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ABSTRACT

We introduce the notion of Quality of Indicator (Qol) to as-
sess the level of contribution by participants in threat intel-
ligence sharing. We exemplify Qol by metrics of the cor-
rectness, relevance, utility, and uniqueness of indicators. We
build a system that extrapolates the metrics using a machine
learning process over a reference set of indicators. We com-
pared these results against a model that only considers the vol-
ume of information as a metric for contribution, and unveiled
various observations, including the ability to spot low-quality
contributions that are synonymous to free-riding.

Index Terms— Threat intelligence, sharing, Qol

1. INTRODUCTION

In threat intelligence sharing, participants exchange patterns
of threats, in the form of threat indicators or signals, with
each other [16, 4, 25, 24, 8, 13]. Participants are defined
over a community of trust and ideally collaborate towards
a common mission: to understand and respond to emerging
threats [28]. For such intelligence sharing to happen, stan-
dards for representation, exchange, and consumption of indi-
cators are used [3, 11, 14, 21, 30, 10, 5]. Communities of trust
are established, and systems and initiatives for sharing are
built. However, participants need to contribute information
in those systems to be consumed by other community mem-
bers. Given the coinciding benefits and risks of threat infor-
mation sharing, some community members have adopted an
elusive behavior of “free-riding” [6] so that they can achieve
utility of the sharing paradigms without contributing much to
the community.

Understanding the effectiveness of sharing has been
viewed from the point of view of whether participants con-
tribute or not, and using the volume of contributed indicators.
Therefore, a community member who does not contribute a
volume of data is considered a free-riding community mem-
ber [27]. The state-of-the-art on the problem did not include
other metrics beyond simple measures of volume-based con-
tribution, particularly metrics that evaluate qualitatively the
indicator, which means the threat information contributed by
participants. To the best of our knowledge, while sparsely
mentioned in other work [28, 29], this problem is not treated

properly in the literature. Thus, this work is the first dedicated
to the problem by identifying the Quality of Indicator (Qol)
as a new metric of contribution to capture contribution in in-
formation sharing for threat intelligence. An ideal measure of
Qol should distinguish between the various members based
on their contribution. With the possible specialty of commu-
nity members and the varying uses of indicators shared based
on the context in which they are used, a major challenge is to
assign context-dependent quality markers for indicators.

The correctness, relevance, utility, and uniqueness are yet
a few other quality measures that we consider in this work.
The correctness captures the accuracy of annotation and la-
beling of an indicator, which is important in designing the
proper countermeasures and defenses to attacks and threat.
The relevance of an indicator to the community members cap-
tures how aligned a given contributed indicator with a com-
munity member’s needs. The utility captures whether an in-
dicator characterizes prominent features of cyber-threats. Fi-
nally, the uniqueness is defined as a measure of similarity with
previously seen indicators. Our method of Qol is based on
exploiting a fine-grained record as a benchmark for assessing
contributions of community members.

2. QOI ASSESSMENT
2.1. System Architecture and Design

Strawman Design. Before nodes can accept indicators, they
first evaluate their quality by asking a special node, an as-
sessor, to perform rating of the indicators. While effective,
this strawman design has multiple issues. Most importantly,
each community member has to fully trust the assessor and
the validity of its scoring of indicators. Second, the approach
is prone to disruption by the failure of the assessor. Such
issues could be, however, mitigated by introducing multiple
assessors, where the final score of quality is obtained using a
consensus over multiple scores, one per assessor.

Distributed Design. On the other end of the spectrum of the
strawman design is to let every node in the system to be an as-
sessor. In doing that, we implicitly assume the availability of
reference data to each node in the system, which is implausi-
ble. For example, based on a prior study, no single community
member (antivirus scanner in the case of malware detection
and labeling) has a 100% coverage or accuracy [17]: namely,
it takes between 6 and 18 community members to provide



close to perfect coverage of detection and correctness of label-
ing, respectively, for a malware family like Zeus [18]. This,
in turn, calls for a more “intelligent” process for the assess-
ment of Qol. Our system assumes the reference dataset has
sufficient information about every indicator presented by the
different community members. A high-level description of
the system implementation, incorporating both learning and
assessment, is shown in Figure 1. Note that this system is
ideally executed by each community member.

2.2. System Setup

We use malware indicators sharing as a working example.
Among the steps described below, each process from S1 to
S8 is matched with box 1 through 3 of Figure 1.

