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Abstract—Resistive Random-Access Memories (RRAM)s are
considered a promising candidate for neuromorphic circuits
and systems. In the letter, we investigate using 70> RRAMs
to solve blind source separation problem through Independent
Component Analysis (ICA) for the first time. ICA has numerous
uses including feature extraction. We deploy a local, unsupervised
learning algorithm (error-gated Hebbian rule) to extract the
independent components. The online evaluation of the weights
during the training is studied taking into consideration the
asymmetric nonlinear weight update behavior. The effects of
the device variability are considered in the results. Finally,
an example of de-mixing two Laplacian signals is given to
demonstrate the efficacy of the approach.

Index Terms—RRAMs, Memristor, ICA, Unsupervised Learn-
ing, Brain-inspired Learning.

I. INTRODUCTION

The Internet of Things (IoT) market is growing exponen-
tially and it is expected to have around 50 billion connected
devices generating around 500 zettabytes of data per year
by 2019 [1]. As a result, almost all IoT applications need
a system to analyze patterns in this data, detect certain types
of events and take decisions. Component analysis techniques
[2] are promising candidates to perform these tasks especially
with using local and efficient learning rules, that enable online
learning, rather than the conventional techniques that require
massive matrix operations. Additionally, by using hardware-
based matrix-vector multiplication accelerators, a significant
improvement in both performance and power can be achieved
enabling handling the massive data generated from IoT [3].

Independent component analysis (ICA) is a very powerful
tool to solve the cocktail party problem (blind source sepa-
ration), feature extraction (sparse coding) and can be utilized
in many applications such as de-noising images, Electroen-
cephalograms (EEG) signals, and telecommunications [4]. An
illustrative example of the cocktail party problem is given in
the supplementary materials. ICA consists of finding mutually
independent and non-Gaussian hidden factors (components), s,
that form a set of signals or measurements, x. This problem
can be mathematically described for linearly mixed compo-
nents as follows:

x = As (D

where A is the mixing matrix. Both A and s are unknowns.
In order to find the independent components (sources), the
problem can be formulated as u = wx where x is the
mixed signals (inputs of ICA algorithm), w is the weight
matrix (demixing matrix), u is the outputs of ICA algorithm
(independent components). ICA’s strength lies in utilizing the
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mutual statistical independence of components to separate the
sources.

Resistive crossbar structures are considered a key enabler to
hardware based neuromorphic acceleration due to their natural
ability to do matrix-vector multiplication which is the basic
operation for neural network acceleration (e.g. Multiply and
Add). Crossbar arrays can perform matrix-vector multipli-
cation in a single step as compared to m? steps for digital
realizations, where m is the length of the vector. Furthermore,
each RRAM occupies a very small area (4F?), where F is the
feature size, and operates as a nonvolatile continuous weight.
In the digital realization, each weight is stored in at least a
32 bits register to have continuous weight which requires 38
transistors per bit. In addition, m x (m — 1) multiply and
accumulate (MAC) blocks are needed, increasing the power
budget of the overall system. A comparative example of the
network that was used for the De-mixing problem is given in
the supplementary materials. RRAMs offer features such as
high density, low power consumption, high endurance, high
retention, high speed switching and 3D stack-ability in addi-
tion to ease of programming. Recently, RRAM-based neural
network architectures have been deployed in brain-inspired
computing applications [5] such as dimensionality reduction
through PCA [6], sparse coding [7], reservoir computing [8]
and image processing [9].

Recently, Isomura and Toyoizumi have proposed an interest-
ing biological plausible learning rule called Error-Gated Heb-
bian Rule (EGHR) [10] that enables local and efficient learning
to find the independent components. But, the expensive part
in this algorithm is the matrix-vector multiplication which can
calculated using RRAMs-based crossbar array offering a low
power and efficient solution. In this letter, a RRAM-based
hardware realization for ICA is investigated using EGHR for
online evaluation of the weights. We demonstrate that this
learning rule is capable of local and efficient learning, even
when taking into consideration the RRAM non-idealities, the
asymmetric nonlinear conductance, and device variability.

This letter is organized as follows: Section II discusses the
conductance update model which includes the device non-
idealities and variations. Then, the proposed ICA learning
algorithm is introduced in Section III. Section IV presents the
results of the proposed algorithm. Finally, the conclusion and
future work are given.

