
1

Independent Component Analysis using RRAMs
Mohammed E. Fouda, Student Member, IEEE,, Emre Neftci, Ahmed Eltawil, Senior Member, IEEE,

and Fadi Kurdahi, Fellow, IEEE

Abstract—Resistive Random-Access Memories (RRAM)s are
considered a promising candidate for neuromorphic circuits
and systems. In the letter, we investigate using T iO2 RRAMs
to solve blind source separation problem through Independent
Component Analysis (ICA) for the first time. ICA has numerous
uses including feature extraction. We deploy a local, unsupervised
learning algorithm (error-gated Hebbian rule) to extract the
independent components. The online evaluation of the weights
during the training is studied taking into consideration the
asymmetric nonlinear weight update behavior. The effects of
the device variability are considered in the results. Finally,
an example of de-mixing two Laplacian signals is given to
demonstrate the efficacy of the approach.

Index Terms—RRAMs, Memristor, ICA, Unsupervised Learn-
ing, Brain-inspired Learning.

I. INTRODUCTION

The Internet of Things (IoT) market is growing exponen-

tially and it is expected to have around 50 billion connected

devices generating around 500 zettabytes of data per year

by 2019 [1]. As a result, almost all IoT applications need

a system to analyze patterns in this data, detect certain types

of events and take decisions. Component analysis techniques

[2] are promising candidates to perform these tasks especially

with using local and efficient learning rules, that enable online

learning, rather than the conventional techniques that require

massive matrix operations. Additionally, by using hardware-

based matrix-vector multiplication accelerators, a significant

improvement in both performance and power can be achieved

enabling handling the massive data generated from IoT [3].

Independent component analysis (ICA) is a very powerful

tool to solve the cocktail party problem (blind source sepa-

ration), feature extraction (sparse coding) and can be utilized

in many applications such as de-noising images, Electroen-

cephalograms (EEG) signals, and telecommunications [4]. An

illustrative example of the cocktail party problem is given in

the supplementary materials. ICA consists of finding mutually

independent and non-Gaussian hidden factors (components), s,

that form a set of signals or measurements, x. This problem

can be mathematically described for linearly mixed compo-

nents as follows:

x = As (1)

where A is the mixing matrix. Both A and s are unknowns.

In order to find the independent components (sources), the

problem can be formulated as u = wx where x is the

mixed signals (inputs of ICA algorithm), w is the weight

matrix (demixing matrix), u is the outputs of ICA algorithm

(independent components). ICA’s strength lies in utilizing the

M E Fouda, A M. Eltawil, and Fadi Kurdahi are with Dept. of Electrical
Engineering and Computer Science, University of California–Irvine, Irvine,
CA 92697-2625 USA. Emre Neftci is with Department of Cognitive Sciences,
UC Irvine, Irvine, CA 92697-2625. E-mail: foudam@uci.edu

mutual statistical independence of components to separate the

sources.

Resistive crossbar structures are considered a key enabler to

hardware based neuromorphic acceleration due to their natural

ability to do matrix-vector multiplication which is the basic

operation for neural network acceleration (e.g. Multiply and

Add). Crossbar arrays can perform matrix-vector multipli-

cation in a single step as compared to m2 steps for digital

realizations, where m is the length of the vector. Furthermore,

each RRAM occupies a very small area (4F 2), where F is the

feature size, and operates as a nonvolatile continuous weight.

In the digital realization, each weight is stored in at least a

32 bits register to have continuous weight which requires 38

transistors per bit. In addition, m × (m − 1) multiply and

accumulate (MAC) blocks are needed, increasing the power

budget of the overall system. A comparative example of the

network that was used for the De-mixing problem is given in

the supplementary materials. RRAMs offer features such as

high density, low power consumption, high endurance, high

retention, high speed switching and 3D stack-ability in addi-

tion to ease of programming. Recently, RRAM-based neural

network architectures have been deployed in brain-inspired

computing applications [5] such as dimensionality reduction

through PCA [6], sparse coding [7], reservoir computing [8]

and image processing [9].

Recently, Isomura and Toyoizumi have proposed an interest-

ing biological plausible learning rule called Error-Gated Heb-

bian Rule (EGHR) [10] that enables local and efficient learning

to find the independent components. But, the expensive part

in this algorithm is the matrix-vector multiplication which can

calculated using RRAMs-based crossbar array offering a low

power and efficient solution. In this letter, a RRAM-based

hardware realization for ICA is investigated using EGHR for

online evaluation of the weights. We demonstrate that this

learning rule is capable of local and efficient learning, even

when taking into consideration the RRAM non-idealities, the

asymmetric nonlinear conductance, and device variability.

