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Abstract— Visual data mining facilitates the involvement of
domain experts in the data mining processes. The effectiveness of
visual data mining is especially dominant when paired with
unsupervised methods due to the abundance of unlabeled data.
Deep Self-Organizing Maps (DSOMs) are unsupervised learning
architectures capable of high level feature abstraction. In this
paper, we analyze the effectiveness of using DSOMs for visual data
mining. DSOM’s visual data mining capability was evaluated
using the following visual data explorations methodologies: 1) U-
Matrix, 2) hit maps and 3) data histograms. In comparison with
traditional single layered SOM architectures, experimental results
showed that DSOMs produced more accurate visual
representations of the underlying data distributions. Therefore,
DSOM is a viable method for generating easily understandable
visual representations of high-dimensional complex datasets.
These visual representations can be powerful tools in the real
world, leading to better understanding of systems and thus
enabling the design of better algorithms for control and
monitoring.

Keywords— Deep Learning, Self-Organizing Map (SOM); Deep

Self Organizing Map (DSOM); MNIST; Unsupervised
classification; Visual Data Mining
I. INTRODUCTION
Data mining methodologies have become almost

indispensable with the increase of amount and complexity in
data in almost every domain [1], [2]. Data mining is an
interactive process which requires intuition and human
knowledge coupled with modern machine learning techniques
[3]. Visual data mining (VDM) is the process of exploration,
interaction, and reasoning with abstract data in human
perceivable way [2]. Thus, it allows humans to incorporate
human intelligence in the data mining process, and it has been
shown that human involvement increase the effectiveness of
data mining processes [2].

Pattern recognition is an important aspect of data mining in
a multitude of areas [4]-[11]. Supervised pattern recognition
(SPR) approaches albeit high performance, require labeled
data[9], [12]. Unlabeled data is abundant in real world
applications and obtaining sufficient amount of labeled data can
be costly [3],[12],[13]. Therefore, SPR poses challenges in
cases where there is a lack of available labeled data. Due to that
unsupervised and semi-supervised learning based pattern
recognition methods are becoming common [10], [11], [13]. In
these methods, they use expertise of domain experts in order to
improve the effectiveness of data mining and to validate the
learning processes.

Self-Organizing Maps (SOMs) are unsupervised learning
algorithms which have the capability of mapping a high-
dimensional data distribution onto a low-dimensional grid
while preserving the most important topological and metric
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relationships of the input data [14], [15],[16]. These mappings
can be used to visualize these high dimensional data while
preserving their topological structure. Since SOMs have the
capability of adjusting the network for representing the
topological properties of input data, it has been widely used in
visual data mining as a dimensionality reduction and feature
extraction tool [2], [17], [18]. SOM has the ability of
visualization of multi-dimensional data in a human perceivable
way [14], [15],[16]. SOMs have better capability of revealing
the overlapping structure in clusters compared to other
traditional cluster analysis techniques [14] [15]. SOMs have
successfully used in many areas including speech recognition,
robotics, process control and telecommunication [6]-[9], [5].

Deep Self-Organizing Maps were proposed in literature to
add the high level feature abstraction capability to single
layered SOMs. [19] [20]. In order to overcome this limitation,
Liu et al [20] proposed the Deep SOM (DSOM)), an architecture
composed of multiple layers, similar to a Deep Neural Network
(DNN), . Their work suggested adding multiple sequential
layers of SOMs and “sampling” layers. The sampling layer
combined multiple SOMs form the preceding layer into a single
map. Even though DSOM solves the high-level feature
abstraction limitation, DSOM architecture proposed by Liu et
al. is computationally expensive [21]. In our previous work, we
proposed a parallelizable DSOM architecture to alleviate the
performance bottle neck while preserving the high level feature
abstraction capabilities [21]. In [21], we showed that growing
the network in width by adding parallel SOM layers feeding
into the same sampling layer, as opposed to growing in depth
improved computational time while retaining classification
accuracy and feature abstraction capability. In this paper, by the
acronym “DSOM” we refer to the parallelizable DSOM
architecture we presented in [21].

In this paper, we evaluate the effectiveness of DSOM for
visual data mining capabilities. The analysis is carried out using
widely used visual data exploration methods such as U-matrix,
hit maps and data histograms. These visualizations are
qualitatively compared to the same visualizations generated by
single layer SOM (referred to as SOM hereafter).

The rest of the paper is organized as follows. Section II
provides brief overview of the SOM learning algorithm;
Section III overviews the DSOM architecture we proposed in
[21] and DSOM based visual data mining; Section IV presents
and discusses the experimental results, and finally, section V
concludes the paper.