II. CONDUCTANCE UPDATE MODEL

Several RRAM devices demonstrating promising synaptic
behaviors are characterized by nonlinear and asymmetric up-
date dynamics, which are considered as major limitations to
their large-scale deployment in neural networks [11]. Ap-
plying the standard ICA without taking into the considera-



tion the device non-idealities (see the example given in the
supplementary material), results in loss of convergance to the
independent components. Thus, a closed form model for the
device nonlinearity should be derived and added to the ICA
algorithm to guarantee the convergence to ICs.

The asymmetric nonlinear behavior of the RRAMs can be
quantitatively modeled as the difference between the poten-
tiation and depression conductance update and linear (ideal)
conductance as shown in Fig. 2a. The asymmetric nonlinearity
of the RRAM’s conductance update can be fitted to the
following model

Gty = { Gmaz = Bre™ %0 u(1) > 0
N szn + BDe_alqb(t) U(t) < 0

where Gn,qa: and G, are the maximum and minimum
conductances respectively, aq,as, Sp and Sp are fitting co-
efficients. Sp and Bp are related to the difference between
Ginaz and G, and ¢(t) is the time integral of the applied
voltage.

Updating the RRAM conductance is commonly performed
through positive/negative programming pulses for potentiation/
depression with pulse width 7' and constant programming
voltage V,,. As a result, the discrete values of the flux are
¢(t = nT) = VpnT where n is the number of applied
pulses. This technique provides precise and accurate weight
updates. For t = nAT, and substituting back into eq (2), the
potentiation and depression conductances are given as

Grrp = Gumae — Bpe”*"", and 3)

Grrp = Gmin + Bpe” *P7, 4

respectively, where n is the pulse number, ap = |V, |a1T and
ap = |Vp|aoT.

One way to quantify the device potentiation and depression
asymmetry and linearity is the asymmetric nonlinearity factors
to compare between the devices. The effect of these factors
are reflected in the coefficients ap,ap,Sp and Sp which
are used for the training. The potentiation asymmetric nonlin-
earity (PANL) factor and depression asymmetric nonlinearity
(DANL) are defined as PANL = Gprp (N/2)/DR — 0.5
and DANL = 0.5 — Grrp (N/2)/DR, respectively, where
DR = Gpazr — Gmin is the RRAM’s dynamic range and
N is is the total number of pulses to fully potentiate the
device. PANL and DANL are between [0,0.5]. The sum
of both potentiation and depression asymmetric nonlinearities
represents the total asymmetric nonlinearity (ANL).

The synaptic device that will be used in this work is a non-
filamentary 70, based RRAM with a precision measured
to 6 bits by Park et al. in [12]. The Mo/T%0O, /TiN device
was fabricated based on a redox reaction at Mo/Tio, inter-
face which forms conducting MoO,,. This type of interface
based switching devices exhibits good switching variability
across the entire wafer and guarantee reproducibility [12]. The
proposed model was fitted and parameters were extracted for
the three programming cases {+2V,+2.5V, and =+ 3V'}. For
this work, only V,, = 3V cases will be considered since
it has the widest switching range. The extracted potentiation
parameters are G4, = 674nS,0p = 626.8nS and ap =
30.58mV ~1s~1 with 9.07 RMSE. On the other hand, the
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(b) long term depression.
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extracted depression parameters are G, = 32.95nS, fp =
921.9nS and ap = 353.4mV ~1s~! with 23.7 RMSE. Figure
1 shows the curve fitted model on the top of the reported
conductance for both potentiation and depression scenarios.
This device has PANL = 0.32 and DANL = 0.45 with
ANL = 0.77. Figure 2b shows the conductance variations
of multiple devices during the potentiation and depression
cycles with +3V programming pulses. The model parame-
ters are sampled from Gaussian sources with 25% tolerance
(Variance/mean) for «, and 1% and 5% tolerances for the
maximum and minimum conductances, respectively. The effect
of the variation in the parameter § is considered inside the
variations of «. [ should be modeled as lognormal variable
to have a monotonic increasing or decreasing conductance
update. Thus, the second term of the conductance update has
log Gaussian variable, which is e®, multiplied by e*” where
z and « are Gaussian variables . The sum of two Gaussian
random variables is a Gaussian random variable. Thus, the
effect of variation of 3 and « can be included in either one
of them.

