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Abstract 

The previously unknown experimental HfO2-Ta2O5-temperature phase diagram has been elucidated 

up to 3000 ˚C using a quadrupole lamp furnace and conical nozzle levitator system equipped with a 

CO2 laser, in conjunction with synchrotron X-ray diffraction. These in-situ techniques allowed the 

determination of: (i) liquidus, solidus and invariant transformation temperatures as a function of 

composition from thermal arrest experiments, (ii) determination of equilibrium phases through 

testing of reversibility via in-situ X-ray diffraction, and (iii) molar volume measurements as a function 

of temperature for equilibrium phases. From these, an experimental HfO2-Ta2O5-temperature phase 

diagram has been constructed which is consistent with the Gibbs Phase Rule. 
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I. Introduction 

1.1 The HfO2-Ta2O5-Temperature system 

 The equilibria of the HfO2-Ta2O5 system are of interest for applications in high temperature 

material systems1. Compositions within this system are currently used as thermal barrier coatings2–5, 

and high temperature dielectrics6. Understanding of the HfO2-Ta2O5 system is also of interest for the 

oxidation of other high temperature systems such as Hf-Ta7,8, Hf-Ta-C9–13 and Hf-Ta-N14 alloys. 

 The HfO2-Ta2O5 system has three distinct compounds HfO2, Hf6Ta2O17 and Ta2O5. HfO2 has 

three polymorphs as a function of temperature15,16: monoclinic, with P21/c symmetry (space group 

(SG) 14) when          , tetragonal17, with P42/nmc symmetry (SG 137) when           

       , cubic15, with       symmetry (SG 225) when                  18 and liquid at 

         18. The molten structure of pure HfO2 has been examined by Gallington et al.19 while the 

molten structure of Ta2O5 has been examined by Alderman et al.20 

 Hf6Ta2O17 was first identified by Spiridonov et al.21 and then soon after determined to be 

part of a homologous series by Turcotte et al.22 A homologous series is defined as a group of 

structures in which the difference between successive members is a simple structural unit, which 

also results in a closely spaced compositional variation. Yang et al.23 showed that Hf6Ta2O17 

superstructures could also be synthesised via oxidation.  McCormack and Kriven24 were able to solve 

the Hf6Ta2O17 superstructure (8-subcells stacked in the a-direction) with space group Ima2 (SG 46) 

and determined the homologous series regime to be               . McCormack et al.24,25 

then measured the thermal expansion as well as identified and characterized the peritectic 

transformation                    at 2250 ˚C. 

Ta2O5 has two equilibrium polymorphs and two possible metastable polymorphs. The low 

temperature orthorhombic polymorph with Pmm226 (SG 25) symmetry (O-Ta2O5) undergoes a slow, 

reconstructive, reversible transition into the high temperature tetragonal polymorph having I41/amd 

(SG 141)27 symmetry (T-Ta2O5) at approximately 1360 ˚C28. It is worth mentioning that Stephenson 

and Roth29 presented a monoclinic, space group I2 (SG 5) alternative structure that is related to the 

tetragonal structure. They believed that this structure was more correct, but it has not been widely 

accepted in the community. Sufficiently slow cooling and/or annealing below the transition 

temperature (1360˚C) transforms the T-Ta2O5 back into O-Ta2O5. However, even with fast cooling 

rates >50 ˚C/s, the T-Ta2O5 cannot be retained at room temperature. On cooling from T-Ta2O5, two 

metastable polymorphs forms. The first metastable polymorph forms at around 940 ˚C with a 

proposed monoclinic symmetry of I227 (SG 5) (M’-Ta2O5). The second metastable polymorph forms 

around 320˚C as orthorhombic with a proposed symmetry of Imma (SG 74) (O’-Ta2O5)
27. These 

polymorphs are considered to be metastable as they can only be formed on cooling. They do not 

show reversibility. Turcotte et al.22 suggested that Ta2O5 formed a homologous series with the 

addition of HfO2. No information regarding the change in structure or range was provided. 

Turcotte et al.22 collected preliminary liquidus data from thermal arrest experiments but did 

not mention any invariant transformations. The next step for developing the HfO2-Ta2O5-

temperature phase space is to: (i) identify the equilibrium phases and (ii) to start collecting 

thermophysical data for CALPHAD modelling. These are the two main goals of the present study. 
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1.2 Building accurate phase diagrams 

Most applications of ceramics rely on a fundamental knowledge of phase diagrams 

generated from phase equilibria, the accompanying phase transformations, as well as 

microstructure-property relations. These features are integral in the design of all classes of ceramic 

materials. There are three main stages in the development of accurate phase diagrams: (i) 

Equilibrium phase identification as function of thermodynamic variables (T, P,   ), (ii) measurement 

of thermodynamic parameters  
  

  
   

      

  
     

  

  
   

  

   
     and (iii) modelling of free 

energy, G from the thermodynamic parameters using the CALPHAD (CALculation of PHAse Diagrams) 

method30. 

The CALPHAD method involves modelling the free energies,            of a series of phases, 

j within a system, using the measured or calculated thermodynamic parameters (S, H, V   ). The 

equilibrium phases will be those with the lowest free energy under the specified conditions (T, P and 

  ). While this method is extremely powerful for building accurate phase diagrams, it can only be 

applied in cases where the correct equilibrium phases have been identified and characterized. If an 

equilibrium phase has been missed and is not included in the CALPHAD calculation, CALPHAD will 

not be able to predict its existence. This highlights the importance of the first step of experimental 

equilibrium phase identification. 

