides
a coherent shared memory across the entire heterogeneous
node [14], [15]. The use of UVM-managed memory greatly
simplifies data sharing and movement among multiple GPUs.
This is especially useful given that the most energy-efficient
supercomputers place multiple compute accelerators per
node—for instance, TSUBAME3.0 [16], Coral Summit [17],
and the NVIDIA SATURNV [18] supercomputer use 4, 6, and
8 GPUs per node, respectively. The features and progression
of UVM are briefly described below.

UVA

Cuda 4

Fermi GPUs

UVM-Lite

Cuda 6

Kepler GPUs

UVM-Full

Cuda 8

Pascal GPUs

2011 2013 2016

Fig. 2: The technology advancement of CUDA unified virtual
memory.

Historically, in CUDA 4 (2011), Fermi-class GPUs added
support for Unified Virtual Addressing (UVA) with zero-copy
memory. UVA allows transparent zero-copy accesses to mem-
ory across a heterogeneous node using a partitioned address
space. UVA never migrates data, and so non-local memory
accesses suffer from less bandwidth and longer latency.

To reduce the performance penalty of non-local zero-copy
memory accesses, first-generation Unified Virtual Memory
(UVM-Lite) was introduced in CUDA 6 (2013) for Kepler-
class GPUs [19]. UVM-Lite shares a single memory space
across a heterogeneous node, and it transparently migrates all
memory pages that are attached to the CUDA streams associ-
ated with each kernel. This simplifies deep copies with pointer-
based structures and it allows GPUs to transparently migrate
UVM-managed memory to the device, nearly achieving the
performance of CUDA programs using explicit memory man-
agement. Due to hardware restrictions, however, UVM-Lite
does not allow concurrent access to the same memory from
both CPU and GPU—host-side access is only allowed once
all GPU-side accesses to a CUDA stream have completed.
Concurrent access to UVM-managed memory from different
GPUs is allowed, but data are never migrated between devices
and non-local memory is accessed in a zero-copy fashion.

Second-generation UVM (UVM-Full) was introduced in
CUDA 8 (2016) for Pascal-class GPUs [20]. It eliminates
the concurrent-access constraints of the prior UVM generation
and adds support for system-wide atomic memory operations,
providing an unrestricted coherent shared memory across the
heterogeneous node. On-demand data migration is supported
by UVM-Full across all CPUs and GPUs in a node, with the
placement of any piece of data being determined by a variety
of heuristics [15].

Pascal-era UVM also adds support for memory over-
subscription, meaning that UVM-managed regions that are
larger than the GPU device memory can be accessed without
explicit data movement. This is important for applications with
large data. In particular, it greatly simplifies the programming
of large-memory jobs, and avoids the need to explicitly
marshal data to and from the GPU [21]. For instance, GPU-
capacity-exceeding deep neural network training has been
accomplished in the past through explicit data movement [22],
but it can also be performed with less programmer effort by
UVM over-subscription [23].

B. GPUs for Exascale: DUEs and GPU Reliability

The advantages of using GPUs for high-performance com-
puting have been realized and a steep rise in their use in large-
scale HPC systems has been observed (see Figure 1). Eighty-
seven (87) systems in the Top500 list were reported to be



powered by NVIDIA GPUs in November 2017, as compared
to one (1) in November 2009 [1]. Thus, it is important that
both hardware and the software stack (pertaining to the use
of GPUs) should be highly available and reliable to maximize
large-scale HPC systems productivity.

While this makes GPUs attractive for exascale computing,
the high GPU detectable-uncorrectable error rate (as compared
to CPUs) remains an issue. Checkpointing plays an important
role in mediating this issue. Various studies have been con-
ducted for understanding the reliability aspects of using GPU’s
in large-scale HPC systems. The studies suggest that the newer
generation GPU’s are more reliable, as are the large-scale HPC
systems using them (i.e., the observed MTBF of systems using
newer GPU’s is much longer than their estimated MTBF) [2]–
[7].

However, one factor that motivates efficient checkpoint-
restart on GPU accelerated systems is that GPU memory
currently tends to have more DUEs (Detected Unrecoverable
Errors) per GB than CPU memory. Memory in CPU nodes is
composed of narrow 4-bit or 8-bit wide DRAM devices that
are grouped together into DIMMs, meaning certain ECC codes
(often called chipkill ECC) can correct the data that comes
from an entire DRAM device. In contrast, GPU memory is
much wider (32-bit wide for GDDR5/GDDR5X and 128-bit
for HBM2) such that chipkill-level protection is not possi-
ble without a prohibitively large memory access granularity;
accordingly, current GPUs use single-bit correcting SEC-DED
ECC for DRAM [24], [25]. These lesser correction capabilities
lead to a relative increase in detected errors. For example, a
field study of the Blue Waters system [26] found that the DUE
rate per GB of Kepler-era GDDR5 was roughly 5 times that
of the chipkill-protected CPU memory.