In neural networks, both positive (excitatory) and negative
(inhibitory) connections are required. However, the RRAM
conductance is positive by definition which creates only
the excitatory connections. In order to create the inhibitory
connections, there are two weight realization techniques; 1)
by using two RRAMs per weight [13] or 2) by using one
RRAM as weight in addition to one reference RRAM hav-
ing a conductance set to G, = (Gpae + Gmin)/2 [14].
The first realization technique has double the dynamic range
w € [-DR, DR] making it more immune to variability at a
cost of double area, double power consumption during reading
and additional programming operations. On the other hand,
the second technique has one RRAM device, meaning that
w € [-DR/2, DR/2] making it more prone to variability but
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Fig. 3: Illustration of used RRAM crossbar array to realize the
ICA preceptron network.

the overall area is minimal especially for large networks, less
power consumption, and easier to program (programing only
one RRAM per weight). In this work, we consider the second
weight realization technique, and show that the algorithm
converges despite the reduced dynamic range compared to the
first realization.

III. PROPOSED RRAM’S LEARNING METHOD

Due to the importance of blind source separation problem,
many algorithms and learning rules have been proposed to
find the independent components such as minimizing the
mutual information or maximum likelihood estimation [4] and
Bell-Sejnowski or Amari [10], etc. Recently, Isomura and
Toyoizumi have proposed an interesting biological plausible
learning rule called Error-Gated Hebbian Rule (EGHR) in-
spired from the standard Hebbian rule [10]. In their work, the
authors proved mathematically and numerically the efficiency
of EGHR to achieve ICA. The EGHR learning rule can be
written as

=n((E, — E(u)) g(u)x") (5)

where 7 is the learning rate, (-) is the expectation over the
ensemble (training samples), g(u;)z; is the Hebbian learning
rule, g(u;), ; are the postsynaptic and presynaptic terms of
the neuron, respectively, (E, — E(u)) is the global error signal
which consists of E, which is a constant, and F(u) which
is the surprise or reward that guides the learning. The cost
function of EGHR is defined as £ = ¢3((Ey — E(u))?). It
was proven mathematically and numerlcally that this learning
rule is robust, stable and its equilibrium point is proportional
to the inverse of the mixture matrix, i.e. the solution of
ICA. However, there are some conditions that should be
satisfied; 1) g(u;) is a monotonically increasing odd function,
and 2) E(u) is a convex function. In order to satisfy these
conditions, g(u;) is chosen to be either a hypertangent function
or hard hypertangent function and E(u) is chosen as modulus
function.

ICA assumes that the sources are linearly mixed using a
mixture matrix A. The final weight matrix, w, should converge
to cA~! which is still a valid solution since c¢ is a scaling
factor. If the sources have known distributions, the optimal
FEj can be calculated as discussed in [10]. On the other hand,
if there is no knowledge about source distributions, Isomura
and Toyoizumi proved that for any Ey > 0, there is a positive

c that gives the equilibrium point of EGHR regardless of the
input source nature (unknown distributions) since the relation
between Ej and c is a monotonically increasing function [10].
Thus, Ey can be used as a tuning knob to the learning rule to
achieve the solution.

As previously discussed, the weights are enclosed between
—%, @] thus Ey must be chosen to keep the weights in
this range. With unknown sources, one can iterate over FE
until a solution is obtained. We start with an initial point (i.e.
E, = 1.) then keep decreasing it until the expectation of E(u)
becomes constant.

To have the resistive devices behave as EGHR, the change in
each weight must be proportional to the change in the RRAM’s
conductance, AG « Aw. To achieve this, the asymmetric
nonlinear behavior of potentiation and depression should be
included in developing the learning rule. We first calculate the
change in the weights for both potentiation and depression
cases taking into effect the asymmetric nonlinearity of the
RRAM model. In general, the change in the LTP’s conductance
due to applying An is

AGrrp =G(n+An)—G(n)
=(Gmaa—G(n))(1- e_o‘PA”)
where G(n) is the previous conductance. Similarly, the change
in the LTD conductance due to applying An is AGprp =
(G(n)—Gmin)(e~*PA"—1). Clearly, the relation between the

rate of change in conductance and An is an injective function.
Thus, the number of pulses to cause AGrrp and AGprp are

(6)

1 AGrrp
A = ——1 1l d 7
NLTP op n( G G(n))’ an (7)
1 AGrrp
Anprp = ———In [ =2SLTD 4 8
NLTD s n (G(n) G- + >, ®)

respectively. After learning, AG goes to 0. As a result, An
goes to zero as well. Equations (7) and (8) are nonlinear
functions which are hardware expensive to implement. Thus,
both can be linearized as In(1 — z) = —z(1 + 0.5z) = —z
and In(1 + z) = z(1 — 0.52) ~ z for x < 1. As previously
discussed, we can replace AG; ; by 7' Aw; j, where 7' is the
scaled learning rate, and Aw; ; is given by EGHR. Thus, the
final equations for potentiation and depression pulses can be

written as follows:
1 (' (Eo — E(u))g(uj)z;
An; ~ — , and 9
nijlore ap < G — G 2 (0) an &)
)

i.J
L (1 (Eo — E(u))g(u;)zi
_g ( G (n) Gmin ) 40
respectively.