Experimentally, two key features can be used to identify an equilibrium phase: (i) 

Thermodynamic parameters are constant when thermodynamic variables are constant i.e. the 

system is not changing under constant T, P and   . (ii) Equilibrium phase reversibility (   ) i.e. 

when a phase transformation occurs at its equilibrium conditions, reaction will occur in the forward 

and reverse direction for any perturbation in thermodynamic variables. Conversely, a non-

equilibrium phase is one which does not follow either of these key features. It can be difficult to 

distinguish equilibrium phases from non-equilibrium phases, as non-equilibrium phases can become 

kinetically stabilized. With respect to the free energy, these kinetically stabilized phases are trapped 

in a local minimum, which require additional kinetic energy to achieve the equilibrium phase, i.e. 

move to the global minimum. As such, these kinetically stabilised phases will not exhibit phase 

reversibility for any perturbation in thermodynamic variable. 

These factors have led to mis-identification of equilibrium phases from ex situ experiments 

which involve heating samples to a temperature of interest where they are held isothermally, then 

quenched (cooled rapidly to ambient conditions). The large cooling rate from quenching is assumed 

to kinetically entrap the equilibrium phase from the isothermal hold. However, in some systems, this 

processing can induce the formation of non-equilibrium phases or even miss high temperature 

equilibrium phases due to fast transformations on cooling. 

Due to these factors, in situ at temperature experiments will be used to elucidate high 

temperature (3000 ˚C) HfO2-Ta2O5-Temperature phase space accurately and efficiently. The two key 

experiments performed are: (i) Thermal arrest measurements31 using a conical nozzle levitator (CNL) 

system equipped with a 400 W CO2 laser32 and (ii) in situ X-ray powder diffraction (XRPD) in 

conjunction with the quadrupole lamp furnace17,33–37 (QLF) and CNL equipped with 400 W CO2 laser 

systems32. The thermal arrest experiments will determine the liquidus, solidus and invariant 

transformation temperatures while the in situ XRPD will allow for equilibrium phase identification, 
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verification of transformation reversibility and measurements of the molar volume (thermodynamic 

parameter 
  

  
  ) as a function of temperature and composition by Rietveld refinement38. These in 

situ volume measurements can be used for future CALPHAD calculations to further refine the HfO2-

Ta2O5 phase diagram. 

 

II. Experimental Procedures 

2.1 Powder synthesis and preliminary characterization 

Hafnium tantalate powders were synthesized by the organic steric entrapment of cations39–

41. Hafnium (IV) chloride, 99.9 % (metal basis) (Alfa Aesar, Inc., Ward Hill, MA, USA) was dissolved in 

deionized water. Tantalum (V) chloride, 99.99 % (metal basis) (Alfa Aesar, Inc., Ward Hill, MA, USA) 

was dissolved in isopropanol. The masses of hafnium (IV) chloride and tantalum (V) chloride were 

determined based on cation stoichiometry of the oxide being fabricated.  The two solutions were 

mixed and stirred for one hour. Ethylene glycol (Aldrich Chemical Company, Milwaukee, WI, USA) 

having a molecular weight of 67.07 amu, was added in the proportion to maintain a cation valence 

charge to monomer charge ratio of four. After the addition of the steric entrapment agent (ethylene 

glycol), the solution was stirred for 1 h at room temperature, followed by heating at 300 ˚C, until 

enough water and isopropanol were evaporated, forming a viscous gel. The gel was subsequently 

dried overnight at 100 ˚C to produce a dry, porous mass. 

The porous mass was then ground in a zirconia mortar and pestle, calcined and crystallized, 

at 1050 ˚C for 3 h in a zirconia crucible, at a heating and cooling rate of 10 ˚C/min. The powders were 

then pressed into pellets in a Carver press (standard bench top press 3850, Carver, Inc., Wabash, IN, 

USA) at a load of ~60 MPa. These pellets were then annealed at 1300 ˚C in a platinum crucible for 10 

h at a heating and cooling rate of 10 ˚C/min. The annealed powders were then ground and sieved to 

<45 µm. 

Crystalline phase composition of the samples was examined by powder X-ray diffraction 

(XRD) with a Bruker D5000 diffractometer (Bruker AXS Inc., Madison, WI, USA), using      radiation 

(          , 40 kV, 30 mA). XRD patterns were acquired over a    range of 10 ˚ to 65 ˚ at 1 ˚/min 

and step size of 0.02 ˚. The crystalline phase was identified with reference to the International 

Centre for Diffraction Data PDF-4+ database (ICDD v. 2015, International Centre for Diffraction Data, 

Newton Square, PA) accessed through Jade 9.4.1 software (Materials Data Inc., Livermore, CA, USA). 

Elemental composition was measured by X-ray fluorescence (XRF) spectroscopy in a 

Shimadzu EDX-7000 (Shimazdu America Inc., Chicago, IL, USA) by collecting characteristic X-rays for 

elemental hafnium and tantalum. The room temperature composition measured from XRF and 

phase fractions for each sample synthesized are summarized in Table 1. 
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2.2. Thermal arrest from cooling traces 

 The hafnium tantalate (HfO2•Ta2O5) powders were melted into polycrystalline spheroids 2-3 

mm in diameter in a copper hearth, in air, with a 400 W sealed CO2 laser (where a 10.6 µm beam had 

a 5 mm diameter at a 1 m away from the laser, Synrad FSi401SB, Mukilteo, WA, USA). The laser 

power of the beam was adjusted by a LabVIEW (National Instruments, Austin, TX, USA) controlled 

laser controller (Synrad UC-2000) which allowed incrementation of the power by 0.5 %. The surface 

tension of the oxide melt tended to form spheroidal beads. 