Given the high rate of DUEs expected in the future exascale
systems, checkpoints will be more frequent, and so it is im-
perative to design checkpointing mechanisms that can reduce
the time that applications spend in checkpointing.

C. Checkpointing Large-memory CUDA-UVM Applications

UVM acts as an enabler for easily developing large-memory
CUDA applications. UVM enables a GPU to transparently
access host CPU and remote GPU memory, and hence solves
the problem of otherwise manually managing data transfers.
All of the host CPU’s memory is available, on-demand, by
the GPU device. Conversely, all of the UVM memory on the
GPU device is available to the CPU.

In this situation, the CUDA application may use much
more memory than is present on the device. The capacity
of GPU memory is currently from 16 to 32 GB for a high-
end GPU, while CPU memory often ranges from 128 to
256 GB. In the past, this forced GPU application developer to
choose between: scaling out to many nodes and GPUs (hence
incurring communication overhead); or manually managing
the data transfers on a single GPU. Later, UVM made possible
a third choice: transparently transferring data on a single
GPU via UVM. However, the ease of developing such large-
memory CUDA-UVM applications now places a larger burden

on transparent checkpointing to support this large-memory
overhead.

III. CRUM: DESIGN AND IMPLEMENTATION

To address the challenges described in Section II, this
paper proposes CRUM, a novel framework that provides a
checkpointing-based fault-tolerance mechanism. CRUM en-
ables transparent, system-level checkpointing for CUDA and
CUDA UVM applications.

Figure 3 shows a high-level schematic of CRUM’s archi-
tecture. Note especially the organization into two processes: a
CUDA program (the user’s application), and a CUDA proxy
(the only process that uses the CUDA library to communicate
with the GPU). The flow of control is: (i) to interpose on
CUDA library calls made by the application process; (ii) to
forward the requests to the proxy process; (iii) which then
executes the calls via its CUDA library and GPU, on behalf
of the application; and (iv) finally returns the results back to
the application.

(a) CUDA Original

(b) CUDA Proxy

Fig. 3: High-level architecture of CRUM

In this section, we present the key subsystems in the design
of CRUM. The first research challenge is the propagation of
UVM memory pages (already shared between GPU hardware
and proxy process) to make them visible to the application
process. Section III-B describes a shadow page scheme (sum-
marized in Algorithm 1) for this purpose. The second research
challenge is to extend this scheme to overlap checkpointing
and computation for the sake of fast, forked checkpoint and
future exascale needs. This is discussed in Section III-C.
Finally, the implementation details of integrating CRUM with
proxy processes is discussed in III-D.



A. Post-CUDA 4: The Need for a Proxy Process

Ideally, a single-process approach toward checkpointing
seems simpler. But this approach for CUDA became non-
viable with CUDA 4 and beyond, when NVIDIA implemented
unified virtual addressing with zero-copy, an antecedent of
unified memory [23]). At that point, it was no longer possible
to re-initialize the CUDA library at the time of restart. We
assume that this is due to the lack of clear semantics about
what it means to re-initialize a CUDA library that still retains
pointers to unified memory regions on host and device. One
must choose either to free the host memory (thus sabotaging
any CUDA application that retains a pointer to the unified
memory region), or else to leave the host memory region intact
(thus sabotaging any application assumptions about unification
of host and device memory). Note that a fresh restart will
restore all host memory, but any unification of host with device
memory has already been lost.

The core issue is that the CUDA unified memory model was
developed for standard CUDA applications — and naturally
did not include extensions for transparent checkpointing. An
alternative workaround would have been, at restart time, to
overwrite the text and data memory segments of any CUDA
libraries with a fresh, uninitialized CUDA library (matching a
freshly booted GPU), and then to call cudaInit(). Unfor-
tunately, the CUDA library/driver appeared to have additional
state, which made this workaround infeasible.

B. Shadow Pages for the Support of UVM

Recall the use of a proxy process, as seen in Figure 3(b).
The core research challenge in this architecture is that UVM
dictates that pages are transparently shared between the GPU
hardware and the proxy process, but these shared UVM pages
are not visible to the application process.

The zero-copy memory of CUDA 4 implies that there are no
CUDA calls on which to interpose. In direct-mapped memory,
the device may read or write to the host mapped pinned
memory of the proxy process at any time. But the separate ap-
plication process remains unaware of modifications to memory
in the proxy process. Thus, an approach using CUDA proxies
is unable to support the newer and potentially more efficient
zero-copy memory for UVA. To overcome this situation, a
new, transparent checkpointing approach for CUDA’s zero-
copy memory is proposed, in which proxy and application
reflect a single application with two “personalities”.

The CUDA application process and the CUDA proxy pro-
cess invoke the same application binary but execute two differ-
ent state machines. The application process goes through three
different states: CUDA call, read from device-mapped UVM
memory, write to device-mapped UVM memory. Note that the
state transitions are not dictated by the CRUM framework, but
rather by the application logic. On the other hand, the CUDA
proxy process is simply a passive listener for requests from
the application process and executes the CUDA calls and the
memory reads and writes as dictated by the application.

