
Stochastic Synapses as Resource for Efficient Deep

Learning Machines

Emre Neftci1,2

1Department of Cognitive Sciences, UC Irvine, Irvine, CA, USA 2Department of Computer Science, UC Irvine,

Irvine, CA, USA Email: eneftci@uci.edu

Abstract—Synaptic unreliability was shown to be a robust
and sufficient mechanism for inducing the stochasticity in bi-
ological and artificial neural network models. Previous work
demonstrated multiplicative noise (also called dropconnect) as a
powerful regularizer during training. Here, we show that always-
on stochasticity at networks connections is a sufficient resource
for deep learning machines when combined with simple threshold
non-linearities. Furthermore, the resulting activity function ex-
hibits a self-normalizing property that reflects a recently proposed
“Weight Normalization” technique, itself fulfilling many of the
features of batch normalization in an online fashion. Normaliza-
tion of activities during training can speed up convergence by
preventing so-called internal covariate shift caused by changes in
the distribution of inputs as the parameters of the previous layers
are trained. Collectively, our findings can improve performance
of deep learning machines with fixed point representations and
argue in favor of stochastic nanodevices as primitives for efficient
deep learning machines with online and embedded learning
capabilities.

I. INTRODUCTION

Deep learning can confer adaptability in less controlled
environments and more fine-grained context awareness to
behaving intelligent agents. In several mobile applications such
as autonomous vehicles and surveillance, real-time adaptivity
to new situations requires dedicated continual or life-long
learning machines, where learning is best achieved on-chip to
prevent delays and power overhead incurred in communication
with data centers.

Stochasticity in neural networks is a valuable resource for
computations involved in deep learning, thanks to its regu-
larizing effect and its smoothing effect on the dynamics for
gradient descent learning. Furthermore, a large body of work
highlight the stochastic properties of emerging nanodevices
[1], [2]. Exploiting the physics of nanodevices for generating
stochasticity can lead to significant improvements in dedicated
deep learning machines and accelerators.

A family of stochastic neural network models called
Dropout [3], [4] are inspired by the probabilistic nature of
neural activations and their synaptic quantal release. Dropout
techniques greatly improved learning and inference in a num-
ber of artificial neural networks and spiking neural networks.
Dropout and the closely related DropConnect algorithm [5]
can be viewed as multiplicative noise that plays the dual
role of a regularizer during learning and an efficient mech-
anism for implementing stochasticity in event-based neural
networks over a wide dynamic range [6], while being very

suitable for implementation in hardware [7], [8]. Stochastic
synapses were shown to behave as stochastic counterparts of
Hopfield networks [9], but where stochasticity is caused by
multiplicative noise at the synapses (rather than logistic noise
in Boltzmann machines). These were shown to surpass the
performances of equivalent machine learning algorithms [10],
[11] on certain benchmark tasks. Such networks have “always-
on” stochasticity, which can be used for probabilistic inference
[12].

We find that the dynamics induced by multiplicative
synapses are sufficient for deep learning when equipped with
a threshold function as the only non-linearity. Relating to
previous work [13], we call such networks these Synaptic
Sampling Machines (S2Ms). We report the novel finding that
neurons equipped with such stochasticity inherently perform
normalization of the weights. Normalization plays an important
role in speeding up modern deep neural networks by mitigating
internal covariate shift caused by the distribution of each
layers inputs changes during training, as the parameters of
the previous layers change [14]. Of particular interest here is
“weight normalization” [15], a technique that normalizes the
network weights during learning which is suitable for on-line
(non-batch) learning. We prove that the self-normalizing effect
in the S2M is statistically equivalent to Weight Normalization
in the statistical sense, and demonstrate multilayer S2Ms on
GPU simulations and observe its convergence properties.

II. METHODS

A. Activation Function of Neural Network with Stochastic
Synapses

We formulate a framework that coherently links multiplica-
tive (synaptic) noise to probabilistic inference in stochastic
neural networks. For mathematical and implementation sim-
plicity, we use threshold (sign) units:

zi = Θ(ui) =

{

1 if ui ≥ 0

−1 if ui < 0
∀i, (1)

equipped with a combination of deterministic and blank-out
synapses (Fig. 1):

ui =
N
∑

j=1

ξ
p
ijwijzj +ai(

N
∑

j=1

wijzj) =
N
∑

j=1

(ξpij +ai)wijzj , (2)

where ξ
p
ij ∈ {0, 1} is a Bernoulli process with probability p,

and ai is a factor that controls the scale of the weights wij .

978-1-5386-3559-9/17/$31.00 ©2017 IEEE 11.1.1 IEDM17-259

Thanks to the binary nature of zi, Eq. (2) is multiplication-free
except for the term involving ai. However, the latter is only
performed once per neuron and time step since ai is unique
to the neuron.

