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Abstract—Internet Distributed Denial of Service (DDoS) at-
tacks are prevalent but hard to defend against, partially due to
the volatility of the attacking methods and patterns used by at-
tackers. Understanding the latest DDoS attacks can provide new
insights for effective defense. But most of existing understandings
are based on indirect traffic measures (e.g., backscatters) or
traffic seen locally. In this study, we present an in-depth analysis
based on 50,704 different Internet DDoS attacks directly observed
in a seven-month period. These attacks were launched by 674
botnets from 23 different botnet families with a total of 9,026
victim IPs belonging to 1,074 organizations in 186 countries.
Our analysis reveals several interesting findings about today’s
Internet DDoS attacks. Some highlights include: (1) geolocation
analysis shows that the geospatial distribution of the attacking
sources follows certain patterns, which enables very accurate
source prediction of future attacks for most active botnet families;
(2) from the target perspective, multiple attacks to the same target
also exhibit strong patterns of inter-attack time interval, allowing
accurate start time prediction of the next anticipated attacks from
certain botnet families; (3) there is a trend for different botnets to
launch DDoS attacks targeting the same victim, simultaneously
or in turn. These findings add to the existing literature on the
understanding of today’s Internet DDoS attacks, and offer new
insights for designing new defense schemes at different levels.

I. INTRODUCTION

TODAY, Internet Distributed Denial of Services (DDoS)

attacks are prevalent with the ease of access to large

numbers of infected machines, collectively called botnets [2],

[3]. According to a recent report [4], the duration, intensity,

and diversity of attacks are on the rise: an annual analysis

shows that the average DDoS attack size has increased by

245% in the fourth quarter of 2014, compared to the same

quarter of 2013, and by 14% from the previous quarter of the

same year, with an average attack of 7.39 Gbps. Furthermore,

the same report shows that all industry verticals are targeted

by attacks. Another report reveals a clear increase in the

average duration of DDoS attacks from 60 minutes in the

first quarter of 2014 to 72 minutes in second quarter of the

same year, which translates to 20% increase [5]. Additionally,
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recent DDoS attacks have witnessed an uptrend in operational

impact, size, and consequences [6], [7], with the largest

reported attacks exceeding 500 Gbps [8]. Today’s malicious

actors are not limited to sophisticated machines, like servers

and personal computers; recent DDoS attacks were reportedly

utilizing fridges [9], and other massive scanning activities were

done using embedded devices, including monitoring cameras

and security doors [10]. Recently, a large body of research

work [11], [12], [13] also highlight the trend of mobile devices

involved in botnet activities.

Security researchers in academia and industry devoted enor-

mous efforts to understanding DDoS attacks and defending

against them. The arms race between the attackers and the

guardians keeps evolving driven by demands. Understanding

the current trends in today’s DDoS attacks and their attack

vectors is an important phase in devising effective defenses.

Existing studies in this regard are based on indirect traffic

analyses and artifacts, such as backscatters, or traffic collected

locally, or by infiltrating into a botnet. A large scale view of

today’s Internet DDoS attacks is missing in the literature and

calls for further investigation.

In this paper, we present our study of DDoS attacks analysis.

As most of the DDoS attacks nowadays are launched by

botnets, the dataset utilized in this study focuses on DDoS

attacks launched by various botnet families across the Internet.

A comprehensive analysis of the botnet families in the dataset

could be found in our previous work in [14]. In a seven-month

period captured in our dataset, a total of 50,704 different

DDoS attacks were observed, which were launched by 674

different botnets coming from 23 different botnet families.

These attacks targeted 9,026 different IPs that belong to 1,074

organizations in 186 countries.

Our analyses revealed several interesting observations about

today’s Internet botnet DDoS attacks. 1) Geolocation analysis

shows that the geospatial distribution of the attacking sources

follows certain patterns, which enables very accurate source

prediction of future attacks for most active botnet families.

2) From the target perspective, multiple attacks to the same

target also exhibit strong patterns of inter-attack time interval,

allowing accurate start time prediction of the next anticipated

attacks from certain botnet families. 4) There is a trend for

different botnets to launch DDoS attacks targeting the same

victim, simultaneously or in turn.

These findings offer new insights on trends for different

malactors, which align well: affinities, collaborative behavior,

etc. are all indicators that can shed light on cross-family

behaviors: once learned in one family they can be used
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to understand behavior in other families. Establishing this

behavior through the observations in a systematic study will be

of significance. Furthermore, even if the observations provided

in our study on the state of botnet-driven DDoS attacks do not

hold five or ten years from the time of the attack/study, the

work at hand still provides a great intellectual contribution and

service to the community: it provides an overview of the state

of DDoS attacks as of the time of executing the research. For

future studies to understand the change in behavior of botnets,

they would benefit greatly from this study as a baseline. Aside

from the observation, the methods used in the study also can be

reused for further analyses (by us and others). Finally, some of

the findings can provide insights for designing effective and/or

customized defense schemes at different levels.

Organization. In Section II, we describe our dataset including

the overall data statistics and the data fields we utilized to

do our analysis. In Section III, we present an overview of

these DDoS attacks. In Section IV, we analyze the geolocation

affinity of attacking sources and their targets. In Section V,

we present in depth collaboration analyses between different

botnets in a family or across families. We discuss related work

in Section VI and conclude with a concise summary of our

analyses and their implications in Section VII.

II. DATASET COLLECTION AND METHODOLOGY

A. Dataset

Our dataset is provided by a monitoring service, using both

active and passive measurement techniques. This monitoring

service helps the enterprises gain better understanding of

the trends in the evolvements of the botnet families. For

this purpose, they have deployed infrastructures to provide

automated tracking and reporting of known botnets. Also, they

have analysts focusing on investigating new malware families

and variants of those families.

For active measurements and attribution, malware families

used in launching various attacks are reverse engineered, and

labeled to a known malware family using best practices. For

example, their unique behavioral patterns could be employed

for labelling, including custom protocols and custom encryp-

tion schemes, as well as threat indicators of attribution (e.g.,

infrastructure utilized by various malware families). Hosts

participating in the given botnet, by communicating with

pieces of infrastructure infected by that malware family (e.g.

the command and control) are then enumerated and monitored

over time, and their activities are logged and analyzed.