Based on these observations, we introduce the concept of
“shadow UVM pages”. For every CUDA UVM allocation

request by the application, CRUM creates a corresponding
shadow UVM region in the context of the application process.
At the same time, the CUDA proxy process requests for a
“real” UVM region from the device driver. The two processes,
the application and the proxy, see two different views of the
memory and data at any given point.

Since there are no API calls to interpose on, this opens up
the requirement for tracking the changes to the application
process’s memory in order to keep the two sets of pages
in sync. CRUM relies on the use of user-space page-fault
tracking to accomplish this. There are currently two available
mechanisms for page-fault tracking in Linux: userfaultfd;
and segfault handler and page protection bits. While there are
certain performance benefits with the use of userfaultfd,
the current work uses segfault handler and page protection
bits to allow for evaluation on clusters employing older Linux
kernels.

The algorithm for synchronizing the data on shadow and
real UVM pages is described in Algorithm 1.

Algorithm 1 Shadow page synchronization algorithm

upon event Page Fault do
if addr ∈ AllShadowPages then

if isReadFault() then
ReadDataFromRealPage()

else
MarkPageAsDirty()

end if
end if

upon event CUDA call do
if hasDirtyPages then

SendDataToRealPages()
ClearDirtyPages()

end if
upon event CUDA Create UVM region do

uvmAddr ← CreateUvmRegionOnProxy()
reg ← CreateShadowPage(uvmAddr)
AllShadowPages ← AllShadowPages ∪ reg

When an application process requests for a new UVM
region, a new shadow UVM region is created in the process’s
memory (using the mmap system call). The shadow UVM
region is given read-write permissions initially, and all the
pages in the regions are marked as “dirty”.

When the application makes a CUDA call where the device
could potentially read or modify the UVM data (for example,
a CUDA kernel launch), the data from dirty pages is “flushed”
to the real UVM pages on the proxy process, the dirty flag is
cleared for the UVM region, and the read-write permissions
are removed (using the mprotect system call).

This allows CRUM to interpose on either a read or write
to unified memory. Standard Linux code for segfault handlers
allows CRUM to detect an attempt to read or to write, and to
distinguish the two cases. In the case of a read, PROT READ
permission is set for all of the memory in the application



process corresponding to unified memory. In the case of a
write, PROT WRITE permission is set for all of the memory
in the application process corresponding to unified memory.
(See Section III-B1 for further discussion.)

At a later time, when the application process tries to read
the results of the GPU computation back from the shadow
UVM regions, a read page fault is triggered; the permissions
of the shadow UVM region are changed to read-only, and the
results are read in from the corresponding real UVM region
on the proxy.

1) Page permissions on Linux: Note that write to shadow
UVM memory region requires PROT WRITE permission.
Unfortunately, on Linux, PROT WRITE permission implies
PROT READ permission also. Linux does not support write-
only permission, but rather read-write permission instead.

This has consequences for the three-state algorithm to
support unified memory in CRUM. We make the assumption
here that most applications will cycle through the three states
in order (possibly omitting the read-only or write-only phase).
Hence, a typical cycle would be invoked: CUDA-call/read-
unified-memory/write-unified-memory.

In fact, CRUM also supports overlapped execution of a
CUDA call with reading and writing unified memory. The
essential assumption is that read access must precede write
access and a read-write cycle cannot be followed with a second
read unless there is an intervening CUDA kernel. Normal
CUDA calls such as cudaMemcpy are allowed at all times.

As discussed earlier, unfortunately, Linux’s write-only per-
mission for memory actually grants read-write permission. It
is for this reason that a transition from write-unified-memory
directly to read-unified-memory cannot be detected efficiently.
Possible solutions are discussed at the end of this section.

This assumption has been found to hold in each of the real-
world applications that we have found for testing CRUM with
unified memory. Nevertheless, it is important to also build in
a (possibly slower) verified execution mode that will test an
application to see if it violates this assumed cycle of CUDA-
call/read-unified-memory/write-unified-memory.

There is more than one way to implement a verified execu-
tion mode.

One of the difficulties is that a Linux segfault handler
does not allow us to reset the page permission to allow
only the pending read or write, and then reset the permission
back to PROT NONE. Linux’s user-space page fault handling,
userfaultfd, introduced with Linux 4.3, can fix this, but
that introduces other technical difficulties. (For example, it
was only with Linux 4.11 that this was extended partially
to support fork and shared memory.) Another alternative is
to parse the pending read or write (load or store assembly
instruction), temporarily allow read-write permission to the
desired memory page, and then use the parsed information
to read or write the data between register and memory, and
finally to restore the previous memory permission. This might
be more efficient than user-space page faulting since it might
have fewer transitions to a kernel system call.

Linux kernel modification to support write-only permissions

for UVM shadow pages is another possibility.

C. Fast, Forked Checkpoints

UVM enables CUDA applications to use all of the host
and GPU device memory transparently. This can make check-
pointing, which is dominated by the time to write to the disk,
prohibitively expensive. So while one could employ copy-
on-write-based asynchronous checkpointing, UVM memory is
incompatible with shared memory and fork on Linux.

