
1932-4529/18©2018IEEE36 IEEE INDUSTRIAL ELECTRONICS MAGAZINE ■ JUNE 2018

Digital Object Identifier 10.1109/MIE.2018.2824843

Date of publication: 25 June 2018

s the Internet of Things (IoT)

continues its run as one of

the most popular tech-

nolog y buzzwords of

today, the discussion

really turns from how

the massive data sets

are collected to how value can be de-

rived from them, i.e., how to extract

knowledge out of such (big) data. IoT

devices are used in an ever-growing

number of application domains (see

Figure 1), ranging from sports gad-

gets (e.g., Fitbits and Apple Watches)

or more serious medical devices (e.g.,

pacemakers and biochips) to smart

homes, cities, and self-driving cars,

to predictive maintenance in mission-

critical systems (e.g., in nuclear power

plants or airplanes). Such applica-

tions introduce endless possibilities

for better understanding, learning,

and informedly acting (i.e., situational

awareness and actionable information

in government lingo). Although rapid

expansion of devices and sensors

brings terrific opportunities for tak-

ing advantage of terabytes of machine

data, the mind-boggling task of un-

derstanding growth of data remains

Deep Learning
and Reconfigurable
Platforms in the
Internet of Things
Challenges and Opportunities in Algorithms and Hardware

ROBERTO FERNANDEZ MOLANES,
KASUN AMARASINGHE,
JUAN J. RODRIGUEZ-ANDINA,
and MILOS MANIC

IM
A

G
E

 L
IC

E
N

S
E

D
 B

Y
 I
N

G
R

A
M

 P
U

B
L
IS

H
IN

G

A

JUNE 2018 ■ IEEE INDUSTRIAL ELECTRONICS MAGAZINE 37

and heavily relies on artificial intel-

ligence and machine learning [1], [2].

Where traditional approaches do not

scale well, artificial intelligence tech-

niques have evidenced great success in

applications of machine and cognitive

intelligence (such as image classifica-

tion, face recognition, or language trans-

lation). We recognize the widespread

usage of various well-known machine-

learning algorithms in the IoT (such as

fuzzy systems, support vector machines,

Bayesian networks, reinforcement learn-

ing, and others), but we focus here on

the most recent and highly advanta-

geous type of machine learning in the

IoT: deep learning.

The success of deep learning and,

in particular, deep neural networks

greatly coincides with the advent of

highly specialized, powerful parallel-

computing devices, i.e., graphics pro-

cessing units (GPUs) [4]. Although the

overwhelming processing and memory

requirements can be met with high-

performance computing hardware, the

resulting sheer size, cost, and power

consumption would make the goal of

deep neural network-enabled IoT and

embedded devices unattainable.

In this scenario, field-programmable

system-on-chip (FPSoC) platforms,

which combine in a single chip one or

more powerful processors and recon-

figurable logic [in the form of field-pro-

grammable gate array (FPGA) fabric],

are emerging as a very suit-

able implementation alterna-

tive for the next generation of

IoT devices. The fine-grained

structure of FPGAs has proven

to provide powerful implemen-

tations of machine-learning

algorithms with less power

consumption than comparable

platforms (in terms of cost or

size) [5], making them ideal for

machine and cognitive intelli-

gence in strict resource-limited

applications, like many in the

IoT (while GPUs remain as the

dominant platforms for other

IoT scenarios).

Moreover, FPSoCs allow

the processing load to be

balanced between proces-

sors and reconfigurable log-

ic, the most suitable implementa-

tion (hardware or software) being used

for each specific functional building

block to be optimized, and functional-

ity to be easily reconfigured on site.

In addition, reconfigurable platforms

dramatically ease system scalabil -

ity and upgrading. Hence, they pro-

vide high levels of flexibility, as de-

manded by the IoT market.

In this regard, this article identi-

fies hardware implementation chal-

lenges and thoroughly analyzes the

aforementioned suitability of FPSoCs

for a broad range of IoT applications

involving machine-learning and arti-

ficial intelligence algorithms, which

is demonstrated in two case studies,

one related to deep learning and the

other to the more classical evolution-

ary computing techniques.

Deep Learning for the IoT
In the era of the IoT, the number of sens-

ing devices that are deployed in every

facet of our day-to-day life is enormous.

In recent years, many IoT applications

have arisen in various domains, such

as health, transportation, smart homes,

and smart cities [6]. It is predicted by

the U.S. National Intelligence Council

that, by 2025, Internet nodes will reside

in everyday things, such as food pack-

ages, furniture, and documents [7]. This

expansion of IoT devices, together with

cloud computing, has led to creation

of an unprecedented amount of data

[8], [9]. With this rapid development of

the IoT, cloud computing, and the ex-

plosion of big data, the most fundamen-

tal challenge is to store and explore

these volumes of data and extract use-

ful information for future actions [9].

The main element of most IoT ap-

plications is an intelligent learning

methodology that senses and under-

stands its environment [6]. Tradition-

ally, many machine-learning algorithms

were proposed to provide intelligence

to IoT devices [10]. However, in recent

years, with the popularity of deep neu-

ral networks/deep learning, using deep

neural networks in the domain of the

IoT has received increased attention

[6], [11]. Deep learning and the IoT

were among the top three technology

trends for 2017 announced at Gartner

Symposium/ITxpo [12]. This increased

interest in deep learning in the IoT do-

main is because traditional machine-

learning algorithms have failed to

address the analytic needs of IoT sys-

tems [6], which produce data at such

a rapid rate and volume that they de-

mand artificial intelligence algorithms

with modern data analysis approaches.

Depending on the predominant factor,

volume or rate, data analytics for IoT

applications can be viewed in two main

categories: 1) big data analysis and 2)

data stream analysis.

When focusing on data volume, the IoT

is one of the major sources of

big data. Analytics of the gener-

ated massive data sets directly

benefit the performance and

enhance capabilities of IoT sys-

tems. Extracting knowledge from

such big data is not a straight-

forward task. It requires capa-

bilities that go beyond the tra-

ditional inference and learning

techniques [13], generally ex-

pressed with the six Vs [14], [15]:

 ■ volume, which refers to

the ability to ingest, pro-

cess, and store large data

sets (petabytes or even exa-

bytes)

 ■ velocity, which refers to

the speed of data genera-

tion and frequency of de-

livery (sampling)FIGURE 1 – IoT devices (adapted from [3]).

38 IEEE INDUSTRIAL ELECTRONICS MAGAZINE ■ JUNE 2018

 ■ variety, which refers to the data

from different sources and types

(structured or unstructured); even

the types of data have been grow-

ing fast

 ■ variability, which refers to the need

for getting meaningful data consid-

ering scenarios of extreme unpre-

dictability

 ■ veracity, which refers to bias, noise,

and abnormality in data (only the

relevant, usable data within ana-

lytic models is to be stored)

 ■ value, which refers to the purpose

the solution has to address.

Figure 2 shows the six Vs of big data

and how the advantages of deep-learn-

ing techniques can be used to meet

these challenges in big data. More spe-

cific applications of deep-learning tech-

niques in big data in the IoT are pre-

sented in the next section. The latest

considerations add three additional Vs

to the mix: vulnerability (of data), vola-

tility (relevance of data before becom-

ing obsolete), and visualization (ways of

meaningful visualization).

As mentioned, in addition to per-

forming data mining on massive collec-

tions of data produced by IoT systems,

another important aspect is dealing

with real-time data streams that re-

quire fast-learning algorithms. IoT ap-

plications, such as traffic management

systems and supply chain logistics of

supermarkets, involve large data sets

that have to be analyzed in near real

time [16]. Mining fast-generated data

streams requires the algorithms to be

adaptable to the change of data distri-

butions as the environment changes

around the devices [17]. This context/

concept drift occurs due to the chang-

es in factors, such as location, time,

and activity. In addition to the require-

ment of speed adaptability, the lack of

labeled data in IoT data streams adds

to the difficulty because it makes su-

pervised learning methods inadequate

for analysis [17], [18]. Therefore, highly

adaptable unsupervised and semisu-

pervised deep-learning techniques are

required for mining the fast-changing

data streams in IoT devices.

Applications of Deep
Learning in the IoT
Deep neural networks have revolu-

tionized a multitude of fields because

of their ability for learning through

multiple layers of abstraction [19],

[20]. This enables learning of complex

patterns that are hidden in complex

data sets, a capability ideal for min-

ing massive heterogeneous data sets.

Different deep neural network algo-

rithms have been used to good effect

in a range of areas that were very dif-

ficult to tackle in the past. Long short-

term memory algorithms, e.g., have

been shown to be extremely useful in

speech recognition and natural lan-

guage processing [21]–[23], and con-

volutional neural networks have been

used to produce state-of-the-art per-

formance in many vision applications,

such as image classification [24], [25].

Therefore, deep learning is applied ex-

tensively in a range of IoT devices for

human interaction.

One of the most important deriva-

tives of the IoT is the concept of smart

cities. Improving cities is becoming a

global need with the rising and urban-

ization of the population [26]. The con-

cept of smart cities has been around

since the early 2000s. Smart cities

claim to contain thousands of sens-

ing devices, which generate massive

amounts of data that can be harnessed

to optimize and improve the operations

of these cities [27]. Smart cities try to

accomplish goals, e.g., reducing pollu-

tion and energy consumption or opti-

mizing transportation [28]. IoT devices

can help collect data about how people

use cities, and machine-learning algo-

rithms can be used to understand that

data [26]. Adding further intelligence to

the embedded sensing nodes allows lo-

cal storage needs and network conges-

tion to be reduced.

