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Abstract—Theoretical and experimental results have shown
that compressed sensing with quantization can perform well if
the signal is very sparse, the noise is very low, and the bitrate
is sufficiently large. However, a precise characterization of the
fundamental tradeoffs between these quantities has remained
elusive. In our previous work, we considered a quantization
scheme that first computes the conditional expectation of the
signal. In this paper, we focus on a different approach in which the
measurements are encoded directly using Gaussian codebooks.
We show that that mean-square error (MSE) distortion of this
approach can be analyzed by studying a degraded measurement
model without any bitrate constraints.

Building upon ideas from statistical physics and random
matrix theory, we then provide single-letter formulas for the
reconstruction error associated with optimal decoding. These for-
mulas provide an explicit characterization of the mean-squared
error (MSE) as a function of: (1) the average quantization bitrate,
(2) the prior distribution of the signal, and (3) the spectral
distribution of the sensing matrix. These formulas provide upper
bounds on the fundamental limits of compressed sensing with
quantization. Interestingly, it is shown that in some problem
regimes, this method achieves the best known performance, even
though the encoding stage does not use any information about
the signal distribution other than its mean and variance.

I. Introduction

This paper considers the problem of reconstructing a ran-

dom signal vector Xn
= (X1, . . .,Xn) from a quantized version

of measurements Ym
= (Y1, . . .,Ym) obtained via

Ym
=HXn

+Nm, (1)

where H is an m×n sensing matrix and Nm is i.i.d. standard

Gaussian noise. The objective is to understand how the mean-

square error (MSE) distortion depends on:

• The number of bits used to encode the measurements.

• The prior distribution of the signal.

• Properties of the sensing matrix, such as the number rows

m and the average power of the entries.

Despite a significant amount of work, especially within the

compressed sensing (CS) framework [1], the fundamental

limits of this problem are still not fully understood. This

problem is a special case of the remote (or indirect) source

coding problem [2, Ch. 3.5].

Much of the work on CS with quantization has focused

on approaches that apply scalar quantization directly to the

measurements [3]–[6]. These approaches are straightforward

to implement in practice because the quantization does not

depend on the sensing matrix or the signal distribution. In

our previous work [7], we studied a different approach that

first estimates the signal from the measurements and then

encodes the estimate using an i.i.d. codebook. By analyzing the

asymptotic performance of this approach in the setting of i.i.d.

Gaussian sensing matrices and optimal estimation, we showed

that it can provide significant improvements, particularly in

cases where the signal is very sparse and/or highly non-

Gaussian.

Although our results from [7] shed light on what is possible

using optimal encoding, one might argue that the idea of

estimating the signal prior to quantization goes against the

central mantra of CS, which is that the compression and

sensing should be done simultaneously with the reconstruction

taking place at a later stage. This motivates us to consider

in this paper quantization schemes that require only minimal

processing of the measurements prior to encoding.

The contribution of this paper is to analyze two new coding

schemes, both of which use Gaussian codebooks [8] to encode

the measurements:

• Compress-and-Estimate (CE): The measurements are en-

coded using an i.i.d. Gaussian codebook.

• Linear Compress-and-Estimate (LCE): The quantizer ap-

plies a linear transformation to the measurements and then

encodes the transformed measurements using block-wise

Gaussian codebooks with variable rates.

In both cases, the signal is reconstructed from the quantized

measurements using information about the sensing matrix and

signal distribution.

The CE quantization scheme is universal in the sense that

the encoding is independent of the sensing matrix and the

signal distribution. The LCE quantization scheme adapts to

the sensing matrix by assigning a variable bitrates to a linear

transformation of measurements. As a consequence, LCE

can provide significant improvements, particularly in settings

where there is large variation in the singular values of the

sensing matrix.

Our theoretical results characterize the performance of the

CE and LCE quantization schemes in the setting where the

signal entries are drawn i.i.d. from a known signal distribution

and the sensing matrix is drawn from a right-orthogonally

invariant matrix distribution. In particular, we provide explicit

upper bounds for the MSE distortion as a function of the aver-

age bitrate, the signal distribution, and the spectral distribution

of the sensing matrix.
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Fig. 1. Signal reconstruction from quantized compressed sensing measure-
ments with m×n sensing matrix H and average bitrate R.