¢ S0: Defining Metrics. Quality metrics are used to en-
sure that community members who participate in informa-
tion sharing provide threat indicators that are valuable to other
members, while scoring procedures are methods that specify
how these metrics are used to generate a quality score. The
main purpose of this work is defining those metrics.

o S1: Defining Labels. Annotations capture the type of
threat, the level (of severity, timeliness, etc.) or quality type
of an indicator. Utilizing these annotations, a weight value is
assigned to each quality label, and a scoring method is used
to convert the quality labels to a numeric aggregate score for
the indicator and ultimately to the contributor.

© S2: Building a Reference. The reference dataset is used to
evaluate Qol for a sample of indicators submitted by a sample
provider. To build the initial reference dataset, data that is col-
lected through security operations (e.g., monitoring, profiling,
analyses, etc.) is vetted for their validity and applicability to
the domain, perhaps using often expensive by necessary man-
ual vetting [17, 19]. This reference dataset is used for the
purpose of initializing the system.

© S3: Extrapolating. Extrapolation allows each assessor to
predict the label of an indicator using its feature set and clas-
sifier model. The classifier is trained using a supervised learn-
ing process extracted from the reference dataset.

2.3. Qol Assessment Process

An illustration of the Qol assessment is depicted in Figure 1.
The Qol assessment is achieved through a supervised learn-
ing process over the reference dataset, rather than the direct
matching of explicit labels of indicators in the dataset.

We assume a reference labeled (training) dataset that con-
tains a comprehensive library of artifacts, such as malware
samples, incident reports, and logs, and that has been col-
lected through operational intelligence gathering procedures.
To predict a label correctly, the build of our trained model en-
compasses multiple components, namely a feature selection
procedure, a machine learning algorithm selection procedure
(e.g., SVM, logistic regression, random forest, etc.) and the
corresponding parameters (e.g., procedure for regularization
and linearization in case of SVM and LR, respectively), and
cross-validation procedures (e.g., fold size, validation, etc.).
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Fig. 1. The Qol assessment process, incorporating a reference
model and a learning component for extrapolation.

The assessor uses the previously built model as a predictor
and assigns a label to the indicator. The assessor decides the
quality of the indicator by taking both the predicted and the
self-provided labels into account (details are in the following
section). The quality scoring procedure then aggregates the
individual scores of the various indicators provided by each
community member to assess their actual contribution.

2.4. Overall System Procedures

As outlined in sections 2.2 and 2.3, the Qol assessment pro-
cess consists of multiple procedures for assessment initializa-
tion, learning, and extrapolation. In the following, we elabo-
rate on some of the technical details of those procedures.
Reference Dataset and Learning. After identifying metrics
for defining quality, we demonstrate the use of Qol for the
assessment of the contribution level of participants. In order
to initialize our system, a reference dataset is used to build
a prediction model through supervised techniques of learn-
ing. Specifically, the collection of a reference dataset involves
submission of sample artifacts from multiple sources, such as
other community members, vendors, or own research [20].

We use various features for learning a model and their la-
bel prediction. For that, we use both static and dynamic analy-
sis. For static analysis, we use artifacts such as file name, size,
hashes, magic literals, compression artifacts, date, source, au-
thor, file type and portal executable (PE) header, among oth-
ers. For dynamic analysis, we use counts that capture interac-
tions between malware and the file system, user memory, reg-
istry, and network artifacts and features, as detailed in [20].
Modeling and Learning. In the following, we elaborate on a
particular learning technique as a tool of Qol assessment.

To build our classifier, we obtain r samples for training
from the reference dataset consisting of 7; training samples
per class, with d features per sample. For each training sam-
ple y, we observe a label £ € A and a sample vector ¢/, where i/



Procedure 1 Relevance of X; (R)

Procedure 2 Utility of X; (U)

1: Define weight values: wy , Wy, Wrg, . . . wr | € R
2: Define wr(.) to assign weights to labels: wr(1;) = wr,

