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s the Internet of Things (IoT) 

continues its run as one of 

the most popular tech-

nolog y buzzwords of 

today, the discussion 

really turns from how 

the massive data sets 

are collected to how value can be de-

rived from them, i.e., how to extract 

knowledge out of such (big) data. IoT 

devices are used in an ever-growing 

number of application domains (see 

Figure 1), ranging from sports gad-

gets (e.g., Fitbits and Apple Watches) 

or more serious medical devices (e.g., 

pacemakers and biochips) to smart 

homes, cities, and self-driving cars, 

to predictive maintenance in mission-

critical systems (e.g., in nuclear power 

plants or airplanes). Such applica-

tions introduce endless possibilities 

for better understanding, learning, 

and informedly acting (i.e., situational 

awareness and actionable information 

in government lingo). Although rapid 

expansion of devices and sensors 

brings terrific opportunities for tak-

ing advantage of terabytes of machine 

data, the mind-boggling task of un-

derstanding growth of data remains 
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and heavily relies on artificial intel-

ligence and machine learning [1], [2].

Where traditional approaches do not 

scale well, artificial intelligence tech-

niques have evidenced great success in 

applications of machine and cognitive 

intelligence (such as image classifica-

tion, face recognition, or language trans-

lation). We recognize the widespread 

usage of various well-known machine-

learning algorithms in the IoT (such as 

fuzzy systems, support vector machines, 

Bayesian networks, reinforcement learn-

ing, and others), but we focus here on 

the most recent and highly advanta-

geous type of machine learning in the 

IoT: deep learning.

The success of deep learning and, 

in particular, deep neural networks 

greatly coincides with the advent of 

highly specialized, powerful parallel-

computing devices, i.e., graphics pro-

cessing units (GPUs) [4]. Although the 

overwhelming processing and memory 

requirements can be met with high-

performance computing hardware, the 

resulting sheer size, cost, and power 

consumption would make the goal of 

deep neural network-enabled IoT and 

embedded devices unattainable.

In this scenario, field-programmable 

system-on-chip (FPSoC) platforms, 

which combine in a single chip one or 

more powerful processors and recon-

figurable logic [in the form of field-pro-

grammable gate array (FPGA) fabric], 

are emerging as a very suit-

able implementation alterna-

tive for the next generation of 

IoT devices. The fine-grained 

structure of FPGAs has proven 

to provide powerful implemen-

tations of machine-learning 

algorithms with less power 

consumption than comparable 

platforms (in terms of cost or 

size) [5], making them ideal for 

machine and cognitive intelli-

gence in strict resource-limited 

applications, like many in the 

IoT (while GPUs remain as the 

dominant platforms for other 

IoT scenarios). 

Moreover, FPSoCs allow 

the processing load to be 

balanced between proces-

sors and reconfigurable log-

ic, the most suitable implementa-

tion (hardware or software) being used 

for each specific functional building 

block to be optimized, and functional-

ity to be easily reconfigured on site. 

In addition, reconfigurable platforms 

dramatically ease system scalabil -

ity and upgrading. Hence, they pro-

vide high levels of flexibility, as de-

manded by the IoT market.

In this regard, this article identi-

fies hardware implementation chal-

lenges and thoroughly analyzes the 

aforementioned suitability of FPSoCs 

for a broad range of IoT applications 

involving machine-learning and arti-

ficial intelligence algorithms, which 

is demonstrated in two case studies, 

one related to deep learning and the 

other to the more classical evolution-

ary computing techniques.

Deep Learning for the IoT
In the era of the IoT, the number of sens-

ing devices that are deployed in every 

facet of our day-to-day life is enormous. 

In recent years, many IoT applications 

have arisen in various domains, such 

as health, transportation, smart homes, 

and smart cities [6]. It is predicted by 

the U.S. National Intelligence Council 

that, by 2025, Internet nodes will reside 

in everyday things, such as food pack-

ages, furniture, and documents [7]. This 

expansion of IoT devices, together with 

cloud computing, has led to creation 

of an unprecedented amount of data 

[8], [9]. With this rapid development of 

the IoT, cloud computing, and the ex-

plosion of big data, the most fundamen-

tal challenge is to store and explore 

these volumes of data and extract use-

ful information for future actions [9].

The main element of most IoT ap-

plications is an intelligent learning 

methodology that senses and under-

stands its environment [6]. Tradition-

ally, many machine-learning algorithms 

were proposed to provide intelligence 

to IoT devices [10]. However, in recent 

years, with the popularity of deep neu-

ral networks/deep learning, using deep 

neural networks in the domain of the 

IoT has received increased attention 

[6], [11]. Deep learning and the IoT 

were among the top three technology 

trends for 2017 announced at Gartner 

Symposium/ITxpo [12]. This increased 

interest in deep learning in the IoT do-

main is because traditional machine-

learning algorithms have failed to 

address the analytic needs of IoT sys-

tems [6], which produce data at such 

a rapid rate and volume that they de-

mand artificial intelligence algorithms 

with modern data analysis approaches. 

Depending on the predominant factor, 

volume or rate, data analytics for IoT 

applications can be viewed in two main 

categories: 1) big data analysis and 2) 

data stream analysis.

When focusing on data volume, the IoT 

is one of the major sources of 

big data. Analytics of the gener-

ated massive data sets directly 

benefit the performance and 

enhance capabilities of IoT sys-

tems. Extracting knowledge from 

such big data is not a straight-

forward task. It requires capa-

bilities that go beyond the tra-

ditional inference and learning 

techniques [13], generally ex-

pressed with the six Vs [14], [15]:

 ■ volume, which refers to 

the ability to ingest, pro-

cess, and store large data 

sets (petabytes or even exa-

bytes)

 ■ velocity, which refers to 

the speed of data genera-

tion and frequency of de-

livery (sampling)FIGURE 1 – IoT devices (adapted from [3]). 
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 ■ variety, which refers to the data 

from different sources and types 

(structured or unstructured); even 

the types of data have been grow-

ing fast

 ■ variability, which refers to the need 

for getting meaningful data consid-

ering scenarios of extreme unpre-

dictability

 ■ veracity, which refers to bias, noise, 

and abnormality in data (only the 

relevant, usable data within ana-

lytic models is to be stored)

 ■ value, which refers to the purpose 

the solution has to address.