Our analysis provides a link between the CS problem

with and without bitrate constants. This connection allows us

to leverage work focusing on single letter formulas for the

asymptotic MMSE. This includes postulated formulas obtained

via the replica method from statistical physics [9]–[11] as well

as some recent rigorous characterizations for the special case

of i.i.d. Gaussian matrices [12], [13]. Results based on the

analysis of specific algorithms, such as VAMP [14], can also

be used to provide upper bounds.

Finally, we study the performance of our quantization

schemes in the setting of a sparse signal drawn from an i.i.d.

Bernoulli-Gaussian distribution. Our results show that LCE

outperforms the previous quantization methods for certain

regions of the problem parameters.

II. Problem Formulation and Related Work

A. Problem assumptions

We consider the measurement model (1) in the setting where

the signal Xn is a random vector with i.i.d. entries and the

sensing matrix H is a random matrix that is independent

of the signal and the noise. We focus on the case of right-

orthogonally invariant matrix distributions such that or any

n×n orthogonal matrix O,

H
dist
= HO.

The dependence on the singular values of the sensing matrix

is characterized in terms of the empirical spectral distribution

µn, which is the probability measure on [0,∞) assigning

probability mass 1/n to each of the n eignevalues of HTH.

Note that the average power of the entries in H is equal to the

mean of the spectral distribution:

1

n

∑

i, j

H2
i, j =

∫
λ dµn(λ).

We analyze the behavior for a sequence of CS problems

in which both the signal dimension n and the the number of

measurements m increase to infinity with m/n → δ for some

fixed measurement rate δ ∈ (0,∞).
The problem assumptions are summarized as follows:

A1 The entries of the signal Xn are drawn i.i.d. from a scalar

distribution PX with mean zero and variance σ2
X

.

A2 For each problem of size n, the sensing matrix H is an

m×n random matrix that is right-orthogonally invariant.

A3 The empirical spectral distribution µn converges almost

surely to a nonrandom limit µ that is supported on a

compact subset of [0,∞). Furthermore, the maximum

eigenvalue is bounded almost surely:

limsup
n→∞

λmax(HTH) ≤ ∞, a.s.

B. Reconstruction from quantized measurements

A rate R coding scheme for the CS problem consists of

an encoder f : Rm → {1, . . .,M} that maps the measure-

ments Ym to one of M = 2nR possible values and a decoder

g : {1, . . .,M} → Rn that produces a reconstruction X̂n of

the source signal. The distortion between the signal and its

reconstruction is assessed in terms of the expected mean

squared error (MSE)

1

n
E

[

Xn − X̂n


2

]
,

where the expectation is with respect to the signal, the mea-

surements, and the sensing matrix. The combined setting of

CS measurement model with encoding and decoding at bitrate

R is illustrated in Fig. 1.

Definition 1: The distortion function D(PX, µ,R) is defined

to be the infimum over all distortions D > 0 for which there

exists a rate R coding scheme such that

limsup
n→∞

1

n
E

[
‖Xn − X̂n‖2

]
≤ D,

for any sequence of problems satisfying assumptions A1-A3.

Some special cases of the distortion function D(PX, µ,R) are

worth mentioning. First, if the columns of the sensing matrix

are orthogonal, that is HTH= γI, then the spectral distribution

is the point-mass distribution δγ. In this case, the measurement

model in (1) is statistically equivalent to a noisy observation

of the signal:

Yi =
√
γXi +Ni, i = 1, . . .,n.

Optimal quantization on this setting has been studied in [7].

Furthermore, taking the high SNR limit recovers the usual

(Shannon’s) distortion-rate function:

D∞(PX,R) , lim
γ→∞

D(PX, δγ,R). (2)

Alternatively, in the absence of any bitrate constraints, the

optimal reconstruction of the signal under MSE distortion

is provided by the conditional expectation. The resulting

distortion, which is known as the minimum-mean squared

error (MMSE), provides an important baseline for any finite

bitrate coding scheme. The MMSE function is defined as:

M(PX, µ) , lim
R→∞

D(PX, µ,R) (3)

A great deal of recent work has focused on single-letter

formulas the MMSE function [9]–[13], [15].