3: Compute the relevance of X; as the average of the weighted sum:
A
R(X:) = (S, 00yex, wrli)/ (Chely wry)

is a vector of length m. We refer to the classes labels by their
indices ¢ = 1,2,...,A. We assume that samples labeled by
1 are distributed as N (i, %), the multivariate normal distri-
bution with mean vector p; and standard deviation matrix 3.
We denote by L(x, u1;, 2) the corresponding probability den-
sity function and by 7; the prior probability that an unknown
sample comes from class labeled by ¢. Bayes’ Theorem states
that the probability an observed sample x comes from class
1 is proportional to the product of the class density and prior
probability; namely P(Z = i|X = z) o« L(z, pi, X) X T,
where P(Z = i|X = z) is the posterior probability that sam-
ple  comes from class ¢. The classifier assigns the sample to
the class with the largest posterior probability to minimize
the misclassification error. This can be written as a rule:
2(x) = argmin;{(z — p))TX  z — ;) — 2log(m;)} A
sample is assigned nearest class with the distance being ||z —
pill3; — 2log(m;), where ||z — p|[* = (x — )27 (2 — p);
square the Mahalanobis distance between = and p.
Misclassification rate. A misclassification occurs when an
indicator is assigned to an incorrect label, which done with
P(e), where: P(e) = Z?Zl[P(Z # J|Z = j) x mj].
Labeling and Quality Scoring. Denote by n the number
of community members. Each (user) u; provides a set of
samples Xi = {(fih li1)7 (fig, lig), (fig, li3), ey (-'fika lzk)}
with feature vector #;; and sample label [;; € A fori =
1,2,...,nand j =1,2,... k.

Correctness. The reference dataset is used as the benchmark
for determining the correct label for an arbitrary sample. Each
sample consists of a feature vector and an associated label.
We first build a classifier by utilizing the reference dataset
Y as the training set and forming a prediction on the label
of Z to obtain I’. Then, the assigned label of ¥ is compared
against the predicted label I’ and a positive score is given if
labels match. The correctness is computed as the average of
the sum of scores for all samples in Xj.

Relevance. The algorithm for computing the relevance is
shown in Procedure 1. In this procedure, the weight values
Wry s Wy, . Wy, ATE chosen based on the context of use,
and a mapping function wg(.) is defined to assign weights
labels such that higher weight values are assigned to labels of
greater interest to the community members. For each sam-
ple z, the corresponding label is evaluated using the mapping
function wg(.) to obtain the weight value as the sample score.
The relevance score of X;, denoted by R(X;), is calculated
as the average of the weighted sum of the scores.

Utility. Proc. 2 defines the utility. In this procedure we note
that the utility of an indicator is determined by the sum of the

1: Define t1,ta,...,tqg € R.

2: Define weight values w¢, , wt, . .. wt,, where each weight value corre-
sponds to a utility type.

3: Define a weight function wp(.) s.t. £ € A maps to a utility weight, i.e.
wp(£) = wy,, wherem = {1,2,...,d}.

4: for z € X; do

5 Compute a weight of x = (Z,1’), using wr (I') = w,,

6: end for '

7: Compute the utility score of X; as the average of the sum of the sample

weights: U(X;) = % Z?Zl wy;, where t; is the corresponding label
type of sample z;; € X;

Procedure 3 Uniqueness of X; (N)
1: Consider the set Z which is initially empty, i.e. Z = ¢
: Build the set Z by considering unique samples from the sets
X1,X2,..Xn
cfori=1,2,...ndo
forj=1,2,... kdo
if{Ei]' ¢ Z then add zij to Z.
end if
end for
: end for
: Compute sy (z4;) = 1if z;; € Z\{X;} and O otherwise.
10: Compute N(X;) = £ 3F_ sn (i)

N

LoD R W

utility weights of the samples. The weights w;, , wy, ... wy,
and weight function wr(.) are defined by the application.
Uniqueness. Procedure 3 outlines the steps used for calcu-
lating the uniqueness of a set of indicators. In this proce-
dure, we assume that samples can be uniquely identified (e.g.
using hashes). In set notation, we can say that an element
x;; € X; is unique if it is not an element of other sample sets,
Quality of Indicator (Qol). Qol is a comprehensive measure
and is calculated as the average of the weighted sum of the
four components: correctness (C), relevance (R), utility (U)
and uniqueness (N), as shown in procedure 4. The weights
assigned for metrics are application-specific.

3. EVALUATION

Dataset. We use 11 malware families for our evaluation;
five DDoS (Avzhan; 3458 samples, Darkness; 1878 samples,
Ddoser; 502 samples, jkddos; 333 samples, NOise; 431 sam-
ples), four targeted (ShadyRAT; 1287 samples, DNSCalc; 403
samples, Lurid; 399 samples, Getkys; 953 samples), and two
mass market families (ZeroAccess; 568 samples, Zeus; 1975
samples). The dataset is collected between mid-2011 to mid-
2013 [17]. Scans for labeling are done through VirusTotal
around May 2013, static features are obtained from VirusTo-
tal, and dynamic features are extracted using AMAL [20].