As for the attributes of the data we utilized in this study,

there are three separate schemas: a Botlist schema, a Botnetlist

schema and a DDoSattack schema; all of them collectively

are used to capture to profile the malicious activities of botnet

families. For the Botlist schema, it contains information related

to Bots including the IP, BGP and GeoIP information related to

each bot. The Botnetlist schema contains information related

to botnets, including the type of the botnet, the infected

hosts that belong to that botnet and the details about the

host being used to control the botnet. The DDoSattack list

contains information related to the DDoS attacks. Each DDoS

record represents a separate attack recorded by the monitoring

systems. For our analyses, we associate three schemas to create

a comprehensive dataset with a focus on the DDoS attacks

launched by these bots. An overview of this dataset could be

found in Table I and we will discuss the details in the following

sections.

B. Collection methodology

As each botnet evolves over time, new generations are

marked by their unique (MD5 and SHA-1) hashes. The hash

values are assigned by the vendor providing the data. The hash

value is computed over the binary (of the malware), captured

and analyzed, used for launching the attack at that point in

time. Traces of traffic associated with various botnets are

collected at various points on the Internet in cooperation with

various ISPs. Traffic logs are then analyzed to attribute and

characterize attacks. The collection and analysis are guided

by two general principles: 1) the source of the traffic is an

infected host participating in a botnet attack, and 2) that the

destination of the traffic is a targeted client, as concluded from

eavesdropping on command and control of the campaign using

a live malware samples.

By tracking temporal activities of 23 different known botnet

families, the dataset captures a snapshot of each family every

hour from 08/29/2012 to 03/24/2013, a total of 207 days, or

about seven months. There are 24 hourly reports per day for

each botnet family. The set of bots or controllers listed in each

report are cumulative over the past 24 hours. The 24-hour time

span is measured using the timestamp of the last known bot

activity and the time of logged snapshot.

The analysis is high level in nature to cope with the high

volume of ingest traffic at peak attack times. As shown later,

on average, there was 243 simultaneous verified DDoS attacks

launched by the different botnets studied in this work. High

level statistics associated with the various botnets and DDoS

attacks are recorded every one hour. The workload we obtained

ranges from August 29, 2012 to March 24, 2013, a total of

207 days (about seven months of valid and marked attack

logs). In the log, each DDoS attack is labeled with a unique

DDoS identifier, corresponding to an attack by given DDoS

malware family on a given target. Other attributes and statistics

of the dataset are shown in Table I. We note that botnet family

identification and DDoS attacks labeling falls out of the scope

of this paper, as it has been addressed in a large body of

the literature [15]. In short, labeling is performed using state-

of-the-art techniques by professional companies offering the

DDoS shielding business combining dynamic analysis, static

analysis, and threat sharing. The likelihood of false labelling

is very small with the support of techniques that help identify

C&C communication channel of botnets.

C. Discussions

One may argue that the dataset used in this study is not

up-to-date and may not reflect the latest behaviors of DDoS

attacks, such as Mirai [16] and the Dyn attacks [17]. However,

we argue that our dataset covers DDoS attacks launched by

some of the most active botnet families as 2013, which have

been still active on the Internet as of 2016. For example,
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TABLE I
INFORMATION OF WORKLOAD ENTRIES

Field Description

ddos id a global unique identifier for the specified DDoS attack

botnet id unique identification of each botnet

category description of the nature of the attack

target ip IP address of the victim host

timestamp the time when the attack started

end time the time when the attack ended

botnet ip the IP address of botnets involved in the attacks

asn autonomous system number

cc country in which the target resides (ISO3166-1 alpha-2)

city city and/or state in which the target resides

latitude latitude of target

longitude longitude of target

the most recent attacks launched by botnet Blackenergy date

to Jan 2016 [18]. Thus, studying their attacking strategies

and behaviors is still important, particularly to shed light

on the landscape of traditional network attacks. Furthermore,

the economics of the botnets may result in similar behaviors

of different botnet families, especially since those botnets

actually utilize similar connection-oriented transport as Mirai.

To this end, the collaborations and the geolocation affinity

could be general to all botnet families including the most

recent botnet such as Mirai. This work aims to learn from the

history to understand the reality. For the geolocation mapping,

we used a commercial-grade mapping service provided by

Digital Envoy (https://www.digitalenvoy.com/).

D. Features and statistics

In the following we introduces features and general statistics

of our dataset. One interesting feature, as shown in Table

I, is the attack category, which refers to the nature of the

DDoS attacks by classifying them into various types based on

the protocol utilized for launching them; HTTP, TCP, UDP,

Undetermined, ICMP, Unknown, and SYN. Different from

Unknown, Undetermined means that the attack type could not

be determined based on the available information.

1) Attack mechanisms: Based on the traffic type informa-

tion, Figure 1 shows the statistic of different protocols. Clearly,

the dominant protocol used in these attacks is HTTP, followed

by UDP and TCP. Based on the latest reports conducted

by the Arbor Networks [19] and Kaspersky Lab [20], TCP-

based attacks are still very active and prevalent in today’s

Internet, though the UDP based reflection/amplification attacks

have predominant share of the attack traffic volume. Our

work provides complementary analyses and explorations for

the community to understand the behaviors of such attack

activities. Table II shows the breakdown of transport types

of different botnet families. The last column in the table

shows the number of attacks belonging to each type. Note

that a botnet could utilize multiple attack types. For example,

Blackenergy supports different transport mechanisms of attack

traffic, including HTTP, TCP, UDP, ICMP and SYN. The

variety of transport mechanisms explains the family’s popu-

larity. Furthermore, the dominance of HTTP as the attacking

mechanism in this family highlights the preferred target of at-

tacks, namely application deficiencies instead of infrastructure

TABLE II
PROTOCOL PREFERENCES OF EACH BOTNET FAMILY

Protocol botnet family # of attacks

HTTP

colddeath 826
darkshell 999

dirtjumper 34620
blackenergy 3048

nitol 591
optima 567
pandora 6906

yzf 177

TCP
blackenergy 199

nitol 345
yzf 182

aldibot 26

UDP
blackenergy 71

ddoser 126
yzf 187

UNDETERMINED darkshell 1530

ICMP blackenergy 147

UNKNOWN optima 126

SYN blackenergy 31

vulnerabilities. The dominance also implies that there are no

reflection or amplification attacks in our dataset. Most of the

reflection attacks utilize the UDP protocol, such as DNS and

NTP, because the TCP protocol is connection oriented.

