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Abstract—Theoretical and experimental results have shown
that compressed sensing with quantization can perform well if
the signal is very sparse, the noise is very low, and the bitrate
is sufficiently large. However, a precise characterization of the
fundamental tradeoffs between these quantities has remained
elusive. In our previous work, we considered a quantization
scheme that first computes the conditional expectation of the
signal. In this paper, we focus on a different approach in which the
measurements are encoded directly using Gaussian codebooks.
We show that that mean-square error (MSE) distortion of this
approach can be analyzed by studying a degraded measurement
model without any bitrate constraints.

Building upon ideas from statistical physics and random
matrix theory, we then provide single-letter formulas for the
reconstruction error associated with optimal decoding. These for-
mulas provide an explicit characterization of the mean-squared
error (MSE) as a function of: (1) the average quantization bitrate,
(2) the prior distribution of the signal, and (3) the spectral
distribution of the sensing matrix. These formulas provide upper
bounds on the fundamental limits of compressed sensing with
quantization. Interestingly, it is shown that in some problem
regimes, this method achieves the best known performance, even
though the encoding stage does not use any information about
the signal distribution other than its mean and variance.

1. INTRODUCTION

This paper considers the problem of reconstructing a ran-
dom signal vector X" = (X{,...,X,) from a quantized version
of measurements Y = (¥},...,Y,,) obtained via

Y™ =HX" +N™, (1)
where H is an m X n sensing matrix and N is ii.d. standard
Gaussian noise. The objective is to understand how the mean-

square error (MSE) distortion depends on:

o The number of bits used to encode the measurements.

o The prior distribution of the signal.

« Properties of the sensing matrix, such as the number rows
m and the average power of the entries.

Despite a significant amount of work, especially within the
compressed sensing (CS) framework [1], the fundamental
limits of this problem are still not fully understood. This
problem is a special case of the remote (or indirect) source
coding problem [2, Ch. 3.5].

Much of the work on CS with quantization has focused
on approaches that apply scalar quantization directly to the
measurements [3]-[6]. These approaches are straightforward
to implement in practice because the quantization does not
depend on the sensing matrix or the signal distribution. In
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our previous work [7], we studied a different approach that
first estimates the signal from the measurements and then
encodes the estimate using an i.i.d. codebook. By analyzing the
asymptotic performance of this approach in the setting of i.i.d.
Gaussian sensing matrices and optimal estimation, we showed
that it can provide significant improvements, particularly in
cases where the signal is very sparse and/or highly non-
Gaussian.

Although our results from [7] shed light on what is possible
using optimal encoding, one might argue that the idea of
estimating the signal prior to quantization goes against the
central mantra of CS, which is that the compression and
sensing should be done simultaneously with the reconstruction
taking place at a later stage. This motivates us to consider
in this paper quantization schemes that require only minimal
processing of the measurements prior to encoding.

The contribution of this paper is to analyze two new coding
schemes, both of which use Gaussian codebooks [8] to encode
the measurements:

o Compress-and-Estimate (CE): The measurements are en-
coded using an i.i.d. Gaussian codebook.

o Linear Compress-and-Estimate (LCE): The quantizer ap-
plies a linear transformation to the measurements and then
encodes the transformed measurements using block-wise
Gaussian codebooks with variable rates.

In both cases, the signal is reconstructed from the quantized
measurements using information about the sensing matrix and
signal distribution.

The CE quantization scheme is universal in the sense that
the encoding is independent of the sensing matrix and the
signal distribution. The LCE quantization scheme adapts to
the sensing matrix by assigning a variable bitrates to a linear
transformation of measurements. As a consequence, LCE
can provide significant improvements, particularly in settings
where there is large variation in the singular values of the
sensing matrix.

Our theoretical results characterize the performance of the
CE and LCE quantization schemes in the setting where the
signal entries are drawn i.i.d. from a known signal distribution
and the sensing matrix is drawn from a right-orthogonally
invariant matrix distribution. In particular, we provide explicit
upper bounds for the MSE distortion as a function of the aver-
age bitrate, the signal distribution, and the spectral distribution
of the sensing matrix.
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Fig. 1. Signal reconstruction from quantized compressed sensing measure-
ments with m X n sensing matrix H and average bitrate R.