One of the most important aspects

of smart cities powered by the IoT is

smarter energy management. With the

advent of smart meters, there are mas-

sive amounts of data being collected

on energy consumption. This enables

research on energy consumption pre-

diction, which can lead to optimizing

energy usage and the way energy is

generated in smart cities and smart

grids. Machine-learning algorithms

are indispensable in this area, and

deep-learning algorithms, such as

long short-term memory algorithms,

restricted Boltzmann machines, and

convolutional neural networks, have

been proposed to perform data-driv-

en predictions of energy usage at both

Volume Velocity

Variability

Value
Big Data

Veracity

Variety

Handling

Heterogeneous

Data

Complex Pattern

Extraction

Automatic

Feature

Extraction

Training Benefit

from Larger

Data Sets

Multiple Layers of

Abstraction

Deep Learning

FIGURE 2 – The big data six Vs and their connection with deep learning.

JUNE 2018 ■ IEEE INDUSTRIAL ELECTRONICS MAGAZINE 39

the individual consumer and aggres-

gate levels [29]–[32].

Another important aspect of smart

cities is using machine learning and the

IoT for traffic management. Optimized

traffic management targets reducing

congestion, long queues, delays, and

even the carbon footprint of cities [33].

To that end, driverless or self-driving

cars have become a much-discussed

topic recently, with major car compa-

nies, such as Tesla, BMW, and Ford, and

tech giants, such as Google and Apple,

stepping up to the plate to develop truly

intelligent autonomous cars.

Self-driving cars have a plethora

of devices continuously sensing their

environment and a suit of machine-

learning algorithms for understanding

and fusing the various data sources,

such as LIDAR depth maps and im-

ages. Deep neural networks have been

extensively explored in this domain,

as they have the capability of auto-

matically learning features to pick out

obvious ones, such as lane marking

and road edges, as well as other subtle

ones that exist on the roads [34].

Computer vision is a highly sought-

after application in many use cases in

the IoT domain. Smart cameras, espe-

cially in smart security systems, play

an important role in smart homes [35],

and vision applications, such as face

recognition, are very crucial [36]. Ma-

chine-learning algorithms have been

used extensively in image-processing

applications and, in that, convolution-

al neural networks have been deemed

the gold standard since the advent of

LeNet [37]. Ko et al. presented a frame-

work for energy-efficient neural net-

works to be used in IoT edge devices

[38]. The authors claim that in deploy-

ing deep neural networks-based im-

age processing, energy efficiency can

be the performance bottleneck, and

hence, they present the recent tech-

nological advantages for making deep

neural networks, such as convolu-

tional and recurrent neural networks,

more energy efficient.

Another area in which machine-

learning-driven vision applications is

used in the IoT is human activity rec-

ognition in smart homes. Fang and Hu

proposed a deep-learning-based frame-

work for human activity recognition in

smart homes used especially for help-

ing people with diseases [39]. Context

awareness is another important aspect

of the IoT, closely tied with mining data

streams. Machine learning has a very

crucial role to play in understanding

the environment and the context of the

device from the data.

In recent years, we have seen com-

mercial IoT devices or edge devices

emerging in the market, such as Nest

Thermostat [40] and Amazon devices

powered by Alexa [41], that have the

ability of sensing their environment

and using machine learning to under-

stand data. Context-aware devices

or things have the ability of under-

standing the environment and adapt-

ing their reasoning capabilities [10].

Further, machine-learning algorithms

are extremely crucial for some areas,

such as intelligent health trackers for

medicine, e.g., intelligent pacemakers

or photoplethysmography systems

[42], [43] that can monitor the heart-

beat of a patient.

Adding intelligence to these de-

vices is very important, as it permits

improved and faster preventive detec-

tion of pathologies. Compared with

the option to send data via the Inter-

net to remote sensors for analysis or

saving data for postprocessing, this

option enables a dramatic reduction

of data transmission and storage (with

the respective reduction of energy

consumption) and the possibility to

work offline (very useful for remote or

rural areas).

Safety and Security in the IoT
In addition to enabling and facilitat-

ing IoT applications, deep learning

plays a crucial role in keeping the

highly connected devices safe. Due

to its ubiquity in the modern techno-

logical ecosystem, the IoT is a very

attractive target for cyberattackers.

Therefore, cybersecurity is one of the

most important research areas in the

field of the IoT [44], [45]. It is known

that a large number of zero-day at-

tacks are emerging continuously due

to the various protocols added to the

IoT [46]. The multiple-level feature-

learning capabilities of deep learning

have been exploited in this domain to

good effect.

Diro and Chilamkurti presented a

deep neural networks-based distrib-

uted methodology for cyberattack de-

tection in the IoT [46]. They compared

their distributed deep model with a

shallow neural network and a central-

ized deep model, and they concluded

that the distributed deep model out-

performs the others significantly.

Another area of cybersecurity is mal-

ware detection. Pajouh et al. presented

a deep recurrent neural network-based

malware detection methodology for

the IoT [47]. The authors implemented

three different long short-term memory

configurations and showed that their

algorithm can achieve 98.18% accura-

cy in malware detection for the tested

data set. In all aspects of cybersecurity,

when taking a data-driven approach,

anomaly detection algorithms are very

useful tools. Canedo and Skjellum pre-

sented an artificial neural network-

based anomaly detection methodology

tailored for IoT cybersecurity [48]. They

recognized that the main challenges for

anomaly detection in IoT data are quan-

tity and heterogeneity. They showed

that the artificial neural network-based

methodology was able to overcome

those challenges in detecting anomalies

in the data sent from edge devices.

Hardware Implementation
Challenges
The implementation of machine-learn-

ing algorithms has been a hot topic in

research for several years but recently

boomed, mainly thanks to the oppor-

tunities created by the advancements

in chip fabrication technologies, which

enabled solving design problems at a

cost and with a time-to-market that

were unthinkable just a few years ago.

The resolution of Google Challenge

by AlexNet using an eight-layer deep

neural network [24] is usually cited

as an inflexion point that boosted the

research on new chips and applica-

tions of machine-learning algorithms,

especially in the field of neural net-

works. This explosion coincides with

the deceleration of Moore’s law (even

Gordon Moore himself predicted the

end of his Moore’s law [92]), which

40 IEEE INDUSTRIAL ELECTRONICS MAGAZINE ■ JUNE 2018

now makes it economically

reasonable to work on op-

timized software and hard-

ware structures, as opposed

to the trend of the last 30

years, where waiting for the

next generation of devices

was more profitable than in-

vesting in optimization. All of

these facts combined make

it more difficult than ever

for designers to decide the

best possible architecture for

their applications.

The digital processing

platforms currently available in the

market are summarized in Figure 3,

where they can be compared in terms

of performance and flexibility. Flex-

ibility refers here to ease of develop-

ment, portability, and possibility for

adapting to changes in specifications.

For high-end deep neural network ap-

plications, where performance is the

most important parameter, general-

purpose GPUs (GPGPUs) are the domi-

nant solution. Their parallel structure,

the latest efforts by manufacturers to

compete for machine-learning appli-

cations (e.g., adding specific instruc-

tions for fast neuron inference), and

their reduced cost due to the mass

production for personal computers

made them ideal for training and infer-

ence of deep neural networks.

The latest NVIDIA Volta GV100 GPU

platform, including 21.1 billion transis-

tors within a die size of 815 mm2, is

capable of doing inference 100 times

faster than the fastest current central

processing unit (CPU) on the market

[49]. This unparalleled brute power

force comes at a price: high power

consumption, the need for custom

data types (not necessarily float), ir-

regular parallelism (alternating se-

quential and parallel processing), and

divergence (not all cores executing the

same code simultaneously). That is

why some companies are investing in

neural network application-specific in-

tegrated circuits (ASICs) for improved

performance at the expense of losing

flexibility. Examples are the first and

second generation (optimized for in-

ference and both inference and train-

ing, respectively) of the Google tensor

processing unit (TPU), slowly stealing

high-performance computing applica-

tions from GPUs.

While this is the pace for high-

performance computing, the lack of

flexibility in ASICs and the high power

consumed by GPUs do not fit in wide

areas of the IoT world that demand

power-efficient, flexible embedded

systems. This explains why many IoT

devices are currently based on micro-

controllers, digital signal processors

(DSPs), and multicore CPUs. How-

ever, as the IoT market grows, both

manufacturers and designers face a

problem due to the diversification of

applications and increasing demand

for computing power (particularly for

machine-learning algorithms), leading

a transformation from sense making

to decision making [50].

Offering a wider portfolio of devic-

es to cover the different applications

means less market share per device,

increasing manufacturing costs. How-

ever, offering complex heterogeneous

devices that can be used in several

applications implies higher integra-

tion of functionality and a waste of sili-

con, also increasing the overall cost

[51]. In this scenario, FPGAs, located

in the middle of Figure 3, appear as

a balanced solution to add flexibility

and efficient computing power for ma-

chine-learning algorithms to the next

generation of IoT devices. Combin-

ing processors and FPGAs in a single

package results in the FPSoC concept.

In the following sections, FPSoC ar-

chitecture is presented along with

an analysis of the usefulness of its

hardware resources for implementing

machine-learning algorithms

in IoT devices.

