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Abstract

Using the locally compact abelian group T' x 7, we assign a meromorphic function to
each ideal triangulation of a 3-manifold with torus boundary components. The function
is invariant under all 2-3 Pachner moves, and thus is a topological invariant of the
underlying manifold. If the ideal triangulation has a strict angle structure, our
meromorphic function can be expanded into a Laurent power series whose
coefficients are formal power series in g with integer coefficients that coincide with the
3D index of (Dimofte et al. in Adv Theor Math Phys 17(5):975-1076, 2013). Our
meromorphic function can be computed explicitly from the matrix of the gluing
equations of a triangulation, and we illustrate this with several examples.
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1 Introduction

1.1 The 3D index of Dimofte-Gaiotto-Gukov

In a recent breakthrough in mathematical physics, the physicists Dimofte, Gaiotto and
Gukov [8,9] introduced the 3D index, a powerful new invariant of an ideal triangulation 7°
of a compact orientable 3-manifold M with non-empty boundary consisting of tori. The
3D index was motivated by the study of the low energy limit of a famous 6-dimensional
(2, 0) superconformal field theory, and seems to contain a great deal of information about
the geometry and topology of the ambient manifold. For suitable ideal triangulations, the
3D index is a collection of formal Laurent power series in a variable g, parametrized by a
choice of peripheral homology class, i.e., an element of H;(dM, Z).

Physics predicts that the 3D index is independent of the triangulation 7 and that it
is a topological invariant of the ambient manifold. However, there is a subtlety: The
3D index itself (which is a sum over some g-series over a lattice) is only defined for
suitable triangulations, and it is invariant under 2—3 moves of such triangulations. It is
not known whether suitable triangulations are connected under 2-3 moves, and it is
known that some 3-manifolds (for instance, the unknot) have no suitable triangulation.
It was shown in [10,12] that a triangulation is suitable if and only if it is 1-efficient, i.e.,
has no normal surfaces which are topologically 2-spheres or tori. Thus, the connected
sum of two nontrivial knots, or the Whitehead double of a nontrivial knot has no 1-
efficient triangulations. With some additional work, one can extract from the 3D index a
topological invariant of hyperbolic 3-manifolds [12].

This partial success in constructing a topological invariant suggests the existence of
an invariant of ideal triangulations unchanged under all 2—3 Pachner moves. The con-
struction of such an invariant is the goal of our paper. Indeed, to any ideal triangulation,
we associate an invariant which is a meromorphic function of the peripheral variables,
and for triangulations with strict angle structures, the coefficients of its expansion into
Laurent series coincides with the 3D index of [8]. Our meromorphic function is an exam-
ple of a topological invariant associated with the self-dual locally compact abelian group
(abbreviated LCA group) T x Z. A more detailed formulation of our results follows.

In a sense, our paper does the opposite from that of [13]. In the latter paper, we expressed
state integral invariants (which are analytic functions in a cut plane) in terms of g-series,
whereas in the present paper we assemble g-series into meromorphic state-integral invari-
ants. Our work illustrates the principle that some state integrals can be formulated in terms
of g-series and vice versa.

1.2 Our results

Fix an ideal triangulation 7 of an oriented 3-manifold M whose boundary consists of r
tori, and choose peripheral curves that form a basis of H;(dM, Z). To simplify notation,
we will present our results only in the case when M has a single torus boundary though
our statements and proofs remain valid in the general case.

After a choice of a meridian and longitude, we can identify the complex torus Ty =
H(dM, C*) with (C*)? where the latter is given by the coordinates (ew e:.). Throughout
the paper, ¢ will denote a complex number inside the unit disk: |¢| < 1. When g = —e”
with Re(k) < 0 and z € C, we define (—g)* = e? . Forr, s € QQ, we define the associated

q-rays of the complex torus by
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s = {(epen) € (C | e € g™}, (1)

where N = Z is the set of nonnegative integers. A shifted g-ray is a subset of the
complex torus of the form eg’ %, for some ¢t € Q and ¢ = +1.

Theorem 1.1 With the above assumptions, there exists a meromorphic function
I7(q): (C*)? 3 (e €2) = IT.6,0,(q) € C U {o0)
with the following properties:

(a) Ir(q) is invariant under 2—3 Pachner moves.

(b) I7(q) is given by a balanced state integral depending only on the Neumann—Zagier
matrices of the gluing equations of T.

(c) The singularities of I7(q) are contained in the union of finitely many shifted q-rays.

Theorem 1.2 When T has a strict angle structure, we have a Laurent series expansion

It @)=Y elelrime)q”) (2)
(m,e)ez?
convergent on the unit torus |e,| = |ex| = 1, where I7(m, e) is the 3D index of [9].

Fix a 3-manifold M as above and consider the set S of all ideal triangulations of M
that admit a strict angle structure.

Corollary 1.3 Although it is not known yet if Sy is connected or not by 2—3 Pachner moves,
the 3D index of [9] is constant on Syy.

1.3 Discussion

In a series of papers [2—4,15], topological invariants of (ideally triangulated) 3-manifolds
have been constructed from certain self-dual LCA groups equipped with quantum dilog-
arithm functions. The main idea of those constructions is the following. Fixing a self-dual
LCA group with a Gaussian exponential and a quantum dilogarithm function, one assigns
a state-integral invariant to an ideal triangulation decorated by a pre-angle structure (in
the cited papers this is called shape structure) that is a choice of a strict angle structure
within each ideal tetrahedron, but the angles do not have to add up to 27 around the
edges of the ideal triangulation. The resulting state integral is often the germ of a mero-
morphic function on the (affine vector) space of real-valued pre-angle structures. This
affine space has an (affine vector) subspace of complex-valued angle structures (the pre-
angle structures that add up to 27 around each geometric edge of the triangulation). The
above meromorphic function is either infinity or restricts to a meromorphic function on
the space of complex-valued angle structures. When the latter happens, the state integral
depends only on the peripheral angle monodromy. This way, we obtain an invariant of
ideal triangulations which depends on the peripheral angle monodromy.

The above construction is general and, in particular, it applies to the invariants con-
structed in [2—4] and [17]. Our goal is to give a self-contained presentation in the case of
the self-dual LCA group T x Z with a quantum dilogarithm first found by Woronowicz
in [21] and to relate this invariant to the 3D index of Dimofte—Gaiotto—Gukov [8].
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2 Building blocks

2.1 The tetrahedral weight

In this section, we define the tetrahedral weight which is the building block of our state
integral. We give a self-contained treatment of the symmetries and identities that it satis-
fies.

Below, we will often consider expansions of meromorphic functions defined on open
annuli or punctured disks, examples of which are given in Egs. (20), (23), (24). These
Laurent expansions (not to be confused with the formal Laurent series which involve
only finitely many negative powers and arbitrarily many positive powers) are well known
in complex analysis and their existence, convergence and manipulation follows from
Cauchy’s theorem. A detailed discussion of this can be found, for example, in [1].

As a warm up, recall the Pochhammer symbol

m—1
® @)= [[(1—q'%), meNU{oo), (3)
i=0
where N := Zx( and we always assume that |g| < 1. The next lemma summarizes the
well-known properties of the Pochhammer symbol (x; g) .

Lemma 2.1 The Pochhammer symbol (x; q)so has the following properties.

(a) It is an entire function of x with simple zeros x € g~ ~.
(b) It satisfies the q-difference equation

@5 @)oo = (1 — %)(g%; 9) oo (4)

(c) It has convergent power series expansions

n

1 > %
= ) |x| < 1) (53)
(% @)oo HXZ(:) (45 9),
o Lum—1) n
q? X
Qe =) (-1)'———, VxeC. (5b)
Poc ,,Z:(:) (@ 9)s

For the proof of part (c), see for instance [22, Prop. 2].
Consider the functin

o (59(008)(015).
Gy(2) = ?ZZ;Q): T -9 -g1-q%)... ©

The next lemma summarizes its properties.

Lemma 2.2 The function G4(z) defined in (6) has the following properties.

(@) It is a meromorphic function of z € C* := C \ {0} with simple zeros and poles in
—q""N and q=N, respectively, and with essential singularities at z = 0 and z = <.
(b) It satisfies the q-difference equation

Gy(q2) = (1 — 2)(1 + 2z 1)Gy(2) (7)
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and the involution equation

1
Gylz™l)

Gy(—qz) = (8)

(c) It has a convergent Laurent series expansion in the punctured unit disk 0 < |z| < 1:

Gole) = > J(m)(@)", 9)
nez
where
s
J(n)(q) := k_(Z_;1)+ m: (1)1 := max{n, 0}, (10)

is a well-defined element of Z[[q]], analytic in the disk |q| < 1.