2) Geolocation information: The longitude and latitude of

each IP address in Table I are obtained using a highly-accurate

geo-mapping service during the trace collection. The mapping

of the IP addresses is a real-time process, making it resistive

to IP dynamics. Beside the longitude and latitude, we also

generate the individual city and organization of each IP ad-

dress involved in an attack using a highly-accurate commercial

grade geo-mapping dataset by Digital Envoy (Digital Element

services [21]). We use such information for geographical

analysis as presented later.

Table III sums up some statistics of our dataset, including

information from both the attacker and the target sides. Target

statistics are illuminating. Over a period of 28 weeks, 50,704

different DDoS attacks were observed. Each DDoS attack

record is differentiated by a unique attack ID and each is

associated with a start timestamp and end timestamp. The

target IP could also be utilized as an indicator of different

attacks. In our analysis, we discovered some periodic pattern

of the DDoS attacks as shown in Section V-B. However, for

attacks whose interval exceeds 60 seconds, we consider them

as different attacks. Note that we defined this attack interval

for an in-depth study of the periodic patterns of the DDoS

attacks. This does not mean that DDoS attacks could not

last longer than 60 seconds. We choose 60 seconds based

on two considerations: (1) From the results shown in Fig 7

in Section III, less than 10% of the attacks last less than 60

seconds, meaning that we include majority of the attacks with

this interval value; (2) Using smaller interval value help reduce

the false positives when identifying collaboration activities,

which we will discuss in Section V, since the purpose of

collaborations is often maximizing the attacking force by

launching attacks almost simultaneously. The actual duration

of the DDoS attacks could be calculated with ‘timestamp’ and

‘end time’ from Table I. These attacks were launched by 674

https://www.digitalenvoy.com/
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TABLE III
SUMMARY OF THE WORKLOAD INFORMATION

Summary of Attackers Summary of Victims
description count description count

# of bot ips 310950 # of target ip 9026
# of cities 2897 # of cities 616

# of countries 186 # of countries 84
# of organizations 3498 # of organizations 1074

# of asn 3973 # of asn 1260

# of ddos id 50704
# of botnet id 674

# of traffic types 7

different botnets. These attacks targeted victims located in 84

different countries, 616 cities, involving 1,074 organizations,

and residing in 1,260 different autonomous systems (ASes).

Attack Types
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Fig. 1. Popularity of attack types, with most of attacks carried over HTTP,
followed by TCP. Undermined implies an attack using multiple protocols,
whereas unknown indicate traffic of unknown type. Notice that the majority
of attacks are carried over a connection-oriented transport.

E. Comparison and limitations

Several works [22], [23], [24] are on radiation and port

scanning measurements. However, most of them are concerned

with a single network (Tier-1 ISP [24], sinkhole traffic [23]).

Our work is on DDoS attack characterization at a larger

scale, making it difficult to directly compare it with the prior

literature. Towards the limitations of our data collection, one

may argue that not covering all ISPs on the Internet for

data collection may bias our data, and thus our findings. We

note that; however, our data collection also incorporates at-

destination data collection, thus all statistics of interest are

gathered in the process. For the data size, and in comparison

to [24], our study characterizes more than 50, 000 verified

attacks over seven months observation period (compared to

31,612 alarms over a period of four weeks in the prior work).

Note, the fundamental difference between attacks and alarms

is that a large number of triggered alarms in anomaly detection

systems could be false alarms, while attacks are verified alarms

Note that our data collection method is not subject to the

shortcoming of locality bias highlighted in [25]: all malware

families used for launching attacks that we study are well-

understood at the time of the data collection and reversed

engineered, and traffic sources utilized for launching the

attacks are enumerated by active measurement. To that end,

we believe that our data collection is representative to the

characterized events, and that the length of the observation

period is sufficient to draw some conclusions on DDoS attacks

on the Internet today.

III. OVERVIEW OF DDOS ATTACKS

In this section, we present an overview of DDoS attacks

logged in our dataset. We recognize that not all of the 23

botnets logged in our dataset are active all the time. Among

them, 10 families are more active than others – a complete

analysis of all 23 botnet families can be found in [14]. To this

end, in this section we focus on analyzing and characterizing

attacks launched by those 10 active families. Namely, we

study the DDoS attacks launched by Aldibot, Blackenergy,

Colddeath, Darkshell, Ddoser, Dirtjumper, Nitol, Optima,

Pandora, and YZF.

A. Attack Distribution

More than 50, 000 DDoS attacks launched by 10 active

botnet families were observed during the period of 28 weeks’

collection. The attack density distribution is an important

feature to measure the activity levels of a botnet family. For

that, we extract the beginning time of each attack and plotted

the aggregate number of attacks over the period in Figure 2.

In this figure, the y-axis represents the number of aggregated

DDoS attacks for multiple botnet families, and the x-axis

represents the time (date). We find that on average there are

243 DDoS attacks launched by the 10 botnet families every

day. The maximum number of simultaneous DDoS attacks per

day was 983 attacks, which happened on August 30, 2012. All

of these attacks were launched by Dirtjumper and the targets

were located in the same subnet in Russia, suggesting a strong

relationship between the different attacks. From comparisons

of different families, we can observe that botnet activity pat-

terns are defined by both active time and the attack volumes.

For example, Dirtjumper presents most aggresiveness due to

its constant activities and major contributions to the DDoS

attacks. Blackenergy, on the other hand, only stays active for

about 1/3 of the period. Behind the scenes, the activity level

could suggest the proliferation capability and the viability of

the botnet malwares.