II. UNSUPERVISED LEARNING ALGORITHM OF SELF
ORGANIZING MAPS

This section briefly reviews the traditional SOM
architecture by T. Kohenen [22].The Self Organizing Map



Neiirons Topological Connections

| e
| a_,-:'*:t";-;? Input vecter

Tl
@ | xffaif‘tfm
44@ a‘ Jr“:,—"f

Figure 1: 2D Self Organizing Map Architecture

algorithm was introduced in 1981 by T. Kohenen [22]. It uses
winner-take-all competitive leaning method.

A typical SOM network consists of a topological grid of
neurons which are arranged in 1D or 2D lattice. Each neuron
maintains a weight vector W= {w;, w, ...., w,} of m dimension,
where m is the dimension of input feature vector. Input pattern
can be represented as X = {x;, x2, ...., Xn}. Figure 1 illustrates
the structure of 2D SOM architecture. The learning process of
the SOM network can be described as follows,

Step 1: Randomly initialize all the weight vectors of the
SOM network.

Step 2: Randomly select an input pattern X from the
training data set.

Step 3: Find the Best Matching Unit (BMU) for the selected
input X by calculating the Euclidian distance between X and
weight vectors of the neurons in the neuron lattice. BMU can
be calculated as,

o 2 (1)
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Here, N is the number of neurons in the SOM.

Step 4: The weights in the neighborhood neurons (j) of
BMU neuron (winning neuron j¥) can be calculated as follows,
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where, N;« defines the neighbourhood region of j*, and 77 (7) is

the learning rate at epoch 7. The learning rate is decayed through
the epochs as follows:
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where, 0.49 is a constant which found experimentally [20].
Neighbourhood calculation performs using the following
equation,
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Where O / corresponds to the radius of the neighbourhood. It

has to be noted that the neighborhood is decayed along with the
epochs.

Step 5: Repeat step 2-4 until a specified convergence
criteria has been reached.

Classification on the last SOM layer can be performed using
the sample hits of each neuron. Proposed unsupervised
classifier implementation is discussed later in the paper.

III. DEEP SELF ORGANIZING MAP BASED VISUAL DATA MINING

This section discusses DSOM architecture and the DSOM
based visual data exploration techniques for visual data mining.

As mentioned, DSOMs have proven to be capable of high
level feature abstraction. Therefore, we hypothesize that the
output from DSOMs will provide better visualizations that
reflect the relationships that exist in input data when compared
to the SOM. These visualizations can help domain experts/users
extract knowledge from the data such as available patterns, input
correlations and pattern distributions. This can lead to better
understanding of complex systems and thus result in better data-
driven and expert knowledge driven prediction, monitoring and
control systems.

A. Deep Self Organizing Maps

The main idea behind the DSOM merges the concepts of
unsupervised learning from SOMs and high level feature
abstraction Convolution Neural Networks (CNNs). In CNNs,
each unit in a layer receives inputs from a set of units located in
a small neighborhood of its preceding layer [23], [24]. CNNs
possess the idea of local receptive fields which are capable of
extracting basic features such as edges, endpoints and corners.
These extracted features are combined in the subsequent layers
to obtain higher level features. This layers structure is
incorporated in the DSOMs such that SOMs in higher-level
layers are able to learn more abstract information than the SOM
layer in its preceding layer. DSOMs are primarily used for image
data.

In DSOMs, input patterns (images) are divided into small
patches and each patch is processed using a separate SOM, i.e.
in a SOM layer each patch is processed using separate SOMs at
parallel. The wining neuron indexes of all SOMs that processed
the patches are then organized into a single 2D grid in the next
layer (sampling layer). In the parallelizable DSOM presented in
[21], more than one SOM layer in used parallel (see Figure II).
These parallel layers can have different map sizes
accomplishing two major goals: 1) improve the computational
efficiency of DSOMs and 2) improve the generalization
capability. Computational efficiency is increased by increasing
the number of operations that can be carried out in parallel to
improve computational efficiency. Generalization capability is
increased by supporting learning features of different resolution
though different map sizes. This process of SOM and sampling
layers are repeated until the last layer. The final layer is a single
SOM which takes the preceding sampling layer as the input.