Parts (a) and (b) follow easily from the product expansion of the Pochhammer symbol,
and part (c) follows from (5a)—(5b).
The tetrahedral weight is a function ¥°(z, w) defined by:

V02 w) = c(q) G4(—q2)Gy(w™ ) Gy(wz ™), (11)

where

N2
cq) = G

= m (12)
The properties of this function are summarized in the following lemma.
Lemma 2.3 The function ¥°(z, w) defined in (11) has the following properties.
(a) It is a meromorphic function of (z, w) € (C*)? with zeros in
zeg™, or wle—¢g""N, or z7lwe g™ (13)
and poles in
ze—q "N, or weq®, or wwleq™N (14)
(b) It satisfies the q-difference equations
w gz w) — 0 w) —q 20 w) =0, (15a)
wir®(gz w) — (& w) — gz’ w) = 0. (15b)
(c) It satisfies the 7./2 and 7./3-invariance equations
voew) =y(—q w—g '), (16a)

Vo w) =y (g 'z tw, —g ) = v~ twhzw ), (16b)
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(d) In the domain
1< |wl <lel <lgI7h 17)

we have the absolutely convergent expansion

Vo w) =clg) Y zw" Yo M k)@) (ka)(q) (ks)(q),

emeZ kl,kz,kgez
ki—ks=e; ks—ko=m

(18)
where the interior sum is a well-defined element of Z[[q)], analytic in the disk |q| < 1.

These properties follow from the definition of ¥° and the properties of Gy listed in
Lemma 2.2.

2.2 The quantum dilogarithm

In this subsection, we identify the tetrahedral weight function °(z, w) with (the reciprocal
of) the quantum dilogarithm function ¥ (z, m) on the self-dual LCA group T x Z, given
by [15, Eqn.97]

(=4 /2 4%
(—q'72;4%) o

V(z,m) = (19)
In the context of quantum groups, this function first appeared in [21]. In Appendix A, we
explain how formula (19) fits the general definition of a quantum dilogarithm over the
LCA group T x Z.

Lemma 2.1 and the above definition imply the following properties of the function

Yz w).

Lemma 2.4 The function  (z, m) defined in (19) has the following properties.

(a) It is a meromorphic function of z with simple poles and zeros at z € —q~1~I"—2N

and z € —gi+m+2N

, respectively.
(b) It is analytic in the annulus 0 < |z| < |q|~ "I (which always includes the unit circle

|z| = 1) where it has an absolutely convergent Laurent series expansion

I/I(Z, m) = Z IA(m: 3)(61)26; (20)
ecZ
where
1%(m, e)(q) = (—=q)°Ia(m €)(q”) (21)

is related to the tetrahedron index I of [8] given by

i q%n(n-l—l)—(n-i—%e)m )
Ir(m, e)(q) = (=1" € Zl[lq2]] (22)
n—(—e)4 (Dn(@n+e

and (e)+ = max{0, e} and (q)n := (¢;q),, = [ 1111 — ¢").



Garoufalidis and Kashaev Res Math Sci (2019)6:8 Page70of34 8

The next theorem connects the tetrahedral weight function ¥°(z w) with the above
function vy (z, m).

Theorem 2.5 (a) In the domain (17), we have the identity

Vo w) =Y Y mw", (23)

meZ

where the sum is absolutely convergent.
(b) Inthe domain (17), we have an absolutely convergent double Laurent series expansion

Vo w)= Y I%(me)g)zw". (24)

emeZ

Proof We let RHS denote the sum in the right-hand side of Eq. (23). RHS is absolutely
convergent in the domain (17) and it can be explicitly calculated by using Ramanujan’s
1¥1-summation formula. The detailed computation appears in [15, Eqn. (98)], and the
result reads

(59 (250 [Ogewd)  O(qw?/z)
M= ), s\ 6@ e ) )
where
0,0) =Y qF 2 = (% 4P, (~awd?), (~a/xq?), (26)

keZ

is the Jacobi theta function, and the second equality in (26) is the Jacobi triple product
identity. By using Lemma 2.6 (see below) and the Jacobi triple product identity, we can
further simplify the right-hand side of (25), thus getting

rus — @ D2 (2759)  (—qWs @)oo (—a2/W; @) oy
(@%4%) o, (42 9) 0o (W 59) o, (/2 0)
= c(q) Gg(—q2)Gg(w ™ 1)Gy(wz 1)
=y %z w).

This concludes the proof of the part (a). Part (b) follows from (23) combined with (20). O

Lemma 2.6 For any choice of the square root p := /q, we have the identity

O4(zw™?) +w9q(qw2/z) _ @D by (ow/2)6p (W/p)
Qq(z) eq(q/z) (qz; qz)io 919 (z/p)

Proof Denoting the left-hand side of (27) as f(z~1, w), we have
S w) = h(u, w)/g(u),
where

g(u) == 04(u)6,(qu), h(u, w) = Gq(qu)éq(uw2) + weq(u)éq(quwz).
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First, we rewrite g(u) as follows:
2
ew) = (54, (~awd®) o, (~d*wa?), (—a/w:4%) , (1w q%)
2 92 (q2; qz)io
= (0%4") o, (—qu @)oo (—1/U9) 0y = ~——26,(pu). (28)
(4 9) o
Then, we transform /(u/w, w) as follows:

u
I (_7 W) _ Z GEHE UK (g5 4 glw)
v kleZ

2_ 2 _ _
— Z qk 2kl+21 ukWZI k(qk l—I—qlw), (29)
klez

where in the second equality we have shifted the summation variable k — k — [. Next, we
write out separately the sum over even and odd k:

u 2 AV —
I (_) W) _ Z gHeH2=0? 2k 212k
w
klez

« <q2k—l +qlw+q4k+1—21uw—1(q2k+1—l +qzw)>

_ Z g2k 2y 2 <q—l+qlw+q2k+1—2luw—1(ql—l+qlw)), (30)
kleZ

where, this time, in the second equality we have shifted the summation variable / — [+ k.
Now, we can absorb both summations by using the definition of the 6-function:

h(=w) = 0(qu?) (62(q 7 w?) + wop(qw)
+qub, (g%u?) (qw719q2 (g 3w?) + 6,2 (qflwz)). (31)

Finally, by using the functional equation

Qq(qﬂx) = q*lzx*ZQq(x), forall [€eZ, (32)
with g — qz, x = w? and [ = —1 in the second term, we arrive at the following factorized
formula

h (%, w) = (qu (quz) + qub, (q3u2)) (qu (qilwz) + wh,» (qwz)) = s(qu)s(w), (33)
where

s(w) = 0,0(q " 'w?) + whp(qw?) = Zq2k2w2k (qik + qkw)

keZ
2 _ 2_ 2_9f_
— Z PR (p 2k 4 pzkw> — Z <p(2/<) 2k 2k g (k417 =2k 1W2k+1>
kez kez
2_
=) P W = 6,w/p). (34)
keZ
Thus, we have obtained the equality
h(u, w) = 0,(puw)6,(w/p), (35)

and formula (27) follows straightforwardly. ]
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In summary, the tetrahedral weight 1/°(z, w) is given by two sum formulas and a product
formula, and the last of which implies the meromorphicity of the function and the location

of its zeros and poles:

Voaw) =) ¥izmw” (36)
meZ
= Z 12 (m, e)(q)z°w™ (37)
emeZ
= c(q) G4(—q2)Gy(w )G (wz™1). (38)

For completeness, the next lemma summarizes the g-difference equations and the sym-

metries of ¥ (z, w).
Lemma 2.7 The function v (z, m) defined in (19) satisfies the following q-difference equa-

tions

Yigz m+1) — Y(z, m) — q_m_lz_lw(z, m) =0, (39a)
Vige m—1) — ¥z m) — g "Mz (z, m) = 0. (39b)

The above equations characterize the meromorphic function v (z, m) up to multiplication
by a function of q, analytic in the unit disk |g| < 1.

These follow from the definition of ¥ (z, w) and Egs. (4), (23) and (15a)—(15b). Alterna-
tively, they can be derived from Eq. (20) and the symmetries of the tetrahedron index Ia
given in [10, Thm.3.2].

For completeness, the next lemma summarizes the symmetries of I* (m, e).