Cooling profiles on recalescence31 of the hafnium tantalate beads in air were recorded and 

analyzed. Selected beads were levitated and rotated in a conical nozzle levitator32 (CNL) in air, while 

being heated with a laser. This method has been described in more detail by McMurray et al31 and 

Ushakov .Temperatures on laser melting and cooling traces during quenching from the liquid state 

were simultaneously monitored using two pyrometers. In addition to a fast, single-band pyrometer 

(900 nm, 10 ms response time, 700 - 3500 ˚C, IR-CAS8CS; Chino Co., Tokyo, Japan), a 

spectropyrometer42 (500 – 1000 nm, 1400 - 4000 ˚C, FAR Associates, Macedonia, OH) was used to 

avoid uncertainty from unknown effective sample emissivity. 

 

2.3. High temperature X-ray diffraction 

2.3.1 Quadrupole lamp furnace (QLF)17,33–37 

 The annealed Hf6Ta2O17 powder was mixed with 10 wt% Pt powder (99.99%; Sigma-Aldrich, 

St Louis, MO, USA) in an agate mortar and pestle. The mixed powder was then sieved using a 

standard 325-mesh (45 µm), loosely packed into a sapphire capillary (SapphiT OD = 1.00 mm, ID = 

0.6 mm; Crytur, Turnov, Czech Republic) and mounted in a longer alumina tube (OD = 2 mm, ID = 1.2 

mm; Alfa Aesar, Inc., Ward Hill, MA). The sample was heated in air in a quadrupole lamp furnace 

(QLF)33 from room temperature to a maximum of 1600 ˚C, in approximately 50 ˚C steps with a 3 min 

hold time at each temperature. The experiments were conducted at Beamline 33-BM-C at the 

Argonne National Lab, Advanced Photon Source (APS) at Argonne National Laboratory. The X-ray 

powder diffraction (XRPD) patterns were collected at each temperature with the Pilatus 70K 

detector. The sample to detector distance and wavelength were determined by means of a      

standard (SRM 660a; National Institute of Standards and Technology, Gaithersburg, MD) and were 

found to be 1040 mm and 0.589957 Å, respectively. 

 

2.3.2 Conical nozzle levitator (CNL) equipped with a CO2 laser19,20,50–52,32,43–49 

The Hf6Ta2O17 was processed into polycrystalline sintered spheroids, 2-3 mm in diameter, by 

means of a vibrating table method53. Ceramic slurries were prepared from 87 vol% Hf6Ta2O17 powder 

having a 200 µm particle size, 5 vol% methyl cellulose binder (Sigma-Aldrich, St Louis, MO, USA), 1 

vol% Darvin® dispersant (Vanderbilt Company, Inc., Norwalk, CT, USA) and 7 vol% water. This slurry 

was vibrated at a frequency of 70 Hz in a cubed-walled container having 30 mm dimensions for 

approximately 5 min, or until the beads had sufficient green strength. This method is described in 
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more detail by Santos et al.53. The resulting spherical beads were heat treated at 1300 ˚C for 6 h at a 

heating rate of 2 ˚C/min and cooling rate of 8 ˚C/min.  

In situ, high temperature, synchrotron XRD experiments were performed on the Hf6Ta2O17 

beads at the Advanced Photon Source (APS), Argonne National Laboratory, at Beamline 6-ID-D. 

Hafnium tantalate sintered beads were levitated in a stream of argon mixed with 21 % oxygen (to 

simulate air) in a conical nozzle levitator (CNL) system19,20,50–52,32,43–49. The levitated sample rotates on 

axis while being heated using the beam from a 400 W sealed tube CO2 laser (10.6 µm, Synrad 

FSi401SB, Mukilteo, WA, USA) beam that was partially focused on the top surface of the sample. This 

arrangement enabled the sample to be heated to approximately 3000 ˚C, which was above its 

melting point. The sample temperature was controlled by adjusting the incident laser beam power. 

A CHINO pyrometer (900 nm, 10 ms response time, 700-3500 ˚C, IR-CAS8CS; Chino Co., Tokyo, 

Japan) monitored the temperature of the bead surface incident with the laser and X-ray beam. The 

measured radiometric temperature was corrected using a spectral emissivity of 0.92 at the 

pyrometer wavelength. The CNL system setup is described in detail by Weber et al.43. The sample 

was held at the desired temperature for approximately 3 minutes before taking measurements. The 

XRD patterns were collected at ~100 ˚C temperature interval by a-Si Perkin Elmer XRD1621 area 

detector. The X-ray beam had dimensions 100 x 200 µm and was aligned so as to be incident with 

the laser and CHINO pyrometer before each XRPD pattern measured. The sample to detector 

distance and wavelength were determined with reference to a      standard (SRM 660a; National 

Institute of Standards and Technology, Gaithersburg, MD, USA) and were found to be 1027.4 mm 

and 0.123589 Å, respectively. 

 

2.3.3 Rietveld refinement. 

The resulting XRD patterns were refined via the Rietveld method using the General Structure 

Analysis System Two (GSAS-II) program54. The background, lattice constants, scale factors, atomic 

positions and profile functions were refined for each temperature. For the QLF system, the well-

characterized thermal expansion of platinum33 was used to accurately calculate the temperature of 

the powder diffraction patterns to an accuracy of       33,55. This error had two sources: (i) the 

variance in thermal expansion of the standard and (ii) the d-spacing resolution of the X-ray 

apparatus. For the CNL system, the sample temperature was recorded from the pyrometer with 

errors of approximately      ˚C due to temperature gradients in the sample. 