Although we observe fluctuations in the number of attacks

over time, we did not find any obvious daily, weekly, or

monthly patterns in Figure 2 that are common in other

Internet activities (e.g., diurnal patterns in web access). This

is, however, anticipated since DDoS attacks typically are not

user-driven, thus lack periodic patterns.

B. Attack Intervals

We further extract the intervals between DDoS attacks. We

define the intervals between two DDoS attacks similar to that

of the inter-arrival time: the time interval between any two

consecutive attacks launched by the same botnet family (or

on the same target; across multiple families). Figure 3 shows
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Fig. 2. The daily attack distribution. The number of attacks fluctuates over time, although the numbers do not exhibit any obvious pattern as seen in other
online services. On the other hand, while their source varied, many of the attacks happening in the same day were launched against networks in the same
network; e.g., in the same country or residing in the same autonomous system.
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Fig. 3. Attack interval, comparing all attacks and family-based interval
distribution (CDF). Notice that more than 50% of the attacks are concurrent
when the characterization is confined to the same family, and more than 55%
of the attacks are concurrent when characterization is done across all families.
The interval on the x-axis is in seconds and in log scale.

the CDF of the attack intervals across all attacks and attacks

launched by each family. Note that x-axis is in log scale.

Attack intervals observed from all attacks and family-based

attacks show consistent patterns. More than half of the attacks

are launched simultaneously. For family based attacks, we

found that the longest attack interval was 59 days, almost two

months. Also, 80% of the attack intervals lasted less than 1081

seconds, which is roughly 18 minutes. The average DDoS at-

tack interval was 3060 seconds and the standard deviation was

39140 seconds. Those numbers, and by observing the CDF in

Figure 3, tell that the attack intervals follow two extremes:

except for 15% of the attack falling in the [1, 000, 10, 000]
seconds interval, the majority of the attacks (about 50%) are

concurrent, with less than 1% of the attacks at least one order

of magnitude larger than the rest of attack intervals.

In this paper, we assume bots do not spoof their IP

addresses. This assumption is supported by the following

arguments. First, it has been shown that IP spoofing for botnet-

launched DDoS attacks is not common [24]. Second, with

our traces of attack data, the majority of attacks were using

connection-oriented protocols (HTTP), as shown in Fig. 1,

making spoofing almost impossible. Thus, we use the number

of IPs involved in an attack to estimate one aspect of the

corresponding attack magnitude. Thirdly, by aggregating the

source IP address and the destination port number 53, we

further verify that there are no reflection or amplifications

attacks in our dataset, where source IP addresses could belong

to the targets. In addition, it is also very unlikely to have

anonymized IPs in this dataset since the dataset is provided

as part of the service agreements with the enterprises. With

the deployment of monitoring systems within ISPs, it is

plausible that our dataset captures the malicious behaviors on

the attackers’ side before they use any proxy mechanisms.

Based on the above discussions, we eliminate the possibilities

of IP spoofing in our dataset.

As these concurrent attacks are very interesting, we take a

closer look at them. We find that they can be classified into

two categories: attacks launched by a single botnet family

and attacks launched by multiple families. Attacks in the

first category happened 3692 times and attacks in the second

category happened 956 times.

For the first category, we found that seven out of the 10

botnet families exhibit such behavior. Among all families,

Dirtjumper is the most active in launching simultaneous

attacks; 10% of the attacks launched by Dirtjumper are

simultaneous. For the second category, we found that most

common combinations were Dirtjumper with Blackenergy

and Dirtjumper with Pandora, which happened 391 and 338

times respectively. This finding is very interesting, and further

investigation is dedicated to understand it in §V.

From families’ perspective, Figure 4 further shows the

interval distributions of all DDoS attacks launched by each

botnet family. DDoS attacks are arranged in chronological

order for the calculation of attack intervals and simultaneous

attacks are eliminated for this analysis. Futher the calculated

intervals are grouped into four clusters with different time

units, i.e. minutes, hours, days, weeks and months, based on

their lengths. From this figure, we observe that the attack

intervals present random distributions for all botnet families.

However, intervals of 6-7 min, 20-40 min and 2-3 hrs are

most commonly shared by all botnet families than others,

which suggests predictive attacking strategies utilized by the

botmasters. These observations also highlight the possible

open time slots for effective mitigations of DDoS attacks.

Figure 5 further shows the attack interval CDF for each

family, where the x-axis represents the attack intervals in

seconds and each color represents a single family. Note that

the x-axis is in log scale (base 2) to highlight the trend and
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pattern in the intervals for the various families. Different from

Figure 4, simultaneous attacks are included in this profiling.

From this figure we observe that Blackenergy, Aldibot and

Optima launch 40%-50% of attacks simultaneously or within

a short time frame. We also observe that both Aldibot and

Optima have no attacks with intervals that are less than 60

seconds. This could be a strategy utilized to evade detections.

Finally, from the same figure, we observe that the activeness

of botnets differ by an order of magnitude, with Nitol and

Aldibot being the least active ones.

C. Attack Duration

The duration of an attack is one aspect that measures its

strength and longevity. In our dataset, the measurement of

duration is in a way aggregate and does not differentiate

between providers and their capability. Figure 6 depicts the

durations of all DDoS attacks, where the x-axis represents the

attacks along time on daily basis shown in different colors

while the y-axis represents the attack duration in seconds.

Simultaneous attacks are ordered based on IP addresses. As

shown, from the density of the duration distributions, most

attacks last between 100 seconds to 10000 seconds. Nonethe-

less, the attack duration varies significantly: while the average

duration is 10, 308 seconds, the median is only 1, 766 seconds,

with a standard deviation of 18, 475 seconds (which indicates

wide-spread).
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Fig. 6. Attack duration, defined as the duration between the start and the
end of the observed attacks in second (log scale) over time. Notice that the
majority of attacks’ intervals lay between 100 and 10000 seconds.