Lemma 2.8 For all integers m and e, we have the 7./2 and 7./3-invariance equations:

18(m, e)(q) = (=)™ I%(—e, —m)(q), (40a)
1%(m, e)(q) = (—q)°I*(—e — m, m)(q) = (—q)*T"I* (e, —e — m)(q). (40b)

As a consequence, we have another 7./2-invariance equation
[A(me) = I*(—m, m +e). (41)

These follow from Egs. (24) and (16a)—(16b). Additionally, they follow from Egs. (21) and
the symmetries of the tetrahedron index Ia (m, e) given in [10, Thm.3.2].

2.3 The pentagon identity and the Pachner 2-3 move
Let us recall the pentagon identity for the tetrahedron index /x from [10, Thm.3.7].

In(my—ex, e)Ia(my—ey, e2) = Y q®In(my, e1+e3)la(ms, e2+e3)a (1 +ms, e3)
e3€Z

(42)
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for all integers m11, mo, €1, e2. Replacing g by q2 in (42) and using Eq. (21), it follows that
the tetrahedron index I satisfies the equation
1% (my — e, €)™ (ma — ey, €9)
= Y (=) ?I*(m, e1 + e3)[* (o, € + €3)[* (1 + my, €3). (43)
e3€Z
To remove the factor (—g)® in the above equation, we apply Eq. (40b) to the two terms
of the left-hand side and to the last term in the right-hand side, and obtain

I%(e1, —e1 + ez — m1)I*(ez, €1 — €3 — 1)
= Y I%(my, e1 + e3)[*(my, €2 + e3)I " (e3, —e3 — my — my).
e3€Z

Setting

X = ey, y=—€1—|—62—}’l’11, u = ey, V=e —ey—my ez = —2
we rewrite the latter equality as

T2 )2 (u,v) = Z]A(M —x—px—2)I(—zz+v+ NP (—u—v+xu—2).

Z€Z

Applying Eq. (41) to both functions on the left-hand side of the above equation, and after
a linear change in variables we obtain

IA(x,y)IA(u, V) = Z[A(—u -y, —x—2z)

Z€Z
<IN~z z4+x+y+u+v)I(—x —v, —u —2).
Applying Eq. (41) to the first and third terms of the right-hand side of the above equation,

we obtain

IA(x,y)IA(u,V) = Z[A(u + 9, —x—y—u—z)IA(—z,z—i—x +y+u+v)

ZEZ
<I*x+v,—x—u—v—2).
Finally, changing the summation variable z — z —x — y — u — v, we obtain equation

IA(x,y)IA(u, V) = ZIA(u+y,v—z)IA(x+y+u+v—z,z)IA(x+V,y—z), (44)

zZ€Z

which coincides with a special (constant) form of the beta pentagon equation [16, Eqn.(2)]
for the LCA group Z. Using the fact that the beta pentagon relation is stable under Fourier
transformation, see [16, Sec.2], we also conclude that the function

Pl y) =y &y INmn) =y 1/y) (45)

m,nez

satisfies the constant beta pentagon equation for the circle LCA group T ={z € C| |z| =
1}

d
805 )000) = [ B9/ aun 2 e /20 (46)

Equivalently, the function ¥°(z, w), thought of as a distribution on T?, satisfies the integral
identity

envtwn = [0 (40) 00 (S ) v (5Y) o )
T y z yv v z/ 2miz
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1

/T\
B a Y
Lo
Y B
3 2
o

Fig. 1 The angles of an ideal tetrahedron with ordered vertices

where all variables belong to the unit circle T. The distributional interpretation of
¥%(z, w) means that its restriction to T2 should be obtained by approaching T? from
the domain (17), which is the domain of absolute convergence of the double series (24),

ie.,
¥z w) = v oz w) = Jim Vo, aw), lzl=lw =1, (48)
a>0,y>0a+y<m
where
vS, @w) = v° (-0~ w—g) ) (492)

= c(q) Gglz(—q) %) Gy(w ™ (~q)%) Gz w(—q)F), (49b)

where o 4+ 8+ y = m. The positive parameters «, 8, y satisfying the conditiona+g+y =
7 (which we call pre-angle structure) can be identified with the dihedral angles of a
positively oriented ideal hyperbolic tetrahedron. These angles are placed on the edges of
a tetrahedron with ordered vertices according to Fig. 1.

Moreover, the constant distributional beta pentagon identity (47) is a constant limit of
the analytically continued non-constant identity

0 0 _ 0 u vy o xuz 0 x y\ dz
Vas,ys 86 9) Vay,y, ) = /T]’[/“O’VO (;, ;) Ve, <y_V) Z) Ve (;, ;) 2Tz’
(50)

where («;, B;, v;) are pre-angle structures on five tetrahedra 7; for i = 0, ..., 4 which are
compatible, i.e., satisfy the linear relations

ar=ap+oy az=ar+as, Yi=Yo+os Ys=ao+vs Y2=py1+y3 (51)

Notice that a compatible angle structure satisfies the balancing condition for the interior
edge 13: Bo+ 2+ B4 = 27. Such an identity for Faddeev’s quantum dilogarithm appeared
in [3, Prop.1].

3 The state integral

3.1 Definition of the state integral

Fix an ideal triangulation 7 of an oriented 3-manifold with N tetrahedra T; for i =
1,..., N. The invariant is defined as follows:
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(a) Assign variables x; fori =1,..., N to N edges of 7.

(b) Choose a strictly positive pre-angle structure 6 = («, B, y) at each tetrahedron. Here,
« is the angle of the 01 and 23 edges, B is the angle of the 02 and 13 edges, and y is the
angle of the 03 and 12 edges. The angles are normalized so that at each tetrahedron,
their sum is 7.

(c) The weight of a tetrahedron T is given by

_aty Xgy
Fg

B(T,x,60) = y° <(—Q) X (—6])_”)?> (52a)
y y

_ _a iy _ i X _ i e
=c(q) G4 (( q) Xﬂ)Gq (( q) Xy)Gq (( q) X ) (52b)

o

where
Xy = x01x23, Xp :=xmx13, Xy = X03%x12,

and x;; is the variable at edge ij of the tetrahedron.
(d) Define

N
12%(q) = /TNI_[Bm, % 0)du(x), o
i=1

where du(x) = 2ri)™N ]_[fil dx;/x; is the normalized Haar measure on TN,

Recall the exponent matrices (4|B|C) of the edge gluing equations of 7 [6,19,20]. These
are N x N matrices with integer entries which determine the gluing equations

N _
Aij . N\Bi: Cii .
[1z7@% e =1, i=1..,N (54)
j=1
wherez' = 1/(1 —z) and z2” = 1 — 1/z, and as usual we have zz'z” = —1.
Foravectorx = (x1, . .., xn) of nonzero complex numbers, and avectorv = (vy, ..., vN)

of integers, define x = [T, x;". Also, for a matrix A, let A; denote its ith column.
The next proposition implies that the integral (53) (and even the integrand) depends on
only the Neumann-Zagier matrices of the gluing equations of the triangulation 7.

Proposition 3.1 With the above notation and fori =1, ..., N, we have:
4 B B (A_7. i (BT
B(Ti%,0) = (@) Gy ((-0) € P) G, () * 6 @O1) G, () *®-21). (55)
It follows that I (q) depends on only the matrices A, B, C and 6.

Proof Lete; € 7N denote the ith coordinate vector (1 in position i and 0 otherwise). It
suffices to show that

(ﬁ ) _ x(ﬁ—E)ei, ()& ) Zx(Z—ﬁ)ei, <)&> — x(B—Ae; (56)
Xp/; Xy /i Xa /i

This follows from the fact that the matrices A, B and C indexed by edges x tetrahedra
record the number of times a shape z; (resp., z}f, z/f’ ) of the jth tetrahedron appears around
an edge e;. ]



Garoufalidis and Kashaev Res Math Sci (2019)6:8 Page130f34 8

Our choice of 6 and Eq. (17) implies that the integrand in (53) is an analytic function
of x € TN, and therefore the integral converges. We are interested in two affine vector
subspaces of C3N:

+ Ag, the space of complexified pre-angle structures, i.e., 8 € C3N such that o; + f; +
yi=nfori=1,...,N.

o By C Ar,the affine subspace of A7 that consists of balanced complexified pre-angle
structures, that is the sum of the angles around each edge of 7 is 27r. The points of B
are also known as complex-valued angle structures on 7.

A7 and B are complex affine subspaces of C3 of dimension 2N and N + 1, respectively,
[18].

The integral in (53) extends to a meromorphic function of 6 € Az, regular when
Re(#) > 0. Our task is to show that this extension restricts to a meromorphic function on
Bz. To do so, it will be convenient to parametrize A7. This breaks the symmetry in the
definition of the integral; however, it is a useful gauge to draw conclusions.