Figure 2 shows the six Vs of big data 

and how the advantages of deep-learn-

ing techniques can be used to meet 

these challenges in big data. More spe-

cific applications of deep-learning tech-

niques in big data in the IoT are pre-

sented in the next section. The latest 

considerations add three additional Vs 

to the mix: vulnerability (of data), vola-

tility (relevance of data before becom-

ing obsolete), and visualization (ways of 

meaningful visualization).

As mentioned, in addition to per-

forming data mining on massive collec-

tions of data produced by IoT systems, 

another important aspect is dealing 

with real-time data streams that re-

quire fast-learning algorithms. IoT ap-

plications, such as traffic management 

systems and supply chain logistics of 

supermarkets, involve large data sets 

that have to be analyzed in near real 

time [16]. Mining fast-generated data 

streams requires the algorithms to be 

adaptable to the change of data distri-

butions as the environment changes 

around the devices [17]. This context/

concept drift occurs due to the chang-

es in factors, such as location, time, 

and activity. In addition to the require-

ment of speed adaptability, the lack of 

labeled data in IoT data streams adds 

to the difficulty because it makes su-

pervised learning methods inadequate 

for analysis [17], [18]. Therefore, highly 

adaptable unsupervised and semisu-

pervised deep-learning techniques are 

required for mining the fast-changing 

data streams in IoT devices.

Applications of Deep  
Learning in the IoT
Deep neural networks have revolu-

tionized a multitude of fields because 

of their ability for learning through 

multiple layers of abstraction [19], 

[20]. This enables learning of complex 

patterns that are hidden in complex 

data sets, a capability ideal for min-

ing massive heterogeneous data sets. 

Different deep neural network algo-

rithms have been used to good effect 

in a range of areas that were very dif-

ficult to tackle in the past. Long short-

term memory algorithms, e.g., have 

been shown to be extremely useful in 

speech recognition and natural lan-

guage processing [21]–[23], and con-

volutional neural networks have been 

used to produce state-of-the-art per-

formance in many vision applications, 

such as image classification [24], [25]. 

Therefore, deep learning is applied ex-

tensively in a range of IoT devices for 

human interaction.

One of the most important deriva-

tives of the IoT is the concept of smart 

cities. Improving cities is becoming a 

global need with the rising and urban-

ization of the population [26]. The con-

cept of smart cities has been around 

since the early 2000s. Smart cities 

claim to contain thousands of sens-

ing devices, which generate massive 

amounts of data that can be harnessed 

to optimize and improve the operations 

of these cities [27]. Smart cities try to 

accomplish goals, e.g., reducing pollu-

tion and energy consumption or opti-

mizing transportation [28]. IoT devices 

can help collect data about how people 

use cities, and machine-learning algo-

rithms can be used to understand that 

data [26]. Adding further intelligence to 

the embedded sensing nodes allows lo-

cal storage needs and network conges-

tion to be reduced.

One of the most important aspects 

of smart cities powered by the IoT is 

smarter energy management. With the 

advent of smart meters, there are mas-

sive amounts of data being collected 

on energy consumption. This enables 

research on energy consumption pre-

diction, which can lead to optimizing 

energy usage and the way energy is 

generated in smart cities and smart 

grids. Machine-learning algorithms 

are indispensable in this area, and 

deep-learning algorithms, such as 

long short-term memory algorithms, 

restricted Boltzmann machines, and 

convolutional neural networks, have 

been proposed to perform data-driv-

en predictions of energy usage at both 
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FIGURE 2 – The big data six Vs and their connection with deep learning.
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the individual consumer and aggres-

gate levels [29]–[32].

Another important aspect of smart 

cities is using machine learning and the 

IoT for traffic management. Optimized 

traffic management targets reducing 

congestion, long queues, delays, and 

even the carbon footprint of cities [33]. 

To that end, driverless or self-driving 

cars have become a much-discussed 

topic recently, with major car compa-

nies, such as Tesla, BMW, and Ford, and 

tech giants, such as Google and Apple, 

stepping up to the plate to develop truly 

intelligent autonomous cars. 

Self-driving cars have a plethora 

of devices continuously sensing their 

environment and a suit of machine-

learning algorithms for understanding 

and fusing the various data sources, 

such as LIDAR depth maps and im-

ages. Deep neural networks have been 

extensively explored in this domain, 

as they have the capability of auto-

matically learning features to pick out 

obvious ones, such as lane marking 

and road edges, as well as other subtle 

ones that exist on the roads [34].

Computer vision is a highly sought-

after application in many use cases in 

the IoT domain. Smart cameras, espe-

cially in smart security systems, play 

an important role in smart homes [35], 

and vision applications, such as face 

recognition, are very crucial [36]. Ma-

chine-learning algorithms have been 

used extensively in image-processing 

applications and, in that, convolution-

al neural networks have been deemed 

the gold standard since the advent of 

LeNet [37]. Ko et al. presented a frame-

work for energy-efficient neural net-

works to be used in IoT edge devices 

[38]. The authors claim that in deploy-

ing deep neural networks-based im-

age processing, energy efficiency can 

be the performance bottleneck, and 

hence, they present the recent tech-

nological advantages for making deep 

neural networks, such as convolu-

tional and recurrent neural networks, 

more energy efficient. 

Another area in which machine-

learning-driven vision applications is 

used in the IoT is human activity rec-

ognition in smart homes. Fang and Hu 

proposed a deep-learning-based frame-

work for human activity recognition in 

smart homes used especially for help-

ing people with diseases [39]. Context 

awareness is another important aspect 

of the IoT, closely tied with mining data 

streams. Machine learning has a very 

crucial role to play in understanding 

the environment and the context of the 

device from the data. 