Fortunately, CRUM’s proxy-based architecture can be used
to address this challenge. Note that the device state and
the UVM memory regions are not directly a part of the
application process’s context, but rather they are associated
with the proxy process. This frees up the application process to
use forked checkpointing for copy-on-write-based associated
checkpointing for the application process.

Forked checkpointing allows CRUM to invoke a minimal
checkpointing delay in order to “drain the GPU device” of its
data, after which, a child process of each MPI process can
write to stable storage. This allows the system to overlap the
CUDA computation with storage of the checkpoint image in
stable storage.

D. Checkpoint-Restart Methodology and Integration with
Proxies

Finally, for completeness, we discuss how CRUM integrates
proxy concepts into the CUDA implementation requirements.
Proxies have also been used by previous authors (see Sec-
tion VI-d).

At checkpoint time, CRUM suspends the user application
threads, and “drains” the GPU kernel queue. It issues a device
synchronize call (cudaDeviceSynchronize) to ensure
that the kernels have finished execution and the memory state
is consistent. Then, for all the active CUDA-MALLOC and
CUDA-UVM memory regions, data is read in from the GPU
to the host. The data is first transferred from the GPU into
the proxy process’s memory, and then from the memory of
the proxy process into the memory of the user application
process. The user application process then disconnects from
the proxy process. This ensures that the problem reduces to the
trivial problem of checkpointing a single-process application.
Finally, the state of the process is saved to a checkpoint image
file on stable storage.

At the time of restart, CRUM starts a new process and
recreates the user application threads. Then, the memory
of the new process gets replaced by the saved state from
the checkpoint image file. CRUM, then, starts a new proxy
process, which starts a new GPU context. It recreates the
active CUDA-MALLOC and CUDA-UVM memory regions
by replaying the allocation calls. CUDA streams and events
are similarly handled. (See Section V for further discussion.)
Finally, CRUM transfers the data into the actual CUDA and
CUDA-UVM regions through the proxy process and resumes
the application threads.



IV. EXPERIMENTAL EVALUATION

The goal of this section is to present a detailed analysis of
the performance of CRUM. In particular, this section answers
the following questions:

Q1 What’s the overhead of running a CUDA (or a CUDA
UVM) application under CRUM?

Q2 Does CRUM provide the ability to checkpoint CUDA
(and CUDA UVM) applications?

Q3 Can CRUM improve a CUDA UVM based application’s
throughput by reducing the checkpointing overhead?

Q4 Is the approach scalable?

A. Setup

To answer the above questions, we first briefly describe our
experimental setup and methodology.

1) Hardware: The experiments were run on a local cluster
with 4 nodes. Each node is equipped with 4 NVIDIA PCIe-
attached Tesla P100 GPU devices, each with 16 GB of RAM.
The host machine is running a 16-core Intel Xeon E5-2698 v3
(2.30 GHz) processor with 256 GB of RAM. Each node runs
CentOS-7.3 with Linux kernel version 3.10.

2) Software: Each GPU runs NVIDIA CUDA version
8.0.44 with driver 396.26. Experiments use DMTCP [27] ver-
sion 3.0. We developed a CRUM-specific DMTCP plugin [28]
for checkpoint-restart of NVIDIA CUDA UVM applications.

The DMTCP CRUM plugin (referred to as the CRUM
plugin from here onwards) interposes on the CUDA calls made
by the application. The interposition code is generated in a
semi-automated way, where a user specifies the prototype of
a CUDA function, and whether the call needs to be logged.
This not only allows us to cover the extensive CUDA API, but
also allows for ease of maintainability and for future CUDA
extensions.

The plugin forwards the requests, over a SysV shared
memory region, to a proxy process running on the same
node. The forwarded request is then executed by the proxy
process, which then returns the results back to the appli-
cation. To improve the performance, we use well-studied
concepts from pipelining of requests, to allow the application
to send requests without blocking. Blocking requests, such
as, cudaDeviceSynchronize, result in a pipeline flush.
For data transfers (both for UVM shadow page data and for
cudaMalloc data) we use Linux’s Cross Memory Attach
(CMA) to allow for data transfers using a single copy opera-
tion.

3) Application Benchmarks: We use Rodinia 3.1 [29]
benchmarks for evaluating CRUM for CUDA applications.
Note that the Rodinia benchmarks do not use UVM, and can
be run even with CUDA 2.x. They are included here to show
comparability of the new approach with the older work from
2011 and earlier using CUDA 2.x [10], [12], [30].

We note that CheCUDA [10] does not work for modern
CUDA (i.e., CUDA version 4 and above) because it relies on
a single-process checkpoint-restart approach. CheCL [30] only
supports OpenCL and does not work with CUDA. We tried
compiling the CRCUDA [13] version available online [31],

but it failed to compile with CUDA version 8. It didn’t work
for the benchmarks used in our experiments, after applying
our compilation fixes.