 

2.3.4 CNL temperature corrections 

Unlike the QLF system, an internal standard has yet to be developed for the CNL system to 

monitor the temperature at these higher temperatures. Internal standards can be used to accurately 

calculate the average temperature of the diffracted volume, i.e., the volume of material being 

observed by X-ray diffraction. External temperature measuring devices, such as thermocouples and 

pyrometers may be useful for temperature control but are not so useful when internal and/or exact 

temperatures are required. 
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For example, in the CNL system the surface temperature of the levitated bead was measured 

by pyrometry. The incident X-ray beam needed to be located on the same top surface of the bead in 

order for the pyrometer to measure the temperature of the diffracting volume. During levitation, 

steady control of the bead height with respect to the incident X-ray beam was difficult. Upon 

heating, the shape of the bead could change due to thermal expansion and sintering which altered 

its position with respect to the incident beam. In addition, changes in aerodynamic effects can alter 

the sample position by as much as 100 um, about half the height of the X-ray beam. Furthermore, 

these ceramic beads had relatively high temperature gradients56 due to being heated from the top, 

while being cooled at the bottom50,51. This is why the X-ray beam is small (200 x 100 µm) and is 

aligned to be incident with CO2 laser beam on the surface of the bead.  These issues could be 

resolved if the temperature gradient in solid samples was reduced, or if an internal standard could 

be used. 

Since an internal standard was not available, the sample itself could be calibrated and used 

to estimate the temperature of the diffracted volume. This could be done by first measuring the 

thermal expansion using the QLF system, where the temperature accuracy was       , as well as by 

measuring the lattice parameters at a well characterized transition temperature such as the liquidus 

temperatures measured from thermal arrest experiments over the entire temperature composition 

range. Thus, lattice parameters just prior to melting could be measured and could be used as the 

“melting point lattice parameters”. These two data sets could then be interpolated using a 

polynomial fit, allowing for calculation of the temperature based on the observed lattice 

parameters25. 

This temperature correction greatly reduced uncertainty and ensured that the observed 

sample temperature fell within the correct temperature bounds. However, it coupled the 

temperature measurement with the volume measurement. 

 

III. Results and Discussion 

3.1 Liquidus, solidus and invariant transformation temperatures  

 The thermal arrest data in the form of cooling traces are displayed in Fig. 1 for each HfO2-

Ta2O5 composition. The liquidus and solidus temperatures are defined by a plateau or sudden 

change in temperature in the cooling trace, signifying thermal arrest. A representative cooling trace 

is shown in supplementary information S1, clearly demonstrating how liquidus and solidus 

temperatures are identified. Each composition was heated and quenched five times in order to build 

statistics on the liquidus and solidus points. 

 The average liquidus temperature and standard error as functions of composition are 

tabulated in Table 2. The solidus temperatures have been defined as three separate invariant 

transformations due to their consistency in temperature as a function of composition and have been 

tabulated in Table 3. However, the exact type of invariant transformation cannot be determined 

directly from thermal arrest experiments but could be identified using in situ XRD and is discussed in 

section 3.2. To prevent confusion, the type of invariant transformations has been listed here. The 

first invariant transformation is marked in green (monotectic), the second in red (eutectic) and the 
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third in purple (peritectic). The liquidus and invariant transformation temperatures as functions of 

[HfO2] mol fraction are plotted in Fig. 2.  

 The liquidus data collected here are similar to those collected by Turcotte et al.22 but the 

present data have higher resolution in composition and identify invariant transformation 

temperatures. We know of no other studies that mention invariant transformations in the HfO2-

Ta2O5-Temperature phase equilibria. McCormack et al.25 recently published a more in-depth study of 

the Hf6Ta2O17 peritectic transformation. 

 

3.2 Phase diagram from in-situ powder X-ray diffraction for the HfO2-Ta2O5-temperature system 

 Coupling XRD with the conical nozzle levitator (CNL) system equipped with CO2 laser, one is 

able to effectively map out phases in situ as a function of temperature. There are three key tests for 

equilibrium. (i) The thermodynamic parameters (S, H, V,   ) must be constant when the 

thermodynamic variables (T, P,   ) are constant. This is achieved by ensuring that the molar volume 

does not change when the temperature is being held constant. (ii) When multiple phases are 

observed, they must satisfy the equi-partitioning of the chemical potential (i.e. the chemical 

potential of each component must be equal in all phases present) to ensure that the two phases are 

in equilibrium. This is also supported by the molar volume being constant as function of 

composition. (iii) The reversibility of the observed transformations.  

Fig. 3 shows the phases observed in equilibrium as a function of temperature and [HfO2] mol 

fraction. Each triangle corresponds to the sample composition, temperature and equilibrium phases 

present: O-Ta2O5 with Pmm226 orthorhombic symmetry (SG 25); T-Ta2O5 with I41/amd tetragonal 

symmetry (SG 141)27; O-Hf6Ta2O17 with Ima2 orthorhombic symmetry (SG 46); M-HfO2 with P21/c 

monoclinic symmetry (SG 14); T-HfO2 with P42/nmc tetragonal symmetry (SG 137); and C-HfO2 with 

      cubic symmetry (SG 225). 