In recent years, we have seen com-

mercial IoT devices or edge devices 

emerging in the market, such as Nest 

Thermostat [40] and Amazon devices 

powered by Alexa [41], that have the 

ability of sensing their environment 

and using machine learning to under-

stand data. Context-aware devices 

or things have the ability of under-

standing the environment and adapt-

ing their reasoning capabilities [10]. 

Further, machine-learning algorithms 

are extremely crucial for some areas, 

such as intelligent health trackers for 

medicine, e.g., intelligent pacemakers 

or photoplethysmography systems 

[42], [43] that can monitor the heart-

beat of a patient. 

Adding intelligence to these de-

vices is very important, as it permits 

improved and faster preventive detec-

tion of pathologies. Compared with 

the option to send data via the Inter-

net to remote sensors for analysis or 

saving data for postprocessing, this 

option enables a dramatic reduction 

of data transmission and storage (with 

the respective reduction of energy 

consumption) and the possibility to 

work offline (very useful for remote or 

rural areas).

Safety and Security in the IoT
In addition to enabling and facilitat-

ing IoT applications, deep learning 

plays a crucial role in keeping the 

highly connected devices safe. Due 

to its ubiquity in the modern techno-

logical ecosystem, the IoT is a very 

attractive target for cyberattackers. 

Therefore, cybersecurity is one of the 

most important research areas in the 

field of the IoT [44], [45]. It is known 

that a large number of zero-day at-

tacks are emerging continuously due 

to the various protocols added to the 

IoT [46]. The multiple-level feature-

learning capabilities of deep learning 

have been exploited in this domain to 

good effect. 

Diro and Chilamkurti presented a 

deep neural networks-based distrib-

uted methodology for cyberattack de-

tection in the IoT [46]. They compared 

their distributed deep model with a 

shallow neural network and a central-

ized deep model, and they concluded 

that the distributed deep model out-

performs the others significantly. 

Another area of cybersecurity is mal-

ware detection. Pajouh et al. presented 

a deep recurrent neural network-based 

malware detection methodology for 

the IoT [47]. The authors implemented 

three different long short-term memory 

configurations and showed that their 

algorithm can achieve 98.18% accura-

cy in malware detection for the tested 

data set. In all aspects of cybersecurity, 

when taking a data-driven approach, 

anomaly detection algorithms are very 

useful tools. Canedo and Skjellum pre-

sented an artificial neural network-

based anomaly detection methodology 

tailored for IoT cybersecurity [48]. They 

recognized that the main challenges for 

anomaly detection in IoT data are quan-

tity and heterogeneity. They showed 

that the artificial neural network-based 

methodology was able to overcome 

those challenges in detecting anomalies 

in the data sent from edge devices.

Hardware Implementation 
Challenges
The implementation of machine-learn-

ing algorithms has been a hot topic in 

research for several years but recently 

boomed, mainly thanks to the oppor-

tunities created by the advancements 

in chip fabrication technologies, which 

enabled solving design problems at a 

cost and with a time-to-market that 

were unthinkable just a few years ago. 

The resolution of Google Challenge 

by AlexNet using an eight-layer deep 

neural network [24] is usually cited 

as an inflexion point that boosted the 

research on new chips and applica-

tions of machine-learning algorithms, 

especially in the field of neural net-

works. This explosion coincides with 

the deceleration of Moore’s law (even 

Gordon Moore himself predicted the 

end of his Moore’s law [92]), which 
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now makes it economically 

reasonable to work on op-

timized software and hard-

ware structures, as opposed 

to the trend of the last 30 

years, where waiting for the 

next generation of devices 

was more profitable than in-

vesting in optimization. All of 

these facts combined make 

it more difficult than ever 

for designers to decide the 

best possible architecture for 

their applications.

The digital processing 

platforms currently available in the 

market are summarized in Figure 3, 

where they can be compared in terms 

of performance and flexibility. Flex-

ibility refers here to ease of develop-

ment, portability, and possibility for 

adapting to changes in specifications. 

For high-end deep neural network ap-

plications, where performance is the 

most important parameter, general-

purpose GPUs (GPGPUs) are the domi-

nant solution. Their parallel structure, 

the latest efforts by manufacturers to 

compete for machine-learning appli-

cations (e.g., adding specific instruc-

tions for fast neuron inference), and 

their reduced cost due to the mass 

production for personal computers 

made them ideal for training and infer-

ence of deep neural networks. 

The latest NVIDIA Volta GV100 GPU 

platform, including 21.1 billion transis-

tors within a die size of 815 mm2, is 

capable of doing inference 100 times 

faster than the fastest current central 

processing unit (CPU) on the market 

[49]. This unparalleled brute power 

force comes at a price: high power 

consumption, the need for custom 

data types (not necessarily float), ir-

regular parallelism (alternating se-

quential and parallel processing), and 

divergence (not all cores executing the 

same code simultaneously). That is 

why some companies are investing in 

neural network application-specific in-

tegrated circuits (ASICs) for improved 

performance at the expense of losing 

flexibility. Examples are the first and 

second generation (optimized for in-

ference and both inference and train-

ing, respectively) of the Google tensor 

processing unit (TPU), slowly stealing 

high-performance computing applica-

tions from GPUs.

While this is the pace for high-

performance computing, the lack of 

flexibility in ASICs and the high power 

consumed by GPUs do not fit in wide 

areas of the IoT world that demand 

power-efficient, flexible embedded 

systems. This explains why many IoT 

devices are currently based on micro-

controllers, digital signal processors 

(DSPs), and multicore CPUs. How-

ever, as the IoT market grows, both 

manufacturers and designers face a 

problem due to the diversification of 

applications and increasing demand 

for computing power (particularly for 

machine-learning algorithms), leading 

a transformation from sense making 

to decision making [50]. 

Offering a wider portfolio of devic-

es to cover the different applications 

means less market share per device, 

increasing manufacturing costs. How-

ever, offering complex heterogeneous 

devices that can be used in several 

applications implies higher integra-

tion of functionality and a waste of sili-

con, also increasing the overall cost 

[51]. In this scenario, FPGAs, located 

in the middle of Figure 3, appear as 

a balanced solution to add flexibility 

and efficient computing power for ma-

chine-learning algorithms to the next 

generation of IoT devices. Combin-

ing processors and FPGAs in a single 

package results in the FPSoC concept. 