To evaluate CRUM using UVM-managed memory alloca-
tion, we run a GPU-accelerated build of two DOE benchmarks:
a high-performance geometric multigrid proxy application
(HPGMG-FV [32]), and a test application using a production
linear system solver library (HYPRE [33]). For the HYPRE
library, we run the test driver for an unstructured matrix
interface using the AMG-PCG solver. For HPGMG-FV, we
evaluate two versions: the standard HPGMG-FV benchmark
with one grid (the master branch, as described in [34]), and
an AMR proxy modification with multiple AMR levels (the
amr proxy branch, as described in [21]).

We focus on HPGMG-FV and HYPRE because they are
scientific applications and libraries with potential importance
in future exascale computing [35], and they have publicly
available ports to UVM-enabled multi-GPU CUDA. HPGMG-
FV has also been used as a benchmark for ranking the speeds
of the top supercomputers [36].

To evaluate the relative performance of HPGMG-FV runs,
we quote its throughput in degrees-of-freedom per second —
the same metric used to rank supercomputer speeds [36]. Thus,
larger numbers indicate higher performance. To evaluate the
relative performance of HYPRE runs, we measure the wall
clock time taken by each program execution.

B. Runtime Overhead

While the ability to checkpoint is important for improving
the throughput of an application on a system with frequent
failures, a checkpointing system that imposes excessive run-
time overhead can render the framework ineffective, and in
the worst case, reduce the throughput. We, therefore, bench-
mark and analyze the sources of runtime overhead. For these
experiments, no checkpoint or restart was invoked during the
run of the application.

The results demonstrate that CRUM is able to run the
CUDA application with a worst case overhead of 12%, and
a 6% overhead on average. We note that this is a prototype
implementation and a production system could incorporate
many optimizations to further reduce the overhead.

TABLE I: Runtime parameters for Rodinia applications.

Application Configuration Parameter
LUD “-s 2048 -v”
Hotspot3D “512 8 1000 power 512x8 temp 512x8”
Gaussian “-s 8192”
LavaMD “-boxes1d 40”

Figure 4(a) shows the runtimes for four applications
(LUD, Hotspot3D, Gaussian, and LavaMD) from the Rodinia
benchmark suite with and without CRUM. The applications
mostly use the CUDA API’s from CUDA 2.x: cudaMalloc,
cudaMemcpy, and cudaLaunch. Table I shows the config-
uration parameters used for the experiments. We observe that
the runtime overhead varies from 1% (for LUD) to 3% (in the
case of LavaMD). The runtime overhead is dominated by the
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Fig. 4: Runtime overheads for different benchmarks under CRUM.

cost of data transfers from the application process to the proxy
process. In a different experiment, using Unix domain sockets
for data transfer, we observed overheads varying from 1.5%
to 16.5%. The use of CMA reduces the overhead significantly.

Figure 4(b) shows the runtime results for the HPGMG-
FV benchmark with increasing number of nodes and MPI
ranks. As noted in Section IV-A3, we use the HPGMG-FV
throughput metric DOF/s as a proxy for performance. We
note that the DOF/s reported by the application running under
CRUM are less than the native numbers by 6% to 12%. We
present a more in-depth analysis below.

In our experiments, we observed that a single MPI rank
of the HPGMG-FV benchmark runs about 9 million CUDA
kernels during its runtime of 3 minutes. This implies that
each CUDA kernel runs for approximately 20 microseconds
on average. Note that the cost of executing a cudaLaunch
call itself can be up to 5 microseconds. The program allocates
many CUDA UVM regions, sets up the data, and runs a
series of kernels to operate on the data. Each MPI rank then
exchanges the results with its neighbors. While the size of
the UVM regions vary from 12 KB to 128 KB, the frequent
reads and writes the application process, stresses the CRUM
framework in two dimensions: (a) frequent interrupts and data
transfer; and (b) frequent context switches and the need to
synchronize with proxy process (because of the many CUDA
calls that need to be executed).

While the use of CMA (cross-memory attach) reduces the
cost of data transfers, interestingly, we observed a lot of
variability in the cost of a single CMA operation for the same
data transfer size. The cost of a single page transfer varies
from 1 microsecond to 1 millisecond, a difference of three
orders of magnitude. We attribute this to two sources: (a) O/S
jitter; (b) the pre-fetching algorithm employed by the UVM
driver. In many cases, reading a UVM page is slowed down
because of a previous read on a large UVM region, spanning
several pages, because the driver gets busy pre-fetching the
data for the large UVM region.

To address the second source of overhead, we optimized
the CRUM implementation to: (a) use a lock-free, inter-
process synchronization mechanism over shared-memory; and
(b) pipeline non-blocking CUDA calls from the application. A

CUDA call, such has cudaLaunch, cudaMemsetAsync,
is pipelined and the application is allowed to move ahead in its
execution, while the proxy finishes servicing the request. At a
synchronization point, like cudaDeviceSynchronize, the
application must wait for a pipeline flush, i.e., for the pending
requests to be completed.