Consider a vector ¢ = (1, ..., ey) € CN and complex numbers i, A defined by

vpra v Bty =4

Ac+BB+Cy =72 +s¢,
B 14 U)L'Ol‘f'vi'ﬂ'f'vi/'y:)"

(57)

where 1 and X are the sums of the angles along the meridian and the longitude curves,
2 € CV is the vector with all coordinates 2 and v, vy and their primed versions are the
vectors of the meridian and longitude cusp equations. Note that 1 + --- + ey = 0. A
quad is a choice of a pair of opposite edges in a tetrahedron. Choosing a quad allows one
to eliminate the angle variable of those edges using the equation «; + B; + y; = 7. Note
that each tetrahedron has 3 quads, and hence 7 has 3V quads. If Q is a system of N quads
obtained by choosing one quad from each tetrahedron of 7, let Q(6) € CN be defined
so that its ith component is the angle associated with the corresponding quad in T3, i.e.,
Q(0); = «; if, for example, the quad of the ith tetrahedron is (01), (23). In effect, Q(6)
chooses one of the 3 angles for every tetrahedron of 7. Together with Egs. (57), we get a
linear map

Ar - CN x €N x ¢?, 0 — (QO), & w, ).

Forjje{l,...,N}letm;; : CN x CN x C? — CN~1x CN~1 x C? denote the projection
that removes the ith entry of the first copy of CN and the jth entry of the second copy of
CN. The next proposition describes a parametrization of A7.

Proposition 3.2 For every j, there exists a system of quads Q of T and an i such that
Tij . .
the composition A — CN x CN x €2 X CN-1 x CN-1 x @2 is an affine linear

isomorphism.

Proof Consider the standard system of quads Q of 7, i.e., the one that chooses the
(01), (23) edges of each tetrahedron of 7. It follows that Q(f) = «. Eliminating 8 from
Eq. (57), we obtain that

Aad+By =n2+¢+v, (58)
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where
A=A-B, B=C-B, v = —Blr.

Consider the matrix (4’|B’) obtained from (A|B) by replacing the jth row of (4|B) with the
peripheral cusp equation corresponding to the meridian. Neumann—Zagier prove that
(A’|B') is the upper half of a symplectic 2N x 2N matrix [19]. In fact, we can take the
first row of the bottom half of the symplectic matrix to be the peripheral cusp equation
corresponding to the longitude. If B’ is invertible, then we can solve for y from Eq. (58)
and deduce that 6 is determined by (a, 7;(¢), ). Using the longitude cusp equation, it
follows that 6 is determined by (r;(c), 7j(e), , A).

When B’ is not invertible, using the fact that (4’|B’) is the upper half of a symplectic
matrix and [7, Lem.A.3], it follows that we can always find a system of quads Q for which
the corresponding matrix B’ is invertible. The result follows. ]

Without loss of generality, we can assume that Proposition 3.2 holds for the standard
system of quads, and that i = j = N. After a change in variables x; — x;/xy for i =
1,...,N — 1, the integral I7,¢(q) reduces to an N — 1-dimensional integral since the
integrand is independent of xy.

The next lemma shows that after a change in variables, 17 (g) is expressed as an integral
whose contour (a product of tori, with radi |g| raised to linear forms of &) depends only
on « and whose integrand depends only on (g, 1, A).

Proposition 3.3 With the above assumptions, there exists an edge column vector n whose
coordinates are affine linear forms in a, a contour Cy, and affine linear forms v;, v}, v/’ in the
variables ¢ = (€1, . .., en—1) and |, A such that after the change in variables x; = (—q)"y;,
we have

12 (g) = clg/N /C du(y)

% ﬁGq ((_q)v,«a,u,x)y@@i)

x Gy ((—q)HnyA=0n)
x Gg ((_q)v;/(s,u,k)y(B—A)i> ‘ (59)

Proof Recall Egs. (56) and (58). If x = (—g)"y then

(C—Bei _ (_q)arke,vT (f—E)Tny(f—E)ei _ (_q)ai+e,.TBTnyBei

and likewise for the cyclic permutations. Using Eq. (55), and the above equalities, we are
looking for an edge vector ; such that @ + BT, 8 + (A — B)Tpand y — AT# depend on
only &, i, A. Since the sum of these three vectors is constant, it suffices to find n such that
o — BTy and y — ATy depend on only &, i, 1. Using the fact that B is invertible, we can
take n = (BT) la. Solving for y from Eq. (58), we obtain that

y—ATp=B"1w24+e+v)— B) Aa—A(B) ) la=B"'#24+¢+v)

The last equality follows from the fact that (4’| B’) is the upper half of a symplectic matrix,
and hence (B') 1A’ is symmetric. Finally observe that |x;| = 1; hence, |y;| = |g|" where
n; are linear forms in «. Hence, the y-contour C, is a product of tori whose radii depend
linearly on «. This completes the proof. O
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Remark 3.4 With the assumptions of Proposition 3.3, there exists an edge column vector
17’ whose coordinates are affine linear forms in a, 1, A, a contour C, and affine linear forms
&, &/, &/ inthe variables ¢ = (e1, ..., éx—1), 1 and A such that after the change in variables
yi = (—q)’7£zi, we have

N o
Ig’fz (q) = C(q)N /C du(z) H Gy <(_q)§i(&ﬂ,k)z(c—3)i)
i=1
X G, ((_ CHOTEN Z(A—C)i) G, ((_q)gl{/(s,uy)»)z(B—A)i>, (60)

where &(0, i1, 1), &/(0, i, 1) and £/'(0, i1, 1) are Z-linear combinations of 1, uu/pi, 1 /(27).
This follows from the symplectic properties of the Neumann—Zagier matrices [19] (com-
pare also with the matrices (A’|B’) in Eq. (67) below).

The contours in Egs. (59) and (60) depend on a positive pre-angle structure, but the
integrals are independent of the choice of the pre-angle structure. When we balance, i.e.,
set ¢ = 0, there are two possibilities: Either we can move the contour by a small isotopy in
order to avoid the singularities of the integrand, or we cannot do so. In the former case, the
new contour is canonically defined from the old contour. In the latter case, we apply the
residue theorem to change the integration contour, and the residue contribution is either
finite or infinite. In the latter case, by definition, our meromorphic function is infinity.

Remark 3.5 Anexample of an integral where the latter case occurs is the following integral

dz -
10 = [ F6,@6y (0=, (61)
where C is the contour |z] = 1 — § for § > 0 small. The singularities of the integrand

are z € ¢ N and z € (—q)°q™. When ¢ approaches zero, the contour is pinched from
two sides by the singularities at z = (—¢)® and z = 1. To avoid this pinching, by applying
the residue theorem, we move the contour of integration C to the other side of 1, i.e., the
contour C’ given by |z| = 1 + &:

I.(C) = I(C') — 27iRes;= <%Gq(z)Gq((_q)ezl)>

(Do

=1(C) +2mi
(% 9) oo

Gy((=q)°). (62)

Even though I.(C’) is regular at ¢ = 0, the contribution from the residue is singular
because of the simple pole of G,((—¢)®) at & = 0. Thus, we conclude that I(C) = oo.

The next proposition defines the meromorphic function that appears in Theorem 1.1.

Proposition 3.6 Setting ¢ = 0 (i.e, balancing the edges), and assuming that we find a
contour C, we obtain a meromorphic function of (e, e) := (—gq)™/™, (—q)l/(zn)) € (C*)2

N
ITee,(q) = c(q)N f du2) [] &, <(_q)si<0,u,x>z<c73>i) G, <(_q)s;(o,u,x>szc>i>
¢ i=1
x Gy ((—q)f ©1PZEA)

The above integral is absolutely convergent.
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Let us phrase our previous proposition in more invariant language. Recall the complex
torus Ty = HY(dM, C*). Define the map

o7 : Br — Ty, § (—q)h"](‘s)/” (63)

for a simple closed curve § of dM, where hol(§) denotes the angle holonomy along §.
Proposition 3.6 states that the restriction 13“1 of the meromorphic function Ig—re on B is
the pullback of a meromorphic function I7- on T'. In other words, the following diagram

commutes:

./47' Q[)’T ﬂ» T (64')

I}%alJ/ 7
pre
Ir

C

3.2 ldentification with the 3D index of Dimofte-Gaiotto-Gukov
In this subsection, we discuss the Laurent expansion of the meromorphic function
I, (q) on the real torus |e,| = |ex| = 1, under the assumption that 7 supports a
strict angle structure. As we will show, the coefficients of the Laurent series are the 3D
index of Dimofte—Gaiotto—Gukov. This will conclude the proof of Theorem 1.2.