In the following sections, FPSoC ar-

chitecture is presented along with 

an analysis of the usefulness of its 

hardware resources for implementing 

machine-learning algorithms 

in IoT devices.

FPSoC Architecture
FPSoCs feature a hard process-

ing system (HPS) and FPGA 

fabric on the same chip. Both 

parts are connected by means 

of high-throughput bridges, 

which provide faster commu-

nications and power savings 

compared to multichip solu-

tions [53]. The HPS in first-gen-

eration FPSoCs featured single- 

or dual-core ARM application 

processors and some widely used pe-

ripherals, such as timers and control-

lers for different types of communica-

tion protocols, i.e., Ethernet, universal 

serial bus (USB), interintegrated circuit 

(I2C), universal asynchronous receiver-

transmitter (UART), and controller area 

network (CAN).  

Pushed by increasing application 

requirements, some devices in the 

newest FPSoC families include quad-

core ARM processors, GPUs, and 

real-time processors in the HPS, with 

FPSoCs becoming complex heteroge-

neous computing platforms. Resourc-

es in the FPGA fabric also evolved 

from the basic structure consisting of 

standard logic resources and relative-

ly simple specialized hardware blocks 

(e.g., fixed-point DSP multipliers, mem-

ory blocks, and transceivers). Current 

devices include much more complex 

blocks, e.g., DSP blocks with floating-

point capabilities, video codecs for 

video compression, soft-decision for-

ward error recovery (SD-FEC) units to 

speed up encoding/decoding in wire-

less applications, or analog-to-digital 

converters (ADCs). Figure 4 shows the 

generic block diagram of a modern 

FPSoC device, where the location and 

connection of the aforementioned ele-

ments is depicted. 

All computing elements (proces-

sors and GPU) have their own cache 

memory and share common synchro-

nous dynamic random access memo-

ry (SDRAM) external memory, usually 

controlled by a single multiport con-

troller. A main switch interconnects 

masters and slaves in the HPS. The 

FPGA fabric can be accessed as any 
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FIGURE 3 – The performance versus flexibility of digital processing 
platforms (adapted from [52]).
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other memory-mapped peripheral from 

the HPS through the HPS-to-FPGA bridg-

es. There are also several options to ac-

cess the HPS from the FPGA fabric: FPGA-

to-HPS bridges to access HPS peripherals, 

the accelerator coherency port (ACP) to 

coherently access processor cache, and 

FPGA-to-SDRAM bridges to access main 

memory in a noncoherent way.

Not all FPSoCs include all blocks 

in Figure 4. Table 1 shows a summary 

of characteristics of the most relevant 

currently available FPSoC families. 

Intel FPGA and Xilinx offer powerful 

devices with application processors 

and large FPGA fabrics, focused on 

higher-end applications, such as fifth-

generation communications, artificial 

intelligence, data centers, or video pro -

cessing. Microsemi and Quicklogic 

offer simpler devices with real-time 

processors, focusing on data acquisi-

tion, wearables, and smartphones.

Despite the additional components 

that manufacturers provide in some 
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TABLE 1 – THE CHARACTERISTICS OF MODERN FPSoC FAMILIES.

COMPANY FAMILY
TRANSISTOR 
SIZE

APPLICATION PROCESSOR REAL-TIME PROCESSOR FPGA

TYPE
MAXIMUM 
F (GHz) TYPE

MAXIMUM 
F (MHz)

MAXIMUM 
SIZE

MAXIMUM 
F (MHz) OTHER

Intel FPGA Cyclone V SoC 28 nm Single/dual 
32-bit ARM 
Cortex-A9

0.925 — — 301 K LEs 200

Arria V SoC 28 nm Single/dual 
32-bit ARM 
Cortex-A9

1.05 — — 462 K LEs 300

Arria 10 SoC 20 nm Dual 32-bit ARM 
Cortex-A9

1.5 — — 1.15 M LEs 500 Floating-point 
DSP blocks in 
FPGA

Stratix 10 SoC 14 nm tri-gate Quad 64-bit 
ARM Cortex-A53

1.5 — — 5.5 M LEs 1000 Floating-point 
DSP blocks in 
FPGA

Xilinx Zynq-7000 Artix 28 nm Single/dual 
32-bit ARM 
Cortex-A9

0.866 — — 85 K LCs — ADC

Zynq-7000 Kintex 28 nm Dual 32-bit ARM 
Cortex-A9

1 — — 444 K LCs — ADC

Ultrascale+ Kintex 20 nm Dual/quad 
64-bit ARM 
Cortex-A53

1.5 Dual-
cortex-R5

600 1143 K LCs — Option to GPU, 
video codec, 
ADC, DAC, 
SD-FEC

Microsemi SmartFusion 130 nm — — Single-
cortex-M3

100 6 K LEs 350 ADC, nonvolatile 
FPGA

SmartFusion 2 130 nm — — Single-
cortex-M3

166 150 K LEs 350 ADC, nonvolatile 
FPGA

QuickLogic S3 — — — Single-
cortex-
M4-F

80 — — DSP, power 
management unit
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devices targeting specific applica-

tions, the most important in an FPSoC 

are still the HPS processors and the 

FPGA fabric. To successfully deploy 

an application taking the greatest pos-

sible advantage of these devices, pro-

cessors and FPGA should smoothly 

cooperate with each other, executing 

the parts of the functionality that best 

fit their respective architectures, shar-

ing data between them when needed. 

A designer typically starts with a 

software implementation in HPS and 

moves to the FPGA those parts of the 

code that need acceleration. Commu-

nication between HPS and FPGA is not 

a trivial task and depends on several 

factors, such as data size, operating 

system (OS), or FPGA operating fre-

quency. It is very important to choose 

the best possible mechanism for HPS–

FPGA data exchange, otherwise it can 

impair the acceleration achieved by 

moving portions of the algorithms to 

hardware. In [54]–[56], different anal-

yses of the influence of these factors 

in the transfer rate are carried out. 