Figure 4(c) shows the runtimes for the HYPRE benchmark
for a different number of MPI ranks running on a varying num-
ber of nodes. The benchmark observes up to 6.6% overhead
when running under CRUM compared to native execution.

The HYPRE benchmark presents different checkpointing
challenges than HPGMG-FV. While the HYPRE benchmark
invokes only about 100 CUDA kernels per second (10 millisec-
onds on average per kernel) during its execution, it uses many
large UVM regions (up to 900 MB). Thus, the overhead is
dominated by the cost of data transfers between the application
process and the proxy.

In addition to CMA, CRUM employs a simple heuristic to
help reduce the data transfer overhead. For small shadow UVM
regions, it reads in all of the data from the real UVM pages on
the proxy. However, for a read fault on a large shadow UVM
region, it starts off by only reading the data for just one page
containing the faulting address. On subsequent read faults on
the same region, while in the read phase (see Section III), we
exponentially increase (by powers of 2) the number of pages
read in from the real UVM region on the proxy. This heuristic
relies on the spatial and temporal locality of accesses. While
there will be pathological cases where an application does
“seemingly” random reads from different UVM regions, we
have found this assumption to be valid in the two applications
we tested.

C. Checkpointing CUDA Applications: Rodinia and MPI

Next, we evaluate the ability of CRUM to provide fault
tolerance for CUDA and CUDA UVM applications using
checkpoint-restart.

Figure 5(a) shows the checkpoint times, restart times, and
the checkpoint image sizes for the four applications from
the Rodinia benchmark suite. The checkpointing overhead is
dependent on the time to transfer the data from the device
memory to the host memory, then transferring it from the
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Fig. 5: Checkpoint-restart times and checkpoint image sizes for different benchmarks under CRUM.

proxy process to the application process using CMA, and then
finally writing to the disk. We observe that the time to write
dominates the checkpointing time.

Figure 5(b) shows the checkpoint times, restart times, and
the checkpoint image sizes for HPGMG. The results are shown
with increasing number of MPI ranks (and the number the
nodes). We observe that as the total amount of checkpointing
data increases from 904 MB (8× 113 MB) to 3.6 GB (32×
113 MB), the checkpoint time increases from 3 seconds to 8
seconds. We attribute the small checkpoint times to the buffer
cache on Linux. We observed that forcing the files to be synced
(by using an explicit call to fsync increased the checkpoint
times by up to 3 times.

The results for HYPRE are shown in Figure 5(c). The
application divides a fixed amount of data (approx. 28 GB
in total) equally among its ranks. So, we observe that the
checkpoint image size reduces by almost half every time we
double the number of ranks. This helps improve the checkpoint
cost especially with smaller process sizes, as the Linux buffer
caches the writes, and the checkpoint times reduce from 31
seconds (for 8 ranks on 1 node) to 8 seconds (for 32 ranks
over 4 nodes).

D. Reducing the Checkpointing Overhead: A Synthetic Bench-
mark for a Single GPU

To showcase the benefits of using CRUM to reduce check-
pointing overhead for CUDA UVM applications, we develop a
CUDA UVM synthetic benchmark. The synthetic benchmark
allocates two vectors of 232 4-byte floating point numbers
(32 GB in total) and computes the dot product of the two
vectors. The floating point numbers are generated at random.
Note that the total memory requirements are double of what is
available on the GPU device (16 GB). However, UVM allows
an application to use more than the available memory on the
GPU device. The host memory, in this case, acts as “swap
storage” for the device and the pages are migrated to the device
or to the host on demand.

Table II shows the checkpoint times for three different
cases: (a) using a naı̈ve checkpointing approach; (b) using
three different compression schemes, Gzip, Parallel Gzip, and
LZ4, before writing to the disk; and (c) using CRUM’s forked

TABLE II: Checkpoint times using different strategies for the
synthetic benchmark.

Strategy Ckpt Time Ckpt Size Data Migration
Time

Naı̈ve 45 s 33 GB (100% random) 4 s
Gzip 1296 s 29 GB (100% random) 4 s
Parallel gzip 86 s 29 GB (100% random) 4 s
LZ4 62 s 33 GB (100% random) 4 s
Forked Ckpting 4.1 s 32 GB (100% random) 4 s
Gzip 749 s 15 GB (50% random) 4 s
Parallel gzip 56 s 15 GB (50% random) 4 s
LZ4 45 s 17 GB (50% random) 4 s

checkpointing approach. The first two approaches, naı̈ve and
compression, use CRUM’s CUDA UVM checkpointing frame-
work. The third approach adds the forked checkpointing opti-
mization to the base CUDA UVM checkpointing framework.
The three compression schemes use Gzip’s lowest compression
level (-1 flag). While parallel Gzip uses the same compression
algorithm as Gzip, it launches as many threads as the number
of cores on a node to compress input data.