Our analysis provides a link between the CS problem
with and without bitrate constants. This connection allows us
to leverage work focusing on single letter formulas for the
asymptotic MMSE. This includes postulated formulas obtained
via the replica method from statistical physics [9]-[11] as well
as some recent rigorous characterizations for the special case
of i.i.d. Gaussian matrices [12], [13]. Results based on the
analysis of specific algorithms, such as VAMP [14], can also
be used to provide upper bounds.

Finally, we study the performance of our quantization
schemes in the setting of a sparse signal drawn from an i.i.d.
Bernoulli-Gaussian distribution. Our results show that LCE
outperforms the previous quantization methods for certain
regions of the problem parameters.

II. PROBLEM FORMULATION AND RELATED WORK
A. Problem assumptions

We consider the measurement model (1) in the setting where
the signal X" is a random vector with i.i.d. entries and the
sensing matrix H is a random matrix that is independent
of the signal and the noise. We focus on the case of right-
orthogonally invariant matrix distributions such that or any
nXn orthogonal matrix O,

H £ Ho.

The dependence on the singular values of the sensing matrix
is characterized in terms of the empirical spectral distribution
Un, which is the probability measure on [0,c0) assigning
probability mass 1/n to each of the n eignevalues of H H.
Note that the average power of the entries in H is equal to the
mean of the spectral distribution:

1 2
;ZHLJ. / Adp(2).
LJ

We analyze the behavior for a sequence of CS problems
in which both the signal dimension n and the the number of
measurements m increase to infinity with m/n — ¢ for some
fixed measurement rate ¢ € (0, ).

The problem assumptions are summarized as follows:

Al The entries of the signal X" are drawn i.i.d. from a scalar
distribution Px with mean zero and variance o=.

A2 For each problem of size n, the sensing matrix H is an
m X n random matrix that is right-orthogonally invariant.
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A3 The empirical spectral distribution y, converges almost
surely to a nonrandom limit y that is supported on a
compact subset of [0,c0). Furthermore, the maximum
eigenvalue is bounded almost surely:

lim sup Amax(HTH) < oo,
n

—00

a.s.

B. Reconstruction from quantized measurements

A rate R coding scheme for the CS problem consists of
an encoder f :R™ — {1,...,M} that maps the measure-
ments Y to one of M = 2"R possible values and a decoder
g:{l,...,M} — R" that produces a reconstruction X" of
the source signal. The distortion between the signal and its
reconstruction is assessed in terms of the expected mean
squared error (MSE)

lE [”Xn _ X‘vn”z] ,
n

where the expectation is with respect to the signal, the mea-
surements, and the sensing matrix. The combined setting of
CS measurement model with encoding and decoding at bitrate
R is illustrated in Fig. 1.

Definition 1: The distortion function D(Px, u, R) is defined
to be the infimum over all distortions D > 0 for which there
exists a rate R coding scheme such that

1 .
limsup —E[||X"—X"||2] <D,
n—ooco N

for any sequence of problems satisfying assumptions A1-A3.

Some special cases of the distortion function D(Px, u, R) are
worth mentioning. First, if the columns of the sensing matrix
are orthogonal, that is H' H = yI, then the spectral distribution
is the point-mass distribution ¢,. In this case, the measurement
model in (1) is statistically equivalent to a noisy observation
of the signal:

Yi =y Xi + N,

Optimal quantization on this setting has been studied in [7].
Furthermore, taking the high SNR limit recovers the usual
(Shannon’s) distortion-rate function:

i=1,...,n.

D™(Px,R) £ lim D(Px,6,,R). 2)
y—00

Alternatively, in the absence of any bitrate constraints, the
optimal reconstruction of the signal under MSE distortion
is provided by the conditional expectation. The resulting
distortion, which is known as the minimum-mean squared
error (MMSE), provides an important baseline for any finite
bitrate coding scheme. The MMSE function is defined as:

M(Px,p) = lim D(Px, u,R) 3)

A great deal of recent work has focused on single-letter
formulas the MMSE function [9]-[13], [15].