The next lemma (for # = 0) is based on the idea that the upper half part of a symplectic

matrix with integer entries is a pair of coprime matrices.

A B
Lemma 3.7 Suppose M = cD is a symplectic matrix with integer entries where

A,B,C,D are N x N matrices. Let (A'|B’) denote the upper (N + h) x 2N part of M
and consider r,s € TN that satisfy the equation

0
A'r+B's= ( )
v

for a vector v € Z". Then, there exists k € ZN~" such that

r=—87T v s=AT v .
k]’ k

. . A B
Proof We apply the symplectic matrix M = c
D s

ZN=" 5o that k' := (7) € 7N satisfies M (r) = ( ) Then,
k s
T\ _ a1 (0) = pT  —BT\ (o _ —BTK
s K —cT AT J\K ATk )

The result follows. O

) to the vector <r) and define k €
0
k/

Proof (of Theorem 1.2) Fix an ideal triangulation 7 of M with N tetrahedra and let A B
and C denote the Neumann—Zagier matrices describing gluing Eqgs. (54). If we eliminate
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the shape z; = —1/(z;z]’), we obtain the gluing equations in the form:
[157@)% =" i=1..,N (65)
j=1

where

A=A-B, B=C-B.

Notice that A—C = A—B,B—C = —B.Fixastrictangle structure  and use Proposition 3.1
to write the integrand of Igfg as follows:

ﬁB(T 0) ﬁwo (( o e )‘“"Xﬁl’)
% 0) = —q) 7 L, (—q)T 7
i=1 i=1 Xy Xy
- 0 _4tn (A_C), % (B-C),
=[]v Q—m T x T (—g) T ’)
i=1
N 0 %Y (A_B). % B):
=[Tv° (=" a4 (g% =),
i=1
Use Eq. (24) to expand the integrand of Igr,g as a convergent series on the torus |x;| = 1
(fori=1,...,N):
N
[ 18T 0)

i=1
— Z 12y, 51) .. . T2 (ry, SN)xZi(A*B)iSix* Zi(B)iVi(_q)*% Yo ilaityi)sitair
r,seZN

where r = (r,...,ry) € ZN and s = (s3,...,sn) € ZN. Now, we can compute the
absolutely convergent integral Igfz by integrating over the torus. After interchanging
summation and integration (justified by uniform convergence) and applying the residue
theorem, we obtain a sum over r, s € Z~ such that (A — B)s — Br = 0:

N
ﬁ”:/ B(T;, %60
T TNdM(x)g (T5%,6)

= ZlA(rl’ s1).. .IA(rN, SN)(_q)_% Doilaitysitair; / y dM(x)xZi(A_B)iSi_Zi(B)iri
T
ns

Yo 1AL I s (—g) T Zilatrdsitenn,
1,5:(A—B)s—Br=0

Collecting further terms whose meridian and (half) longitude holonomy is a fixed integer,
we obtain the uniformly convergent sum:

@ =3 0% CaF Y1) 180 sw) o

m,ecZ

where , s € ZN satisfy the equation

A%+EG¢—Q:<ﬂ, v=<m> (67)
v e
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3 3
0 2 — 0 2
1 1
Fig.2 The ordered 2-3 Pachner move

for the matrix (4’|B’) (where A’, B’ are (N + 1) x N matrices) obtained from (A|B) after we
remove any one row of it and replace it with two rows of the meridian and half-longitude
monodromy. Neumann-—Zagier [19] prove that (A’|B’) can be completed to a symplectic
matrix. Using this and Lemma 3.7, it follows that there exists k € ZN~! such that

s=—BT(" , —r—s=aT(").
k k

Let a; and b; for i = 1,..., N denote the ith column of A" and B/, respectively, and let

k' = (Z) Using the above and Eqs. (40a), (41), we obtain that

I*(rips) =I%(=a; - K +b; - K, =b; - k') = 1*(=b; - k', a; - k')

fori =1,...,N. Combined with Eq. (66), this gives

N
@)=Y o7 (5 Y []*0ss)@
m,e€Z kezZN-1 i=1
mp 23 N
=Y (7 (== Y [[1*bi K ai k)@

m,e€Z kezN-1 i=1
mp A N

=Y (7 (g Y [[a"*is(=bi-K, ai-K) g,
m,ecZ kezN-1 i=1

where the last equality follows from Eq. (21) and v = (1,...,1,m,e) € ZNTL. The latter
sum coincides with the 3D index of [9]; see also [12, Sec.4.5]. This completes the proof of
Theorem 1.2. ]

3.3 Invariance under 2-3 Pachner moves

Next, we prove the invariance of the meromorphic function /7 under 2—3 Pachner moves.
Consider two ideal triangulations 7 and 7 with N and N +1 tetrahedra that are related by
a 2—3 Pachner move as in Fig. 2 and choose 6 and ] compatible positive angle structures
on7T and 7 that satisfy Eq. (51). In particular, this means that the sum of angles around
the interior edge of the 3 tetrahedra is 2.
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Note that 6 determines 6, but not vice versa. Let us denote the linear map 6 > 6 by
0= m%(g). The commutative diagram (64) gives a commutative diagram

Az Bz Ty Ty (68)

2 2
woT

.AT QBT —» TM
Let 6 and 6 be positive pre-angle structures. We claim that
175() = 125() (69)

This follows by separating the integration variable of the inner edge of the 2—3 move in the
integral Igf%(q) and applying the pentagon identity (50) to that variable. Since a meromor-
phic function is uniquely determined by its values on positive pre-angle structures and the
map m% : Az — Arg is onto, it follows that [ ;re = Igre o m% Now restrict to B, use the
above commutative diagram and the fact that m% is onto. It follows that I%al = 117’3‘1 o m%
Using once again the commutative diagram and the fact that @7 and w3 are onto, it
follows that I3 = I7.

3.4 The singularities of I7(q)

The singularities of the integrand of I, ¢, (¢) are given by Lemma 2.2. To determine the
singularities of the meromorphic function /7, perform one integral at a time and use the
next lemma.

Lemma 3.8 Suppose f(z) is a meromorphic function of z with singularities on q—~. Fix
positive integers ay, ...,a, > 0and by, ..., by, > 0, lets = (s1,...,5p), t = (t1, ..., ty) and
consider the integral:

4 . z . dz
Fs 1) = fc i]lf(siz t)j]lf(tjz T,

where C is a contour that separates g~ from q™. Then, F (s, t) is a meromorphic function
of (s, t) with singularities at a subset of

bi 4. . .
{(s, )| si’tja’ IS qf"’]Nfbf]N forsomel <i<pl1l<j< n}. (70)

Proof The singularities of the integrand is the set ¥~ (s) U ¥ (¢) where

7 (s) = Uf {z2% e s[lq_]N}, >t = U;‘Zl{zbf € tqu}.

Aslong as 7 (s) U () does not touch the contour C, F(s, t) is regular. It follows that if

F(s, t) is singular when pinching occurs, in other words we must have z% = s; 147 and
b = tqu for some ,j and some &,/ € IN. Thus, 2%b = (slflq’k)bf = (tqu)“i. The result

follows. O
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4 Examples and computations

4.1 A non-1-efficient triangulation with two tetrahedra

It is traditional in hyperbolic geometry to illustrate theorems concerning ideally triangu-
lated manifolds with the case of the standard triangulation of the complement of the 4,
knot. In our examples, we will deviate from this principle and begin by giving a detailed
computation of the state integral for the case of a non-1-efficient ideal triangulation with
two tetrahedra. This illustrates Propositions 3.1, 3.2, 3.3, 3.6 and Theorem 1.1, and also
points out the inapplicability of Theorem 1.2.