Since the ξ
p
ij are independent, for large fan-in and p not

close to 0 or 1, we can approximate this sum with a Gaussian
with mean and variance:

μi =
∑

j

(p+ ai)wijzj , and σ2

i = p(1− p)
∑

j

(wijzj)
2,

respectively. Since ui is Gaussian-distributed, and P (zi =
1|z) = P (ui ≥ 0|z), the probability that unit i is active
given the network state is equal to one minus the cumulative
distribution function of ui:

P (zi = 1|z) = 1

2

(

1 + erf

(

μi

σi

√
2

))

=
1

2
(1 + erf (vi · z)) ,

with βi =
ai + p

√

2p(1− p)
, and vi = βi

wi

||wi||
.

(3)

To obtain the last term, we have used the identity
√

∑

j w
2

ij =
√

∑

j w
2

ijz
2

j = ||wi||, owing to the fact that the square of a

sign function is always 1, and where || · || is the L2 norm of
the weights of neuron i. The S2M neuron’s activation function
above shows that synaptic weights are effectively normalized.
The term ai is used to scale the magnitude of the weights, as
any scaling factor applied to wi would be otherwise canceled
out by the norm (See Section III B). Several experimental
observations point to this normalization as being the key for
understanding S2Ms’ performance in terms of sparsity and
accuracy [13].

B. Gradient Descent in S2M implements Weight Normalization

A recently proposed weight normalization technique sheds
some light on why self-normalizing effect in S2M are benefi-
cial to neural networks. The key idea in weight normalization
[15] is to normalize the unit activity by normalizing the weight
vectors. Interestingly, the normalization used in [15] takes
exactly the same form as in Eq. (3), suggesting that S2Ms
inherently perform weight normalization in the sense of [15].
The authors argue that the norm of the weight vector from its
direction can speed up convergence, and confers many of the
features of batch normalization.

To achieve weight normalization effectively, gradient de-
scent is performed with respect to the scalars β in addition
to the weights. The gradients of a loss function L with respect
to the weights w and scaling factors β become:

∂βi
L =

∑

j wij∂vijL
||wi||

∂wij
L =

βi

||wi||
∂vij

L − βi

||wi||2
∂βi

L

For all experiments, we used cross-entropy loss Ln =
−∑

i t
n
i log p

n
i , where n indexes the data sample and pi is

the Softmax output.

III. RESULTS

A. S2Ms Outperform Standard Stochastic Neural Networks in
Speed and Accuracy

In order to characterize the classification abilities of the
S2M and validate its hardware implementation, we trained
a fully connected network on the MNIST hand written digit
image database for digit classification1. The network consisted
of three fully-connected layers of size 300, and a softmax
layer for 10-way classification and all Bernouilli process
parameters were set to p = .5. Inputs were added with
Gaussian noise and discretized to -1, 1 using Eq. (1). The S2M
was trained using standard root-mean-square gradient back-
propagation (rms-prop) using a negative log-likelihood loss
and mini-batches of size 100. As a baseline for comparison,
we used the stochastic neural network (SNN) presented in
[16] without biases, with and sigmoid activation probability
Psig(zi = 1|z) = sigmoid(wi · z).

The results of this experiment are shown in Table I and
convergence is shown in Fig. 3. The 15th, 50th and 85th
percentiles of the input distributions to the last hidden layer
during training is shown in Fig. 2. The evolution of the
distribution is much smoother in the S2M, suggesting that S2M
prevents internal covariate shift.

Both speed of convergence and accuracy within 1000 epochs
are higher in the S2M compared to the SNN. Attractively,
the higher performance in S2M is achieved using inference
dynamics that are simpler than the SNN (sign activation
function compared to a sigmoid activation function) and using
binary random variables.

B. Robustness to Weight Fluctuations

The decoupling of the weight matrix as in vi = βi
wi

||wi||
introduces several other advantages. During learning, the dis-
tribution of the weights for layer tend to remain more stable in
S2M compared to SNN (Fig. 4). This feature can be exploited
to mitigate saturation at the boundaries of fixed range weight
representations (e.g. in fixed point representations or memris-
tors). Another subtle advantage from an implementation point
of view is that the probabilities are invariant to positive scaling
of the weights, i.e. αwi

||αwi||
= wi

||wi||
. Fig. 3 shows that S2M with

weights multiplied by a constant factor .1 during inference did
not significantly affect the classification accuracy. This confers
S2Ms inherent robustness against certain spurious fluctuations
affecting the rows of the weight matrix. Note that this property
does not hold for SNNs, where classification is largely impeded
by such scaling.

IV. CONCLUSIONS

Our results demonstrate that S2Ms can outperform standard
stochastic networks on standard machine learning benchmarks
on convergence speed and accuracy. This is achieved using
strictly simpler inference dynamics, that are well suited to

1Simulations were performed using Theano, based on code gracefully
provided by [16]. All scripts used to generate the data and figures are available
online (https://gitlab.com/NMI-lab/s2mwnorm)

11.1.2IEDM17-260

emerging nanodevices, and argue strongly in favor of exploit-
ing stochasticity in the devices for deep learning. Several
implementation advantages would accrue from this approach:
S2Ms are self-normalizing, rendering them robust alternatives
to batch normalization and dropout normalizing. The self-
normalizing feature can further mitigate saturation at the
boundaries of fixed range weight representations and confer
robustness against certain spurious fluctuations affecting the
rows of the weight matrix.