FPSoC Architecture
FPSoCs feature a hard process-

ing system (HPS) and FPGA

fabric on the same chip. Both

parts are connected by means

of high-throughput bridges,

which provide faster commu-

nications and power savings

compared to multichip solu-

tions [53]. The HPS in first-gen-

eration FPSoCs featured single-

or dual-core ARM application

processors and some widely used pe-

ripherals, such as timers and control-

lers for different types of communica-

tion protocols, i.e., Ethernet, universal

serial bus (USB), interintegrated circuit

(I2C), universal asynchronous receiver-

transmitter (UART), and controller area

network (CAN).

Pushed by increasing application

requirements, some devices in the

newest FPSoC families include quad-

core ARM processors, GPUs, and

real-time processors in the HPS, with

FPSoCs becoming complex heteroge-

neous computing platforms. Resourc-

es in the FPGA fabric also evolved

from the basic structure consisting of

standard logic resources and relative-

ly simple specialized hardware blocks

(e.g., fixed-point DSP multipliers, mem-

ory blocks, and transceivers). Current

devices include much more complex

blocks, e.g., DSP blocks with floating-

point capabilities, video codecs for

video compression, soft-decision for-

ward error recovery (SD-FEC) units to

speed up encoding/decoding in wire-

less applications, or analog-to-digital

converters (ADCs). Figure 4 shows the

generic block diagram of a modern

FPSoC device, where the location and

connection of the aforementioned ele-

ments is depicted.

All computing elements (proces-

sors and GPU) have their own cache

memory and share common synchro-

nous dynamic random access memo-

ry (SDRAM) external memory, usually

controlled by a single multiport con-

troller. A main switch interconnects

masters and slaves in the HPS. The

FPGA fabric can be accessed as any

Microcontrollers

DSPs

ASICs

FPGAs Multicore

P
e
rf
o
rm
a
n
c
e

Flexibility

GPGPUs

FIGURE 3 – The performance versus flexibility of digital processing
platforms (adapted from [52]).

JUNE 2018 ■ IEEE INDUSTRIAL ELECTRONICS MAGAZINE 41

other memory-mapped peripheral from

the HPS through the HPS-to-FPGA bridg-

es. There are also several options to ac-

cess the HPS from the FPGA fabric: FPGA-

to-HPS bridges to access HPS peripherals,

the accelerator coherency port (ACP) to

coherently access processor cache, and

FPGA-to-SDRAM bridges to access main

memory in a noncoherent way.

Not all FPSoCs include all blocks

in Figure 4. Table 1 shows a summary

of characteristics of the most relevant

currently available FPSoC families.

Intel FPGA and Xilinx offer powerful

devices with application processors

and large FPGA fabrics, focused on

higher-end applications, such as fifth-

generation communications, artificial

intelligence, data centers, or video pro -

cessing. Microsemi and Quicklogic

offer simpler devices with real-time

processors, focusing on data acquisi-

tion, wearables, and smartphones.

Despite the additional components

that manufacturers provide in some

ADC

DAC

Memory

Blocks

DSP

Blocks
SD-FEC

Transceivers

Memory

Controllers

FPGA

Reconfigurable Logic:

LEs and Interconnect

FPGA-to-HPS

Bridges

FPGA-to-SDRAM

Bridges

ACP

(Cache

Access)

HPS-to-FPGA

Bridges

Main Switch

Application

Processor

Real-Time

Processor

SDRAM Controller

HPS

GPU
DMA

Controller

External SDRAM

H
P

S
 P

e
ri
p
h
e
ra

ls
 (

U
S

B
,

E
th

e
rn

e
t,
 T

im
e
rs

,
U

A
R

T
,

C
A

N
,
I2

C
..
.)

FIGURE 4 – The block diagram of a modern FPSoC. DAC: digital-to-analog converter.

TABLE 1 – THE CHARACTERISTICS OF MODERN FPSoC FAMILIES.

COMPANY FAMILY
TRANSISTOR
SIZE

APPLICATION PROCESSOR REAL-TIME PROCESSOR FPGA

TYPE
MAXIMUM
F (GHz) TYPE

MAXIMUM
F (MHz)

MAXIMUM
SIZE

MAXIMUM
F (MHz) OTHER

Intel FPGA Cyclone V SoC 28 nm Single/dual
32-bit ARM
Cortex-A9

0.925 — — 301 K LEs 200

Arria V SoC 28 nm Single/dual
32-bit ARM
Cortex-A9

1.05 — — 462 K LEs 300

Arria 10 SoC 20 nm Dual 32-bit ARM
Cortex-A9

1.5 — — 1.15 M LEs 500 Floating-point
DSP blocks in
FPGA

Stratix 10 SoC 14 nm tri-gate Quad 64-bit
ARM Cortex-A53

1.5 — — 5.5 M LEs 1000 Floating-point
DSP blocks in
FPGA

Xilinx Zynq-7000 Artix 28 nm Single/dual
32-bit ARM
Cortex-A9

0.866 — — 85 K LCs — ADC

Zynq-7000 Kintex 28 nm Dual 32-bit ARM
Cortex-A9

1 — — 444 K LCs — ADC

Ultrascale+ Kintex 20 nm Dual/quad
64-bit ARM
Cortex-A53

1.5 Dual-
cortex-R5

600 1143 K LCs — Option to GPU,
video codec,
ADC, DAC,
SD-FEC

Microsemi SmartFusion 130 nm — — Single-
cortex-M3

100 6 K LEs 350 ADC, nonvolatile
FPGA

SmartFusion 2 130 nm — — Single-
cortex-M3

166 150 K LEs 350 ADC, nonvolatile
FPGA

QuickLogic S3 — — — Single-
cortex-
M4-F

80 — — DSP, power
management unit

42 IEEE INDUSTRIAL ELECTRONICS MAGAZINE ■ JUNE 2018

devices targeting specific applica-

tions, the most important in an FPSoC

are still the HPS processors and the

FPGA fabric. To successfully deploy

an application taking the greatest pos-

sible advantage of these devices, pro-

cessors and FPGA should smoothly

cooperate with each other, executing

the parts of the functionality that best

fit their respective architectures, shar-

ing data between them when needed.

A designer typically starts with a

software implementation in HPS and

moves to the FPGA those parts of the

code that need acceleration. Commu-

nication between HPS and FPGA is not

a trivial task and depends on several

factors, such as data size, operating

system (OS), or FPGA operating fre-

quency. It is very important to choose

the best possible mechanism for HPS–

FPGA data exchange, otherwise it can

impair the acceleration achieved by

moving portions of the algorithms to

hardware. In [54]–[56], different anal-

yses of the influence of these factors

in the transfer rate are carried out.

In [56], the results of the analysis are

elaborated into design guidelines to

maximize the performance of FPSoC

implementations.

FPGA design is typically based

on hardware description languages

(HDLs), which require from designers

good knowledge of digital hardware.

Fortunately, nowadays it is also pos-

sible to automatically compile code

for both the FPGA and the HPS from

high-level languages, namely C/C++

(using high-level synthesis tools, ei-

ther commercial or open-source, like

LegUp [57]), OpenCL, MATLAB, and

LabVIEW. This gives designers with

limited or no experience in digital de-

sign access to the excellent character-

istics of FPSoCs. Code generated by

these tools is not as optimized as that

resulting from HDL workflows, but

they allow design time to be dramati-

cally reduced [58].

FPSoCs and the IoT
FPSoC characteristics make them very

suitable for many IoT applications. The

availability of HPS peripherals for the

most popular communication proto-

cols enables interoperability among a

broad range of devices [59]. The HPS,

e.g., can simultaneously connect with

sensors using I2C and with other de-

vices via Ethernet or Wi-Fi. The FPGA

fabric adds great flexibility, enabling

the implementation of communication

protocols not included in HPS as well

as specific functionalities that achieve

higher performance in hardware than

in software, such as pulsewidth modu-

lation, capture and compare, or fre-

quency measurement units.

Connectivity of IoT devices raises

serious security and privacy concerns.

At the hardware level, one possible

way to address them is with ARM’s

TrustZone Technology [60], which de-

fines some peripheral slaves as secure,

so only trusted masters can access

them. A secure interrupt controller,

e.g., may be used to create a noninter-

ruptible task that monitors the system,

and a secure keyboard may ensure se-

cure password entries. This concept

has also been extended to software, as

shown in Figure 5. A trusted firmware

layer controls context switching of the

processor from trusted OS and apps

to regular OS and apps, which may

run malicious software completely

isolated from trusted software and se-

cure hardware.

To protect intellectual property,

current FPSoCs also allow the FPGA

configuration bitstream as well as the

boot image for the HPS to be encrypt-

ed [61]. In addition to the solutions

provided by manufacturers, extra

functionalities can be implemented to

prevent hacker attacks. These include

physically unclonable functions, use-

ful for unique network identification,

traceability, and access control [62].

FPSoCs enable the design of em-

bedded systems with very small size,

low power consumption, and perfor-

mance sometimes even equal or high-

er than that of desktop platforms [64].

Regarding energy, FPSoCs largely out-

perform computer systems in terms of

operations per second and watt [65].

FPSoCs are also more power efficient

than GPU-based SoC designs [66],

particularly for neural network imple-

mentations [67], [68]. However, poor

usage of the available FPGA resources

may result in some cases in CPUs and

GPUs outperforming them [69]. With

this concern in mind, FPSoCs are the

best option for implementing machine

learning in battery-powered systems

with strict size limitations, like drones

[70] or wireless sensor networks [71].