In [56], the results of the analysis are 

elaborated into design guidelines to 

maximize the performance of FPSoC 

implementations.

FPGA design is typically based 

on hardware description languages 

(HDLs), which require from designers 

good knowledge of digital hardware. 

Fortunately, nowadays it is also pos-

sible to automatically compile code 

for both the FPGA and the HPS from 

high-level languages, namely C/C++ 

(using high-level synthesis tools, ei-

ther commercial or open-source, like 

LegUp [57]), OpenCL, MATLAB, and 

LabVIEW. This gives designers with 

limited or no experience in digital de-

sign access to the excellent character-

istics of FPSoCs. Code generated by 

these tools is not as optimized as that 

resulting from HDL workflows, but 

they allow design time to be dramati-

cally reduced [58].

FPSoCs and the IoT
FPSoC characteristics make them very 

suitable for many IoT applications. The 

availability of HPS peripherals for the 

most popular communication proto-

cols enables interoperability among a 

broad range of devices [59]. The HPS, 

e.g., can simultaneously connect with 

sensors using I2C and with other de-

vices via Ethernet or Wi-Fi. The FPGA 

fabric adds great flexibility, enabling 

the implementation of communication 

protocols not included in HPS as well 

as specific functionalities that achieve 

higher performance in hardware than 

in software, such as pulsewidth modu-

lation, capture and compare, or fre-

quency measurement units.

Connectivity of IoT devices raises 

serious security and privacy concerns. 

At the hardware level, one possible 

way to address them is with ARM’s 

TrustZone Technology [60], which de-

fines some peripheral slaves as secure, 

so only trusted masters can access 

them. A secure interrupt controller, 

e.g., may be used to create a noninter-

ruptible task that monitors the system, 

and a secure keyboard may ensure se-

cure password entries. This concept 

has also been extended to software, as 

shown in Figure 5. A trusted firmware 

layer controls context switching of the 

processor from trusted OS and apps 

to regular OS and apps, which may 

run malicious software completely 

isolated from trusted software and se-

cure hardware.

To protect intellectual property, 

current FPSoCs also allow the FPGA 

configuration bitstream as well as the 

boot image for the HPS to be encrypt-

ed [61]. In addition to the solutions 

provided by manufacturers, extra 

functionalities can be implemented to 

prevent hacker attacks. These include 

physically unclonable functions, use-

ful for unique network identification, 

traceability, and access control [62].

FPSoCs enable the design of em-

bedded systems with very small size, 

low power consumption, and perfor-

mance sometimes even equal or high-

er than that of desktop platforms [64]. 

Regarding energy, FPSoCs largely out-

perform computer systems in terms of 

operations per second and watt [65]. 

FPSoCs are also more power efficient 

than GPU-based SoC designs [66], 

particularly for neural network imple-

mentations [67], [68]. However, poor 

usage of the available FPGA resources 

may result in some cases in CPUs and 

GPUs outperforming them [69]. With 

this concern in mind, FPSoCs are the 

best option for implementing machine 

learning in battery-powered systems 

with strict size limitations, like drones 

[70] or wireless sensor networks [71].

Regarding economic and market-

ing issues, FPSoCs are inexpensive 

because they are mass-produced com-

ponents. Time to market is short and, 

thanks to the new high-level synthesis 

tools (like OpenCL and C/C++ compil-

ers), similar to that of pure software so-

lutions. Because of its reconfigurable 

nature, functionality can be upgraded 

without the need for changing the 

hardware platform, improving postsale 

support compared to nonconfigurable 

devices like ASICs.

FPSoCs and Machine Learning
FPGAs exhibit some unique features 

for efficiently implementing por-

tions of machine-learning algorithms 

in hardware.

 ■ Parallelism: Most machine-learning 

algorithms include parallelizable 

portions of the code that can take 

advantage of this property of the 

hardware. Each neuron in a neural 

network layer can be computed in 

parallel, e.g. In evolutionary com-

puting, fit functions can also be con-

currently executed for the whole 

population of genes/particles.

 ■ Pipelining: Although this technique 

is also used in processors and 

GPUs to fetch and execute instruc-

tions, greater advantage of it can be 

taken in FPGAs, where the output 

of an operation can directly feed 

Apps
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Hypervisor

Trusted OS

Trusted Apps

ARM Trusted Firmware

Nonsecure

Peripherals

Secure

Peripherals

FIGURE 5 – The ARM TrustZone security 
(adapted from [63]).
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the input of the next one, avoiding 

the extra clock cycles required to 

compute the same operations in 

the arithmetic/floating-point units 

of processors and GPUs.

 ■ Scalability and upgrading: It is com-

mon for machine-learning algo-

rithms to change structure or size 

(e.g., adding layers or inputs to a 

neural network) to improve per-

formance from knowledge gained 

during test or normal operation. 

In a hardware/software coprocess-

ing implementation, this may mean 

to port more (or new) parts of the 

algorithm to hardware. The same 

may happen in the context of the 

IoT when new functionality, wheth-

er related to the target machine-

learning algorithm or not (such as 

a web server or an encryption al-

gorithm), needs to be added to the 

system. The abundance of standard 

logic resources and specialized 

hardware blocks in FPGAs, together 

with their reconfiguration capabili-

ties, facilitates system scalability 

and upgrading.

Current FPGAs include tens to hun-

dreds of DSP blocks usually equipped 

with fixed-point multipliers and ad-

ders. Other operations, e.g., floating 

point, are implemented by a combi-

nation of these blocks and standard 

FPGA logic elements (LEs). FPGAs 

are very powerful for fixed-point op-

erations [72] but achieve lesser per-

formance in number of floating-point 

operations per second than GPUs for 

most machine-learning implementa-

tions [73]. However, in some cases the 

configurable FPGA architecture com-

pensates this drawback and achieves 

faster execution times [74]. 