Results. We note that while there are more samples gathered
for DDoS-type malware in comparison with others, the threat-
intelligence community often gives more weight to identify
malware or incidents that are less observable, which presents
a level of sophistication. Thus, for our evaluation, we con-
sider trojan and targeted malware more relevant than DDoS,
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Fig. 2. Comparison between various quality-based metrics for AV indicator assessment

Procedure 4 Qol of X; (Qol)
1: Define normalized weights, we, wr, wy, and wy.
2: Calculate Qol as the weighted sum of the components: Qol(X;) =
weC(Xi) + wrR(X5) + wyU(Xy) + wy N(X;)

from the point of view of community members consuming
the shared information. The results are shown in Figure 2,
and the following are observations on three of Qol metrics
(since evaluating uniqueness is trivial).

o Correctness. As shown in Figure 2, the majority of other
vendors have a gap in the score between the volume-based
and the correctness-based contribution measures, where the
correctness-based measure is significantly lower. Reasons
may include labeling samples under unknown names, mis-
labeling due to similarities between families, or assigning
generic labels like “trojan”, “virus”, and “unclassified”. Ex-
amining the correctness of AV indicators also leads to a more
subtle discussion about their utility. Looking closer into the
label generated by some vendors, we found out that some
labels are too generic and only describe the behavior rather
than the name of a known malware family type, e.g., Tro-
jan.Win32.ServStart vs. Avzhan.

© Relevance. We give more weight to targeted malware and
Trojans over DDoS samples: Wiargeted = 9, Wiroj = 3,
Wados = 1, and “0” otherwise. Thus, we observe two be-
haviors. First, certain contributors with high volume-based
scores have a very low score (close to “0”) of relevance. In
particular, with the two relevant and one less relevant fam-
ily types identified, such community members have more
unidentified malware samples (e.g., vendor 7, vendor 21,
vendor 59, etc.). On the other hand, other contributors with
small volume-based contribution, have a higher relevance
score, due to very relevant family identified in their shared
indicator (e.g., vendor 10, vendor 16, vendor 27, etc.).

o Utility. To evaluate the utility, we give weights for three
classes of malware labels: complete labels (w,.) are based on
industrially popular name, generic labels (w,) are based on
placeholders commonly used for labeling the family such as “
generic”, “ worm”, “ trojan”, * start” and “ run”, and incom-
plete labels, (w;), including *“ suspicious”, *“ malware”, and
“ unclassified”, which do not hold any meaning of a class.
Similar to the strategy with relevance, we assign weights of

we = 5, wy = 2, and w; = 1.

o Aggregated Qol score. We aggregate a single Qol score for
each vendor based on the weighted sum of the various Qol
metrics. As can be seen, vendors, such as 39 and 46, with
low Qol scores are rated with higher scores in their volume-
based contribution, potentially alluding to free-riding. On the
other hand, vendor 1, vendor 8, and vendor 33, among others,
which tended to have lower volume-based scores, tend to have
higher Qol, indicating their quality of contribution.

4. RELATED WORK

Adar and Huberman [1] identified the problem in P2P systems
and noticed a large fraction of users who do not share useful
content in the file sharing networks. Feldman et al. [7] charac-
terized the problem of free-riding in peer-to-peer systems and
proposed potential remedies. Locher et al. [12] developed a
free-riding client as a proof-of-concept and demonstrated how
files can be downloaded in the BitTorrent network without
providing any content to peers. Others [9] focused on free-
riding, and quality of contribution, by analyzing their root-
cause and impact on the overall P2P utility. Related to Qol
in threat intelligent systems is malware attribution [22]. Bai-
ley et al. [2] were one of the early folks to characterize mal-
ware in terms of system state changes (e.g. registry changes,
files created) and investigated the problem of behavior-based
clustering as a method for classifying and analyzing Internet
malware. Related to malware labeling, Mohaisen and Al-
rawi [17, 20] quantified the inconsistencies in labeling against
a reference dataset collected from thousands of samples of
various types manually vetted by analysts [26, 15, 23].

5. CONCLUSION

In this paper, we have the first look at the notion of the qual-
ity of indicators (Qol). As empirically analyzed, identifying
the levels of contribution cannot be simply expressed in the
volume-based measure of contribution. By verifying our met-
rics on a real-world data of antivirus scans we unveil that con-
tribution measured by volume is not always consistent with
those quality measures, and that Qol as a notion is capable of
capturing forms of contribution analogous to free-riding.
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