We observe that the forked checkpointing approach out-
performs the other two approaches by up to three orders
of magnitude. Since the program uses random floating point
numbers, compression is ineffective at reducing the size of
the checkpointing data (Table II). We note that the time taken
by the compression algorithm is also correlated with the ran-
domness of data. As an experiment, we introduced redundancy
in the two input vectors to improve the “compressibility”. Of
the 232 floating point elements in a vector, only half (216)
of the elements were generated randomly and the rest were
assigned the same floating point number. This improves the
compression time and reduces the checkpoint time to 749
seconds and the checkpoint image size is reduced to 15 GB
by using the Gzip-based strategy.

Note that parallel Gzip may not be a practical option in
many HPC scenarios, where an application often uses one MPI
rank per core on a node. On the other hand, LZ4 provides a
computationally fast compression algorithm at the cost of a
lower compression ratio.



E. Reducing the Checkpoint Overhead: Real-world MPI Ap-
plications

Finally, we present the results from using CRUM with the
forked checkpointing optimization for the real-world CUDA
UVM application benchmarks. The results reported here cor-
respond to the largest scale of 4 CPU nodes, with 16 GPU
devices, running 8 MPI ranks per node (32 processes in total).

TABLE III: Checkpoint times using different strategies for
real-world CUDA UVM applications. The numbers reported
corresponds to running 32 MPI ranks over 4 nodes. The
checkpoint size reported is for each MPI rank. The checkpoint
times are normalized to the time for the naı̈ve checkpointing
approach (1x).

App. Strategy Ckpt Time Ckpt Size
HPGMG-FV Gzip 0.78x 14 MB
HPGMG-FV Parallel gzip 0.60x 14 MB
HPGMG-FV LZ4 0.30x 16 MB
HPGMG-FV Forked ckpting 0.025x 113 MB
HYPRE Gzip 2x 176 MB
HYPRE Parallel gzip 1x 176 MB
HYPRE LZ4 1x 296 MB
HYPRE Forked ckpting 0.032x 868 MB

Table III shows the results for checkpointing time (and
checkpoint image sizes) normalized to the checkpointing time
using the naı̈ve checkpointing approach (as shown in Fig-
ures 5(b) and 5(c)). The results are shown for HPGMG-FV
and HYPRE.

We observe trends similar to the synthetic benchmark case.
While in the naı̈ve checkpointing approach, the checkpointing
overhead is dominated by the cost of I/O, i.e., writing the
data to the disk, under forked checkpointing, the overhead
is dominated by the cost of in-memory data transfers: from
the GPU to the proxy process, and from the proxy process’s
address space to the application process’s address space. Fur-
ther, the cost of quiescing the application process, quiescing
the network (for MPI), and “draining” and saving the in-flight
network messages is 0.01% of the total cost.

However, unlike the synthetic benchmark, using in-memory
compression to reduce the size of data for writing is better in
this case for both HPGMG and HYPRE. This indicates that
the compression algorithm is able to efficiently reduce the size
of the data, which helps lower the I/O overhead. Note that this
is still worse than using forked checkpointing by an order of
magnitude.

V. DISCUSSION

Driver support for restart: In order to restart a computa-
tion, CRUM must re-allocate memory in the same locations
as during the original execution—otherwise the correctness of
pointer-based code cannot be guaranteed during re-execution.
The current CRUM prototype relies on deterministic CUDA
memory allocation, which we verify to work with the CUDA
driver libraries via experimentation (for both explicit device
memory and UVM-managed memory allocation). The as-
sumption of deterministic memory re-allocation is shared by
previous GPU checkpointing efforts [12].

Memory Overhead: In a CUDA program with large data
resident on the host, the memory overhead due to an addi-
tional proxy process could be a concern. In the special case
of asynchronous checkpointing, the overhead could be even
higher, although copy-on-write does prevent it from going too
high. This could be ameliorated by future support for shared
memory UVM pages between application and a proxy running
CUDA.

Advanced CUDA language features: Dynamic parallelism
allows CUDA kernels to recurse and launch nested work; it
is supported by CRUM without change. Device-side memory
allocation allows kernel code to allocate and de-allocate mem-
ory. It is partially supported by CRUM, with one important
distinction—no live device-side allocations are allowed at a
checkpoint time. Thus, device-side memory allocations are to
be freed before the system is considered quiesced and ready
for a checkpoint. We do not anticipate this constraint to be
particularly difficult to satisfy, since device-side mallocs tend
to be used to store temporary thread-local state within a single
kernel, whereas host-side CUDA memory allocation (which is
supported by CRUM without restriction) is more often used
for persistent storage.

Using mprotect: Currently, in a Linux kernel,
PROT_WRITE protection for a memory region implies
read-write memory permission rather than write-only memory
permission. Because of this, some compromises were needed
in the implementation. This work has demonstrated the
practical advantages of a write-only memory permission for
ordinary Linux virtual memory. It is hoped that in the future,
the kernel developers at NVIDIA will be encouraged to
support write-only memory permission for this purpose.