Ideal triangulations can be efficiently described, constructed and manipulated by
SnapPy and Regina [5,6], and we will follow their description below. In particular,
ideal triangulations can be uniquely reconstructed by their isometry signature, and the
latter is a string of letters and numbers. There are exactly 10 ideal triangulations with two
tetrahedra of manifolds with one cusp, given in Table 3 of [11], 9 of them are 1-efficient,
and one of them with isometry signature cPcbbbdei is not. Although we will not use it,
this triangulation is not ordered. The underlying 3-manifold M is the union of a T'(2, 4)
torus link with the T'(1, 3) (trefoil) torus knot. In Regina format, the tetrahedron gluings
of the triangulation 7 of cPcbbbdei are given by:

tet|glued to| (012)  (013)  (023)  (123) |
0 1(130)  1(023) 1(021) 1(132)
1 0(032) 0(201) 0(013) 0(132)

The edges of T are given by:

tetledgelol 02 03 12 13 23]
0 0 0 0 0 1 1
1 0o 0 0 1 0 1

and the triangle faces of 7 are given by:

tet|face[012 013 023 123
0 o 1 2 3
1 2 0 1 3

The gluing equations, in SnapPy format and with the Regina ordering of the edges, are

given by:
1 1 2 1 2 1
1 1 0 1 0 1
0 -1 01 0 O
0 0 2 0 0 O

The A, B and C matrices are given by:

=) om0 =0
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The holonomy of the meridian and the longitude is given by:

n=—PB+ai, A = 2yp.

The ¢ variables are given by:
g0 =ao+ Po +2y0 + a1 +2B1 + y1 — 2w, e1=0a0+ Po+or+y1 —2x. (71)

Using «; + B; + yi = m for i = 0,1, we can solve the above equations in terms of the

variables ag, €9, i, A:

oy = ap, o] =T —ag—A/2+ [,
Bo=m —oap—Ar/2 Br=¢0—2/2
Yo =2X1/2 y1=0ag—& +A— [ (72)

This illustrates Proposition 3.2.
If x; are the variables of the ith edge for i = 0, 1 and 0 is a pre-angle structure, then

<< > q<<—q>ffzzi1>eq (02 222)
qu( 4)’9@> ((—q)‘f?;‘_(l)> Gy ((-)%)

<Gy (CF ) 6 (o) 6 (-0 *2). 73)

When 6 is positive, the absolutely convergent state integral is given by:

re c(q)® % X Bo X1 n
0@ = o / G, ((—q) : x—1> Gy ((— )= 96_0) Gy ((-)7)

1 7 dxo d
x Gy (( q)n’ﬂ> G, (-a%)G ((—qw’ﬂ) == (74)

X1 X0X1

After rescaling x9g — xo/x1, the integral is free of the x1-variable and is given by:

250 - L, ((—qﬂ&) Gy ((—q)’%l)

Using Eq. (73), the above integral becomes:

a0 = 206, (-0%) 6 (-0*7) [ 64 (%)

—ag—2/2 1 —ag—A/2+u 1 ag—egtr—p dxo
x Gy ((—61)1+ ™ 7) Gy ((—61)1+ ™ 7) Gy ((—q) ™ xo) —.

X0 X0 X0
(76)
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Applying the change in variables
)

(—q) ™ xo0 = yo, (77)

the above integral becomes:

250 = 6, (1-0%) 6, (-0*7)

27i
21 x4 1
< / G, 50) Gy ((—q)1 : —) G, ((—q)1+ : “—)
Co Yo Yo
e ((—q)L?‘“ )@ (78)
q Yo yO,

where Cy is the torus |yg| = Iq%ol and the integrand depends on &y, i, A and yo. Notice
that when 6 is positive, Eq. (73) implies that eg = Y9 + 81 > Oand g} = —yp — B1 < O.
Moreover, we can set &9 = 0 and obtain the uniformly convergent balanced integral

5(q) = %Gq ((—q)ﬁ) G, ((—q)#z)

RSt
x/Can(y(J)Gq(( 9 yo)

/24 1 Ap d
x Gy ((—q)“ " "y—o) Ga (0% 30) 7 (79)

which only depends on (e, e;) = (=)™, (—q)* @7)). To simplify notation further, let
(s,t) = (eys ex). Then, we get:

c(q)*

ITs:(q) = o Gq (1) G4 (t_l)

1 - 1 - _ d
x fc Ga 00) Gy ((=0)¢™155") G ((=a)st™15") G (5714%90) 2. (80

where C is the torus |yo| = lg1% for small 8, > 0. This is the meromorphic function
of Theorem 1.1. Next, we compute its singularities, starting from the singularities of the
integrand. Using part (a) of Lemma 2.3, we see that the singularities of the integrand are
given by

Yo € (s, £) UXT(s,2),
where
(s t)=qg NUst g N, It = (-t gV U(—gq)st g™,

The contour of integration has to separate ¥~ (s, £) from (s, £). The integral can only
be singular when pinching occurs, that is, for (s, £) such that X7 (s, £) intersects (s, £).
This happens precisely when

t € —g™\O} or st e —g™\MO, (81)

Using the notation of the g-rays (1), the above set is given by

—q%01U—q 201 U—gS_11U—q Ty 1.
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Thus, the above integral is a meromorphic function which is regular on the complement
of the set £7. Note that some of the points of the set (81) might be regular points of
the integral, this happens for instance when the residue at simple poles vanishes. Note
also that the set (81) is disjoint from the real torus |s| = [t| = 1, so the integral can
be expanded into Laurent series convergent on the real torus |s| = |¢|] = 1. However,
the prefactor Gq(t)Gq(t’l) has singularities on the set ¢t € g% (and those are actual, i.e.,
not removable), which prevent the meromorphic function I7((g) from being expanded
into Laurent series on the torus |s| = |£| = 1. In conclusion, the meromorphic function
I7,5(g) is regular in the complement of the shifted g-rays

201U Zo-1U—qgZ01U—qg 'So_1 —¢S_11U—q 'T1_1. (82)

4.2 The 44 knot
Next, we discuss the example of the 41 knot, giving the first and last steps of the above
computations, and asking the reader to fill in the intermediate steps.

The gluing equations, in SnapPy format and with the Regina ordering of the edges,
are given by:

2 1 0 2 1 0
01 2 0 1 2
1 0 0 0 0 -1
11 1 1 -1 -3

The above matrix determines the following information. The A, B and C matrices are

given by:

A O R R

The holonomy of the meridian and the longitude is given by:
m=a -y, A=ao+po+r+ar—p -3
The ¢ variables are given by:
g0 = 20 + Po + 201 + B1 — 27, e1=Po~+ 2y + B1 +2y1 — 2m.

Using «; + Bi + yi = mw for i = 0,1, we can solve the above equations in terms of the

variables ag, g, i, A:

Qo = oo, o =g+ A/2— W
Bo=m — 200+ 80— A1/2, Br=m — 200 —A/2+ 20,
Yo=ao— &0+ A/2 Y1 =ao— i (83)

Let 0 be a positive semi-angle structure. Rescaling xo — xo/x1, applying the change in
variables

0]

(=q)" = %0 = yo, (84)
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letting (s, £) = (e, ex), and following the steps of the previous example we obtain that the
state integral is given by

g{fﬁ( )= Ao / %Gq (y ) Gq <571y<;1> Gy <(—q)’€°ty51) Gy (siltyal)

2mi )
x Gg (—a(=a)t"'55) Gg (—ast " 50), (85)
where the contour of integration C, (determined by (84)) is given by |yo| = |q*a70|.

Moreover, we can set &g = 0, and obtain the meromorphic function of the 47 knot:

) [ d _ . _ R
I73,5:(q) = i /C y)(’)o 1 Gq <S % 1) Gq (tyo 1) Gy (s Lty 1)
x Gg (—qt™"'y5) Gg (—as’t " 'yo), (86)

where C is the torus |yg| = 17.

4.3 The ssister of the 47 knot
Next, we present the invariant for the sister m003 of the 4; knot. The gluing equations,
in SnapPy format and with the Regina ordering of the edges, are given by:

0
2
-2
-1

oS O O N
S O = =
NN O N
[\
S O = =

-1

Using the above matrix, we can compute the A, B, C matrices, the holonomy of the
meridian and longitude, the ¢ variables, and express all variables in terms of the variables

00, €05 Uy Al
o = oo, ay =0og—&+ A
Bo=o00—¢c0+A— /2 Br =00 —¢&o+ 11/2
Yo=mT —200+¢8— L+ 1/2 y1 =1 — 200+ 260 — A — /2. (87)

Let 0 be a positive semi-angle structure. Rescaling xo — x¢/x1, applying the change in

variables
a
(—q) ™ x0 = yo, (88)

letting (s, £) = (e, ex), and following the steps of the previous example we obtain that the
state integral is given by

2
pre c(q) dyo 14260 —1/2,—2, —2
L0030 @) = 2mi /co, Yo Ca ((—q) R )

x Gy (=)0 /2725 Gy 00) Gy (-0)™05/250) Gy ((—a)~*¢%30)
x Gy ((—q) %0572 t%y), (89)
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where the contour of integration C, (determined by (88)) is given by |yo| = |(—q)a70 l.
Moreover, we can set &g = 0, and obtain the meromorphic function of the sister of the 4;
knot:
c(q)* dJ’O 71/2 1/2,-2, -2
ITmoo3St(q ) t y ) Gq (—qs t yO )
i
x Gg 0’0) q (S J/o) Gq (£290) G4 (s /*y0)., (90)

where C is the torus |yg| = 1T.