Use of multiple maps in parallel results in a lesser number
of serial SOMs in PD-SOM architecture. Computations of
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Figure 2: Deep Self Organizing Map

parallel SOM layers are performed in parallel, and thus results
in less computation time compared to the initial DSOM in [20].
Further, experimental results showed that the parallelizable
DSOM architecture showed a considerable improvement in
robustness to noisy data. The parallelizable DSOM architecture
can be extended by adding more parallel layers to make it wider
and by adding more SOM layers and sampling layers to make
it deeper. In the interest of brevity, the complete training
algorithm of DSOM is not presented in this paper. If interested,
readers are directed to [21] for the detailed training process.

DSOM was implemented as an unsupervised classifier.
Unsupervised classifiers (clustering based classifiers) don’t
require labeled data initially [11], [25].They require a set of
training datapoints which can be clustered by a unsupervised
learning based model. Once the clusters are generated, the
domain expert can interpret these clusters using different
knowledge discovery and data visualization methods and can
assign a class for each cluster.

B. DSOM based Visual Data Mining

As mentioned before, data visualization and visual data
exploration play important roles in knowledge discovery [18].
Domain experts and analysts need tools for generation of
hypotheses about models and datasets. Therefore, VDM plays
a major role in knowledge discover by providing interactive
data presentations and various visual displays for domain
experts [18].

SOMs are widely used in visual data mining as
dimensionality reduction and feature extraction tools due to
their capability of mapping high dimentional data into a low
dimention space, i.e. They have the data projecton capability
allowing visual inspection [2], [26]. Once data is mapped to low
dimensional spaces, human experts can explore and interect
with data which allows to incooparate human knowledge into
data mining process.
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There are number of methods which have been proposed in
the literature to explore information based on SOMs. Most
commonly used methods are U-matrix, P-matrix, clustering of
model vectors, projecting model vectors into low dimensional
spaces, hitmaps and data histograms [27] [26]. As an initial
step, this paper focuses on three methods: U-matrix, hit map
and data histograms. The visualization techniques are presented
below.

U-matrix: (Unified Distance Matrix) is one of the most widely
used methods for visualizing the cluster structure of SOMs [28],
[29]. Tt shows the distance between weight vectors of
neighboring neurons (immediate neighbors) using color codes
[30]. If distances between neighboring units are small, then they
represents a cluster pattern with similar characteristics. If
neighboring units are far apart, then these units are located on
low dense input space with few patterns. They can be
considered as separation between clusters.

HitMaps: This shows how often a neuron is chosen as the
BMU. Hit map information can be utilized in clustering the
SOM by using zero-hit units to indicate cluster boarders [28] .

Data Histograms: These represent how many data items are
represented by a specific unit. This is also a slightly different
representation of hitmap representation.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section discusses the experiments performed in the
paper. First, the unsupervised classifier implementation is
discussed. Then the experimental setup used for different test
cases is presented. After that, the experiments carried out to test
different architectures are presented. Finally, comparison of two
model based on different visual data mining methods are
presented and their importance for future data mining is
discussed.



TABLE I: RESULTS OBTAINED FOR SOM ALGORITHM

Model Layer 1 T et Test Accuracy for Different Noise Levels [%]
ode MapSize rain Accuracy est Accuracy 2 5 10 20 40 50 60
1 8*8 61.98 61.864 61.908 62.03 62.02 62.066 58.348 52.596 25.742
2 12%12 63.16 62.764 62.866 62.806 62.89 62.648 58.888 53.136 27.236
3 16*16 65.59 64.638 64.782 64.738 64.654 64.398 59.548 52.64 26.416
4 20*20 66.76 66.338 66.354 66.314 66.414 65.866 61.098 54.762 28.072
5 24*24 69.36 68.57 68.638 68.576 68.712 68.130 63.136 55.574 26.072
TABLE II: THE ARCHITECTURE OF THE DSOM [20]

Meuron Index Class, Class, Class,,

= o P, e Layer Nmap MapSize Patch(k) Stride

. | S — Layer 1 100 - - 2

i Layer 2 1 8*8 5%5 1

: B. Experimental Setup
n,, | n,.Class, | n,Class; | n,Class,

Figure 3: Generated hit map representation

A. Implementation of Unsupervised Classifier

In this paper, we implemented an unsupervised classifier
using SOMs. In order to analyse the clustering capability we
used a labeled dataset in this study. However, it has to be noted
that the labels were not used in the training. After training was
completed, a special type of neuron hitmap was generated using
the idea of conventional neuron hitmap. This map was
generated based on the number of times a specific neuron
become BMU for a specific class. Figure 3 shows the special
hit map that we generated. Each cell (nm,Class,) represent
number of times the neuron ‘m’ became BMU for the class ‘n’.
This type of a hitmap was generated as opposed to
conventional hitmap because it provides the user with a better
understanding of the class distributions in the data.