This letter is organized as follows: Section II discusses the

conductance update model which includes the device non-

idealities and variations. Then, the proposed ICA learning

algorithm is introduced in Section III. Section IV presents the

results of the proposed algorithm. Finally, the conclusion and

future work are given.

II. CONDUCTANCE UPDATE MODEL

Several RRAM devices demonstrating promising synaptic

behaviors are characterized by nonlinear and asymmetric up-

date dynamics, which are considered as major limitations to

their large-scale deployment in neural networks [11]. Ap-

plying the standard ICA without taking into the considera-



2

tion the device non-idealities (see the example given in the

supplementary material), results in loss of convergance to the

independent components. Thus, a closed form model for the

device nonlinearity should be derived and added to the ICA

algorithm to guarantee the convergence to ICs.

The asymmetric nonlinear behavior of the RRAMs can be

quantitatively modeled as the difference between the poten-

tiation and depression conductance update and linear (ideal)

conductance as shown in Fig. 2a. The asymmetric nonlinearity

of the RRAM’s conductance update can be fitted to the

following model

G(t) =

{

Gmax − βP e
−α1φ(t) v(t) > 0

Gmin + βDe−α1φ(t) v(t) < 0
(2)

where Gmax and Gmin are the maximum and minimum

conductances respectively, α1, α2, βP and βD are fitting co-

efficients. βP and βD are related to the difference between

Gmax and Gmin and φ(t) is the time integral of the applied

voltage.

Updating the RRAM conductance is commonly performed

through positive/negative programming pulses for potentiation/

depression with pulse width T and constant programming

voltage Vp. As a result, the discrete values of the flux are

φ(t = nT ) = VpnT where n is the number of applied

pulses. This technique provides precise and accurate weight

updates. For t = n∆T , and substituting back into eq (2), the

potentiation and depression conductances are given as

GLTP = Gmax − βP e
−αPn, and (3)

GLTD = Gmin + βDe−αDn, (4)

respectively, where n is the pulse number, αP = |Vp|α1T and

αD = |Vp|α2T .

One way to quantify the device potentiation and depression

asymmetry and linearity is the asymmetric nonlinearity factors

to compare between the devices. The effect of these factors

are reflected in the coefficients αP , αD, βP and βD which

are used for the training. The potentiation asymmetric nonlin-

earity (PANL) factor and depression asymmetric nonlinearity

(DANL) are defined as PANL = GLTP (N/2)/DR − 0.5
and DANL = 0.5 − GLTD (N/2)/DR, respectively, where

DR = Gmax − Gmin is the RRAM’s dynamic range and

N is is the total number of pulses to fully potentiate the

device. PANL and DANL are between [0, 0.5]. The sum

of both potentiation and depression asymmetric nonlinearities

represents the total asymmetric nonlinearity (ANL).

The synaptic device that will be used in this work is a non-

filamentary T iOx based RRAM with a precision measured

to 6 bits by Park et al. in [12]. The Mo/TiOx/T iN device

was fabricated based on a redox reaction at Mo/Tiox inter-

face which forms conducting MoOx. This type of interface

based switching devices exhibits good switching variability

across the entire wafer and guarantee reproducibility [12]. The

proposed model was fitted and parameters were extracted for

the three programming cases {±2V,±2.5V, and ± 3V }. For

this work, only Vp = ±3V cases will be considered since

it has the widest switching range. The extracted potentiation

parameters are Gmax = 674nS, βP = 626.8nS and αP =
30.58mV −1s−1 with 9.07 RMSE. On the other hand, the

0 25 50 75 100
0

0.2

0.4

0.6

0.8

3V

2.5V 2V

Pulse Number (  )

(a)

0 25 50 75 100
0

0.2

0.4

0.6

0.8

-2V

-2.5V

-3V

Pulse Number (  )

(b)

Fig. 1: RRAM’s conductance update (a) long term potentiation

(b) long term depression.

0 20 40 60 80 100
Pulse Number (  )

0

0.2

0.4

0.6

C
o

n
d

u
c
ta

n
c
e
 (

S
)

(a)

0 20 40 60 80 100
0

0.2

0.4

0.6

C
o
n
d
u
c
ta

n
c
e
 (

S
)

Pulse Number (  )

(b)

Fig. 2: Non-idealities of the RRAM:(a) asymmeteric nonlinear

weight update (b) device Variations

extracted depression parameters are Gmin = 32.95nS, βD =
921.9nS and αP = 353.4mV −1s−1 with 23.7 RMSE. Figure

1 shows the curve fitted model on the top of the reported

conductance for both potentiation and depression scenarios.