The results in this paper shows that the MMSE function (3)

can be used to upper bound the distortion function (2), once

an appropriate transformation has been applied to the spectral

distribution.
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Fig. 2. Left: Compress-and-Estimate (CE) Right: Linear transform Compress-and-Estimate (LCE). Both schemes encode the measurements vector, or a linearly
transformed version of it, using a Gaussian codebook. The estimator estimates the source signal from the encoded measurements.

In the ideal setting, both the encoder and decoder in Fig. 1

are designed with full knowledge of the sensing matrix. In

more realistic settings, however, the encoder and/or decoder

have only partial information about the sensing matrix. Our

previous work [7] focused on the case where the decoder

knows the distribution of the sensing matrix, but not the

specific realization. By contrast, the current paper focuses on

setting in which the encoder has limited information.

III. Achievability using Gaussian Codebooks

A. Compress-and-Estimate

The CE coding scheme consists of the following steps.

• Gaussian codebook: Generate a random codebook

{ ŷm(i))}M
i=1

whose columns are i.i.d. Gaussian N(0, τ2Im).
The codebook is revealed to the encoder and decoder.

• Minimum distance encoding: The encoder maps the mea-

surements to the index of the codeword that minimizes

the Euclidean distance to the measurements:

f (Ym) = argmin
i

‖Ym− ŷ
m(i)‖.

• Measurement decoding: The reconstruction of the mea-

surements is declared to be a the codeword that minimizes

the distance to the measurements:

Ŷm
= ŷ

m( f (Ym)).

• Signal estimation: The reconstruction of the signal X̂n

is obtained from the reconstructed measurements Ỹm and

the sensing matrix H using an estimator that is based on

the measurement model

Ŷm
= aHXn

+ b Nm.

for some numbers a and b.

In order to describe our results we consider the push-

forward measure T µ of the spectral distribution µ with respect

to a measurable mapping T , defined as

(T µ)(B) = µ(T−1(B)) for all subsets B.

Theorem 1 (CE Achievability): Consider Assumptions 1-3.

For every rate R > 0

D(PX, µ,R) ≤ DCE(PX, µ,R) ,M(PX,T µ), (4)

where T is the scaling operator given by

T(λ) = 1−2−2R/δ

1+ (γ/δ)σ2
X

2−2R/δ λ, (5)

and γ =
∫
λ dµ(λ) is the mean of µ.

We note that T µ is merely a scaled version of µ by a

constant, hence DCE (PX, µ,R) is the asymptotic MMSE in

estimating Xn from

Ym
=

1−2−2R/δ

1+γσ2
X

2−2R/δ/δ
HXn

+Nm,

i.e., the MMSE under the original measurement model with

attenuated SNR.

B. Linear transformation Compress-and-Estimate

The LCE coding scheme is summarized as follows:

• Linear Transform: Apply an m×m linear transformation

L that diagonalizes the covariance of transformed mea-

surements:

Zm
= LYm, Cov(Zm) =



σ2
Z1

. . .

σ2
Zm


• Block-wise encoding using Gaussian codebooks: Each

block of the transformed measurements is quantized us-

ing an i.i.d. Gaussian codebook and minimum distance

encoding. The bitrate allocated to each block is according

to the water-filling principle [2].

• Measurement decoding: The reconstruction of the mea-

surements is denoted by Ẑm.

• Signal estimation: The reconstruction of the signal X̂n

is obtained from the reconstructed measurements Ỹm and

the sensing matrix H using an estimator that is based on

the measurement model

Ẑm
= AHXn

+ bNm.

for some matrix A and scalar b.

An achievable distortion under LCE is as follows:

Theorem 2 (LCE Achievability): Consider Assumptions 1-3.

For every rate R > 0,

D(PX, µ,R) ≤ DLCE(PX, µ,R) ,M(PX,Tθ µ), (6)

where Tθ is the non-linear operator given by

Tθ (λ) = λ
[
λσ4

X

1+λσ2
X

− θ
]
+ / (

λσ4
X

1+λσ2
X

+ θλσ2
X

)

,

[x]+ , max{0, x}, and θ is the unique positive solution to:

R =
1

2

∫ ∞

0

log+

(
λσ4

X

(1+λσ2
X
)θ

)

dµ(λ).
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C. Discussion

Theorems 1 and 2 show that distortion functions of the CE

and LCE coding schemes can be upper bounded in terms of the

MMSE function of degraded a measurement model. For the

CE coding schemes, this degradation corresponds to a rescal-

ing of SNR. For the LCE scheme, the degradation correspond

to a nonlinear transformation of the spectral distribution.