By looking at the special hit map and the U-matrix, a domain
expert can assign a class for each neuron/cluster. For this
experiment, since we had the labels available, we assigned a
class for each neuron based on the maximum number of times a
specific unit became the BMU for a specific class. When labels
are available and when there are ties between classes, a domain
expert will get involved to resolve the rites. In such cases,
domain expert will assign classes to units based on the classes
of neighboring neurons, by looking at the U-matrix. This method
reduces the human workload for designing the classifier and at
the same time, allows integrating human expertise in the
classification process.

After each neuron is assigned a class label, the train accuracy
and test accuracy are calculated as performance measures. The
robustness of the models were measured by introducing
different salt and pepper noise levels to the MNIST dataset. Salt
and pepper noise removal is one of the major topics in the field
of image enhancement [31]. It is a type of impulse noise that
occur in images. Further, it has been shown that such noise has
a substantial effect on the performance of image processing
applications in various industrial tasks such as face recognition
[32].

MNIST benchmark handwritten character recognition data
set is used for the training and testing of two models. It contains
images of hand written characters (0 to 9 digits) of 28X28
pixels in size. The ratio of training to test data set was used as
3:10. For this experiment, a significantly smaller training set of
3000 images were used to reduce the classifier training time.
The complete test set of 10000 images were used to test the
accuracy of algorithms. Building an efficient classifier using a
small training data will be advantageous in cases where there is
only limited amount of training data to traing a supervised
classifier and to for implementing classifiers which are time and
cost efficient. The training data set was selected randomly while
maintaining the balance class lables.

C. Classification Accuracy: SOM

As mentioned before, the map size was selected within 8-24
range which is the maximum and minimum map size used for
DSOM models. So, it allowed to perform a fair comparison
between DSOM and SOM models. Table 1 presents the results
obtained for SOM architecture.

It was noticed that the increase the map size result in an
increase of train accuracies. For the noise range 2-20, there
were no much differences in test accuracy. There was a
decrement in accuracy with the increase of noise for all the
models. For higher noise levels (40-60) the decrement was
drastic compared to lower noise levels. The highlighted result
in the table was the maximum result obtained for SOM, out of
all models under each accuracy criteria.

D. Classification Accuracy: DSOM

As discussed previously the parameters for the DSOM was
selected based on our previously presented DSOM [21]. Table
II presents the architecture details of DSOM. Map sizes were
selected experimentally and the range was limited to 18x18 to
24x24. 1t has to be noted that the map sizes were changed only
in the first layer of the architecture. Last layer map size kept as
constant (8*8) where unsupervised classification is performed.
Table III presents the results obtained for DSOM architecture.
Only the result of best for models within selected range was
presented with relevant map sizes in parallel SOM layers.

307



TABLE III: RESULTS OBTAINED FOR DSOM ALGORITHM

Layerl . Test Accuracy for Different Noise Levels [%]
Model ™Patch [ Patch | Map | Map Agcﬁ'r':cy Ac::::lcy ) 5 o | 20 | 4 | s | e
Scalel Scale2 Size 1 Size 2
1 10 10 22%22 18*18 85.12 83.744 83.804 | 83.818 | 83.632 | 83.196 | 75.504 | 64.05 | 21.718
2 10 10 22%*22 16*16 85.68 83.82 83.68 | 83.772 | 83.656 | 82.92 | 75.028 | 61.712 | 20.724
3 10 10 22%22 14*14 86.64 84.868 84.788 | 84.838 | 84.608 | 84.044 | 75.846 | 63.408 | 21.706
4 10 10 22%22 24*24 85.72 83.802 83.872 | 83.79 | 83.624 | 83.336 | 75.616 | 63.224 | 20.612

It can be observed that all DSOM models showed better
train and test accuracies compared to SOM architecture. The
different between train to test accuracy was around 2%. Similar
to SOM architecture, there were no significant difference in test
accuracies for the lower noise levels (between 2 to 20). Further,
for higher noise levels, there was a huge accuracy decrement.

The test accuracy difference between the best SOM model
and the best DSOM model was more than 18%, which was a
significant difference. This difference accounted for the better
performance of DSOM architecture compared SOM.