The results in this paper shows that the MMSE function (3)
can be used to upper bound the distortion function (2), once
an appropriate transformation has been applied to the spectral
distribution.
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Fig. 2. Left: Compress-and-Estimate (CE) Right: Linear transform Compress-and-Estimate (LCE). Both schemes encode the measurements vector, or a linearly
transformed version of it, using a Gaussian codebook. The estimator estimates the source signal from the encoded measurements.

In the ideal setting, both the encoder and decoder in Fig. 1
are designed with full knowledge of the sensing matrix. In
more realistic settings, however, the encoder and/or decoder
have only partial information about the sensing matrix. Our
previous work [7] focused on the case where the decoder
knows the distribution of the sensing matrix, but not the
specific realization. By contrast, the current paper focuses on
setting in which the encoder has limited information.

III. AcHIEVABILITY USING GAUSSIAN CODEBOOKS
A. Compress-and-Estimate

The CE coding scheme consists of the following steps.

e Gaussian codebook: Generate a random codebook
{y'"(i))};‘gl whose columns are i.i.d. Gaussian N(0,7%1,,,).
The codebook is revealed to the encoder and decoder.

o Minimum distance encoding: The encoder maps the mea-
surements to the index of the codeword that minimizes
the Euclidean distance to the measurements:

J™) = argmin|[Y™ =37 @)l

o Measurement decoding: The reconstruction of the mea-
surements is declared to be a the codeword that minimizes
the distance to the measurements:

= yram).

« Signal estimation: The reconstruction of the signal X”
is obtained from the reconstructed measurements ¥”* and
the sensing matrix H using an estimator that is based on
the measurement model

™ =gHX" +bN™.

for some numbers a and b.

In order to describe our results we consider the push-
forward measure T u of the spectral distribution u with respect
to a measurable mapping 7, defined as

(Tw)(B) = (T~ (B))

Theorem 1 (CE Achievability): Consider Assumptions 1-3.
For every rate R >0

D(Px, 1, R) < Dcg(Px, i, R) £ M(Px, T ), 4

for all subsets B.

where T is the scaling operator given by
1- 2—2R /6

T) = 4,
@ 1+ (y/6)or22-2R/I5

®)

and y = f/ldy(/l) is the mean of u.

We note that Ty is merely a scaled version of p by a
constant, hence Dcg(Px,u R) is the asymptotic MMSE in
estimating X" from

1— 2—2R/6

Y" =

=——  HX"+N",
1+70’§2‘2R/5/5

i.e., the MMSE under the original measurement model with
attenuated SNR.

B. Linear transformation Compress-and-Estimate
The LCE coding scheme is summarized as follows:

o Linear Transform: Apply an m X m linear transformation
L that diagonalizes the covariance of transformed mea-
surements:

2
O'Zl

zZm=LY"™, Cov(Z™) =
oy

e Block-wise encoding using Gaussian codebooks: Each
block of the transformed measurements is quantized us-
ing an i.i.d. Gaussian codebook and minimum distance
encoding. The bitrate allocated to each block is according
to the water-filling principle [2].

o Measurement decoding: The reconstruction of the mea-
surements is denoted by 2.

o Signal estimation: The reconstruction of the signal X"
is obtained from the reconstructed measurements ¥ and
the sensing matrix H using an estimator that is based on
the measurement model

7™ = AHX" + bN™.

for some matrix A and scalar b.