The main advantage of the CE coding scheme is that the

encoding depends only on the average power of the signal and

the sensing matrix. Hence, the same codebook can be used for

a wide variety of settings. The advantage of the LCE coding

scheme is that the variable bitrate allocation provides better

performance.

IV. Single-Letter Formulas

The results in the previous section provide a link between

the CS problem with and without rate constraints. In this

section, we leverage recent results focusing on the MMSE

function to provide explicit single-letter formulas for the

distortion functions associated with the CE and LCE coding

schemes.

We will describe the formulas for MMSE function using

the characterization given in [16]. Given a scalar signal dis-

tribution PX , the single-letter mutual information and MMSE

functions are defined as

IX (s) , I(X;
√

sX +N) (7)

MX (s) , E
[
(X −E

[√
sX +N

]
)2

]
, (8)

where N ∼N(0,1) is independent Gaussian noise. The Legen-

dre transform I∗
X
(u) is defined as

I∗X (u) , sup
s≥0

{
IX (s)−

1

2
su

}
(9)

By the I-MMSE relationship [17], it follows that

d

ds
IX (s) =

1

2
MX (s),

d

du
I∗X (u) = −

1

2
M

(−1)
X

(u)

where M
(−1)
X

(·) denotes the functional inverse of MX (·).
Given a probability measure µ on the real line, the Stieltjes

transform and R transform are defined as

Cµ(t) ,
∫
µ(λ)
λ− t

dλ, Rµ(z) , C
(−1)
µ (−z)− 1

z
, (10)

where C
(−1)
µ (·) denotes the functional inverse of Cµ(·),

Using this notation, the replica-symmetric (RS) formula for

the MMSE function can be expressed as

MRS(PX, µ) , argmin
u

{
I∗X (u)+

1

2

∫ u

0

Rµ(−z)dz

}
(11)

for all µ such that the minimizer is unique [10], [11], [16].

By the I-MMSE relationship, it follows that every stationary

point of the term inside the brackets in (11) is a solution to

the fixed-point equation

Rµ(−u) = M
(−1)
X

(u) (12)

In the context of compressed sensing, there are two special

cases where the replica-symmetric formula has been proven

rigorously: (1) the entries of the sensing matrix are i.i.d.

Gaussian and the signal distribution satisfies a certain single-

crossing property [18]. (2) The signal entries are i.i.d. Gaus-

sian. These cases are considered in further detail below.

We also note that the vector approximate message passing

algorithm (VAMP) of [14] provides an alternative asymptotic

analysis for the limiting MSE in the model (1) that does not

rely on the replica method. Specifically, the VAMP algorithm

attains MSE equals to the largest fixed point of (12).

A. Gaussian Input Signal

Consider the case where PX is the standard Gaussian dis-

tribution N(0,1). As we shall see, in this case DLCE(PX, µ,R)
provides a lower bound for the distortion under any encoding

and decoding scheme in Fig. 1, and not just under LCE. That

is, LCE is optimal for the quantized CS problem of Fig. 1.

Since Xn and Ym are jointly Gaussian given H, the MMSE

function is given by

M(PX, µ) =
∫
µ(dλ)
1+λ

= Cµ(−1).

Similarly, the CE distortion function defined in Thm. 1 is

DCE (PX, µ,R) =
∫
µ(dλ)
1+ηλ

.

where η , (1−2−2R/δ)/(1+γ2−2R/δ/δ).
Furthermore, the LCE distortion function defined in Thm. 2

can be expressed as

DLCE(PX, µ,Rθ ) =M(PX, µ)+
∫

min

{
θ,
λ

1+λ

}
µ(dλ),

Rθ =
1

2

∫
log+

[
λ

(1+λ)θ

]
µ(dλ). (13)

This last expression has a water-filling interpretation similar to

the minimal distortion in the combined sampling and source

coding problem of [19], [20]. In fact, as the following Theorem

states, (13) is the minimal attainable distortion under any

encoding and decoding scheme for Ym when Xn is Gaussian:

Theorem 3 (quantized CS converse for a Gaussian input):

Let PX =N(0,1). For any encoder f : Rm →
{
1, . . .,2nR

}
and

decoder g :
{
1, . . .,2nR

}
→ Rn,

liminf
n→∞

1

n
E

[
‖Xn −g( f (Ym))‖2

]
≥ DLCE(PX, µ,R),

for any sequence of matrices satisfying A3.