E. Visual Data Mining

As discussed earlier, one major characteristics of SOMs is
that they can be easily interpreted via various visualization
techniques. This means that SOMs are very suitable for visual
data mining. As mentioned, this paper uses the U-Matrix,
hitmaps and data histograms for evaluating the VDM capability
ofthe DSOM:s. Since the classifications of all the DSOM models
were performed on a 2D neuron map of size 8X8 (last SOM

(@ (b)

©

Figure 4: (a) Hit map Representations for SOM, (b) DSOM — scale
representation (¢) DSOM- Unscaled Representation
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layer), the SOM model with 8X8 was selected for the
comparison.

Hit map: Hit map representation which shows how often a unit
is chosen as a BMU. Figure 4 (a) and (b) represents the hit map
observed for SOM and DSOM, respectively. Hit maps SOM
and DSOM were mapped to the same scale for comparison
purposes. It was observed that only a few units of the SOM were
activated and most units showed 0 hit value, whereas in DSOM,
all units showed a hit value greater than 0 (all units were active).
When comparing the neuron hits, active SOM units showed
very high neuron hits compared to DSOM. In Fig 4(b), it
appears as if the DSOM neurons don not show a difference in
operation. However, In Figure 4 (c), which represents an
unscaled hit map of DSOM, it can be seen that some units show
higher activity compared to the other units.

As mentioned, Fig 3 presents the special hit map which we
used for implementation of the unsupervised classifier. Using
that we generated a new hit map representation where each unit
represents the class label which it activated as BMU at the
highest frequency (See Figure 5). It was observed that (8*8)
SOM model doesn’t show proper clusters whereas DSOM hit
map shows better clusters, where neighboring units act as one

(a) (b)
Figure 5: Class Label distribution (a) SOM, (b) DSOM
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Figure 6: U-matrix representation (a) SOM, (b) DSOM
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Figure 8: Data Histogram for DSOM

cluster to represent one class. The ‘-1’ value is assigned for
neurons with 0 BMU hits.

U-Matrix: Figure 6 (a) represents the U-matrix obtained for
SOM architecture whereas Figure 6 (b) represents the U-matrix
observed for DSOM architecture. It was observed that SOM U-
matrix doesn’t show any large clusters or cluster separations for
both SOM and DSOM but for DSOM it showed some cluster
separations. Large blue color area in the SOM U-matrix
corresponds to the area with inactive units. Further analysis of
the U-Matrix is needed to improve the visualization on this
front. There are several methodologies proposed in literature on
ways of calculating the U-Matrix. These methodologies will
have to be explored. Furthermore, as alternatives of the u-
matrix, other weight vector visualization techniques such as t-
distributed Stochastic Neighbor Embedding (t-SNE) can be
evaluated [33].

Data histograms: Figures 6 and 7 represent the data
histograms obtained for SOM and DSOM architectures
respectively. Data histograms visualize which units are
activated and how often it became BMU compared to other
units in the map. It also represents the amount of each unit acted
as the BMU for each class label. According to the data
histogram of SOM, it was observed that all the activated units
were activated for more than one class label. There were very
few units which were activated for only a single class (See

neuron number 51, for class label 0). Further, number of hits
per unit was significantly higher for SOM units compared to
DSOM units. According to the data histogram for DSOM, it can
be seen that all the units have been activated to some degree.
However, it can be seen that most of the neuron has been
activated only for a specific class label. In the ones that has
many class labels, one class label has dominated the others in
terms of frequency.

The better cluster separations observed in hit map and data
histograms, make it easier for the domain expert to label the
neuron and group the neurons based on classes. Hence, hit map
and data histograms improve the visual data mining process.

V. CONCLUSIONS

This paper analyzed the effectiveness of using DSOMs for
Visual Data Mining. The VDM capability was evaluated using
visual data exploration methodologies implemented on the
DSOM. Specifically, U-Matrix, neuron hit map and data
histograms were used in this study. These visualizations
generated by the DSOM were compared to the single layered
SOM. The algorithms were tested on the MNIST dataset. In
terms of classification accuracy, DSOM significantly out-
performed the SOM. In terms of visualizations for VDM,
experimental results showed that DSOM based hit map and data
histograms provided a better representation of the underlying
data distribution than the SOM. Due to its high-level feature
abstraction capabilities, DSOM is able produce visualizations
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which accurately reflect the input data distributions. This
enables a user to examine these visualizations and extract
patterns, relationships and behavior that exist in data and glean
a better understanding of systems. This understanding can lead
to better predictive systems, better monitoring systems and
improved control schemes. Therefore, based on experimental
results, it can be concluded that DSOM is a viable method for
visual data mining.
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