4.4 The unknot

Next, we compute the invariant for the unknot, and find a surprise: We can compute
the integral exactly. The unknot has three triangulations with two tetrahedra given in
Table 3 of [11]. One of them has isometry signature cMcabbgds. The gluing equations,
in SnapPy format and with the Regina ordering of the edges, are given by:

1 2 2 2 2 2
1 0 0 0 O

0 0 0 0 O -2
1 0 0 0 -1 O

Following the steps of the previous examples, we have:
g0 = oo + 2P0 + 20 + 201 +2B1 + 21 — 27, &1 =0 — 27, 1)

which simplifies to g = —ag + 27 and in particular is bigger than = when 6 is positive.
We can express all variables in terms of the variables «y, o, i, A:

op = 2w — €0, ar=-mT+e+Ar+u/2
Bo = Bo, Br=2m —¢eo— A,
Yo = —1 — Bo + €o, 1= —u/2 (92)

After rescaling x9g — xo/x1, applying the change in variables

(=) %0 = 70, (93)

letting (s, £) = (e, e;), and following the steps of the previous example we obtain that the
state integral is given by

c(q)?

Pt @ = ?Gq (=@*%) G4 (s7%) Gy (—)* ¢ 7%) Gy ((—q) 05122
dyo
< [ e a6 aY) o0

B
where Cy is the torus |yg| = |(—q)_70 |. On the other hand, Egs. (7) and (8) give that

1
_ -1\ _
Gy (=a790) 64 (57) = Ty T
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so that

bal 9( )= ( ) ((_q)Zfso) Gq (871/2) Gq ((_q)Z*é‘ot*Z) Gq ((_q)71+80sl/2t2)

Tunknot TTi

d 1
« / Do — (95)
c, Yo (1+y0)(1+g 1y0)

When 6 is positive, the contour C, encircles both singularities —1 and —g of the integrand,
and a residue calculation reveals that the integral is zero. It follows that

1T inovst (@) = 0. (96)

4.5 The trefoil
Next, we compute the invariant for the trefoil. The gluing equations, in SnapPy format
and with the Regina ordering of the edges, are given by:

0
2
-1
—4

—_ O =
S O N O
B = NN O
S O N O

The state integral is given by

c(q)? ~ )
P[:,Q(Q) = 27i Gq ((_q)1+80/2S2t 1) Gq ((_q)lJrso/Zs 2t)
d 0 — _
* / S G ( )Gq (S 1y01> Gy ()%t 1y0) Gy ((—q) % 2typ),
Cy YO
(97)
where the contour of integration Cq is given by |yo| = |(—61)7?a1 |. Moreover, we can set

g0 = 0 and obtain the meromorphic function given by:

2
A Gy (~as) Gy (as7)

I7;,,50(q) =
/ 7Gq %' Gq( 1) Gy (s°t7"y0) Gg (s"ty0), (98)
where C is the torus |yg| = 17.
4.6 The 5, knot

Next, we present the invariant of the 55 knot. The gluing equations, in SnapPy format
(we use the homological longitude and the Regina ordering of the edges), are given by:

1 1 0 1 0 O 1 1 0
0 1 1 0 0 2 o0 1 1
1 0 1 1 2 0 1 0 1
-1 0 0 0 O 1 0 0 O
2 0 -3 1 0 -2 0 0 1
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After rescaling x; — «;/x2 and a change in variables x9 = (—¢)*yy and x; =
(—q)~%1/251/2¢1/2y, | the state integral is given by

pre _ C(Q)g dyOdyl —1 —1 €12, —1
= 80 [ 5916, 50 o) o (10 5)

x Gq( 2 oy ) ((—q)”s"“‘yoyfl)

( g)Le0/dter g 3t—1yoyf1>
x Gy (=) "*n1) Gy (=) 7> *sty1) Gy (s197) (99)
where Cy, is the torus given by |yo| = |(—q)%%| and |y s¥/2t1/2| = |(—q);% |. Moreover,

we can set &g = €1 = 0 and obtain the meromorphic function given by:

c(q)® [ dyody -1 1 1 2,-1,-1. -2
ITs00) = G5 /C o (%) Ga (75") Ga (*5") Gy (—as™2 M 3097 ”)

x Gy (—ar07") Gg (—as™2t79007") Gy 01) Gy (sty1) Gy (s63), (100)
where C is the torus given by |yp| = 17 and ly1s' /212 = 1.
4.7 The 67 knot

Finally, we present the invariant of the 6; knot. The gluing equations, in SnapPy format
(we use the homological longitude and the Regina ordering of the edges), are given by:

1 0O 0 0 0 0 1 1 0 1 1 0
0 1 01 0 0 1 0 0 0 O 1
0 1 1 0 0 2 O 1 1 1 0 0
1 0o 1 1 2 0 O 0 1 0 1 1

-1 0 0 0 0 1 O 0 0 0 O 0

-11 0 0 1 1 0 -1 O O O -2

After rescaling x; — x;/x3 and a change in variables
%= (=q) %y =00 w = () e Py (101)

the state integral is given by

ota = é‘f?; [ 56 57) 60 ()4 (o17) 6 (s )

( 1t—1y1y;2> G, ((_q)1/2—80/4'+81/4t—lygl)

( q)3/2+so/4+351/4y y2—1>

(( q)3/2+3£0/4+£1/4t Yoy1y; ) G, ((_q)71/273so/47£1/4ty;1y2)

( )1/2+80/4 e1/4—e2 2 oy, y2>G ((_q)—l/z—so/z;—ssl/4y61y1y2>
x Gg (=

qams) (102)



Page 28 of 34 Garoufalidis and Kashaev Res Math Sci(2019)6:8

. . —o —a o
where C, is the torus given by [yo| = |(—¢q) = |, [y1l = |(—¢) = |and |y2t1/?| = |(—q) > |.
Moreover, we can set &g = €1 = &2 = 0 and obtain the meromorphic function given by:

I, 5¢(q) = (cz(zi); /C a bo b 2 (557) Ga (57) Ga (977) Gy (™5™ 1)

Yoyi1y2
x Gy (—qs’lt’lyw; 2) Gq ((—q)” 2t lyy 1) Gq ((—q)?’/ 055 1)
x Gy ((—q)g/ 2 yoyy; 1) G, ((—q)_l/ Ztyflyz)

% Gy (-0 037 152) Gy (=075 3032) Gy (~a03), (103)

where C is the torus given by |yo| = 1%, [y1| = 1" and [y/2| = 1~
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Appendix A: A quantum dilogarithm over the LCA group T x 7Z

The function (19) with g real has been introduced and studied in the functional analytic
context of Hilbert spaces and quantum E(2) group by Woronowicz in [21]. In this section,
we derive some of its operator properties by using the theory of quantum dilogarithms
over Pontryagin self-dual LCA groups developed in [2,15].

Throughout the section, for a Hilbert space H, we write A: H — H, if A is a not
necessarily bounded linear operator in H whose domain is dense in H. The Hermitian
conjugate of A will be denoted A*. Below, we will use freely the standard Dirac’s bra-ket
notation.

The group T x Z is a self-dual LCA group with the gaussian exponential

(VT xZ—T, (zm)=z" forall (zm)eT xZ (104)

The Fourier kernel is fixed as the co-boundary of the gaussian exponential

(z, my;w, n) == M =z"w". (105)
(& m){w, n)

We define a unitary Fourier operator F: L*(T x 7Z) — L*(T x Z) by the integral kernel
(z m|F|lw, n) = (z, m; w, n). (106)

For any (measurable) function f: T x Z — C, we associate three normal operators as
follows. The multiplication operator by f:

f@: LT x Z) — LXT x Z), (2 m|f(q) = f(z m)(z ml, (107)
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its unitary conjugate by the Fourier operator

f(p) == Ff(q)F7, (108)

and the unitary conjugate of the latter by the inverse of the (unitary) multiplication oper-
ator (q) by the gaussian exponential (104):

fp+a):=(@7f(p)a). (109)

We remark that all three operators f(q), f(p) and f(p + q) have spectrum given by the
closure of the image of f.