The constancy of the chemical potential in two phase regions can be observed in Fig 4. which 

shows the lattice parameters of O-Ta2O5, O-Hf6Ta2O17 and M-HfO2 at room temperature. O-Ta2O5 is 

present within the range of             . Within this composition range the lattice parameters 

of O-Ta2O5 steadily increase, signifying the existence of a homologous series or solid solution57. 

When           , O-Hf6Ta2O17 forms. Between               , the lattice parameters of O-

Ta2O5 and O-Hf6Ta2O17 are constant because these two phases are in equilibrium with each other 

over this composition range. O-Ta2O5 is no longer observed when           . For            

     , the lattice parameters of O-Hf6Ta2O17 vary as a function of composition, signifying another 

homologous series or solid solution57. When             , O-Hf6Ta2O17 and M-HfO2 are observed. 

For                the lattice parameters of O-Hf6Ta2O17 and M-HfO2 are observed to be 

constant, as expected for a two-phase regime in equilibrium. 

The “solid solution” like ranges for O-Ta2O5 and O-Hf6Ta2O17 probably a homologous series of 

closely spaced phases rather than true a solid solution. That is, as HfO2 is added to O-Ta2O5 or when 

the Hf/Ta ratio is changed in the compound Hf6Ta2O17, a series of related ordered structures form. 

This is indicated because satellite low intensity peaks appear and disappear as the composition is 

changed. Determining which satellite peaks appear and disappear as a function of composition is 
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difficult for X-ray powder diffraction due to the large scattering factors of Hf and Ta  compared to 

that of O58,59. The small contribution of oxygen to the total scattering obscures slight symmetry 

changes which may be caused by oxygen ordering. It is clear that these structures are related, as the 

high intensity peaks (predominantly scattering from Hf/Ta) change d-spacing continuously as a 

function of composition, suggesting that cation sublattice is essentially the same for both the O-

Ta2O5 homologous series as well as the Hf6Ta2O17 homologous series. McCormack et al.24 have 

proposed how the Hf6Ta2O17 structure can accommodate a                  change in 

composition via movements of O and changes in superstructure multiplicity. Although the O-Ta2O5 at 

room temperature exhibits a homologous series, when it transforms to T-Ta2O5 it becomes a solid 

solution. This is because there is an observed change in lattice parameter as HfO2 is added to T-Ta2O5 

and there is no appearance of satellite peaks. 

The phase transformations observed in the phase diagram (Fig. 4) are summarized in Table 4 

with their associated changes in molar volume at temperature. Several transformations need to be 

verified and tested for reversibility to ensure that they are in fact the equilibrium transformations. 

These include: 

(i) the first invariant transformation (monotectic:    T-Ta2O5 +   ) 

(ii) the second invariant transformation (eutectic:    T-Ta2O5 + O-         ), 

(iii) the third invariant transformation (peritectic:                 ), 

(iv) the O-Ta2O5   T-Ta2O5 transformation and the eutectoidal transformation: T-Ta2O5   O-

Ta2O5 + O-Hf6Ta2O17 

The first invariant transformation can be identified as a monotectic transformation based on 

two key observations: (i) It is confirmed that no solid phase exists above the first invariant 

transformation temperature spanning its composition range and signifying two possible invariant 

transformations: monotectic or syntectic. (ii) It is confirmed that the pure end member (Ta2O5) has a 

melting point higher than the first invariant transformation temperature. This is characteristic of a 

monotectic and not a syntectic invariant transformation, so that the first invariant transformation is 

most likely monotectic. This monotectic transformation was observed to be reversible above and 

below the monotectic transformation temperature as depicted in supplementary information (S3). 

Due to the rarity of monotectic transformations, what is required for confirmation is a clear 

observation of the two-phase liquid region in equilibrium. Unfortunately, quenching the sample 

within the proposed two-phase liquid regime did not reveal immiscible liquid microstructural 

features, either because they were not kinetically trapped or because it does not exist. It is expected 

that an in-situ scattering technique such as small-angle X-ray scattering (SAXS) would be required to 

confirm the immiscible liquid region.  

 The second invariant transformation can be identified as a eutectic by examining the liquid-

solid two-phase regions. The in situ XRD was able to confirm that, above the second invariant 

transformation temperature for (           ), liquid was observed to co-exist in equilibrium with 

T-     . However, when above the second invariant transformation temperature, for         

    , liquid existed in equilibrium with O-Hf6Ta2O17. This suggests that the eutectic temperature is at 

              . It is estimated from extrapolation that the eutectic composition occurs at 

           . This eutectic transformation is reversible above and below the eutectic 
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transformation temperature for a hypo-eutectic composition (S4) and a hyper-eutectic composition 

(S5). 

The third invariant transformation can be identified as a peritectic by the observed 

decomposition of the O-          phase into T-HfO2 and liquid. The O-           T-     +   

peritectic was observed to be reversible at temperature (S6). This transformation has been studied 

in depth and is published elsewhere by McCormack et al.25 and thus will not be discussed further 

here. 

The equilibrium structure of room temperature O-Ta2O5 was the most difficult to determine. 

This stemmed from the difficulty in verifying reversibility of the O-       T-      transformation. 