By programming the RRAMs using the previous equations,
the circuit behaves as required and compensates for the
asymmetric nonlinearity of the devices. The proposed training
algorithm is shown in Algorithm 1. We chose to initialize
the weights with identity because we assume initially that
the inputs are the independent components themselves and
unmixed which means u=x, thus W=I. The inference part
is represented in lines 5-7 however lines 8-9 represent the
learning part. Line 5 in the algorithm is implemented using
crossbar array shown in Fig.3. Lines 6-7 can be implemented

An; jlrrp =



using either CMOS circuitry or off the shelf components such
as operational amplifiers similar to those discussed in [13].
The training part, can be implemented either using analog or
digital circuits.

Algorithm 1 Proposed Training Algorithm.
1: Set £, =1
2: while (F(u)) become constant do
3: Initialize RRAMs’ weights to Identity
for x € the training set do
u=(G-G,)x
g = hardtanh(bu)
E=Ylg(u)l
AW =n(E, — E)gxT
AP=round(f(AW)
10: end for
11: Decrease F,
12: end while

D A

IV. DE-MIXING EXAMPLE AND RESULTS

As a test bench for the proposed technique, we consider
two Laplacian random variables that are generated and mixed
using a mixture matrix which is set to a rotation matrix
A = (cos @, —sin6;sind, cos 0) with § = /6. The circuit has
been implemented as shown in Fig.3. The system weights are
trained using 5 x 10 samples with 5 x 10~ learning rate and
hard tanh activation function (g) with b = 2 x 105Q. On the
other hand, RRAMs are programmed using 1us pulses with
43V using the aforementioned conductance parameters. The
variability of model parameters are considered with different
Gaussian distribution for each device to consider device to
device variability as well using the aforementioned parameters.

Figure 4 shows the results of the online learning of
independent components of the mixed signals. Figure 4a
shows the weights evolution during the training. The weights
W = G — Gr are initialized by the identity matrix (no
knowledge about the mixture matrix) where the conductance
matrix is G = [Gmaz, —Gr; Gry Gmaz]. After learning, the
weight matrix is W = [0.2034,0.1133; —0.11,0.17]S and
WA = 0.233 x [1,—0.0155; —0.043,0.8733]u.S which is
approaching identity. Clearly, there are some oscillations in
the weights around the final solution after 10* samples because
of the continuous on line learning and the devices variations.
Figure 4c shows the evolution of pulses for programming each
weight and the evolution of the global surprise signal E is
shown in Fig.4b. A visual representation of the signals before
mixing, after mixing and after training is shown in Fig. 4d
which depicts the similarity between the source and output
signals.

Endurance and retention of RRAMs are very important
measures especially for online learning case. It is required
to guarantee that the algorithm converges after a number of
update cycles much smaller than the endurance of the used
device. The recent fabricated devices have good endurance
and retention values typically around 10® and 4 years, re-
spectively [15]. The total number of programming pulses for
each weight are {2.96,1.4,0.64,2.73} million pulses which
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Fig. 4: The online training results versus training time (a)
Evolution of the weights, (b) surprise Energy function, (c)
Required programming pulses for each weight, and (d) Visual
results of the input and the output.

are less than the endurance. One way to decrease the number
of programming pulses is by updating the weights using batch-
based updates which will decrease the variations in the weights
as well.

V. CONCLUSION AND FUTURE WORK

The realization of ICA using RRAMs is introduced taking
into consideration the asymmetric nonlinearity behavior of
the devices and the variations. The closed form learning
rule is introduced and is applied to de-mixing two Laplacian
signals. The proposed algorithm showed good performance
and converges to the independent components even with the
existence of the device variability. In the future work, the
algorithm and circuitry needed for on-chip learning will be
applied to extract image features that could be used as an
alternative to sparse coding.
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