Regarding economic and market-

ing issues, FPSoCs are inexpensive

because they are mass-produced com-

ponents. Time to market is short and,

thanks to the new high-level synthesis

tools (like OpenCL and C/C++ compil-

ers), similar to that of pure software so-

lutions. Because of its reconfigurable

nature, functionality can be upgraded

without the need for changing the

hardware platform, improving postsale

support compared to nonconfigurable

devices like ASICs.

FPSoCs and Machine Learning
FPGAs exhibit some unique features

for efficiently implementing por-

tions of machine-learning algorithms

in hardware.

 ■ Parallelism: Most machine-learning

algorithms include parallelizable

portions of the code that can take

advantage of this property of the

hardware. Each neuron in a neural

network layer can be computed in

parallel, e.g. In evolutionary com-

puting, fit functions can also be con-

currently executed for the whole

population of genes/particles.

 ■ Pipelining: Although this technique

is also used in processors and

GPUs to fetch and execute instruc-

tions, greater advantage of it can be

taken in FPGAs, where the output

of an operation can directly feed

Apps

OS

Hypervisor

Trusted OS

Trusted Apps

ARM Trusted Firmware

Nonsecure

Peripherals

Secure

Peripherals

FIGURE 5 – The ARM TrustZone security
(adapted from [63]).

JUNE 2018 ■ IEEE INDUSTRIAL ELECTRONICS MAGAZINE 43

the input of the next one, avoiding

the extra clock cycles required to

compute the same operations in

the arithmetic/floating-point units

of processors and GPUs.

 ■ Scalability and upgrading: It is com-

mon for machine-learning algo-

rithms to change structure or size

(e.g., adding layers or inputs to a

neural network) to improve per-

formance from knowledge gained

during test or normal operation.

In a hardware/software coprocess-

ing implementation, this may mean

to port more (or new) parts of the

algorithm to hardware. The same

may happen in the context of the

IoT when new functionality, wheth-

er related to the target machine-

learning algorithm or not (such as

a web server or an encryption al-

gorithm), needs to be added to the

system. The abundance of standard

logic resources and specialized

hardware blocks in FPGAs, together

with their reconfiguration capabili-

ties, facilitates system scalability

and upgrading.

Current FPGAs include tens to hun-

dreds of DSP blocks usually equipped

with fixed-point multipliers and ad-

ders. Other operations, e.g., floating

point, are implemented by a combi-

nation of these blocks and standard

FPGA logic elements (LEs). FPGAs

are very powerful for fixed-point op-

erations [72] but achieve lesser per-

formance in number of floating-point

operations per second than GPUs for

most machine-learning implementa-

tions [73]. However, in some cases the

configurable FPGA architecture com-

pensates this drawback and achieves

faster execution times [74].

In an effort to make FPSoCs more

competitive, newer devices from Intel

FPGA (Arria 10 and Stratix 10 fami-

lies) include DSP blocks with single

floating-point capabilities in the FPGA

fabric. Table 2 summarizes the size

(LE and DSP block usage) and per-

formance (latency and maximum op-

erating frequency, f
MAX

) of floating-

point operators in Arria V and Arria 10

FPGAs for some usual floating-point

operations in machine-learning algo-

rithms. Double-precision operations

require more than twice the resources

and have almost twice the latency of

single-precision ones. Addition, sub-

traction, and multiplication make low

usage of resources, whereas other op-

erators are less efficiently implement-

ed. Using floating-point DSP blocks

results in improvements in terms of

either significant reduction of logic re-

source usage or increase of maximum

operating frequency. The exception is

the exponential operation, because

it does not suit the fixed structure of

floating-point DSP blocks well.

In low-level design with HDLs, it is

easy to estimate the performance of a

given algorithm implementation in a giv-

en device from the information regard-

ing available hardware resources and

latency of the different operations.

This is not the case when using high-lev-

el synthesis tools, where the compiler

can make inefficient use of hardware

resources. To achieve acceptable per-

formance when using these tools, it

is a must to consider all of the available

options to help the tool efficiently fit the

design in the FPGA fabric [76].

The aforementioned hardware fea-

tures are complemented in FPSoCs

with those provided by the applica-

tion processors in HPS. Those range

from real-time processors with fixed-

point arithmetic capabilities available

in simpler devices to DSP-like proces-

sors for speeding up signal processing

tasks, or to dedicated floating-point

units or single-instruction multiple

data coprocessors for vector arithme-

tic in more advanced devices.

Case Study 1: Implementation of
Deep Neural Networks in FPSoC
Neural network algorithms and, in

particular, deep neural networks are

TABLE 2 – THE RESOURCE USAGE AND LATENCY FOR USUAL FLOATING-POINT OPERATIONS IN ARRIA FPSoCS [75].

OPERATION
FLOATING-POINT
PRECISION

ARRIA V (FIXED-POINT DSP BLOCKS) ARRIA 10 (FLOATING-POINT DSP BLOCKS)

LATENCY
(CLOCK
CYCLES) LEs

DSP
BLOCKS F

MAX
 (MHz)

LATENCY
(CLOCK
CYCLES) LEs

DSP
BLOCKS F

MAX
 (MHz)

Addition/subtraction Single Nine 1,193 Zero 250 Five 1,208 Zero 319

Double 12 2,903 Zero 252 Seven 2,765 Zero 290

Multiplication Single Five 390 One 281 Three 123 One 289

Double Seven 848 Four 186 Five 780 Four 289

Division Single 18 1,140 Four 249 16 985 Four 347

Double 35 3,523 15 185 30 3,020 15 258

Exponential base e Single 14 1,795 Two 217 26 745 Six 365

Double 28 5,335 Ten 185 28 5,390 Ten 260

Sine Single 12 1,463 Three 240 11 1,463 Three 280

Double 29 4,370 14 185 29 4,795 14 260

44 IEEE INDUSTRIAL ELECTRONICS MAGAZINE ■ JUNE 2018

executed in two phases: training

(where network weights are adapted

to achieve the desired functionality)

and inference (deployment operation

of the network). Training is highly

computationally demanding, so it is

typically implemented by processing

batches of data (several patterns at

the same time) offline, for which GPUs

are very suitable. The inference phase

is suitable for FPGA implementation,

because it typically has to be imple-

mented over single patterns in real

time and, as shown in Figure 6, the

neurons in one layer can be executed

in parallel. Moreover, the operations

to be performed by each neuron can

be very efficiently implemented using

DSP blocks. These operations are

 () () * ,a y a y w1x i

i

n

ix

0

1

v= -

=

-e o/ (1)

where ()a yx is the output of neuron

x in layer y, w
ix
 is the weight between

neuron i in layer y−1 and neuron x

in layer y, and v is the so-called acti-

vation function of the neuron. The

classical neuron activation functions

a r e () /(x e1 1Sigmoid x
= +

-) a n d

() / .x e e e eTanh x x x x
= - +

- -^ ^h h

These operations involve divisions

and exponentials so, according to

Table 2, their FPGA implementation

is not particularly efficient. Because

of that, some works addressed their

efficient hardware implementation us-

ing linear approximations. The use of

Taylor approximations and reuse of

the multipliers and adders for the lin-

ear part of the neuron is proposed in

[77], reducing the additional hardware

needed for the activation function to

almost none. The solution in [78] in-

curs just 0.03% error with regard to

an implementation using true expo-

nential and division cores. However,

the activation function ReLu(x) = max

(0, x) has recently been shown to pro-

vide better classification results and

shorter training times than the former

ones for deep neural networks [79],

simplifying their implementation in

all platforms.

Although most implementations

use floating-point operations, recent

works have shown that fixed-point

approximations provide equal perfor-

mance in some cases [80]. Moreover,

for some applications it is possible

to aggressively scale down (what is

called quantization) the number of bits

in fixed-point representations. In [81],

e.g., it is reported that with only five-

bit integer resolution for the weighting

coefficients, performance degradation

is negligible compared with the origi-

nal 32-bit floating-point resolution.

Other operations that can be used

to reduce FPGA logic resource usage

are network pruning (removing non-

important connections) [81], network

clustering (fusing neurons) [82], and

retraining (adding a penalty term in

the training cost function to maximize

not only the network fitting to inputs

and outputs but also the bit depth

needed for the network weights) [83].

These techniques, together with the

use of simpler activation functions like

ReLu, will surely boost the number of

implementations in FPGA-based de-

vices in the near future.

FPSoC platforms have already

been used to improve pure FPGA im-

plementation. In [84], a Zynq-7000 is

used to implement an image classifier

based on a deep convolutional neural

network. The network layers (convolu-

tional, pooling, and fully connected)

are executed in the FPGA, whereas

the HPS is responsible for synchro-

nization [controlling direct memory

access (DMA) in the FPGA] and the

final steps of the classification pro-

cess. A set of configurable processing

elements (PEs) performs all network

operations (see Figure 7). This imple-

mentation is compared against others

using an Intel Xeon CPU at 2.9 GHz,

an NVIDIA TK1 mobile GPU with 192

CUDA cores, and an NVIDIA K40 GPU

with 2,880 CUDA cores. Results show

that the FPSoC is 1.4 times faster than

the CPU, with 14 times less power

consumption; two times faster than

the mobile GPU, with the same power

consumption; and 13 times slower

than the GPU, but consuming 26 times

less power. This shows that FPSoCs

achieve excellent performance–power

consumption tradeoffs.