It is clear that the room temperature O-Ta2O5 phase transforms to the T-Ta2O5 phase. However, on 

cooling, a M’-Ta2O5 (monoclinic - I227 (SG 5)) and an O’-Ta2O5 (orthorhombic - Imma27 (SG 74)) phase 

form. These phases did not revert back to O-Ta2O5 on the time scale of the in situ diffraction 

experiment. It took 40 hours annealing in a box furnace at 1200 ˚C for the T-Ta2O5, M’-Ta2O5 and O’-

Ta2O5 phases to revert back to the equilibrium O-Ta2O5 phase (S7). This shows that the O-       

T-      transformation is reversible, containing metastable forward transformations on cooling 

from the high temperature T-      phase. It is proposed that the metastable phases formed on 

cooling of T-      follow: T-       M’-Ta2O5  O’-Ta2O5  O-     . This is based on the 

temperatures at which the metastable Ta2O5 begin to form: M’-Ta2O5 at          and O’-Ta2O5 at 

         which are similar to what has been previously reported in the lietrature27. The 

metastable transformations in Ta2O5 need to be studied more rigorously. 

This transformational reversibility of T-Ta2O5   O-Ta2O5 was consistent across the entire 

composition range where T-Ta2O5 was stable, thus confirming the reversibility of the eutectoidal 

transformation T-Ta2O5   O-Ta2O5 + O-Hf6Ta2O17. The exact composition and temperature of the 

eutectoidal transformation needs to be verified. The transformation has not been directly observed 

in the microstructure when quenching from the liquid phase in the hyper-eutectoidal regime. The 

latent heat from the eutectoidal transformation was not observed in cooling trace experiments. 

Although there is little evidence for the eutectoidal transformation based on the data collected, it 

must exist in the HfO2-Ta2O5 phase diagram at low [HfO2] mol fractions to ensure that the Gibbs 

Phase Rule60 is satisfied. 

The M-HfO2 to T-HfO2 transformation17 and the T-HfO2 to C-HfO2 transformation18 have been 

shown to be reversible and thus will not be discussed in more detail here. It was observed, that C-

HfO2 existed in equilibrium with liquid when            . 

The phase diagram can be seen more clearly without data points in Fig. 5. It must be 

stressed that this preliminary phase diagram has not been built based on minimizing the Gibbs free 

energy. It has been constructed based on in situ equilibrium phase identification (according to equi-

partitioning of chemical potential and transformational reversibility) and the Gibbs Phase Rule60. 

While the identification of equilibrium phases is of utmost importance for accurate phase equilibria, 

one also needs the Gibbs free energy for each equilibrium phase, which should be attainable by the 

CALPHAD computational method in the future. The homologous series lines drawn in the Hf6Ta2O17 

regime match those predicted by the work of McCormack and Kriven24 and Roth et al.61 The 

homologous series lines are drawn for the Ta2O5 regime are simply a schematic and have not been 
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determined experimentally or theoretically in this work. The line compositions of the Ta2O5 

homologous series still need to be determined. 

 

3.3 Molar volumes of equilibrium phases 

 X-ray powder diffraction (XRPD) can be used to calculate the molar volume per cation of 

phases using Rietveld refinement according to    
     

   
, where    is the molar volume,       is the 

volume of the unit cell,    is the number of cations in the formula unit and   is the formula unit per 

unit cell. Therefore, NCZ is the cation formula unit. The molar volumes as a function of temperature 

and composition for the equilibrium phases within the HfO2-Ta2O5-Temperature phase space are 

plotted below and tabulated in the supplementary information (S8, S9, S10, S11). 

 Fig. 6 depicts the molar volume as function of [HfO2] mol fraction for the three equilibrium 

structures at room temperature. There is a large change in molar volume of  
   

  
         when 

comparing O-Ta2O5 and O-Hf6Ta2O17, which has been verified from bulk pycnometer density 

measurements. There is a small change in molar volume of  
   

  
       when comparing O-

Hf6Ta2O17 and M-HfO2. 

 Fig. 7 displays the molar volume as a function of temperature for the Ta2O5 compounds. The 

molar volume of O-Ta2O5 increases, following a second-order polynomial as expected. At around 

1360 ˚C, there is a phase transition from the orthorhombic Pmm2 (SG 25) symmetry to tetragonal 

I41/amd (SG 141) symmetry, along with a first order transformation which is accompanied by an 

associated 
   

  
       . The molar volume of the T-Ta2O5 phase then increases almost linearly as a 

function of temperature up until melting at approximately          The thermal expansion and 

transformation mechanisms will be discussed in more detail in a future publication. 

 Fig. 8 shows the molar volume as function of temperature for the Hf6Ta2O17 compound. The 

molar volume of O-Hf6Ta2O17 increases in a sigmoidal manner as function of temperature up to the 

peritectic temperature        . At the transformation temperature there is a crystallographic molar 

volume change of  
   

  
       between the O-Hf6Ta2O17 and the T-HfO2 phase. The T-HfO2 formed 

from the peritectic transformation is observed to undergo complete melting at around         . 

The thermal expansion and transformation mechanisms of this peritectic transformation are 

discussed in more detail by McCormack et al.25 elsewhere. 

 Fig. 9 shows the molar volume as a function of temperature for the HfO2 compound. The 

molar volume of M-HfO2 increases according to a second order polynomial. On heating, M-HfO2 goes 

through a first order transformation from monoclinic P21/c (SG 14) to tetragonal P42/nmc (SG 137) 

symmetry at 1715 ˚C with an associated change in volume  
   

  
        . As the temperature of T-

HfO2 increases further, it undergoes a first order transformation from tetragonal P42/nmc (SG 137) 

to cubic       (225) symmetry with a volume change of  
   

  
     The thermal expansion and 

transformation mechanisms are discussed in more detail by Haggerty et al.17 and by Tobase et al.18. 
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IV. Conclusions 

 

The previously unknown experimental HfO2-Ta2O5-temperature phase diagram has been 

elucidated up to 3400 ˚C using a quadrupole lamp furnace and conical nozzle levitator system 

equipped with a CO2 laser, in conjunction with synchrotron X-ray powder diffraction. These in-situ 

techniques allowed for the determination of: (i) liquidus, solidus and invariant transformation 

temperatures as a function of composition from thermal arrest experiments, (ii) determination of 

equilibrium phases through testing of the reversibility condition via in-situ X-ray diffraction, (iii) 

molar volume measurements as a function of temperature for equilibrium phases. From this data, an 

experimental HfO2-Ta2O5 phase diagram was been constructed based on the Gibbs Phase Rule60. 