Proof: (13) is the limit of the of indirect rate-distortion

function of Xn given Ym, hence Thm. 3 follows from the

converse side of the indirect source coding theorem [2], [21].

B. IID Gaussian Sensing Matrix

Consider the case where each entry of H is drawn indepen-

dently from N(0, γ/n). The resulting H is right-orthogonally

invariant with spectral distribution µ = TγµMP, where Tγ(λ) =
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Fig. 3. Bounds on the distortion function D(PX, µ, R) as a function of the
sparsity p for the Bernoulli-Gaussian distribution (14), R = 0.75 bits per
source dimension, i.i.d. Gaussian matrix with aspect ratio δ = 0.5 and γ = 50.

γλ and µMP is the Marchenco-Pasture law. In this situation,

(11) reduces to

MRS(PX,TγµMP) , argmin
u

{
I∗X (u)+

δ

2
log(1+γu)

}
,

which is equivalent to [9, Eq. 22]. If we further assume that

PX satisfies the single crossing property presented in [18], then

DCE(PX, µ,R) and DLCE(PX, µ,R) are given by MRS(PX,T µ)
where T is determined by either Thm. 1 or Thm.2.

Finally, to illustrate the impact of the sparsity, we consider

the special case of the Bernoulli-Gaussian signal prior:

PX = (1− p)δ0+ pN(0,1/p), (14)

Here, the parameter p is the expected fraction of nonzero

entries and variance of the nonzero component is scaled such

PX has unit variance for all p. For this PX and TγµMP we

illustrate in Fig. 3 the following bounds to D(PX, µ,R):
• DCE – CE distortion function defined in Thm. 1 evaluated

using the single-letter formula (11).

• DLCE – LCE distortion function defined in Thm. 2

evaluated using the single-letter formula (11).

• DX |Y – upper bound from [7].

• M – lower bound given by the MMSE function (3).

• D∞ – lower bound given by Shannon’s distortion rate

function (2).

Interestingly, it follows from Fig. 3 that the distortion under

CE and LCE is smaller than DX |Y when the signal is not

sufficiently sparse. This sub-optimality of DX |Y is the result of

ignoring dependency between disjoint blocks of E[Xn |Ym,H].
We investigate the conditions under which LCE outperform

encoding with respect to the asymptotic posterior in our future

work [22].

V. Conclusion

We considered the estimation of a signal from a quantized

version of its noisy linear measurements. We proposed and

analyzed two encoding schemes that are based on encoding

the noisy measurements, or their linearly transformed version,

using a Gaussian codebook that is independent of the projec-

tion matrix. Under a Gaussian signal prior and a particular

transformation, this approach is optimal in the sense that it

leads to the minimal distortion among all quantization schemes

satisfying the bit constraint. For an arbitrary finite variance

signal prior, we provided explicit expressions for the MSE

distortion under these schemes given in terms of the signal

distribution, the spectral density of the sensing matrix, and

the bitrate.

References

[1] Y. C. Eldar and G. Kutyniok, Compressed sensing: theory and applica-

tions. Cambridge University Press, 2012.
[2] T. Berger, Rate-distortion theory: A mathematical basis for data com-

pression. Englewood Cliffs, NJ: Prentice-Hall, 1971.
[3] L. Jacques, D. K. Hammond, and J. M. Fadili, “Dequantizing com-

pressed sensing: When oversampling and non-Gaussian constraints com-
bine,” IEEE Trans. Inform. Theory, vol. 57, no. 1, pp. 559–571, 2011.

[4] U. Kamilov, V. K. Goyal, and S. Rangan, “Optimal quantization for com-
pressive sensing under message passing reconstruction,” in Information

Theory Proceedings (ISIT), 2011 IEEE International Symposium on.
IEEE, 2011, pp. 459–463.