Figure 7 further shows the corresponding CDF of the attack

duration. As shown, 80% of the attacks last for less than

13, 882 seconds (about four hours). Choosing four hours as

the cut-off for the majority of attacks duration is perhaps

not arbitrary. This value suggests that four hours might be

a reasonable time window for DDoS attacks detections and

mitigations. An adaptive attacker using such a strategy would

evade detection for the longest possible time for most attacks.

That is, the longer the attack lasts, the higher its chances

are of being detected. By limiting attack to four hours, the

attacker can successfully reduce the detection rate, and thus

can repetitively launch more attacks later without risking

being blacklisted. Compared with the literature [24], where

it was shown that 80% of attacks in a comparable study last

for less than 1.25 hours, this finding is interesting in itself:

DDoS attacks are becoming more persistent by lasting longer;

however, their duration is still smaller than the required time

frame for detections.
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Fig. 7. Duration distribution as CDF across all families, where 80% of the
attacks last for less than about 4 hours.

D. Summary

DDoS attacks nowadays are most likely to be event- or

profit-driven, demonstrating by the sporadic distribution pat-

terns. Further, multiple rounds of attacks could be launched

against the same target within a short interval of up to several
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hours. Different attacking intervals suggest various strategies

utilized by the botmasters. For the attacking durations, 80% of

the attacks have a duration less than four hours, where targets

are constantly attacked. This is more likely to be a strategy,

rather than the effectiveness of defenses. Above discussions

further motivate automatic detection and defense instead of

any semi-automatic or manual approaches. Only the former

can effectively respond in such a short time frame. Without

such an automatic system in place, the detection is not possible

for one-time attacking targets. For targets that are repetitively

attacked, investigation of the attack intervals may be helpful.

IV. ANALYSIS AND PREDICTION: TARGET AND SOURCE

A. Source Analysis

Geolocation affinity is a direct indicator of how an attacker

is geo-spatially distributed. To further quantify the geolocation

affinity, we extract all the bots involved in DDoS attacks

for each family and aggregate the number of these bots per

week. Thus, we are able to observe the attack source and

their migrations over weeks. We define such changes as a

shift pattern. Figure 8 shows the dynamic shift patterns per

week for each botnet family. Shifts are categorized into two

clusters based on their destination locations, existing countries

or new countries. Two clusters are represented by bars with

different patterns on the left and right, respectively and the

stacked bars aggregate the total shifts introduced by all botnet

families. From this figure we can see clearly that most of the

attack sources will be limited to the same group of countries

(notice that there are different count units for two clusters,

104 and 103), confirming that most of these attacks are highly

regionalized. Also, this observation applies across multiple

botnet families. Next, we explore how the geolocations of

different bots participating in attacks change over time.

Fig. 8. Source analysis by tracking the botnet shift patterns over time
(weekly). The shift pattern capture the number of bots used for attacks and
their mobility over countries (origin of attacks). We notice that the botnet
shift patterns have a strong affinity within a fixed set of countries, and very
few bots are recruited from out of those countries (the right-side y-axis).

In our dataset, each DDoS attack could be illustrated by a

series of snapshots along time. In each snapshot, as discussed

in §II, IP addresses of all bots evolved at the given time

were recorded. Since every IP address corresponds to a single

location (longitude and latitude pair), we are able to pin down

the locations of all the bots involved on a map. We use such

information to characterize source location distributions. First,

we find the geological center point of the various locations

of IP addresses at any time. Then, we calculate the distance

between each bot and this center point (using Haversine

formula), and add the distances together. In our analysis, the

distance has a sign to indicate direction: positive indicates

east or north, and negative indicates west and south. For

simplicity, we consider the absolute value of the sum of all

distances; a sum of zero means that participating bots are

geographically symmetric. We use these distances to represent

the geolocation distribution of the bots. These values help

profile the dispersions of the attacking sources. However, the

actual distance contributes very little to the modeling accuracy

of the attackers’ locations. Thus, the preference captured by

the distance could be applied for predictions as well. We

calculate this value across all the families and plot the CDF

of geolocation distributions in Figure 9.
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Fig. 9. The geolocation distribution as a CDF of various active botnet families,
characterized by the geolocation distance (in km).

In this figure, six families with at least 10 snapshots (with

active attacks for more than 10 days) are reported. From

Figure 9, we observe that the average distance between the

attackers and the targets is about 3,500 kilometers. The number

3,500 itself is incidental. However, after comparing among

different botnet families, we find that all the botnet families

present predictable patterns in terms of the distance between

the involved bots and the target host. We could leverage this

information together with the geolocation affinity character-

istics of each botnet family to narrow down the candidate

pool during the detections, therefore improving mitigation

accuracy. Since the attack data was collected globally, it is

not surprising that the attackers are located far away from the

targets of the DDoS attacks. . We also observe that not all

the families follow the same distribution of location proxim-

ity. For the families Optima and Blackenergy, the distances

exhibit a normal distribution, whereas other families have a

skewed distribution. The families Dirtjumper and Pandora

both have more than 40% distribution distances of zero,

indicating complete geographical symmetry. Later, we will

show that Dirtjumper and Pandora collaborate with each other

closely, which may explain the similar distribution of their

geolocation distances. Furthermore, the different distribution

patterns suggest that geolocation distribution is less likely to

be random, but rather part of the attack and infection strategy,

which could be further confirmed later.

To further explore the dynamics behind the geolocation

changes of each DDoS attack, we arrange all the geolocation
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distribution values of all the DDoS attacks launched by each

family in time order. Then, we plot the geolocation distances

along time. Figure 10 and Figure 11 show the distributions for

Pandora and Blackenergy, respectively.
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Fig. 10. A histogram of the geolocation of the source of attack, capturing
the geolocation distribution of source of the Pandora family.
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Fig. 11. A histogram of the geolocation of the source of attack, capturing
the geolocation distribution of source of the Blackenergy family.

In both figures, we remove the symmetric distributions

to make clear demonstrations of the asymmetric ones since

symmetric distributions dominate the overall distributions,

with 76.7% for Pandora and 89.5% for Blackenergy. After

that, the x-axis represents the bins of distances in kilometers,

and the y-axis represents the according counts of the specific

values. From the above figure, we observe distribution patterns

in both cases. The distances appear in stationary states by

varying around certain mean values, 566 for Pandora and 4304
for Blackenergy. This indicates that these values are stable

even predictable.