 The thermal arrest experiments and in-situ X-ray diffraction experiments led to the 

identification of four invariant transformations: (i) a monotectic, that still needs to be verified 

directly using Small Angle X-ray Scattering (SAXS), (ii) a eutectic, (iii) a peritectic and (iv) a eutectoid, 

that is expected based on the Gibbs Phase Rule60. This eutectoid still needs to be verified directly. 

 

Supplementary Information 

Additional supplementary information can be found on the online version of this article: 

S1: Representative cooling trace showing how the liquidus and solidus are determined from cooling 

trace data 

S2: Tabulated room temperature lattice parameters as function of [HfO2] composition for O-Ta2O5, O-

Hf6Ta2O17 and M-HfO2 

S3: Reversibility of the monotectic invariant based on in-situ X-ray diffraction. 

S4: Reversibility of the hypo-eutectic invariant based on in-situ X-ray diffraction. 

S5: Reversibility of the hyper-eutectic invariant based on in-situ X-ray diffraction. 

S6: Reversibility of the peritectic invariant based on in-situ X-ray diffraction. 

S7: Reversibility of the orthorhombic Ta2O5 to tetragonal Ta2O5 transformation based on ex-situ X-ray 

diffraction. 

S8: Tabulated molar volume as a function of HfO2 composition for O-Ta2O5, O-Hf6Ta2O17 and M-HfO2. 

S9: Tabulated molar volume of Ta2O5 as a function of temperature. 

S10: Tabulated molar volume of Hf6Ta2O17 as a function of temperature. 

S11: Tabulated molar volume of HfO2 as a function of temperature. 
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Figures 

Fig. 1. Cooling trace curves collected on HfO2-Ta2O5. five samples of each composition were tested 

to determine the recalescence temperature (liquidus) and invariant reaction temperatures. 

 

Fig. 2. Liquidus temperatures and invariant reaction temperatures: (i) Monotectic (L_1 α+L_2), (ii) 

Eutectic (L α+β) and (iii) Peritectic (α+L β), plotted as function of [HfO2] (mol fraction) in Ta2O5. 

 

Fig. 3. Construction of the HfO2-Ta2O5-Temperature phase space from in-situ X-ray powder 

diffraction. Each triangle corresponds to the sample composition, temperature and the observed 

equilibrium phases. The observed equilibrium phases correspond to the color of the triangle’s 

corners. The left corner refers to Ta2O5 (black: orthorhombic, red: tetragonal, white: not present), 

the top refers to Hf6Ta2O17 (black: orthorhombic, white: not present) the right corner refers to 

HfO2 (black: monoclinic, red: tetragonal, blue: cubic, white: not present) and the center refers to 

liquid (black: present, white: not present). These data points were collected using the conical nozzle 

levitator system (CNL). 

 

Fig. 4. Lattice parameters of the O-Ta2O5, O-Hf6Ta2O17 and M-HfO2 compounds as a function of 

HfO2 mol fraction [HfO2] at room temperature. Grey signifies a homologous series regime while 

white signifies a two-phase regime. This data is tabulated in supplementary information S2. 
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Fig. 5. HfO2-Ta2O5-Temperature phase space built based on the observed equilibrium phases from 

in-situ X-ray powder diffraction and the Gibbs Phase Rule. The H subscript is referring to the 

compounds which exhibit a homologous series. The dashed lines in the O-Ta2O5 and the O-

Hf6Ta2O17 regime signify the potential homologous series of compounds. The eutectoid and 

peritectic tie lines would have to be adjusted based on the Gibbs Phase Rule to accommodate the 

homologous series. The homologous series lines drawn in the Hf6Ta2O17 regime matches that 

predicted by the work of McCormack and Kriven24 and Roth et al.61 The homologous series lines 

drawn for the Ta2O5 regime are simply a schematic and have not been determined experimentally 

or theoretically. 

 

Fig. 6. Molar volume of the O-Ta2O5, O-Hf6Ta2O17 and M-HfO2 as func on of HfO2 mol frac on 

[HfO2] at room temperature. The large change in molar volume ((∆   )/    =-25.24%) between O-

Ta2O5 and O-Hf6Ta2O17 has been verified from pycnometer density measurements. The molar 

volume change between the equilibrium O-Hf6Ta2O17 and M-HfO2 structures is (∆   )/    =3.07%. 

Grey signifies a homologous series regime while white signifies a two-phase regime. This data is 

tabulated in supplementary information S8. 

 

Fig. 7. Molar volume of O-Ta2O5 and T-Ta2O5 as func on of temperature. Note the  rst order 

transforma on at T 1350 ˚C with an associated molar volume change of (∆   )/    =-2.32% . Complete 

melting was observed at T 1870 ˚C. Grey signifies data collected using the CNL system while white 

signifies data collected using the QLF system. This data is tabulated in supplementary information 

S9. Atomic mechanisms for the anisotropic thermal expansion related to this molar volume change 

will be discussed in more detail in a future paper. 