In [85], a Zynq-7000 is used to im-

plement a Deep-Q network (Figure 8)

that learns how to play a board game

called Trax. Starting from a pure C/C++

software implementation and us-

ing high-level synthesis, the most

time-consuming parts of the algo-

rithm, in this case matrix multiplica-

tion of the convolutional layers, were

moved to hardware. Each layer has

its own matrix multiplication core

that uses a double-precision floating-

point multiply accumulate module to

perform operations and two FPGA-

SDRAM ports to share data with the

processor in the HPS.

One port is used to read operands

from the processor and the other to

write results back. The processor ex-

ecutes the rest of the algorithm. Results

show a 26 times acceleration with re-

spect to the pure software implemen-

tation. Design time was very short, be-

cause hardware was directly compiled

from C/C++ code using high-level synthe-

sis, and only the most time-consuming

parts of the algorithm were migrated

to hardware. This example shows that

Artificial Neuron Artificial Neural Network

Input

Layer

Hidden

Layers

Output

Layer

FIGURE 6 – A graphical representation of a single neuron and an artificial neural network.

JUNE 2018 ■ IEEE INDUSTRIAL ELECTRONICS MAGAZINE 45

high-level synthesis tools may allow

impressive performance improvements

to be achieved by migrating software

implementations to hardware ones with

little programming effort.

Artificial neural network imple-

mentation in FPGA-based devices is

becoming so popular that a neural net-

work compiler, which generates HDL

code from high-level specifications,

has recently been created [86]. Design-

ers only have to select the structure,

activation function, and other param-

eters of the artificial neural network,

and the compiler automatically gener-

ates the HDL code, applying the most

suitable optimization options in each

case. This reduces the design time

compared to using high-level syn-

thesis, where a deep analysis of the

 network and the FPGA is needed to op-

timize the implementation.

Case Study 2: Implementation of
Evolutionary Computing in FPSoC
FPSoCs are suitable implementation

platforms not only for deep-learning

algorithms, such as deep neural net-

works, but also for other machine-

learning algorithms (such as evolution-

ary computing ones) used in a wide

range of IoT applications. Evolution-

ary computing algorithms are used

for complex optimization problems. In

them, a population of individuals (e.g.,

particles or genes) is spread through

the solution space, and a fit function

is evaluated for them, the goal being

to minimize or maximize it. Depending

on the values of the fit function for the

different individuals in the current and

past iterations, these move toward a

possible solution.

After some iterations, the algorithm

should converge to the global solution.

Several families of such algorithms exist.

They are characterized by the search

policy of the individuals: ant colony op-

timization (which emulates ant colony

food search), particle swarm optimiza-

tion (which emulates the movement

of a flock of birds where the distance

between individuals is important), or

genetic algorithms (where particles ex-

perience gene evolution through, e.g.,

mutation and crossover), to name just

the most popular ones.

Although the fit function can be

evaluated in parallel for each indi-

vidual, evolutionary computing algo-

rithms are not always as suitable for

FPGA implementation as artificial neu-

ral networks because their arithmetic

operations are completely dependent

on the application and the algorithm

used. The application defines the fit

function and, depending on the op-

erations involved, it will be more or

less appropriate for FPGA implemen-

tation. Generally speaking, the more

pipelineable and parallelizable the fit

FPGA

Main Switch

SDRAM Controller

HPS

External SDRAM

FPGA-to-HPS

Bridges
HPS-to-FPGA

Bridges

FPGA-to-SDRAM

Bridges

Application

Processor

C
o
n
s
o
le

U
A

R
T

S
D

-C
a
rd

C
o
n
tr

o
lle

r

SD

Card

UART to

USB

Matrix
Multiplication
Convolutional

Layer 1

Matrix
Multiplication
Convolutional

Layer 2

FIGURE 8 – The implementation of a Deep-Q network on Zynq-7000. SD: secure digital.

FPGA

Main Switch

General-Purpose

Processor

SDRAM Controller

HPS

External SDRAM

H
P

S

P
e
ri
p
h
e
ra

ls

FPGA-to-HPS

Bridges

HPS-to-FPGA

Bridges

FPGA-to-SDRAM

Bridges

Computing Complex

PE PE PE PE

DMA

Input Buffer Output Buffer

C
o
n
tr

o
lle

r

. . .

FIGURE 7 – The implementation of a deep convolutional neural network on Zynq-7000.

46 IEEE INDUSTRIAL ELECTRONICS MAGAZINE ■ JUNE 2018

function, the better. Also, according to

Table 2, fit functions involving multi-

plications and additions are more suit-

able for FPGA implementation than

those using exponentials and divi-

sions. The operations involved in par-

ticle movement in the aforementioned

evolutionary computing algorithms are

 ■ ant colony: addition, multiplication,

division, exponential, square root,

and random number generation

[87], hence, these algorithms are

not particularly suitable for FPGA

implementation

 ■ particle swarm optimization: multipli-

cation, addition, and random num-

ber generation [88], which can be ef-

ficiently implemented in FPGA

 ■ genetic algorithms: random number

generation and movement or modi-

fications of chromosomes [89]; pro-

cessing of chromosomes perfectly

fits in FPGA hardware, to the ex-

tent that it can be concurrently ex-

ecuted for all individuals in a single

clock cycle.

Until recently, when considering

the use of configurable platforms for

implementing evolutionary computing

algorithms, both the algorithm itself

(particle movement) and the evalua-

tion of the fit function were typically

executed in hardware [88], [90]. In

some cases where simple fit functions

can be used, a soft processor (i.e., a

processor implemented using stan-

dard FPGA logic resources) may be in

charge of evaluating the fit function

in software, as reported, e.g., in [91].

However, in real-life problems it is

very usual that fit function evaluation

takes most of the execution time, and

soft processors are not fast enough

to justify a software implementation,

therefore most designers opted for

pure hardware implementations.

Today, the situation is different

with the availability of powerful FP-

SoC devices, whose embedded hard

processors work much faster than soft

ones and have in many cases floating-

point capabilities. In this scenario, the

most efficient solution is to implement

the evaluation of the fit function in

hardware and execute the algorithm

in software.

In [64], a particle swarm optimiza-

tion algorithm is proposed for evaluat-

ing the state of health of solar panels

located in remote areas, where human

intervention is difficult. In a pure soft-

ware implementation, the evaluation

of the fit function takes 83% of the ex-

ecution time. Using a Cyclone V SoC

device, the evaluation of the fit func-

tion is moved to hardware. In a first

approach, the processor waits in idle

state for the FPGA to finish this evalu-

ation. Even though, in this particular

case, the fit function is neither inter-

nally parallelizable nor pipelineable,

it can be concurrently computed for

12 particles, resulting in 3.4 times ac-

celeration with regard to the pure soft-

ware implementation.

An improved solution takes advan-

tage of idle processor time for it to

generate the random numbers to be

used in subsequent iterations of the

algorithm, resulting in 4.8 times ac-

celeration. The achieved performance

is comparable to that obtained with a

desktop computer but with much low-

er size, cost, and power consumption,

as shown in Figure 9(a). The whole

monitoring system fits in a small elec-

tric box [Figure 9(b)] and can be lo-

cated under each panel.

Closing Discussion
The ubiquitous deployment of machine

learning and artificial intelligence across

IoT devices has introduced various intel-

ligence and cognitive capabilities. One

may conclude that these capabilities

70

60

50

40

G
e
n
e
ra

ti
o
n
s
/s

30

20

10

0
PC Cyclone V

SoC Without

FPGA

Cyclone V

with FPGA

Cyclone V

with FPGA and

Hardware/Software

Coprocessing

Float Double

(b)(a)

FIGURE 9 – (a) A performance comparison of particle swarm optimization algorithm for different Cyclone V SoC implementations and a desktop
computer. (b) The system based on a Cyclone V SoC board.

FPSoCs are suitable implementation platforms not

only for deep-learning algorithms but also for other

machine-learning algorithms.

JUNE 2018 ■ IEEE INDUSTRIAL ELECTRONICS MAGAZINE 47

have led to the success of a wide and

ever-growing number of applications,

such as object/face/speech recognition,

wearable devices and biochips, diagno-

sis software, or intelligent security and

preventive maintenance.

Developments in other areas, such

as humanoid robots, self-driving cars,

or smart buildings and cities, will likely

revolutionize the way we live in the very

near future. This new reality comes with

significant advantages but also with

many challenges related to the acqui-

sition, processing, storage, exchange,

sharing, and interpretation of the contin-

uously growing, overwhelming amount

of data generated by the IoT.

Up to now, complex applications

involving deep neural networks have

mainly used the brute force of GPUs for

both training and inference. In the last

two years, some companies have pro-

duced ASICs with better performance

and lower power consumption than

GPUs. These solutions are suitable for

high-performance computing applica-

tions, but neither the low flexibility of

ASICs nor the high-power consumption

of GPUs is suitable for many IoT appli-

cations, which demand energy-efficient,

flexible embedded systems capable of

coping with the increasing diversifica-

tion of the IoT.

In contrast, FPSoC architectures,

which include processors and FPGA

fabric in the same chip, are a balanced

solution to implement machine-learn-

ing applications for IoT devices. The

latest advancements in FPGA hardware

allow a wide range of machine-learning

algorithms to be efficiently implement-

ed. FPGAs are very well suited to per-

form deep neural network inference

because of the parallel arrangement of

neurons in layers and the type of math-

ematical functions they have to com-

pute. This will be even more so in the

future because of the trend to use sim-

pler neuron activation functions (like

ReLu) that, in addition to improving

training, fit better in FPGA resources.