In an effort to make FPSoCs more 

competitive, newer devices from Intel 

FPGA (Arria 10 and Stratix 10 fami-

lies) include DSP blocks with single 

floating-point capabilities in the FPGA 

fabric. Table 2 summarizes the size 

(LE and DSP block usage) and per-

formance (latency and maximum op-

erating frequency, f
MAX

) of floating-

point operators in Arria V and Arria 10 

FPGAs for some usual floating-point 

operations in machine-learning algo-

rithms. Double-precision operations 

require more than twice the resources 

and have almost twice the latency of 

single-precision ones. Addition, sub-

traction, and multiplication make low 

usage of resources, whereas other op-

erators are less efficiently implement-

ed. Using floating-point DSP blocks 

results in improvements in terms of 

either significant reduction of logic re-

source usage or increase of maximum 

operating frequency. The exception is 

the exponential operation, because 

it does not suit the fixed structure of 

floating-point DSP blocks well.

In low-level design with HDLs, it is 

easy to estimate the performance of a 

given algorithm implementation in a giv-

en device from the information regard-

ing available hardware resources and 

latency of the different operations. 

This is not the case when using high-lev-

el synthesis tools, where the compiler 

can make inefficient use of hardware 

resources. To achieve acceptable per-

formance when using these tools, it 

is a must to consider all of the available 

options to help the tool efficiently fit the 

design in the FPGA fabric [76].

The aforementioned hardware fea-

tures are complemented in FPSoCs 

with those provided by the applica-

tion processors in HPS. Those range 

from real-time processors with fixed-

point arithmetic capabilities available 

in simpler devices to DSP-like proces-

sors for speeding up signal processing 

tasks, or to dedicated floating-point 

units or single-instruction multiple 

data coprocessors for vector arithme-

tic in more advanced devices.

Case Study 1: Implementation of 
Deep Neural Networks in FPSoC
Neural network algorithms and, in 

particular, deep neural networks are  

TABLE 2 – THE RESOURCE USAGE AND LATENCY FOR USUAL FLOATING-POINT OPERATIONS IN ARRIA FPSoCS [75].

OPERATION
FLOATING-POINT 
PRECISION

ARRIA V (FIXED-POINT DSP BLOCKS) ARRIA 10 (FLOATING-POINT DSP BLOCKS)

LATENCY 
(CLOCK 
CYCLES) LEs

DSP 
BLOCKS F

MAX
 (MHz)

LATENCY 
(CLOCK 
CYCLES) LEs

DSP 
BLOCKS F

MAX
 (MHz)

Addition/subtraction Single Nine 1,193 Zero 250 Five 1,208 Zero 319

Double 12 2,903 Zero 252 Seven 2,765 Zero 290

Multiplication Single Five 390 One 281 Three 123 One 289

Double Seven 848 Four 186 Five 780 Four 289

Division Single 18 1,140 Four 249 16 985 Four 347

Double 35 3,523 15 185 30 3,020 15 258

Exponential base e Single 14 1,795 Two 217 26 745 Six 365

Double 28 5,335 Ten 185 28 5,390 Ten 260

Sine Single 12 1,463 Three 240 11 1,463 Three 280

Double 29 4,370 14 185 29 4,795 14 260
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executed in two phases: training 

(where network weights are adapted 

to achieve the desired functionality) 

and inference (deployment operation 

of the network). Training is highly 

computationally demanding, so it is 

typically implemented by processing 

batches of data (several patterns at 

the same time) offline, for which GPUs 

are very suitable. The inference phase 

is suitable for FPGA implementation, 

because it typically has to be imple-

mented over single patterns in real 

time and, as shown in Figure 6, the 

neurons in one layer can be executed 

in parallel. Moreover, the operations 

to be performed by each neuron can 

be very efficiently implemented using 

DSP blocks. These operations are

 ( ) ( ) * ,a y a y w1x i

i

n

ix

0

1

v= -

=

-e o/  (1)

where ( )a yx  is the output of neuron 

x in layer y, w
ix
 is the weight between 

neuron i in layer y−1 and neuron x 

in layer y, and v  is the so-called acti-

vation function of the neuron. The 

classical neuron activation functions 

a r e  ( ) /(x e1 1Sigmoid x
= +

- )  a n d 

( ) / .x e e e eTanh x x x x
= - +

- -^ ^h h

These operations involve divisions 

and exponentials so, according to 

Table 2, their FPGA implementation 

is not particularly efficient. Because 

of that, some works addressed their 

efficient hardware implementation us-

ing linear approximations. The use of 

Taylor approximations and reuse of 

the multipliers and adders for the lin-

ear part of the neuron is proposed in 

[77], reducing the additional hardware 

needed for the activation function to 

almost none. The solution in [78] in-

curs just 0.03% error with regard to 

an implementation using true expo-

nential and division cores. However, 

the activation function ReLu(x) = max 

(0, x) has recently been shown to pro-

vide better classification results and 

shorter training times than the former 

ones for deep neural networks [79], 

simplifying their implementation in 

all platforms.

Although most implementations 

use floating-point operations, recent 

works have shown that fixed-point 

approximations provide equal perfor-

mance in some cases [80]. Moreover, 

for some applications it is possible 

to aggressively scale down (what is 

called quantization) the number of bits 

in fixed-point representations. In [81], 

e.g., it is reported that with only five-

bit integer resolution for the weighting 

coefficients, performance degradation 

is negligible compared with the origi-

nal 32-bit floating-point resolution. 

Other operations that can be used 

to reduce FPGA logic resource usage 

are network pruning (removing non-

important connections) [81], network 

clustering (fusing neurons) [82], and 

retraining (adding a penalty term in 

the training cost function to maximize 

not only the network fitting to inputs 

and outputs but also the bit depth 

needed for the network weights) [83]. 

These techniques, together with the 

use of simpler activation functions like 

ReLu, will surely boost the number of 

implementations in FPGA-based de-

vices in the near future.