 

Fig. 8. Molar volume of O-Hf6Ta2O17 and T-HfO2 as func on of temperature. Note the peritec c 

transforma on at T 2244 ˚C with an associated crystallographic molar volume change of (∆   )/    

=1.16% This change in volume does not include the volume of the liquid phase. T 2450 ˚C . Grey 

signifies data collected using the CNL system while white signifies data collected using the QLF 

system. This data is tabulated in supplementary information S10. Atomic mechanisms for the 

anisotropic thermal expansion related to this molar volume change and the peritectic 

transformation is discussed in more depth by McCormack et al.25 

 

Fig. 9. Molar volume of HfO2 as function of temperature. Note the first order transformation from 

M-HfO2 to T-HfO2 at T  with an associated molar volume change of (∆   )/     -2.78 . Also note the 

second order transforma on from T-HfO2 to C-HfO2 at T 2600 ˚C with an associated molar volume 

change of  (∆   )/     0. T 1700 ˚C. Grey signifies data collected using the CNL system while white 

signifies data collected using the QLF system. This data is tabulated in supplementary information 

S11. Atomic mechanisms for the anisotropic thermal expansion related to this molar volume change 

is discussed in more depth by Haggerty et al.17 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Tables 

 

Table 1 – Summary of HfO2-Ta2O5 binary samples fabricated using the steric entrapment method. 
Composition error (XRF) comes from the ability to deconvolute and quantify the Hf and Ta similar 
characteristic X-rays. Phase fraction error (synchrotron X-ray diffraction) comes from the ability to 
resolve phase peaks and intensities. 

Sample 

Composition 

(mol fraction) 
XRF (mol fraction) 

      

Phases (mass fraction at room temperature) 
      

[HfO2] [Ta2O5] [HfO2] [Ta2O5] HfO2 Ta2O5 Hf6Ta2O17 

Ta2O5 0.00 1.00 0.00 1.00 0.00 1.00 0.00 

0.05HfO2 0.95Ta2O5 0.05 0.95 0.05 0.95 0.00 1.00 0.00 

0.1HfO2 0.9Ta2O5 0.10 0.90 0.12 0.88 0.00 1.00 0.00 

0.15HfO2 0.85Ta2O5 0.15 0.85 0.15 0.85 0.00 1.00 0.00 

0.2HfO2 0.8Ta2O5 0.20 0.80 0.23 0.77 0.00      0.18 

0.3HfO2 0.7Ta2O5 0.30 0.70 0.31 0.69 0.00 0.52 0.48 

0.4HfO2 0.6Ta2O5 0.40 0.60 0.40 0.60 0.00 0.35 0.65 

0.5HfO2 0.5Ta2O5 0.50 0.50 0.50 0.50 0.00 0.23 0.77 

0.6HfO2 0.4Ta2O5 0.60 0.40 0.60 0.40 0.00 0.13 0.87 

0.7HfO2 0.3Ta2O5 0.70 0.30 0.72 0.28 0.00 0.09 0.91 

0.8HfO2 0.2Ta2O5 0.80 0.20 0.77 0.23 0.00 0.03 0.97 

Hf6Ta2O17 0.86 0.14 0.86 0.14 0.00 0.00 1.00 

0.9HfO2 0.1Ta2O5 0.90 0.10 0.90 0.10 0.02 0.00 0.98 

0.95HfO2 0.05Ta2O5 0.95 0.05 0.96 0.04 0.48 0.00 0.52 

HfO2 1.00 0.00 1.00 0.00 1.00 0.00 0.00 
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Table 2 – Liquidus temperatures 

Composition [HfO2] (mol fraction) Liquidus Temperature (˚C) 

0.00         

0.05         

0.12         

0.15         

0.23         

0.31         

0.4         

0.5         

0.6         

0.72         

0.77         

0.86         

0.9         

0.96         

1.00         
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Table 3 – Invariant Transformation/Reactions. 

Invariant point Composition [HfO2] (mol fraction) Temperature (˚C) 

First invariant: Monotectic 

     T-Ta2O5      
                         

Second invariant: Eutectic 

    T-Ta2O5 + O-Hf6Ta2O17  
                         

Third invariant: Peritectic 

T-HfO2    O-Hf6Ta2O17  
                         

Fourth invariant: Eutectoid* 

 (T-Ta2O5   O-Ta2O5 + O-Hf6Ta2O17 
           * ~1300* 

*The eutectoid point was not directly determined. It is included here as it is required to satisfy the 

Gibbs Phase Rule. The presented composition and temperatures are estimates. 

 

Table 4 – Change in molar volume for transformations in the HfO2-Ta2O5-Temperature system with 

reference to Figs. 6-9 

Transformation/Reaction Change in Molar Volume (%) Temperature (˚C) 

O-Ta2O5 +M-HfO2   O-Hf6Ta2O17
* 

(O-Ta2O5 compared to O-Hf6Ta2O17) 

   

 
        ~26* 

O-Hf6Ta2O17   M-HfO2 + O-Ta2O5
* 

(O-Hf6Ta2O17compared to M-HfO2) 

   

 
      ~26* 

O-Ta2O5   T-Ta2O5 
   

 
       ~1350 

O-Hf6Ta2O17   T-HfO2 + L 
   

 
        ~2244 

M-HfO2   T-HfO2 
   

 
       ~1700 

T-HfO2   C-HfO2 
   

 
   ~2600 

* These are reactions comparing the change in molar volume as function of [HfO2] at room 

temperature. Refer to Fig 6. 

** Change in molar volume for crystallographic phases (does not include volume of liquid phase). 
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