Compared to SNNs, the weight update rule is slightly more
involved as it requires calculating the row-wise L2-norms of
the weight matrices, and the derivatives of the erf function.
However, these terms are shared for all connections fanning
in to a neuron, such that the overhead in computing them is
small. Furthermore, based on existing work, we speculate that
approximating the learning rule either by hand [17] or auto-
matically [18] can lead to near optimal learning performances,
while being implemented with simple primitives.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1652159 “CAREER:
Scalable Neuromorphic Learning Machines” and by the Intel
Corporation.

REFERENCES

[1] D. Querlioz, O. Bichler, A. F. Vincent, and C. Gamrat, “Bioinspired pro-
gramming of memory devices for implementing an inference engine,”
Proceedings of the IEEE, vol. 103, no. 8, pp. 1398–1416, 2015.

[2] R. Naous, M. Al-Shedivat, and K. N. Salama, “Stochasticity modeling
in memristors,” IEEE Transactions on Nanotechnology, vol. 15, pp. 15–
28, Jan 2016.

[3] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[4] P. Baldi and P. J. Sadowski, “Understanding dropout,” in Advances in

Neural Information Processing Systems, pp. 2814–2822, 2013.

[5] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization
of neural networks using dropconnect,” in Proceedings of the 30th

International Conference on Machine Learning (ICML-13), pp. 1058–
1066, 2013.

[6] R. Moreno-Bote, “Poisson-like spiking in circuits with probabilistic
synapses,” PLoS computational biology, vol. 10, no. 7, p. e1003522,
2014.

[7] D. Goldberg, G. Cauwenberghs, and A. Andreou, “Probabilistic synap-
tic weighting in a reconfigurable network of VLSI integrate-and-fire
neurons,” Neural Networks, vol. 14, pp. 781–793, Sep 2001.

[8] S. Sheik, S. Paul, C. Augustine, C. Kothapalli, G. Cauwenberghs,
and E. Neftci, “Stochastic synaptic sampling in neuromorphic spiking
systems,” in International Symposium on Circuits and Systems, (ISCAS),

2015, IEEE, May 2016. accepted.

[9] J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the national academy

of sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[10] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[11] E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, and G. Cauwen-
berghs, “Event-driven contrastive divergence for spiking neuromorphic
systems,” Frontiers in Neuroscience, vol. 7, Jan. 2014.

[12] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” arXiv preprint

arXiv:1506.02142, 2015.

[13] E. O. Neftci, B. U. Pedroni, S. Joshi, M. Al-Shedivat, and G. Cauwen-
berghs, “Stochastic synapses enable efficient brain-inspired learning
machines,” Frontiers in Neuroscience, vol. 10, no. 241, 2016.

[14] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint

arXiv:1502.03167, 2015.

[15] T. Salimans and D. P. Kingma, “Weight normalization: A simple
reparameterization to accelerate training of deep neural networks,” arXiv

preprint arXiv:1602.07868, 2016.

[16] D.-H. Lee, S. Zhang, A. Biard, and Y. Bengio, “Target propagation,”
arXiv preprint arXiv:1412.7525, 2014.

[17] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-driven
random back-propagation: Enabling neuromorphic deep learning ma-
chines,” Frontiers in Neuroscience, vol. 11, 2017.

[18] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, and N. de Freitas, “Learning to learn by gradient descent
by gradient descent,” in Advances in Neural Information Processing

Systems, pp. 3981–3989, 2016.

Fig. 1: Network architecture (left) and stochastic connection
model (right). Weights are accumulated on ui as a sum of a
deterministic term scaled by ai (full circles) and a stochastic
term with fixed p blank-out probability (empty circles).

11.1.3 IEDM17-261

Dataset Network S2M
PI MNIST S2M 784-300-300-300-10 1.36 %
PI MNIST SNN 784-300-300-300-10 1.47 %
PI MNIST S2M scaled 784-300-300-300-10 1.38 %

TABLE I: Classification error on the permutation invariant
MNIST task (test set). Error is estimated by averaging test
errors over 100 samples and over the 50 last epochs.

(a) SNN

(b) S2M

Fig. 2: S2M mitigates internal covariate shift. 15th, 50th and
85th percentiles of the input distribution to the last hidden
layer (similarly to Fig. 1 in [14]). The internal covariate
shift is visible in the SNN as the input distributions change
significantly during the learning (see epochs 0-200). The self
normalizing effect in S2M performs weight normalization,
which is known to mitigate this shift and speed up learning.
Each step corresponds to one mini-batch update (100 data
samples per mini-batch, 50000 data samples total)

Fig. 3: Test error on Permutation Invariant (PI) MNIST during
training. S2M scaled is similar to S2M during training, but
weights were altered during inference as described in Section
III, B.

(a) S2M (b) SNN

(c) Mean of (W3) (d) Standard deviations of (W3)

Fig. 4: Evolution of W3 weight distributions during learning,
normalized to initial values. In the S2M, the scale of the
weights is controlled by the factors βi. This renders the weights
during learning more stable compared to the SNN, which tends
to grow at a faster rate.

11.1.4IEDM17-262