Moreover, the use of quantization tech-

niques and custom data types (which

is difficult to achieve, if possible at all,

in devices with fixed architectures like

ASICs and GPUs) can significantly re-

duce complexity and improve perfor-

mance. In our opinion, the trends for

neural network implementation in IoT

devices in the following years can be

summarized as follows.

 ■ Training will rely on heavy-duty

cloud-based GPUs. ASICs like the

new Google TPU (optimized for both

inference and training, with impres-

sive performance) will have a piece

of the pie here, but with the limita-

tion posed by their lack of flexibility.

 ■ The simplest IoT devices will use

CPUs and ASICs for inference to re-

duce cost and power consumption,

respectively. Larger devices will

use FPGAs/FPSoCs for inference

because of their balanced flexibil-

ity and computer power. For heavy-

duty inference, the same consider-

ations as for training apply.

FPSoCs are an excellent alternative

for evolutionary computing, because

they allow the algorithm itself to be

executed in software while the objec-

tive function can be computed in par-

allel in hardware for all individuals.

However, their efficiency in this con-

text greatly depends on whether or

not the specific operations involved in

the computation of the objective func-

tion fit available hardware resources.

It can be concluded that, thanks to the

availability of hard processors with

floating-point units, FPSoCs are very

suitable for implementing evolution-

ary computing algorithms. In the case

of particle swarm, it has been dis-

cussed how the same performance as

a desktop computer can be achieved

with FPSoCs with a fraction of the size,

cost, and power consumption.

In our opinion, the implementation

in FPSoCs of IoT devices with machine-

learning capabilities will be boosted

by the availability of increasingly effi-

cient high-level synthesis tools based

on widely known and used languages,

such as OpenCL, C/C++, or MATLAB,

enabling software designers to take ad-

vantage of the excellent characteristics

of FPSoC devices.

Acknowledgments
Roberto Fernandez Molanes’s and Juan

J. Rodriguez-Andina’s work in this arti-

cle has been supported by the Spanish

Ministerio de Economia y Competitivi-

dad under grant TEC2014-56613-C2-1-P.

Biographies
Roberto Fernandez Molanes (roberto

fem@uvigo.es) received his M.Sc. degree

in electrical engineering and M.Sc. de-

gree in advanced technologies and pro-

cesses in industry from the University of

Vigo, Spain, in 2012 and 2013, respective-

ly, where he is currently working toward

his Ph.D. degree in the Department of

Electronic Technology. His research in-

terests include the design of hardware/

software coprocessing systems and

high-performance instrumentation us-

ing field-programmable system-on-chip

platforms. He is a Student Member of

the IEEE and a member of the IEEE In-

dustrial Electronics Society.

Kasun Amarasinghe (amarasing

hek@vcu.edu) received his B.Sc. degree

in computer science from the Univer-

sity of Peradeniya, Sri Lanka, in 2011.

He is currently reading for his doctoral

degree in computer science at Virginia

Commonwealth University, Richmond.

His research interests include interpre-

table machine learning, fuzzy systems,

deep learning, data mining, and natu-

ral language processing. His interests

also extend to applications of such

algorithms to a multitude of domains,

including cyberphysical systems and

energy systems. He has gained expe-

rience on Internet of Things systems

from multiple research projects funded

by the U.S. Department of Energy and

The ubiquitous deployment of machine learning

and artificial intelligence across IoT devices

has introduced various intelligence and

cognitive capabilities.

48 IEEE INDUSTRIAL ELECTRONICS MAGAZINE ■ JUNE 2018

industry leaders. He is a Student Mem-

ber of the IEEE and a member of the

IEEE Industrial Electronics Society.

Juan J. Rodriguez-Andina (jjrd

guez@uvigo.es) received his M.Sc. de-

gree from the Technical University

of Madrid, Spain, in 1990 and his Ph.D.

degree from the University of Vigo,

Spain, in 1996, both in electrical engi-

neering. He is an associate professor in

the Department of Electronic Technol-

ogy, University of Vigo. In 2010–2011,

he was on sabbatical leave as a visiting

professor at the Advanced Diagnosis,

Automation, and Control Laboratory,

Electrical and Computer Engineering

Department, North Carolina State Uni-

versity, Raleigh. His research interests

include the implementation of complex

control and processing algorithms and

intelligent sensors in embedded plat-

forms. He has authored more than 160

journal and conference articles and

holds several Spanish, European, and

U.S. patents. He is a Senior Member of

the IEEE and a member of the IEEE In-

dustrial Electronics Society.

Milos Manic (misko@ieee.org) re-

ceived his M.S. degree in computer

science from the University of Nis,

Serbia, in 1996 and his Ph.D. degree in

computer science from the University

of Idaho in 2003. He is a professor in

the Computer Science Department

and director of the Modern Heuris-

tics Research Group at Virginia Com-

monwealth University, Richmond. He

has more than 20 years of academic

and industrial experience leading

more than 30 research grants focus-

ing on machine and deep learning

in energy, resilience, cybersecurity,

and human–system interaction in

mission-critical infrastructures. He

is a founder of the IEEE Industrial

Electronics Society Technical Com-

mittee on Resilience and Security in

Industry. He has published more than

180 refereed articles in international

journals, books, and conferences and

holds several U.S. patents. He built his

expertise through research on a num-

ber of U.S. Department of Energy and

industry-funded projects. He is a Se-

nior Member of the IEEE and an IEEE

Industrial Electronics Society Senior

AdCom member.

References
[1] M. Jaffe. (2014). IoT won’t work without arti-

ficial intelligence. WIRED. [Online]. Available:
https://www.wired.com/insights/2014/11/iot-
wont-work-without-artificial-intelligence/

[2] E. Sappin. (2017, June 28). How AI and IoT must
work together. VentureBeat. [Online]. Avail-
able: https://venturebeat.com/2017/06/28/
how-ai-and-iot-must-work-together/

[3] E. Ahmed, I. Yaqoob, I. Abaker Targio Hashem,
I. Khan, A. Ibrahim Abdalla Ahmed, M. Imran,
and A. V. Vasilakos, “The role of big data ana-
lytics in Internet of Things,” Comput. Netw.,
vol. 129, pp. 459–471, Dec. 2017.

[4] B. Del Monte and R. Prodan, “A scalable GPU-
enabled framework for training deep neural
networks,” in Proc. 2016 2nd Int. Conf. Green
High Performance Computing (ICGHPC 2016).

[5] M. D. Valdés Peña, J. J. Rodriguez-Andina, and
M. Manic, “The Internet of Things: The role of
reconfigurable platforms,” IEEE Ind. Electron.
Mag., vol. 11, no. 3, pp. 6–19, Sept. 2017.

[6] M. Mohammadi, A. Al-Fuqaha, S. Sorour,
and M. Guizani. (2017). Deep learning for IoT
big data and streaming analytics: A survey.
arXiv. [Online]. Available: https://arxiv.org/
abs/1712.04301

[7] L. Atzori, A. Iera, and G. Morabito, “The Inter-
net of Things: A survey,” Comput. Netw., vol. 54,
no. 15, pp. 2787–2805, Oct. 2010.

[8] J. Gubbi, R. Buyya, S. Marusic, and M.
Palaniswami, “Internet of Things (IoT): A vi-
sion, architectural elements, and future direc-
tions,” Future Gener. Comput. Syst., vol. 29, no.
7, pp. 1645–1660, Sept. 2013.

[9] F. Chen, P. Deng, J. Wan, D. Zhang, A. V. Vasila-
kos, and X. Rong, “Data mining for the Internet
of Things: Literature review and challenges,”
Int. J. Distrib. Sens. Netw., vol. 11, no. 8, pp.
1–14, Aug. 2015.

[10] C. Perera, S. Member, A. Zaslavsky, and P.
Christen, “Context aware computing for the In-
ternet of Things: A survey,” Commun. Surveys
Tuts., vol. 16, no. 1, pp. 1–41, 2014.

[11] J. Tang, D. Sun, S. Liu, and J. L. Gaudiot, “En-
abling deep learning on IoT devices,” Comput.,
vol. 50, no. 10, pp. 92–96, 2017.

[12] K. Panetta. (2016, Oct. 18). Gartner’s top 10
strategic technology trends for 2017. Smarter
with Gartner. [Online]. Available: https://www
.gartner.com/smarterwithgartner/gartners-
top-10-technology-trends-2017/

[13] X.-W. Chen and X. Lin, “Big data deep learning:
Challenges and perspectives,” IEEE Access,
vol. 2, pp. 514–525, May 2014.

[14] M. Hilbert, “Big data for development: A re-
view of promises and challenges,” Dev. Policy
Rev., vol. 34, no. 1, pp. 135–174, Jan. 2016.

[15] H. Hu, Y. Wen, T. S. Chua, and X. Li, “Toward
scalable systems for big data analytics: A
technology tutorial,” IEEE Access, vol. 2, pp.
652–687, May 2014.

[16] A. Akbar, A. Khan, F. Carrez, and K. Moessner,
“Predictive analytics for complex IoT data
streams,” IEEE Internet Things J., vol. 4, no. 5,
pp. 1571–1582, Oct. 2017.

[17] D. Nallaperuma, D. De Silva, D. Alahakoon, and
X. Yu, “A cognitive data stream mining tech-
nique for context-aware IoT systems,” in Proc.
IECON 2017—43rd Annu. Conf. IEEE Industrial
Electronics Society, pp. 4777–4782.

[18] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies,
M. Smith, and P. Steggles, Towards a Better Un-
derstanding of Context and Context-Awareness.
New York: Springer-Verlag, 1999, pp. 304–307.