FPSoC platforms have already 

been used to improve pure FPGA im-

plementation. In [84], a Zynq-7000 is 

used to implement an image classifier 

based on a deep convolutional neural 

network. The network layers (convolu-

tional, pooling, and fully connected) 

are executed in the FPGA, whereas 

the HPS is responsible for synchro-

nization [controlling direct memory 

access (DMA) in the FPGA] and the 

final steps of the classification pro-

cess. A set of configurable processing 

elements (PEs) performs all network 

operations (see Figure 7). This imple-

mentation is compared against others 

using an Intel Xeon CPU at 2.9 GHz, 

an NVIDIA TK1 mobile GPU with 192 

CUDA cores, and an NVIDIA K40 GPU 

with 2,880 CUDA cores. Results show 

that the FPSoC is 1.4 times faster than 

the CPU, with 14 times less power 

consumption; two times faster than 

the mobile GPU, with the same power 

consumption; and 13 times slower 

than the GPU, but consuming 26 times 

less power. This shows that FPSoCs 

achieve excellent performance–power 

consumption tradeoffs.

In [85], a Zynq-7000 is used to im-

plement a Deep-Q network (Figure 8) 

that learns how to play a board game 

called Trax. Starting from a pure C/C++ 

software implementation and us-

ing high-level synthesis, the most 

time-consuming parts of the algo-

rithm, in this case matrix multiplica-

tion of the convolutional layers, were 

moved to hardware. Each layer has 

its own matrix multiplication core 

that uses a double-precision floating-

point multiply accumulate module to 

perform operations and two FPGA-

SDRAM ports to share data with the 

processor in the HPS. 

One port is used to read operands 

from the processor and the other to 

write results back. The processor ex-

ecutes the rest of the algorithm. Results 

show a 26 times acceleration with re-

spect to the pure software implemen-

tation. Design time was very short, be-

cause hardware was directly compiled 

from C/C++ code using high-level synthe-

sis, and only the most time-consuming 

parts of the algorithm were migrated 

to hardware. This example shows that 
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FIGURE 6 – A graphical representation of a single neuron and an artificial neural network.
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high-level synthesis tools may allow 

impressive performance improvements 

to be achieved by migrating software 

implementations to hardware ones with 

little programming effort.

Artificial neural network imple-

mentation in FPGA-based devices is 

becoming so popular that a neural net-

work compiler, which generates HDL 

code from high-level specifications, 

has recently been created [86]. Design-

ers only have to select the structure, 

activation function, and other param-

eters of the artificial neural network, 

and the compiler automatically gener-

ates the HDL code, applying the most 

suitable optimization options in each 

case. This reduces the design time 

compared to using high-level syn-

thesis, where a deep analysis of the 

 network and the FPGA is needed to op-

timize the implementation.

Case Study 2: Implementation of 
Evolutionary Computing in FPSoC
FPSoCs are suitable implementation 

platforms not only for deep-learning 

algorithms, such as deep neural net-

works, but also for other machine-

learning algorithms (such as evolution-

ary computing ones) used in a wide 

range of IoT applications. Evolution-

ary computing algorithms are used 

for complex optimization problems. In 

them, a population of individuals (e.g., 

particles or genes) is spread through 

the solution space, and a fit function 

is evaluated for them, the goal being 

to minimize or maximize it. Depending 

on the values of the fit function for the 

different individuals in the current and 

past iterations, these move toward a 

possible solution. 

After some iterations, the algorithm 

should converge to the global solution. 

Several families of such algorithms exist. 

They are characterized by the search 

policy of the individuals: ant colony op-

timization (which emulates ant colony 

food search), particle swarm optimiza-

tion (which emulates the movement 

of a flock of birds where the distance 

between individuals is important), or 

genetic algorithms (where particles ex-

perience gene evolution through, e.g., 

mutation and crossover), to name just 

the most popular ones.

Although the fit function can be 

evaluated in parallel for each indi-

vidual, evolutionary computing algo-

rithms are not always as suitable for 

FPGA implementation as artificial neu-

ral networks because their arithmetic 

operations are completely dependent 

on the application and the algorithm 

used. The application defines the fit 

function and, depending on the op-

erations involved, it will be more or 

less appropriate for FPGA implemen-

tation. Generally speaking, the more 

pipelineable and parallelizable the fit 

FPGA

Main Switch

SDRAM Controller

HPS

External SDRAM

FPGA-to-HPS

Bridges
HPS-to-FPGA

Bridges

FPGA-to-SDRAM

Bridges

Application

Processor

C
o
n
s
o
le

U
A

R
T

S
D

-C
a
rd

C
o
n
tr

o
lle

r

SD

Card

UART to

USB

Matrix
Multiplication
Convolutional

Layer 1

Matrix
Multiplication
Convolutional

Layer 2

FIGURE 8 – The implementation of a Deep-Q network on Zynq-7000. SD: secure digital.

FPGA

Main Switch

General-Purpose

Processor

SDRAM Controller

HPS

External SDRAM

H
P

S

P
e
ri
p
h
e
ra

ls

FPGA-to-HPS

Bridges

HPS-to-FPGA

Bridges

FPGA-to-SDRAM

Bridges

Computing Complex

PE PE PE PE

DMA

Input Buffer Output Buffer

C
o
n
tr

o
lle

r

. . .

FIGURE 7 – The implementation of a deep convolutional neural network on Zynq-7000.



46    IEEE INDUSTRIAL ELECTRONICS MAGAZINE  ■  JUNE 2018

function, the better. Also, according to 

Table 2, fit functions involving multi-

plications and additions are more suit-

able for FPGA implementation than 

those using exponentials and divi-

sions. The operations involved in par-

ticle movement in the aforementioned 

evolutionary computing algorithms are

 ■ ant colony: addition, multiplication, 

division, exponential, square root, 

and random number generation 

[87], hence, these algorithms are 

not particularly suitable for FPGA 

implementation

 ■ particle swarm optimization: multipli-

cation, addition, and random num-

ber generation [88], which can be ef-

ficiently implemented in FPGA

 ■ genetic algorithms: random number 

generation and movement or modi-

fications of chromosomes [89]; pro-

cessing of chromosomes perfectly 

fits in FPGA hardware, to the ex-

tent that it can be concurrently ex-

ecuted for all individuals in a single 

clock cycle.