Another issue with an mprotect-based approach is that when
kernel-space code page faults on a read/write protected page,
it returns an error code to the user, EFAULT, rather than a
segfault. This forces the implementation to be extended to
handle such failures; the implementation cannot rely solely on
a segfault handler [37]–[40].

Other APIs and Languages: This work provides
checkpoint-restart capabilities for programs written in C/C++
with the CUDA runtime library. In our experience, the CRUM
prototype should support the majority of GPU-accelerated
HPC workloads; however, there are other APIs to that may
be valuable for some users. Given the current framework of
code auto-generation for CRUM, we believe that it will be
straightforward to extend the implementation to support other
APIs, such as OpenACC. The ability of CRUM to support
UVM-managed memory would be especially useful for Ope-
nACC programs, as PGI’s OpenACC compiler provides native
and transparent support for high-performance UVM-managed
programs, making UVM-accelerated OpenACC programs a
low-design-effort route to performant GPU acceleration [41].

Future Versions of CUDA: Just as prior checkpointing
methods for GPUs were unable to cope with versions of
CUDA since CUDA 4 (released in 2011), it is likely that
CRUM will need to be updated to support language fea-
tures after CUDA 8. One such development is Heterogeneous



Memory Management (HMM) [42], which is a kernel feature
introduced in Linux 4.14 that removes the need for explicit cu-
daMallocManaged calls (or use of the managed keyword)
to denote UVM-managed data. Rather, with HMM the GPU is
able to access any program state, including the entire stack and
heap. Because the current CRUM prototype relies on wrapping
cudaMallocManaged calls, it will need to be redesigned to
support HMM.

VI. RELATED WORK

a) Use of proxy process: Zandy et al. [43] demonstrated
the use of a “shadow” process for checkpointing currently
running application processes that were not originally linked
with a checkpointing library. This allows the application
process to continue to access its kernel resources, such as open
files, via RPC calls with the shadow process.

Kharbutli et al. [44] use a proxy process for isolation of
heap accesses by a process and for containment of attacks to
the heap.

b) GPU virtualization: A large number of previous HPC
studies have focused on virtualizing the access to the GPU [8]–
[10], [12], [13], [30], [45], [46]. Here we describe some
of those studies, with an emphasis on the use for GPU
checkpointing and GPU-as-a-Service in the cloud and HPC
environments.

Lagar-Cavilla et al. [45], Shi et al. [8], Gupta et al. [9], and
Giunta et al. [46] focus on providing access to the GPU for
processes running in a virtual machine (VM), as an alternative
to PCI pass-through. The access is provided by forwarding
GPU calls to a proxy process that runs outside the VM and
has direct access to the GPU.

c) GPU-as-a-Service: Two other efforts, DS-CUDA [47]
and rCUDA [48], have focused on providing access to a remote
GPU for the purposes of GPU-as-a-Service [49]–[55]. They
also rely on a proxy process. Using the proxy process is similar
to the one described in this work; however, the focus is on
efficient remote access by using the InfiniBand’s RDMA API.
To the best of our knowledge, none of the previous studies
solve the problem of efficient checkpointing of modern CUDA
applications that use UVM. We note that the optimizations
described in these works can be used in conjunction with
CRUM for providing efficient access to remote GPUs.

d) GPU Checkpointing: Early work on virtualizing or
checkpointing GPUs was based on CUDA 2.2 and earlier [8]–
[12]. Those approaches stopped working with CUDA 4 (intro-
duced in 2011), which introduced Unified Virtual Addressing
(UVA). Presumably, it is the introduction of UVA that made
it impossible to re-initialize CUDA 4.

In 2016, CRCUDA [13], employed a proxy-based approach,
similar to the 2011 approach of CheCL [30] that targeted
OpenCL [56] (as opposed to CUDA) for GPUs. OpenCL does
not support unified memory, and so CheCL and CRCUDA do
not support NVIDIA’s unified memory [23] targeted here.

VOCL-FT [57] aims to provide resilience against soft er-
rors. VOCL-FT leverages the OpenCL programming model to
reduce the amount of data movement: both to/from the device

from/to the host, and to/from the disk. This allows them to do
fast checkpointing and recovery.

HiAL-Ckpt [58], HeteroCheckpoint [59], and cudaCR [60]
use application-specific approaches for providing GPU check-
pointing.

None of the approaches described above work for CUDA
UVM. CRUM focuses on providing efficient runtime and
checkpointing support for CUDA and CUDA-UVM based
programs. We note that the techniques described in above
approaches are complementary to CRUM and can be used to
further optimize the runtime and checkpointing overheads.

VII. CONCLUSION

This paper introduced CRUM, a novel framework for
checkpoint-restart for CUDA’s unified memory. The frame-
work employs a proxy-based architecture along with a novel
shadow page synchronization mechanism to efficiently run
and checkpoint CUDA UVM applications. Furthermore, the
architecture enables fast, copy-on-write-based, asynchronous
checkpointing for large-memory CUDA UVM applications.
Evaluation results with a prototype implementation show that
average runtime overhead imposed is less than 6%, while
improving the checkpointing overhead by up to 40 times.
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