Lemma A.1 The function

n:TxZ— Cxo (zm)— —qu_’”, (110)
satisfies the following operator equations:

n@n(p) = g*n@E)n(@,  1@*nP) = nEm@* 1 +a)=-nPEn@.  (111)
Proof In the Hilbert space L(Z), define a self-adjoint operator h by

(mlh = m(m|, forall m € Z, (112)
and a unitary operator z by

(mlz=(m—1|, forall meZ. (113)
These operators satisfy the commutation relation

[h,z] :=hz —zh =2z (114)
which is verified as follows:

(m|[h, z] = (m|hz — (m|zh = m(m — 1| — (m — 1)(m — 1| = (m|z (115)
Similarly, in the Hilbert space L2(T), we define a self-adjoint operator H by

(z|H= zaa—z(zl, forall ze T, (116)
and a unitary operator Z by

(z|Z =z(z|, forall zeT. (117)
It is easily verified that

HZ]:=HZ-ZH=2Z (118)
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Moreover, if J: L?>(Z) — L*(T) is the isomorphism defined by the integral kernel

(zJm) = 2", forall (z;m) e T x 7Z, (119)
then we have the equalities

Jh=H), Jz=2J. (120)

Identifying H, Z, h, z with their natural counterparts in L2(T x Z), we have

Fh=HF, Fz=ZF, FH=—hF, FZ=2z"'F, (121)
and

h(@) = (a)h, Z(a) = (®Z H(a) =(@)H+h), z(q) = (q)zZ"" (122)
so that

f@=f@Zh), fle)=f"H), fle+a)=fz"'ZH+h) (123)

for any f: T x Z — C, where, in the right-hand sides, the functions with operator
arguments are understood in the spectral sense. In the case of f = 7, we thus have

n@=-2¢"" @) =-z"'¢"" np+a=-z"2¢""" (124)

and the relations (111) are verified straightforwardly. o
Next, observe that the function

w:Tx7Z—C, (zm)r—> (n(z, m); qz)oo, (125)

nowhere vanishes and satisfies the operator five-term identity

w(P)(q) = n@ulp + a)u(p) (126)

as a consequence of Lemma A.1 and the formal power series identity in non-commuting
indeterminates

(viq") oo (14%) o = (u47) o (—VUs47)  (Vig?) o UV =g vy, (127)

which is equivalent to the g-binomial formula

— (@4%) (azi4°)
nn _ % 128
Xzz (@), ~ @) 129

see [14]. Indeed, by substituting u by n(q) and v by 7(p), we convert (127) into (126).
Lemma A.1 also implies that the function

¢g: TxZ — T, (zm)v ulzm)/iu(l/z m)= u(z m)/uz m), (129)
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satisfies the unitarized version of identity (126):

64(P)d4(Q) = ¢4 (Ady(p + Ay (p). (130)

Moreover, ¢, satisfies an inversion relation, see below (131), which allows us to identify
it as an example of a quantum dilogarithm over T x Z.

Lemma A.2 The function (129) satisfies the following inversion relation:
¢q(z m)py(1/z, —m) = 2" = (z,m), forall (z,m) e T x Z. (131)

Proof We have

(—q"""z qz)oo ("™ /z; qz)oo

(_ql—m/z; qZ)Oo (_q1+mz; qZ)OO

_b4zg™)  Oy(qH"zq™) e (
Oq4(2q™) 04(2q™)

where in the second equality we have used (26) and in the fourth equality the functional

¢q(Z, m)¢q(1/z, —m) =

" =2" (132)

equation (32). O

Appendix B: The quantum dilogarithm and the Beta pentagon relation
In this section, we generalize the result of [2] to include the LCA groups which do not
admit division by 2. Note that most of the equations of this section (for instance, (137),
(140), (145), (149)) are valid as distributions.
Let A be a self-dual LCA group with a gaussian exponential (-): A — T and the Fourier
kernel
x4+

(x)()f; , forall (xy)¢€ A (133)

{5 y) =
For a nonnegative integer n € IN, denote

(1] :=Z>o NZ<y, forall ne Zsy. (134)
According to [2], a bounded function

fi4lxA—>C (%) filx) (135)

is called of Faddeev type if it satisfies the non-constant version of the operator pentagon
relation

fiP)f(a) = fa(@)f2(p + a)fo(p). (136)

The latter is equivalent to the functional integral identity

Fr)fs () () = /A fau — 2)h@)folx —2)(z) dz,  forall (x u) € A2 (137)
where

Fie) = F ) = /A (55 —)fi9) . (138)
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Defining

fiw) = fi) ), (139)
we rewrite (137) in the form

fl(x)f’g(u) = /A(x —z;z — u)ﬂ(u - z)ng(z)fo(x —2z)dz, forall (xu)e A%  (140)
We call a subgroup B C A isotropic if it satisfies the condition

(b)) =1, forall (bV)e B> (141)
Lemma B.1 Let a bi-character x: A> — T be such that

() = x@®xx), forall (xy)e€ A2 (142)

and B C A an isotropic subgroup. Then, for any function fi(x) of Faddeev type, the function
g4l xA2 > C (xy) gy = xxy) /Bﬁ(x + b){b;y) db (143)

is automorphic, i.e., satisfies

gx+by) = x(=ybgix%y), gxy+b) = xxbgxy),
forall (i, bxy) € [4] x B x A%, (144)

and satisfies the integral identity
g1 yguv) = /A/ au—zv+z—x)pEy+ vk —2zy+z—u)dz  (145)
B

Proof The automorphicity properties (144) are verified in a straightforward manner,
while to derive the integral identity (145), we write

g1(% )g3(u, v)
X% ¥) x (4, v)

=/ (x—l—b—z;z—u—c)(b;y)(c;v)ﬂ(u—i—c—z)ﬁ(z)

AxB2
xﬁ(x—i—h —2)d(z b, c)

:/ x—zz—u)by+z—u)cv+z—x)falu+c—2)f(2)
AxB?

xfg(x+ b—2z)d(z b, c)

=/ (x—z;z—u)g4(u—z,v+z—x)f2(z)go(x—z,y+z—u)
A

dz
xXu—zv+z—x)x(x—2zy+z—u)

(146)

_/g4(u—z,v+z—x)fg(z)go(x—z,y—kz—u)d
= z
A xu—zv)xx—2zy)



Garoufalidis and Kashaev Res Math Sci (2019)6:8 Page330f34 8

so that

@106 Vg3 v) = /A X @y + Vgal — 5 v + 7 — D Dg — 5y +2 — u)dz

:/ x(z+b,y+v)g4(u—z—b,v—f—z—i—b—x)ﬁ(z—f—b)
(A/B)xB
xgox—z—by+z+b—u)d(zb)
= [ ke byt x4 n bl = 5 vz - e+ D)
(A/B)xB
X g —zy+z—u)d(z b)

= / au—zv+z—x)pzy+v)gox —zy+z—u)dz. (147)
A/B
O

Now, we point out that the integral identity (145) is an equivalent form of the automorphic
Beta pentagon identity. Namely, if we define

oix%y) =g(=ynx+y) & gy =dilx+y —x) (148)

then
615 9)3 (1 v) = /A R Ve 2 ol vy —2)da (199

In the case of the quantum dilogarithm ¢, constructed in Appendix A, we have
A=Tx17, (zm)=2z" |(zmwn)=7"w" (150)
so that

gz m) = 2" /T D6 i1/ —K) A6 K) = " / bq(6 Kz F T d(t, k)

TXZ

=z" Y1/t K)z* e d(g k) = 2™ / YO/t 1/2)t™"™ de
T

Tx7Z it
We choose
B=7ZCTxZ (151)
and
x((z m), (w, n)) = w", (152)

so that the automorphic factors are trivial:

x(zm),(Ln) =1 forall (zmn)e T x Z> (153)
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Thus,

gz m), (w, ) = x((z m), (W, m) Y dglz,m + k)(L, ks w, n)

keZ
=w" Z (2’11(2, m+ k)wk = Z qASq(z, k)wk
keZ keZ
dt
= [ Yewmvassia

T keZ

= f S1(zw/t)y°(1/t, 1/z)2d—"‘, = ¥°(1/(zw), 1/2)
T it

and

o(((z m), (w, n)) = g((1/w, —n), (zw, m + n)) = Y°(1/z w). (154)

Taking into account the symmetry of the Beta pentagon identity under the negation of

all arguments, we conclude that ¥°(1/z, w) and ¥°(z, 1/w) both satisfy the Beta pentagon

identity.
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