To verify our conjecture, we next build a prediction model

over this data. To build the model, we use the Autoregressive

Integrated Moving Average (ARIMA) model, which is one

of the popular linear models in time series forecasting. The

popularity of the ARIMA model is because of its statistical

properties in the model building process. In addition, ARIMA

models are quite flexible in that they can present several

different types of time series [26].

To evaluate the results of our prediction model, we split our

data into two parts, the first half is for training and the other

half is used for prediction and evaluation. For the prediction

part, we use the last 2,700 values (2,700 is a randomly picked

number. This value shouldn’t affect our prediction results).

Again, due to the space limit, we only present the results

for the same two families Pandora and Blackenergy. The

prediction results are shown in Figure 12 and Figure 13.

Distance (km)

C
o

u
n

t

0

500

1000

1500

2000

2500

-2340 -1912 -1484 -1056 -628 -200 -90 -70 -50 -30 -10 10 30 50 70 90 200 2067 3935 5803 7670 9538

Predictions

Ground Truth

Time
0 270 540 810 1080 1350 1620 1890 2160 2430 2700

E
rr

o
r 

(
×

1
0

4
 k

m
)

-1.0

-0.6

-0.2

0.2

0.6

1.0

Fig. 12. Pandora geolocation distance prediction, with the upper figure
showing the actual versus predicted distance as a histogram, and the lower
figure showing the error rate over time.
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Fig. 13. Blackenergy geolocation distance prediction, with the upper figure
showing the actual versus predicted distance as a histogram, and the lower
figure showing the error rate over time.

In these figures, both the comparisons of geolocation distri-

butions for predictions and ground truth and the corresponding

deviations are represented. For the errors, they are shown in

chronological order for each predicted data point in the bottom

figure. From these figures, we can clearly observe that the

predicted results are almost identical with the ground truth

value from their distributions. Most errors are caused by the

extreme values occured during the attacks. We further calculate

the numerical statistics for all the families except for Darkshell

since there are not enough data points for training the model.

The results are listed in Table IV.

We compare two groups of artifacts in this table: the

prediction and the ground truth values. We calculated the

mean value and the standard deviation value of both groups.

Further, we compared these two groups by calculating their

cosine similarity with each other. From this table, we can

see that for all the families, both the mean value and the

standard deviation are close to those of the ground truth, except

for family Dirtjumper and Colddeath; the predicted results

represent more than 90% similarity to the ground truth.
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TABLE IV
STATISTICS FOR GEOLOCATION DISTANCE PREDICTION. SIMILARITY

STANDS FOR THE COSINE SIMILARITY, AND STD STANDS FOR THE

STANDARD DEVIATION.

Family Group Mean std Similarity

Blackenergy
prediction 3968.4 1955.5

0.960
ground truth 3970.6 2294.4

Pandora
prediction 562.6 1809.2

0.946
ground truth 569.2 1842.5

Dirtjumper
prediction 1203.9 925.8

0.848
ground truth 1229.1 1033.7

Optima
prediction 3526.6 1150.1

0.941
ground truth 3545.8 1717.8

Colddeath
prediction 356.5 753.2

0.809
ground truth 341.6 933.8

Insight into defenses: These results reveal several insights

including: (1) The geolocation dynamics of bots involved in

DDoS attacks exhibit certain patterns for different botnet fam-

ilies. (2) Attack source geolocation changes can be accurately

predicted by using a proper model. accurately predicted by

using a proper model. (3) Such information combined with

changes of the attack volumes can be used for forecasting how

DDoS attacks evolve over time, thus allowing one to deploy

or adjust defenses accordingly.

B. Target Analysis

1) Country-level analysis: Now, we turn our attention to

the country-level preference of families and their victims. The

third column in Table V shows the top five popular targeted

countries of each active family. Most families have a specific

preference over specific areas or organizations. The top five

most popular target countries are the United States of America

(USA), targeted by 13, 738 attacks, Russia, targeted by 11, 451
attacks, Germany, targeted by 5, 048 attacks, Ukraine, targeted

by 4, 078 attacks, and the Netherlands, targeted by 2, 816
attacks. The Aldibot and Dirtjumper families’ preferred target

country is the USA; Colddeath’s is India; the Optima, Pandor

and YZF families’ is Russia; the Darkshell and Nitol families’

is China and Ddoser’s is Mexico.

2) Organization-level analysis: Similar to country-level

analysis, we have also conducted organization-level analysis.

Our results show that the targets were narrowly distributed

within several organizations. Figure 14 shows the organization-

level analysis in February 2013 for Pandora. In this figure,

the size of the markers on the map represents the number

of attacks toward a specific target. From this figure, we can

easily identify some hotspots in Russia and the USA. Among

all the families, Dirtjumper has a wider presence by attacking

more organizations than any other family. Also, we found

that most attacks were aimed towards web hosting services,

large-scale cloud providers and data centers, Internet domain

registers and backbone autonomous systems, where massive

network resources are possessed and play a critical function

in the operations of other Internet services.

Insight into defenses: The country and organization level

target analyses provide insights for defenses. For example,

findings concerning the country-level characterization can set

some guidelines on country-level prioritization of disinfection

TABLE V
COUNTRY-LEVEL DDOS target STATISTICS

Family Countries Top 5 Count

Aldibot 14

USA 32

France 11

Spain 8

Venezuela 8

Germany 4

Blackenergy 20

Netherlands 949

USA 820

Singapore 729

Russian 262

Germany 219

Colddeath 16

India 801

Pakistan 345

Botswana 125

Thailand 117

Indonesia 112

Darkshell 13

China 1880

South Korea 1004

USA 694

Hong Kong 385

Japan 86

Ddoser 19

Mexico 452

Venezuela 191

Uruguay 83

Chile 66

USA 48

Dirtjumper 71

USA 9674

Russian 8391

Germany 3750

Ukraine 3412

Netherlands 1626

Nitol 12

China 778

USA 176

Canada 15

United Kingdom 10

Netherlands 6

Optima 12

Russian 171

Germany 155

USA 123

Ukraine 9

Kyrgyzstan 7

Pandora 43

Russian 2115

Germany 155

USA 123

Ukraine 9

Kyrgyzstan 7

YZF 11

Russian 120

Ukraine 105

USA 65

Germany 39

Netherlands 19

and botnet takedowns. Organization-level characterization and

findings associated with that can hint on the possible role

provisioning can play in maximizing protection capabilities.