An achievable distortion under LCE is as follows:
Theorem 2 (LCE Achievability): Consider Assumptions 1-3.
For every rate R > 0,

D(Px, 14, R) < Dice(Px, i R) 2 M(Px, Top), (6)

where Ty is the non-linear operator given by

Ac? Ao
—Xz_gl /(—Xz+g/10-§)’
1+/10'X 1+/10'X

[x]* £ max{0,x}, and 6 is the unique positive solution to:

1 oo /lO'4
R=—- [ log"| —2—]du).
2/0 g ((1+Aa§)@) )

Tg(/l) =A




2018 IEEE International Symposium on Information Theory (ISIT)

C. Discussion

Theorems 1 and 2 show that distortion functions of the CE
and LCE coding schemes can be upper bounded in terms of the
MMSE function of degraded a measurement model. For the
CE coding schemes, this degradation corresponds to a rescal-
ing of SNR. For the LCE scheme, the degradation correspond
to a nonlinear transformation of the spectral distribution.

The main advantage of the CE coding scheme is that the
encoding depends only on the average power of the signal and
the sensing matrix. Hence, the same codebook can be used for
a wide variety of settings. The advantage of the LCE coding
scheme is that the variable bitrate allocation provides better
performance.

IV. SINGLE-LETTER FORMULAS

The results in the previous section provide a link between
the CS problem with and without rate constraints. In this
section, we leverage recent results focusing on the MMSE
function to provide explicit single-letter formulas for the
distortion functions associated with the CE and LCE coding
schemes.

We will describe the formulas for MMSE function using
the characterization given in [16]. Given a scalar signal dis-
tribution Py, the single-letter mutual information and MMSE
functions are defined as

Ix(s) 2 I(X;VsX +N) (N
Mx(s) 2 E[(X-E[VsX +N])*], (8)

where N ~ N(0, 1) is independent Gaussian noise. The Legen-
dre transform I (u) is defined as

I (u) = sup {Ix(s) - %su} 9)

s>0

By the I-MMSE relationship [17], it follows that

d 1 d . | R

%IX(S) = EMX(S)’ Tn x (W) = _EMX (u)

where M)((_ l)(-) denotes the functional inverse of Mx(-).
Given a probability measure y on the real line, the Stieltjes

transform and R transform are defined as

gmé/%ga

where C,(;])(~) denotes the functional inverse of C,(-),
Using this notation, the replica-symmetric (RS) formula for
the MMSE function can be expressed as

: 1
Ru(z) 2 CTV(=2) - - 30

MBS(Py, 1) £ argmin {I;}(u)+%/ Rﬂ(—z)dz; (11)
u 0

for all u such that the minimizer is unique [10], [11], [16].
By the I-MMSE relationship, it follows that every stationary
point of the term inside the brackets in (11) is a solution to
the fixed-point equation

Ry(—u) = M$ () (12)

In the context of compressed sensing, there are two special
cases where the replica-symmetric formula has been proven
rigorously: (1) the entries of the sensing matrix are i.i.d.
Gaussian and the signal distribution satisfies a certain single-
crossing property [18]. (2) The signal entries are i.i.d. Gaus-
sian. These cases are considered in further detail below.

We also note that the vector approximate message passing
algorithm (VAMP) of [14] provides an alternative asymptotic
analysis for the limiting MSE in the model (1) that does not
rely on the replica method. Specifically, the VAMP algorithm
attains MSE equals to the largest fixed point of (12).

A. Gaussian Input Signal

Consider the case where Px is the standard Gaussian dis-
tribution NV(0,1). As we shall see, in this case Dy cg(Px, i R)
provides a lower bound for the distortion under any encoding
and decoding scheme in Fig. 1, and not just under LCE. That
is, LCE is optimal for the quantized CS problem of Fig. 1.

Since X" and Y™ are jointly Gaussian given H, the MMSE
function is given by

p(da)

=C,(-1).
1+4 u(=1)

Mpxa = [
Similarly, the CE distortion function defined in Thm. 1 is

u(da)
l+nd’

DcEe(Px, it R) = /

where 5 £ (1 —272R/9) /(1 +y272R/3 /).
Furthermore, the LCE distortion function defined in Thm. 2
can be expressed as

— A
DLCE(PX,/J5R0) = M(PX’/J)_" /mln {9’ _} ,U(d/l),

I1+4
1
R9=§/10g+

This last expression has a water-filling interpretation similar to
the minimal distortion in the combined sampling and source
coding problem of [19], [20]. In fact, as the following Theorem
states, (13) is the minimal attainable distortion under any
encoding and decoding scheme for Y™ when X" is Gaussian:

Theorem 3 (quantized CS converse for a Gaussian input):
Let Px = N(0,1). For any encoder f:R™ — {1,...,2"} and
decoder g: {1,...,2"R} > R",

u(dd). (13)

A
(1+2)0

1 —
liminf ~E | X" ~g(/(*")II’| > Drce(Px. 1. R)

for any sequence of matrices satisfying A3.