[19] I. Goodfellow, B. Yoshua, and A. Courville, Deep
Learning. Cambridge, MA: MIT Press, 2016.

[20] Y. LeCun, Y. Bengio, and G. Hinton, “Deep
learning,” Nature, vol. 521, no. 7553, pp. 436–
444, May 2015.

[21] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R.
Salakhudinov, R. Zemel, and Y. Bengio, “Show,
attend and tell: Neural image caption genera-
tion with visual attention,” in Proc. Int. Conf. on
Machine Learning, 2015, pp. 2048–2057.

[22] S. Venugopalan, H. Xu, J. Donahue, M. Rohr-
bach, R. Mooney, and K. Saenko. (2014). Trans-
lating videos to natural language using deep
recurrent neural networks. arXiv. [Online].
Available: https://arxiv.org/abs/1412.4729

[23] S. Wang and J. Jiang. (2015). Learning natural
language inference with LSTM. arXiv. [Online].
Available: https://arxiv.org/abs/1512.08849

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“ImageNet classification with deep convolu-
tional neural networks,” in Proc. 25th Int. Conf.
Neural Information Processing Systems 25, 2012,
pp. 1097–1105.

[25] K. Simonyan and A. Zisserman. (2014). Very
deep convolutional networks for large-scale
image recognition. arXiv. [Online]. Available:
https://arxiv.org/abs/1409.1556

[26] J. Walker. (2017, Sept. 14). Smart city artificial
intelligence applications and trends. TechEm-
ergence. [Online]. Available: https://www
.techemergence.com/smart-city-artificial-
intelligence-applications-trends/

[27] J. Chin, V. Callaghan, and I. Lam, “Under-
standing and personalising smart city services
using machine learning, the Internet-of-
Things and big data,” in Proc. 2017 IEEE 26th
Int. Symp. on Industrial Electronics (ISIE), pp.
2050–2055.

[28] E. Woyke. (2018, Feb. 21). A smarter smart city.
MIT Technology Review. [Online]. Available:
https://www.technologyreview.com/s/610249/
a-smarter-smart-city/

[29] D. Marino, K. Amarasinghe, and M. Manic,
“Building energy load forecasting using deep
neural networks,” in Proc. IECON 2016 42nd
Annu. Conf. IEEE Industrial Electronics Society,
pp. 7046–7051.

[30] K. Amarasinghe, D. L. Marino, and M. Manic,
“Deep neural networks for energy load fore-
casting,” in Proc. IEEE Int. Symp. Industrial Elec-
tronics, 2017, pp. 1483–1488.

[31] E. Mocanu, P. H. Nguyen, M. Gibescu, and W.
L. Kling, “Deep learning for estimating build-
ing energy consumption,” Sustain. Energy Grids
Netw., vol. 6, pp. 91–99, June 2016.

[32] M. Manic, K. Amarasinghe, J. J. Rodriguez-An-
dina, and C. Rieger, “Intelligent buildings of the
future: Cyberaware, deep learning powered,
and human interacting,” IEEE Ind. Electron.
Mag., vol. 10, no. 4, Dec. 2016.

[33] R. J. F. Rossetti, “Traffic control & management
systems in smart cities,” Readings Smart Cities,
vol. 2, no. 3, 2016.

[34] M. Bojarski, P. Yeres, A. Choromanska, K. Choro-
manski, B. Firner, L. Jackel, and U. Muller, (2017).
Explaining how a deep neural network trained
with end-to-end learning steers a car. arXiv. [On-
line]. Available: https://arxiv.org/abs/1704.07911

[35] C.-R. Yu, C.-L. Wu, C.-H. Lu, and L.-C. Fu, “Hu-
man localization via multi-cameras and floor
sensors in smart home,” in Proc. 2006 IEEE
Int. Conf. Systems, Man and Cybernetics, pp.
3822–3827.

[36] A. H. M. Amin, N. M. Ahmad, and A. M. M. Ali,
“Decentralized face recognition scheme for
distributed video surveillance in IoT-cloud
infrastructure,” in Proc. 2016 IEEE Region 10
Symp. (TENSYMP 2016), pp. 119–124.

[37] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document
recognition,” Proc. IEEE, vol. 86, no. 11, pp.
2278–2323, Nov. 1998.

[38] J. H. Ko, Y. Long, M. Faisal Amir, D. Kim, J.
Kung, T. Na, A. Ranjan Trivedi, and S. Mukho-
padhyay, “Energy-efficient neural image pro-
cessing for Internet-of-Things edge devices,”
in Proc. Midwest Symp. Circuits Systems, 2017,
pp. 1069–1072.

[39] H. Fang and C. Hu, “Recognizing human ac-
tivity in smart home using deep learning al-
gorithm,” in Proc. 33rd Chinese Control Conf.,
2014, pp. 4716–4720.

[40] Nest Labs. (2018). What makes a Nest thermo-
stat a Nest thermostat? Nest Labs. [Online].
Available: https://nest.com/thermostats/

JUNE 2018 ■ IEEE INDUSTRIAL ELECTRONICS MAGAZINE 49

[41] G. Anders. (2017, Aug. 9). “Alexa, understand
me.” MIT Technology Review. [Online]. Available:
https://www.technologyreview.com/s/608571/
alexa-understand-me/

[42] B. Marsh. (2018). The intelligent pacemaker
that can talk to your doctor. Daily Mail. [On-
line]. Available: http://www.dailymail.co.uk/
health/article-122444/The-intelligent-pace-
maker-talk-doctor.html

[43] W. R. Dassen, K. Dulk, and H. J. Wellens, “Mod-
ern pacemakers: Implantable artificial intelli-
gence?” Pacing Clin. Electrophysiol., vol. 11, no.
11, pp. 2114–2120, Nov. 1988.

[44] J. Pacheco and S. Hariri, “IoT security frame-
work for smart cyber infrastructures,” in Proc.
2016 IEEE 1st Int. Workshops Foundations and
Applications of Self* Systems (FAS*W), pp.
242–247.

[45] A.-R. Sadeghi, C. Wachsmann, and M. Waidner,
“Security and privacy challenges in industrial
Internet of Things,” in Proc. 52nd Annu. Design
Automation Conf. (DAC ’15), 2015, pp. 1–6.

[46] A. A. Diro and N. Chilamkurti, “Distributed
attack detection scheme using deep learning
approach for Internet of Things,” Future Gener.
Comput. Syst., vol. 82, pp. 761–768, May 2018.

[47] H. Haddad Pajouh, A. Dehghantanha, R. Khay-
ami, and K.-K. R. Choo, “A deep recurrent
neural network based approach for Internet of
Things malware threat hunting,” Future Gener.
Comput. Syst., vol. 85, pp. 88–96, Aug. 2018.

[48] J. Canedo and A. Skjellum, “Using machine
learning to secure IoT systems,” in Proc. 2016
14th Annu. Conf. Privacy Security Trust (PST
2016), pp. 219–222.

[49] NVIDIA. (2018). NVIDIA Volta. NVIDIA. [On-
line]. Available: https://www.nvidia.com/en-
us/data-center/volta-gpu-architecture/

[50] Y. Pu, C. Shi, G. Samson, D. Park, K. Easton, R.
Beraha, A. Newham, M. Lin, V. Rangan, K. Cha-
tha, D. Butterfield, and R. Attar, “A 9-mm2 ul-
tra-low-power highly integrated 28-nm CMOS
SoC for Internet of Things,” IEEE J. Solid-State
Circuits, vol. 53, no. 3, pp. 1–13, 2018.

[51] C. Trigas, “Design challenges for system-in-pack-
age vs system-on-chip,” in Proc. IEEE 2003 Cus-
tom Integrated Circuits Conf., 2003, pp. 663–666.

[52] J. J. Rodríguez Andina, E. de la Torre-Arnanz,
and M. D. Valdes Peña, FPGAs : Fundamentals,
Advanced Features, and Applications in Indus-
trial Electronics. Boca Raton, FL: CRC, 2017.

[53] S. S. Iyer, “Heterogeneous integration for perfor-
mance and scaling,” IEEE Trans. Compon. Pack-
ag. Manuf. Technol., vol. 6, no. 7, pp. 973–982,
July 2016.

[54] M. Sadri, C. Weis, N. Wehn, and L. Benini, “En-
ergy and performance exploration of accel-
erator coherency port using Xilinx ZYNQ,” in
Proc. 10th FPGA World Conf. 2013, pp. 1–8.

[55] L. Costas, R. Fernandez-Molanes, J. J. Rodri-
guez-Andina, and J. Farina, “Characterization
of FPGA-master ARM communication delays
in zynq devices,” in Proc. 2017 IEEE Int. Conf.
Industrial Technology (ICIT), pp. 942–947.

[56] R. Fernandez-Molanes, J. J. Rodriguez-Andina,
and J. Farina, “Performance characterization
and design guidelines for efficient processor–
FPGA communication in Cyclone V FPSoCs,”
IEEE Trans. Ind. Electron., vol. 65, no. 5, pp.
4368–4377, May 2018.

[57] B. Fort, A. Canis, J. Choi, N. Calagar, R. Lian,
S. Hadjis, Y. T. Chen, M. Hall, B. Syrowik, T.
Czajkowski, S. Brown, and J. Anderson, “Au-
tomating the design of processor/accelerator
embedded systems with LegUp high-level syn-
thesis,” in Proc. 2014 12th IEEE Int. Conf. Embed-
ded and Ubiquitous Computing, pp. 120–129.