[5] W. Dai and O. Milenkovic, “Information theoretical and algorithmic
approaches to quantized compressive sensing,” IEEE Trans. Commun.,
vol. 59, no. 7, pp. 1857–1866, July 2011.

[6] Y. Xu, Y. Kabashima, and L. Zdeborová, “Bayesian signal reconstruction
for 1-bit compressed sensing,” Journal of Statistical Mechanics: Theory

and Experiment, vol. 2014, no. 11, p. P11015, 2014.
[7] A. Kipnis, G. Reeves, Y. C. Eldar, and A. J. Goldsmith, “Fundamental

limits of compressed sensing under optimal quantization,” in Information

Theory (ISIT), 2017 IEEE International Symposium on, 2017.
[8] A. Lapidoth, “On the role of mismatch in rate distortion theory,” IEEE

Trans. Inform. Theory, vol. 43, no. 1, pp. 38–47, 1997.
[9] D. Guo and S. Verdu, “Randomly spread CDMA: asymptotics via

statistical physics,” IEEE Trans. Inform. Theory, vol. 51, no. 6, pp. 1983–
2010, June 2005.

[10] K. Takeda, S. Uda, and Y. Kabashima, “Analysis of CDMA systems that
are characterized by eigenvalue spectrum,” Europhysics Letters, vol. 76,
no. 6, pp. 1193– 1199, Dec. 2006.

[11] A. M. Tulino, G. Caire, S. Verdu, and S. Shamai, “Support recovery
with sparsely sampled free random matrices,” IEEE Transactions on

Information Theory, vol. 59, no. 7, pp. 4243–4271, 2013.
[12] G. Reeves and H. D. Pfister, “The replica-symmetric prediction for

compressed sensing with Gaussian matrices is exact,” in Proc. IEEE

Int. Symp. Inform. Theory, Barcelona, Spain, Jul. 2016, pp. 665 – 669.
[13] J. Barbier, M. Dia, N. Macris, and F. Krzakala, “The mutual informa-

tion in random linear estimation,” in Proc. Annual Allerton Conf. on

Commun., Control, and Comp., Monticello, IL, 2016.
[14] S. Rangan, P. Schniter, and A. Fletcher, “Vector approximate message

passing,” arXiv preprint arXiv:1610.03082, 2016.
[15] J. Barbier, F. Krzakala, N. Macris, L. Miolane, and L. Zdeborová,

“Phase transitions, optimal errors and optimality of message-passing in
generalized linear models,” arXiv preprint arXiv:1708.03395, 2017.

[16] G. Reeves, in Proc. Annual Allerton Conf. on Commun., Control, and

Comp., Monticello, IL, 2017.
[17] D. Guo, S. Shamai, and S. Verdú, “Mutual information and minimum

mean-square error in Gaussian channels,” IEEE Trans. Inform. Theory,
vol. 51, no. 4, pp. 1261–1282, 2005.

[18] G. Reeves and H. D. Pfister, “The replica-symmetric prediction for
compressed sensing with Gaussian matrices is exact,” CoRR, 2016.
[Online]. Available: http://arxiv.org/abs/1607.02524

[19] A. Kipnis, A. J. Goldsmith, Y. C. Eldar, and T. Weissman, “Distortion
rate function of sub-Nyquist sampled Gaussian sources,” IEEE Trans.

Inform. Theory, vol. 62, no. 1, pp. 401–429, Jan 2016.
[20] A. Kipnis, Y. C. Eldar, and A. J. Goldsmith, “Analog-to-digital com-

pression: A new paradigm for converting signals to bits,” IEEE Signal

Processing Magazine, vol. 35, no. 3, pp. 16–39, May 2018.
[21] R. Dobrushin and B. Tsybakov, “Information transmission with addi-

tional noise,” IRE Trans. Inform. Theory, vol. 8, no. 5, pp. 293–304,
1962.

[22] A. Kipnis, G. Reeves, and Y. C. Eldar, “Fundamental limits of com-
presses sensing under quantization,” 2018, in preparation.

2018 IEEE International Symposium on Information Theory (ISIT)

75