Proof: (13) is the limit of the of indirect rate-distortion
function of X" given Y™, hence Thm. 3 follows from the
converse side of the indirect source coding theorem [2], [21]. &

B. IID Gaussian Sensing Matrix

Consider the case where each entry of H is drawn indepen-
dently from N(0,y/n). The resulting H is right-orthogonally
invariant with spectral distribution p =T, ump, where T,(1) =
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Fig. 3. Bounds on the distortion function D(Px, u, R) as a function of the
sparsity p for the Bernoulli-Gaussian distribution (14), R = 0.75 bits per
source dimension, i.i.d. Gaussian matrix with aspect ratio § = 0.5 and y = 50.

yA and pyvp is the Marchenco-Pasture law. In this situation,
(11) reduces to

o
MBS(Px, T, pump) £ argmin {I;(M) +5 log(1+ W)},
u

which is equivalent to [9, Eq. 22]. If we further assume that
Py satisfies the single crossing property presented in [18], then
Dce(Px, i, R) and Dy cg(Px, i, R) are given by MRS(Px,Tp)
where T is determined by either Thm. 1 or Thm.2.

Finally, to illustrate the impact of the sparsity, we consider
the special case of the Bernoulli-Gaussian signal prior:

Px = (1-p)éo+pN(0,1/p),

Here, the parameter p is the expected fraction of nonzero
entries and variance of the nonzero component is scaled such
Px has unit variance for all p. For this Px and T,ump we
illustrate in Fig. 3 the following bounds to D(Px, u, R):

(14)

« D¢k — CE distortion function defined in Thm. 1 evaluated
using the single-letter formula (11).

Dice — LCE distortion function defined in Thm. 2
evaluated using the single-letter formula (11).

Dxy — upper bound from [7].

M — lower bound given by the MMSE function (3).
D> — lower bound given by Shannon’s distortion rate
function (2).

Interestingly, it follows from Fig. 3 that the distortion under
CE and LCE is smaller than Dx|y when the signal is not
sufficiently sparse. This sub-optimality of Dx|y is the result of
ignoring dependency between disjoint blocks of E[X"|Y"™ H].
We investigate the conditions under which LCE outperform
encoding with respect to the asymptotic posterior in our future
work [22].

V. CONCLUSION

We considered the estimation of a signal from a quantized
version of its noisy linear measurements. We proposed and
analyzed two encoding schemes that are based on encoding
the noisy measurements, or their linearly transformed version,
using a Gaussian codebook that is independent of the projec-
tion matrix. Under a Gaussian signal prior and a particular
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transformation, this approach is optimal in the sense that it
leads to the minimal distortion among all quantization schemes
satisfying the bit constraint. For an arbitrary finite variance
signal prior, we provided explicit expressions for the MSE
distortion under these schemes given in terms of the signal
distribution, the spectral density of the sensing matrix, and
the bitrate.

REFERENCES

[1] Y. C. Eldar and G. Kutyniok, Compressed sensing: theory and applica-
tions. Cambridge University Press, 2012.

T. Berger, Rate-distortion theory: A mathematical basis for data com-
pression. Englewood Cliffs, NJ: Prentice-Hall, 1971.

L. Jacques, D. K. Hammond, and J. M. Fadili, “Dequantizing com-
pressed sensing: When oversampling and non-Gaussian constraints com-
bine,” IEEE Trans. Inform. Theory, vol. 57, no. 1, pp. 559-571, 2011.
U. Kamilov, V. K. Goyal, and S. Rangan, “Optimal quantization for com-
pressive sensing under message passing reconstruction,” in Information
Theory Proceedings (ISIT), 2011 IEEE International Symposium on.
IEEE, 2011, pp. 459-463.