This device has PANL = 0.32 and DANL = 0.45 with

ANL = 0.77. Figure 2b shows the conductance variations

of multiple devices during the potentiation and depression

cycles with ±3V programming pulses. The model parame-

ters are sampled from Gaussian sources with 25% tolerance

(Variance/mean) for α, and 1% and 5% tolerances for the

maximum and minimum conductances, respectively. The effect

of the variation in the parameter β is considered inside the

variations of α. β should be modeled as lognormal variable

to have a monotonic increasing or decreasing conductance

update. Thus, the second term of the conductance update has

log Gaussian variable, which is ez , multiplied by eαn where

z and α are Gaussian variables . The sum of two Gaussian

random variables is a Gaussian random variable. Thus, the

effect of variation of β and α can be included in either one

of them.

In neural networks, both positive (excitatory) and negative

(inhibitory) connections are required. However, the RRAM

conductance is positive by definition which creates only

the excitatory connections. In order to create the inhibitory

connections, there are two weight realization techniques; 1)

by using two RRAMs per weight [13] or 2) by using one

RRAM as weight in addition to one reference RRAM hav-

ing a conductance set to Gr = (Gmax + Gmin)/2 [14].

The first realization technique has double the dynamic range

w ∈ [−DR,DR] making it more immune to variability at a

cost of double area, double power consumption during reading

and additional programming operations. On the other hand,

the second technique has one RRAM device, meaning that

w ∈ [−DR/2, DR/2] making it more prone to variability but





4

using either CMOS circuitry or off the shelf components such

as operational amplifiers similar to those discussed in [13].

The training part, can be implemented either using analog or

digital circuits.

Algorithm 1 Proposed Training Algorithm.

1: Set Eo = 1
2: while 〈E(u)〉 become constant do

3: Initialize RRAMs’ weights to Identity

4: for x ∈ the training set do

5: u = (G−Gr)x
6: g = hard tanh(bu)
7: E =

∑

i |g(ui)|
8: ∆W = η(Eo − E)gxT

9: ∆P=round(f(∆W)
10: end for

11: Decrease Eo

12: end while

IV. DE-MIXING EXAMPLE AND RESULTS

As a test bench for the proposed technique, we consider

two Laplacian random variables that are generated and mixed

using a mixture matrix which is set to a rotation matrix

A = (cos θ,− sin θ; sin θ, cos θ) with θ = π/6. The circuit has

been implemented as shown in Fig.3. The system weights are

trained using 5×106 samples with 5×10−9 learning rate and

hard tanh activation function (g) with b = 2× 106Ω. On the

other hand, RRAMs are programmed using 1µs pulses with

±3V using the aforementioned conductance parameters. The

variability of model parameters are considered with different

Gaussian distribution for each device to consider device to

device variability as well using the aforementioned parameters.

Figure 4 shows the results of the online learning of

independent components of the mixed signals. Figure 4a

shows the weights evolution during the training. The weights

W = G − Gr are initialized by the identity matrix (no

knowledge about the mixture matrix) where the conductance

matrix is G = [Gmax,−Gr;Gr, Gmax]. After learning, the

weight matrix is W = [0.2034, 0.1133;−0.11, 0.17]µS and

WA = 0.233 × [1,−0.0155;−0.043, 0.8733]µS which is

approaching identity. Clearly, there are some oscillations in

the weights around the final solution after 104 samples because

of the continuous on line learning and the devices variations.

Figure 4c shows the evolution of pulses for programming each

weight and the evolution of the global surprise signal E is

shown in Fig.4b. A visual representation of the signals before

mixing, after mixing and after training is shown in Fig. 4d

which depicts the similarity between the source and output

signals.