[58] Altera Corporation, “Implementing FPGA de-
sign with the OpenCL standard,” Altera, San
Jose, CA, WP-01173-3.0, 2013.

[59] N. Cardoso, P. Garcia, T. Gomes, F. Salgado, P.
Rodrigues, J. Cabral, J. Mendes, and A. Tavares,
“Multi-camera home appliance network: Han-
dling device interoperability,” in Proc. IEEE 10th
Int. Conf. Industrial Informatics, 2012, pp. 69–74.

[60] ARM Security Technology, “Building a secure
system using TrustZone technology,” ARM,
San Jose, CA, PRD29-GENC-009492, 2009.

[61] Y. Liu, J. Briones, R. Zhou, and N. Magotra,
“Study of secure boot with a FPGA-based IoT
device,” in Proc. Midwest Symp. Circuits Sys-
tems, 2017, pp. 1053–1056.

[62] C. Marchand, L. Bossuet, U. Mureddu, N. Bo-
chard, A. Cherkaoui, and V. Fischer, “Imple-
mentation and characterization of a physical
unclonable function for IoT: A case study with
the TERO-PUF,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 37, no. 1, pp.
97–109, Jan. 2018.

[63] ARM. (2018). Security on ARM TrustZone.
ARM. [Online]. Available: https://www.arm
.com/products/security-on-arm/trustzone

[64] R. Fernandez-Molanes, M. Garaj, W. Tang, J. J.
Rodriguez-Andina, J. Farina, K. F. Tsang, and
K. F. Man, “Implementation of particle swarm
optimization in FPSoC devices,” in Proc. 2017
IEEE 26th Int. Symp. Industrial Electronics
(ISIE), pp. 1274–1279.

[65] S. Sridharan, P. Durante, C. Faerber, and N.
Neufeld, “Accelerating particle identification
for high-speed data-filtering using OpenCL on
FPGAs and other architectures,” in Proc. 2016
26th Int. Conf. Field Programmable Logic and
Applications (FPL), pp. 1–7.

[66] D. Mahajan, J. Park, E. Amaro, H. Sharma, A.
Yazdanbakhsh, J. K. Kim, and H. Esmaeilzadeh,
“TABLA: A unified template-based framework
for accelerating statistical machine learning,”
in Proc. 2016 IEEE Int. Symp. High Performance
Computer Architecture (HPCA), pp. 14–26.

[67] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao,
S. Han, Y. Wang, and H. Yang, “Angel-Eye: A
complete design flow for mapping CNN onto
embedded FPGA,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 37, no. 1, pp.
35–47, Jan. 2018.

[68] A. X. M. Chang and E. Culurciello, “Hardware
accelerators for recurrent neural networks on
FPGA,” in Proc. 2017 IEEE Int. Symp. Circuits and
Systems (ISCAS), pp. 1–4.

[69] J. Lachmair, T. Mieth, R. Griessl, J. Hagemeyer,
and M. Porrmann, “From CPU to FPGA—Accel-
eration of self-organizing maps for data min-
ing,” in Proc. Int. Joint Conf. Neural Networks,
2017, pp. 4299–4308.

[70] W. Fang, Y. Zhang, B. Yu, and S. Liu. (2017). FP-
GA-based ORB feature extraction for real-time
visual SLAM. arXiv. [Online]. Available: https://
arxiv.org/abs/1710.07312

[71] T. Mekonnen, M. Komu, R. Morabito, T. Kaup-
pinen, E. Harjula, T. Koskela, and M. Ylianttila,
“Energy consumption analysis of edge orches-
trated virtualized wireless multimedia sensor
networks,” IEEE Access, vol. 6, pp. 5090–5100,
Dec. 2017.

[72] X. Ma, W. A. Najjar, and A. K. Roy-Chowdhury,
“Evaluation and acceleration of high-through-
put fixed-point object detection on FPGAs,”
IEEE Trans. Circuits Syst. Video Technol., vol. 25,
no. 6, pp. 1051–1062, June 2015.

[73] M. Sit, R. Kazami, and H. Amano, “FPGA-based
accelerator for losslessly quantized convolu-
tional neural networks,” in Proc. 2017 Int. Conf.
Field Programmable Technology (ICFPT), pp.
295–298.

[74] H. Nakahara, A. Jinguji, T. Fujii, and S. Sato, “An
acceleration of a random forest classification
using Altera SDK for OpenCL,” in Proc. 2016 Int.
Conf. Field-Programmable Technology (FPT),
pp. 289–292.

[75] Altera Corporation, “Floating-point IP cores
user guide,” Altera, San Jose, CA, UG-01058,
2016.

[76] R. Domingo, R. Salvador, H. Fabelo, D. Madro-
nal, S. Ortega, R. Lazcano, E. Juarez, G. Callico,
and C. Sanz, “High-level design using Intel
FPGA OpenCL: A hyperspectral imaging spa-
tial-spectral classifier,” in Proc. 2017 12th Int.
Symp. Reconfigurable Communication-Centric
Systems-on-Chip (ReCoSoC), pp. 1–8.

[77] R. Finker, J. Echanobe, I. del Campo, and K.
Basterretxea, “Controlled accuracy approxi-
mation of sigmoid function for efficient FPGA-
based implementation of artificial neurons,”
Electron. Lett., vol. 49, no. 25, pp. 1598–1600,
Dec. 2013.

[78] S. Gomar, M. Mirhassani, and M. Ahmadi, “Pre-
cise digital implementations of hyperbolic
tanh and sigmoid function,” in Proc. 2016 50th
Asilomar Conf. Signals, Systems and Computers,
pp. 1586–1589.

[79] F. Ertam and G. Aydin, “Data classification with
deep learning using Tensorflow,” in Proc. 2017
Int. Conf. Computer Science and Engineering
(UBMK), pp. 755–758.

[80] S. Shin, K. Hwang, and W. Sung, “Fixed-point
performance analysis of recurrent neural
networks,” in Proc. IEEE Int. Conf. Acoustics,
Speech and Signal Processing 2016, pp. 976–
980.

[81] M. Shah, J. Wang, D. Blaauw, D. Sylvester, H.-S.
Kim, and C. Chakrabarti, “A fixed-point neural
network for keyword detection on resource
constrained hardware,” in Proc. 2015 IEEE
Workshop Signal Processing Systems (SiPS),
pp. 1–6.

[82] X. Zhang, A. Ramachandran, C. Zhuge, D. He,
W. Zuo, Z. Cheng, K. Rupnow, and D. Chen,
“Machine learning on FPGAs to face the IoT
revolution,” in Proc. 2017 IEEE/ACM Int. Conf.
Computer-Aided Design (ICCAD), pp. 894–901.

[83] R. Doshi, K.-W. Hung, L. Liang, and K.-H. Chiu,
“Deep learning neural networks optimization
using hardware cost penalty,” in Proc. 2016
IEEE Int. Symp. Circuits and Systems (ISCAS),
pp. 1954–1957.

[84] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou,
J. Yu, T. Tang, N. Xu, S. Song, Y. Wang, and H.
Yang, “Going deeper with embedded FPGA
platform for convolutional neural network,”
in Proc. 2016 ACM/SIGDA Int. Symp. Field-Pro-
grammable Gate Arrays (FPGA ’16), pp. 26–35.

[85] N. Sugimoto, T. Mitsuishi, T. Kaneda, C. Tsuru-
ta, R. Sakai, H. Shimura, and H. Amano, “Trax
solver on Zynq with deep Q-network,” in Proc.
2015 Int. Conf. Field Programmable Technology
(FPT), pp. 272–275.

[86] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “Deep-
Burning: Automatic generation of FPGA-based
learning accelerators for the neural network
family,” in Proc. Design Automation Conf.
(DAC), 2016.

[87] C.-F. Juang, C.-M. Lu, C. Lo, and C.-Y. Wang,
“Ant colony optimization algorithm for fuzzy
controller design and its FPGA implementa-
tion,” IEEE Trans. Ind. Electron., vol. 55, no. 3,
pp. 1453–1462, Mar. 2008.

[88] W. Wang, A. C.-F. Liu, H. S.-H. Chung, R. W.-H.
Lau, J. Zhang, and A. W.-L. Lo, “Fault diagnosis
of photovoltaic panels using dynamic current–
voltage characteristics,” IEEE Trans. Power
Electron., vol. 31, no. 2, pp. 1588–1599, Feb.
2016.

[89] T. M. Chan, K. F. Man, K. S. Tang, and S. Kwong,
“A jumping gene paradigm for evolutionary
multiobjective optimization,” IEEE Trans. Evol.
Comput., vol. 12, no. 2, pp. 143–159, Apr. 2008.

[90] N. N. Morsi, M. B. Abdelhalim, and K. A. She-
hata, “Efficient hardware implementation of
PSO-based object tracking system,” in Proc.
2013 Int. Conf. Electronics, Computer and Com-
putation (ICECCO), pp. 155–158.

[91] S.-A. Li, C.-C. Wong, C.-J. Yu, and C.-C. Hsu,
“Hardware/software co-design for particle
swarm optimization algorithm,” in Proc. 2010
IEEE Int. Conf. Systems, Man and Cybernetics,
pp. 3762–3767.

[92] R. Courtland. (2015, Mar. 30). Gordon Moore:
The man whose name means progress. IEEE
Spectrum. [Online]. Available: https://spectrum
.ieee.org/computing/hardware/gordon-moore-
the-man-whose-name-means-progress