Until recently, when considering 

the use of configurable platforms for 

implementing evolutionary computing 

algorithms, both the algorithm itself 

(particle movement) and the evalua-

tion of the fit function were typically 

executed in hardware [88], [90]. In 

some cases where simple fit functions 

can be used, a soft processor (i.e., a 

processor implemented using stan-

dard FPGA logic resources) may be in 

charge of evaluating the fit function 

in software, as reported, e.g., in [91]. 

However, in real-life problems it is 

very usual that fit function evaluation 

takes most of the execution time, and 

soft processors are not fast enough 

to justify a software implementation, 

therefore most designers opted for 

pure hardware implementations.

Today, the situation is different 

with the availability of powerful FP-

SoC devices, whose embedded hard 

processors work much faster than soft 

ones and have in many cases floating-

point capabilities. In this scenario, the 

most efficient solution is to implement 

the evaluation of the fit function in 

hardware and execute the algorithm 

in software.

In [64], a particle swarm optimiza-

tion algorithm is proposed for evaluat-

ing the state of health of solar panels 

located in remote areas, where human 

intervention is difficult. In a pure soft-

ware implementation, the evaluation 

of the fit function takes 83% of the ex-

ecution time. Using a Cyclone V SoC 

device, the evaluation of the fit func-

tion is moved to hardware. In a first 

approach, the processor waits in idle 

state for the FPGA to finish this evalu-

ation. Even though, in this particular 

case, the fit function is neither inter-

nally parallelizable nor pipelineable, 

it can be concurrently computed for 

12 particles, resulting in 3.4 times ac-

celeration with regard to the pure soft-

ware implementation. 

An improved solution takes advan-

tage of idle processor time for it to 

generate the random numbers to be 

used in subsequent iterations of the 

algorithm, resulting in 4.8 times ac-

celeration. The achieved performance 

is comparable to that obtained with a 

desktop computer but with much low-

er size, cost, and power consumption, 

as shown in Figure 9(a). The whole 

monitoring system fits in a small elec-

tric box [Figure 9(b)] and can be lo-

cated under each panel.

Closing Discussion
The ubiquitous deployment of machine 

learning and artificial intelligence across 

IoT devices has introduced various intel-

ligence and cognitive capabilities. One 

may conclude that these capabilities 
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FPSoCs are suitable implementation platforms not 

only for deep-learning algorithms but also for other 

machine-learning algorithms.
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have led to the success of a wide and 

ever-growing number of applications, 

such as object/face/speech recognition, 

wearable devices and biochips, diagno-

sis software, or intelligent security and 

preventive maintenance.

Developments in other areas, such 

as humanoid robots, self-driving cars, 

or smart buildings and cities, will likely 

revolutionize the way we live in the very 

near future. This new reality comes with 

significant advantages but also with 

many challenges related to the acqui-

sition, processing, storage, exchange, 

sharing, and interpretation of the contin-

uously growing, overwhelming amount 

of data generated by the IoT.

Up to now, complex applications 

involving deep neural networks have 

mainly used the brute force of GPUs for 

both training and inference. In the last 

two years, some companies have pro-

duced ASICs with better performance 

and lower power consumption than 

GPUs. These solutions are suitable for 

high-performance computing applica-

tions, but neither the low flexibility of 

ASICs nor the high-power consumption 

of GPUs is suitable for many IoT appli-

cations, which demand energy-efficient, 

flexible embedded systems capable of 

coping with the increasing diversifica-

tion of the IoT.

In contrast, FPSoC architectures, 

which include processors and FPGA 

fabric in the same chip, are a balanced 

solution to implement machine-learn-

ing applications for IoT devices. The 

latest advancements in FPGA hardware 

allow a wide range of machine-learning 

algorithms to be efficiently implement-

ed. FPGAs are very well suited to per-

form deep neural network inference 

because of the parallel arrangement of 

neurons in layers and the type of math-

ematical functions they have to com-

pute. This will be even more so in the 

future because of the trend to use sim-

pler neuron activation functions (like 

ReLu) that, in addition to improving 

training, fit better in FPGA resources. 

Moreover, the use of quantization tech-

niques and custom data types (which 

is difficult to achieve, if possible at all, 

in devices with fixed architectures like 

ASICs and GPUs) can significantly re-

duce complexity and improve perfor-

mance. In our opinion, the trends for 

neural network implementation in IoT 

devices in the following years can be 

summarized as follows.

 ■ Training will rely on heavy-duty 

cloud-based GPUs. ASICs like the 

new Google TPU (optimized for both 

inference and training, with impres-

sive performance) will have a piece 

of the pie here, but with the limita-

tion posed by their lack of flexibility.

 ■ The simplest IoT devices will use 

CPUs and ASICs for inference to re-

duce cost and power consumption, 

respectively. Larger devices will 

use FPGAs/FPSoCs for inference 

because of their balanced flexibil-

ity and computer power. For heavy-

duty inference, the same consider-

ations as for training apply.

FPSoCs are an excellent alternative 

for evolutionary computing, because 

they allow the algorithm itself to be 

executed in software while the objec-

tive function can be computed in par-

allel in hardware for all individuals. 

However, their efficiency in this con-

text greatly depends on whether or 

not the specific operations involved in 

the computation of the objective func-

tion fit available hardware resources. 

It can be concluded that, thanks to the 

availability of hard processors with 

floating-point units, FPSoCs are very 

suitable for implementing evolution-

ary computing algorithms. In the case 

of particle swarm, it has been dis-

cussed how the same performance as 

a desktop computer can be achieved 

with FPSoCs with a fraction of the size, 

cost, and power consumption.

In our opinion, the implementation 

in FPSoCs of IoT devices with machine-

learning capabilities will be boosted 

by the availability of increasingly effi-

cient high-level synthesis tools based 

on widely known and used languages, 

such as OpenCL, C/C++, or MATLAB, 

enabling software designers to take ad-

vantage of the excellent characteristics 

of FPSoC devices.
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