W. Dai and O. Milenkovic, “Information theoretical and algorithmic
approaches to quantized compressive sensing,” IEEE Trans. Commun.,
vol. 59, no. 7, pp. 1857-1866, July 2011.

Y. Xu, Y. Kabashima, and L. Zdeborov4, “Bayesian signal reconstruction
for 1-bit compressed sensing,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2014, no. 11, p. P11015, 2014.

A. Kipnis, G. Reeves, Y. C. Eldar, and A. J. Goldsmith, “Fundamental
limits of compressed sensing under optimal quantization,” in Information
Theory (ISIT), 2017 IEEE International Symposium on, 2017.

A. Lapidoth, “On the role of mismatch in rate distortion theory,” IEEE
Trans. Inform. Theory, vol. 43, no. 1, pp. 38-47, 1997.

D. Guo and S. Verdu, “Randomly spread CDMA: asymptotics via
statistical physics,” IEEE Trans. Inform. Theory, vol. 51, no. 6, pp. 1983—
2010, June 2005.

K. Takeda, S. Uda, and Y. Kabashima, “Analysis of CDMA systems that
are characterized by eigenvalue spectrum,” Europhysics Letters, vol. 76,
no. 6, pp. 1193— 1199, Dec. 2006.

A. M. Tulino, G. Caire, S. Verdu, and S. Shamai, “Support recovery
with sparsely sampled free random matrices,” IEEE Transactions on
Information Theory, vol. 59, no. 7, pp. 4243-4271, 2013.

G. Reeves and H. D. Pfister, “The replica-symmetric prediction for
compressed sensing with Gaussian matrices is exact,” in Proc. IEEE
Int. Symp. Inform. Theory, Barcelona, Spain, Jul. 2016, pp. 665 — 669.
J. Barbier, M. Dia, N. Macris, and F. Krzakala, “The mutual informa-
tion in random linear estimation,” in Proc. Annual Allerton Conf. on
Commun., Control, and Comp., Monticello, IL, 2016.

S. Rangan, P. Schniter, and A. Fletcher, “Vector approximate message
passing,” arXiv preprint arXiv:1610.03082, 2016.

J. Barbier, F. Krzakala, N. Macris, L. Miolane, and L. Zdeborov4,
“Phase transitions, optimal errors and optimality of message-passing in
generalized linear models,” arXiv preprint arXiv:1708.03395, 2017.

G. Reeves, in Proc. Annual Allerton Conf. on Commun., Control, and
Comp., Monticello, IL, 2017.

D. Guo, S. Shamai, and S. Verdd, “Mutual information and minimum
mean-square error in Gaussian channels,” IEEE Trans. Inform. Theory,
vol. 51, no. 4, pp. 1261-1282, 2005.

G. Reeves and H. D. Pfister, “The replica-symmetric prediction for
compressed sensing with Gaussian matrices is exact,” CoRR, 2016.
[Online]. Available: http://arxiv.org/abs/1607.02524

A. Kipnis, A. J. Goldsmith, Y. C. Eldar, and T. Weissman, “Distortion
rate function of sub-Nyquist sampled Gaussian sources,” IEEE Trans.
Inform. Theory, vol. 62, no. 1, pp. 401-429, Jan 2016.

A. Kipnis, Y. C. Eldar, and A. J. Goldsmith, “Analog-to-digital com-
pression: A new paradigm for converting signals to bits,” IEEE Signal
Processing Magazine, vol. 35, no. 3, pp. 16-39, May 2018.

R. Dobrushin and B. Tsybakov, “Information transmission with addi-
tional noise,” IRE Trans. Inform. Theory, vol. 8, no. 5, pp. 293-304,
1962.

A. Kipnis, G. Reeves, and Y. C. Eldar, “Fundamental limits of com-
presses sensing under quantization,” 2018, in preparation.

[2

—

(3]

(4]

(51

(6]

(71

[8

[

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]