V. ANALYSIS OF COLLABORATIVE ATTACKS

So far, DDoS attacks were analyzed individually. Based on

the target analysis discussed earlier, we found that different

botnets (in the same family corresponding to different gener-

ations, or from different families) may collaborate to attack

the same target. They may launch attacks at the same time or

alternate their attacks in a way that indicates collaboration. In

the following, we elaborate on this collaboration.

Table VI shows the collaboration results using both intra-

family and cross-family collaborations. Basically, if different

botnets are targeting the same target, and their starting time

is simultaneous (or within a 60 second timeframe from each

other), and their duration difference is within half an hour,

then they are regarded as collaborations. As shown in this

table, 121 of the detected collaborations are between different
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TABLE VI
BOTNETS COLLABORATION STATISTICS

Collaboration Type Blackenergy Colddeath Darkshell Ddoser Dirtjumper Nitol Optima Pandora YZF

Intra-Family 0 0 253 134 756 17 1 10 66

Inter-Family 1 1 0 0 121 0 1 118 0

Fig. 14. Target affinity characterization of the Pandora malware family
over the globe, with larger blue-ish points corresponding to the targets hit
the most by bots of the studied family, and smaller green small points are
marginal targets. The characterization is done at the organization-level, and
the organizations are mapped geographically to their home coordinates (city).

families. Among these collaborations, we observe that two

families, namely Dirtjumper and Darkshell, have the most

intra-family collaborations. Next, we look into these intra-

family collaborations (between different botnet IDs of the

same family) and inter-family collaborations in details.

Fig. 15. Intra-family collaborations of Dirtjumper, where various generations
of the same family (identified by a different botnet identifiers) collaborate to
launch an attack against the same target within a confined timeframe.

A. Concurrent Attacks

Figure 15 shows the collaboration attack magnitude by the

family Dirtjumper. For clarity with respect to the multiple

variables, we plot a three dimensional (3D) figure characteriz-

ing Dirtjumper: the x-axis represents each unique botnet ID,

the y-axis represents the date of collaboration, and the z-axis

represents the attack volume. From this figure, we can see that

for most collaborations, there are two botnets involved, where

the average number of botnets involved in the collaboration

is 2.19. Such collaborations may be due to a guided action

by botmasters, or as instrumented by bots themselves (e.g.,

multiple entities behind various attacks coincided to utilize

the same resources to attack the same target at random).

Looking into Figure 15 , we also find that for most bars

along the same timestamp, they have the same height. Such

an observation reduces the likelihood of involvement of the

previously mentioned entities in these collaborations. That

is, for all the botnets involved in the collaboration, detailed

instructions were perhaps given for the attack magnitude.

While that being a random coincidence is possible, it is not

plausible, and that further highlights the potential of close

collaborations between different botnets.

In addition to the collaborative attacks launched by botnets

from the same family, we found that there are attacks launched

by botnets from different botnet families. From Table VI, we

can see that all families involved in inter-family collaborations

had collaborated with Dirtjumper. Among these collabora-

tions, Dirtjumper and Pandora collaborated with each other

the most. Our next analysis will focus on those two families.

The collaborations between Dirtjumper and Pandora in-

volved 96 unique targets, which were located in 16 countries,

58 organizations and 61 ASes. Among the 16 countries,

the most popular three countries were Russia, the USA and

Germany; with 31, 26 and 14 attacks per country, respectively.

On the other hand, for Pandora, the average duration of an

attack was 6, 420 seconds (107 minutes), while the duration

was 5, 083 seconds (87.7 minutes) per attack for Dirtjumper.

Fig. 16. Inter-family collaborations between Dirtjumper and Pandora, where
bots of different botnet families coordinate their attack against the same target
within a confined timeframe.

Figure 16 shows the duration and attack magnitude com-

parisons of collaborations between Dirtjumper and Pandora.

The top figure shows the value change for both families

over time, with left y-axis representing the attack duration

while the right y-axis representing the attack magnitude. Both

of the y-axes are in log scale. The histogram shows the

attack magnitude and the curve shows the attack durations.

The bottom figure shows the value distributions for both
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duration and magnitude presenting in different patterns. From

this figure, we observe that the attack magnitude for these

two families are almost equal for most of the attacks, and

the duration of these two families are almost identical. This

could be further verified by the value distributions. Another

observation we make is that the attack magnitudes are not very

high for both families except for an outlier. Finally, we observe

that the time span of collaboration lasted from October 2012

until December 2012, covering nearly 16 weeks. This long-

term collaboration between Dirtjumper and Pandora highlights

a close tie between the two families.

B. Multistage Attacks

Thus far, we consider the collaboration as multiple indi-

vidual DDoS attacks are launched at the same time. Besides

this kind of collaboration, another form of collaboration could

be multiple DDoS attacks happening continuously one after

another. Next, we investigated this type of collaboration among

botnets. For this purpose, we extract the DDoS attacks on a

given target that happen consecutively (i.e., the second attack

happens at the end of the first attack, or within 60 second mar-

gin over overlap). For this type of attack, the results show that

only intra-family collaborations were involved. Furthermore,

we found that four families had this type of collaboration;

Darkshell, Ddoser, Dirtjumper and Nitol.

Among all the families and collaborations, Ddoser has

the longest consecutive DDoS attack involving 22 continuous

attacks that lasted for more than 18 minutes on August 30,

2012. On average, the mean interval between two consecutive

attacks was 0.11 seconds (a median of three seconds) with a

standard deviation of 23 seconds (bursty period)
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Fig. 17. The distribution of time of consecutive attacks, captured by the CDF.
Notice that more than 65% of the consecutive attacks happened within only
10 seconds.