Endurance and retention of RRAMs are very important

measures especially for online learning case. It is required

to guarantee that the algorithm converges after a number of

update cycles much smaller than the endurance of the used

device. The recent fabricated devices have good endurance

and retention values typically around 108 and 4 years, re-

spectively [15]. The total number of programming pulses for

each weight are {2.96, 1.4, 0.64, 2.73} million pulses which

-0.2

0

0.2

0.4

1 10
2

Sample Number
10

4
10

310

(a)

1 10
2

Sample Number

0.52

0.54

0.56

0.58

0.6

0.62

10
4

10
310

(b)

(c)

-1 0 1
-1

0

1
Source

-1 0 1
-1

0

1
Input

-1 0 1
-1

0

1
Output

(d)

Fig. 4: The online training results versus training time (a)

Evolution of the weights, (b) surprise Energy function, (c)

Required programming pulses for each weight, and (d) Visual

results of the input and the output.

are less than the endurance. One way to decrease the number

of programming pulses is by updating the weights using batch-

based updates which will decrease the variations in the weights

as well.

V. CONCLUSION AND FUTURE WORK

The realization of ICA using RRAMs is introduced taking

into consideration the asymmetric nonlinearity behavior of

the devices and the variations. The closed form learning

rule is introduced and is applied to de-mixing two Laplacian

signals. The proposed algorithm showed good performance

and converges to the independent components even with the

existence of the device variability. In the future work, the

algorithm and circuitry needed for on-chip learning will be

applied to extract image features that could be used as an

alternative to sparse coding.

ACKNOWLEDGMENT

This work was partly supported by the National Science

Foundation under grant 1640081, and the Nanoelectronics

Research Corporation (NERC), a wholly-owned subsidiary of

the Semiconductor Research Corporation (SRC), through Ex-

tremely Energy Efficient Collective Electronics (EXCEL), an

SRC-NRI Nanoelectronics Research Initiative under Research

Task ID 2698.003.



5

REFERENCES

[1] “Idc worldwide internet of things forecast update, 2016-2020: December
2016,” in Doc # US42082716.

[2] D. H. Hoang and H. D. Nguyen, “A pca-based method for iot network
traffic anomaly detection,” in Advanced Communication Technology

(ICACT), 2018 20th International Conference on. IEEE, 2018, pp.
381–386.

[3] S. Joshi, C. Kim, S. Ha, Y. M. Chi, and G. Cauwenberghs, “21.7 2pj/mac
14b 8× 8 linear transform mixed-signal spatial filter in 65nm cmos
with 84db interference suppression,” in Solid-State Circuits Conference

(ISSCC), 2017 IEEE International. IEEE, 2017, pp. 364–365.
[4] A. e. a. Hyvärinen, Independent component analysis. John Wiley &

Sons, 2004, vol. 46.
[5] A. M. Hassan, C. Yang, C. Liu, H. H. Li, and Y. Chen, “Hybrid

spiking-based multi-layered self-learning neuromorphic system based
on memristor crossbar arrays,” in 2017 Design, Automation & Test in

Europe Conference & Exhibition (DATE). IEEE, 2017, pp. 776–781.
[6] S. e. a. Choi, “Experimental demonstration of feature extraction and di-

mensionality reduction using memristor networks,” Nano letters, vol. 17,
no. 5, pp. 3113–3118, 2017.

[7] P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and W. D. Lu, “Sparse
coding with memristor networks,” Nature nanotechnology, vol. 12, no. 8,
p. 784, 2017.

[8] C. e. a. Du, “Reservoir computing using dynamic memristors for
temporal information processing,” Nature communications, vol. 8, p.
2204, 2017.

[9] C. Li and et al., “Analogue signal and image processing with large
memristor crossbars,” Nature Electronics, vol. 1, no. 1, p. 52, 2018.

[10] T. Isomura and T. Toyoizumi, “A local learning rule for independent
component analysis,” Scientific reports, vol. 6, p. 28073, 2016.

[11] S. Yu, “Neuro-inspired computing with emerging nonvolatile memorys,”
Proceedings of the IEEE, vol. 106, no. 2, pp. 260–285, 2018.

[12] J. Park and et al., “Tio x-based rram synapse with 64-levels of conduc-
tance and symmetric conductance change by adopting a hybrid pulse
scheme for neuromorphic computing,” IEEE Electron Device Letters,
vol. 37, no. 12, pp. 1559–1562, 2016.

[13] M. Prezioso and et al., “Training and operation of an integrated
neuromorphic network based on metal-oxide memristors,” Nature, vol.
521, no. 7550, p. 61, 2015.

[14] C.-C. Chang and et al., “Mitigating asymmetric nonlinear weight update
effects in hardware neural network based on analog resistive synapse,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
2017.

[15] C. Nail and et al., “Understanding rram endurance, retention and window
margin trade-off using experimental results and simulations,” in Electron

Devices Meeting (IEDM), 2016 IEEE International. IEEE, 2016, pp.
4–5.