Figure 17 displays the CDF of the intervals between two

consecutive attacks. By our definition, we observe that nearly

80% of the consecutive attacks happened within 30 seconds.

In practice, this anticipated, and highlights the potential in-

telligence behind those coordinated attacks: a longer interval

would potentially allow targets to deploy various defense

mechanisms, and is not likely to be logged in our dataset.

Figure 18 shows the attack magnitude of all consecutive

DDoS attacks. In this figure, the x-axis represents the 28

week timespan of our dataset, and the y-axis represents all

the targets attacked by these consecutive DDoS attacks. Each
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Fig. 18. In-depth analysis of consecutive attacks over time for three botnets:
larger keys correspond to larger attacks in size.

dot represents a single DDoS attack. In this figure, the dots

displayed consecutively in a row indicate that the attacks

happened consecutively. Finally, the size of each marker

represents the attack magnitude of each DDoS attack and

the different colors represent different families. We observe

that the attack magnitudes of different collaborating families

are relatively stable during the consecutive attacks, except for

Dirtjumper that has several attacks of a very large magnitude.

Summary. Intra- and inter-family collaborations could be due

to an underlying ecosystem, the evolution of a botnet family,

or the evolution of defense mechanisms, which all make

defending against them daunting tasks. Devising defenses that

employ this insight for attack attribution with an in-depth

understanding of the participating hosts in each family is

imperative. For example, if we could model the consecutive

patterns of DDoS attacks, then the defender could leverage this

information to prepare for the next rounds of attacks, e.g., by

utilizing a blacklist. For the active defense mechanisms, Zhou

et al. [27] proposed a solution to detect collaborative attacks,

including DDoS attacks.

VI. RELATED WORK

DDoS attacks have been intensively investigated in the

literature. Jérôme et al. [28] designed and implemented a

collaborative system to detect flooding DDoS attacks as far

as possible from the victim host and as close as possible

to the attack source(s) at the Internet service provider (ISP)

level. It relies on a distributed architecture that is composed

of multiple IPSs forming overlay networks to protect sub-

scribed customers. Bilge et al. [29] introduced EXPOSURE,

a system that employs passive DNS analysis techniques to

detect malicious domain names. Similarly, Sharifnya et al.

[30] proposed a negative reputation system that considers the

history of both suspicious group activities and suspicious fail-

ures in DNS traffic to detect domain-flux botnets. Plohmann

et al. [31] recently reverse-engineered 43 malware families

and variants that use Domain Generation Algorithms (DGAs).

A comprehensive measurement and analysis of behaviors of

different botnet families are provided in [14]. Welzel et al.

[32] also measures the impact of attacks by DDoS botnets

to the victims by analyzing C&C servers of 14 DirtJumper

and Yoddos botnets. To look closer to the botnet take-down

problem, Nadji et al. [33] proposed a take-down analysis and
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recommendation system called rza, which not only allows

a postmortem analysis of past take-downs but also provides

recommendations for future take-down actions.

There have been several works on understanding unique

characteristic of DDoS attacks. Czyz et al. [34] characterize

the advent and evolution of DDoS attacks based on Network

Time Protocol (NTP) via 5 distinct datasets. They discovered

that a large fraction of NTP DDoS attacks are perpetrated

against gamers by analyzing the attacked port numbers. Jonker

et al. [35] introduced a framework for macroscopic char-

acterization of attacks, attack targets, and DDoS Protection

Services (DPSs). They also discovered that the targets are often

simultaneously hit by different types of attacks.

Giotis et al. [36] proposed to leverage the OpenFlow pro-

tocol as a means to enhance the legacy Remote Triggered

Black-Hole (RTBH) routing approach, towards DDoS attack

mitigation. Their scheme preserves normal operation of the

victim while pushing the mitigation process upstream towards

the edge of the network. Lee et al. [37] also proposed to

integrate an anomaly detection development framework into

SDN to support sophisticated anomaly detection services.

Kang et al. [38] designed and implemented a SDN based

system to mitigate link flooding attacks with traffic engineering

algorithms. A similar framework is built by Liaskos et al. [39]

to continuously re-route traffic in a manner that makes persis-

tent participation to link-flooding events highly improbable.

Benson et al. [40] explored the utility of Internet Back-

ground Radiation (IBR) as a data source of Internet-wide

measurements. They showed that IBR can supplement ex-

isting techniques by improving coverage and/or diversity of

analyzable networks while reducing measurement overhead.

Durumeric et al. [41] analyzed the scanning behavior triggered

by vulnerabilities in Linksys routers, OpenSSL, and NTP.

They found that large horizontal scanning is common and

is responsible for almost 80% of nonConficker scan traffic.

In another similar work, Rossow [42] revisited other UDP-

based network protocols and identified protocols that are

susceptible to amplification attacks. 14 protocols of various

services including network services such as Network Time

Protocol, Simple Network Management Protocol, legacy ser-

vices, p2p file sharing network and so on were shown to

be vulnerable and can be abused by distributed reflective

denial-of-service(DRDos) attacks. A more recent study [43]

identifies DNS backscatter as a new source of information

about networkwide activity. They used information about the

queriers to classify originator activity using machine-learning.

Pan et al. [44] proposed a software-defined infrastructure

that simplifies and incentivizes collaborative measurement and

monitoring of cyber-threat activity.

VII. CONCLUSION

DDoS attacks are frequently launched on the Internet. While

most of the existing studies have mainly focused on designing

various defense schemes, the measurement and analysis of

large scale Internet DDoS attacks are not very common,

although understanding DDoS attacks patterns is the key to

defending against them. In this study, with the access to a

large scale dataset, we were able to collectively characterize

today’s Internet DDoS attacks from different perspectives. Our

in-depth investigation of these DDoS attacks reveals several

interesting findings about today’s botnet based DDoS attacks.

These results provide new insights for understanding and

defending against modern DDoS attacks at different levels

(e.g., organization and country). While this study focuses on

DDoS characterization, in the future, we plan to leverage these

findings to design more effective defense schemes.
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