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Abstract

A mathematical analysis is conducted to illustrate the controllability of the Raman soliton
self-frequency shift with polynomial nonlinearity in metamaterials by using collective
variable method. The polynomial nonlinearity is due to the expanding nonlinear polari-
zation PM in a series over the field E up to the seventh order. Gaussian assumption is
selected to these pulses on a generalized mode. The numerical simulation of soliton
parameter variation is given for the Gaussian pulse parameters.

Keywords: Raman solitons, polynomial nonlinearity, collective variables

1. Introduction

Much attention has been devoted to the understanding of metamaterials [1-4]. Through its
engineered structures, researchers are able to control and manipulate the electromagnetic
fields [5]. Using the freedom of design that metamaterials provide, electromagnetic fields can
be redirected at will and propose a design strategy [6]. A general recipe for the design of media
that create perfect invisibility within the accuracy of geometrical optics is developed. The
imperfections of invisibility can be made arbitrarily small to hide objects that are much larger
than the wavelength [7].

Especially, mathematical operations can be performed based on suitably designed metamaterials
blocks, such as spatial differentiation, integration, or convolution [8]. Soliton pulse can
evolve owning to delicate balance between dispersion and nonlinearity. However, it is

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
InteChopen Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited. I®)sy |



176

Emerging Waveguide Technology

always a challenge to compensate for the loss when engineering these types of waveguide
using metamaterials. The strong perturbation of a soliton envelope caused by the stimulated
Raman scattering confines the energy scalability preventing the so-called dissipative soliton
resonance [9]. It is important to know the limit we can reach expanding the nonlinear
polarization PN" in a series over the field E [10]. The fourth-order nonlinear susceptibility
1@, the fifth-order nonlinearity 1% and the seventh-order nonlinearity 17 have been
measured [11, 12]. The polynomial mode nonlinearity is due to the nonlinear polarization
of metamaterials in the power-series expansion form where terms are kept up to the seventh
order in the field E [10, 12-15]. This chapter conducts mathematical analysis to illustrate the
controllability of the Raman soliton self-frequency shift with polynomial nonlinearity in
metamaterials by using collective variable method.

2. Governing model

The dimensionless form nonlinear Schrodinger’s equation (NLSE) that governs the propaga-
tion of Raman soliton through optical metamaterials, with polynomial law nonlinearity, is
given by [16-24].
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In this model, ®(z,f) represents the complex valued wave function with the independent
variables being z and t that represent spatial and temporal variables, respectively. The first
term represents the temporal evolution of nonlinear wave, while the coefficient a is the group
velocity dispersion (GVD). The coefficients of ¢; for j =1,2,3 correspond to the nonlinear
terms. Together, they form polynomial mode nonlinearity. The polynomial mode nonlinearity
is due to the nonlinear polarization of metamaterials in the power-series expansion form where
terms are kept up to the seventh order in the field E [10, 12-15]. It must be noted here that
when ¢; = ¢3 = 0 and ¢; # 0, the model Eq. (1) collapses to Kerr mode nonlinearity which is
due to third-order polarization PNE[15]. However, if c3 = 0 and ¢1 # 0 and ¢, # 0, one arrives
at parabolic mode nonlinearity, and it is from the fifth-order polarization pNE [15, 30]. Thus,
polynomial mode stands as an extension version to Kerr and parabolic modes. Actually, the
Raman effect is not influenced by the properties of the metamaterials; however, the Raman
coefficient combines with the dispersive magnetic permeability of the metamaterials leading to
additional higher-order nonlinear terms [10, 12, 14]. The group velocity and self-phase modu-
lation term produce the delicate balance dispersion and nonlinearity that accounts for the
formation of the stable soliton. On the right hand side, a describes intermodel dispersion, A
represents the self-steepening term in order to avoid the formation of shocks, and v is the
complex higher-order nonlinear dispersion coefficient.
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3. Mathematical formulation

The pulse may not only be able to translate as a whole entity, but it may also execute more or
less complex internal vibrations depending on the type of the perturbations in the system. This
particle-like behavior has led to the formulation of the collective variable (CV) techniques [25].
The basic idea is that the soliton solution depends on a collective of variables, called CVs,
symbolically Z;(j = 1, ...N), which represent pulse width, amplitude, chirp, frequency, and so
on [25-28]. To this end, the original field is decomposed into two components, say ®(z, f) at
position z in the metamaterials and at time t, in the following way:

D(z,t) =f(Z1,2Zs, ..., ZNn, 1) +q(2,1), )

where the first component f constitutes soliton solution and the second one g represents the
residual radiation that is known as small amplitude dispersive waves. Introduction of these N
CVs increases the phase space of the dynamical system.

In order for the system to remain in the original phase space and best fit for the static solution,
the CV method is obtained by configuring the function f(Zi, Zs,...,Zy,t) and minimizes
residual free energy (RFE) E, where

E:J mﬁﬁ:J |D(z,t) — f(Z1, Za, ..., Zn, )| dlt. )

The approximation of neglecting the residual field is called “bare approximation” in condensed
matter physics [27].

Let CVs evolve only in a particular direction to minimize the PFE in the dynamical system
with the following simple way:

_OE 0 [ e [T (9 e 0T
The rate of change of C; with respect to the normalized distance is defined as.
. ac; d ([~ og*

where 1 stands for the real part. Here, the weak equality indicates that the constraints C; need
not be exactly zero [28].

Then, we define a second set of constraints:

e

Through Egs. (2)-(6), it leads to the equations of motion:
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The set of Egs. (5)—(8) is equivalent to the matrix equation:
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At this stage, through Eq. (6) we can solve Eq. (9) by the following CV equations of motion:

. aC\ !
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The set of Eqs. (4)—(14) represents the complete CV treatment for the generalized NLSE Eq. (1).
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4. Computational results

In this part the adiabatic parameter dynamics of solitons in optical metamaterials with poly-
nomial nonlinearity will be obtained by CV method. A Gaussian is given by

" Z . .
F(Z1, 25,75, 74, 75, Ze: t) = Zyexp| —(t — Zp)2"/ %8 +1?4(t—Z2)2+zZ5(t—Z2)+1Z6 . (15)

where Z; is the soliton amplitude, Z, is the center position of the soliton, Z3 is the inverse
width of the pulse, Z, is the soliton chirp, Zs is the soliton frequency, and Zg is the soliton
phase. Also, m is the Gaussian parameter, where m > 0.

In this case, with N = 6:

0Z1 0Zy 0Z3 0Zs 0Zs 0Zg
0C, 0C; 0C, 9oC, oC, 0C,
0Z1 0Z; 0Z3 0Zs 0Zs 0Zg
§: 0Z1 0Zy 0Z3 0Zs 0Zs 0Zg / (16)
oz 0Cs 0Cs 0Cs 0Cy 0Cy 0Cy
0Z1 0Zy 0Z3 0Zs 0Zs 0Zg
dCs 0Cs 0Cs 9oCs 0Cs 0Cs
0Zy 0Z, 0Z; 0Zs 0Zs Zs
0Cs 0Cs 0Cs 0Cs 0Cs 0Cs

0Zy 0Zy 0Z3 0Zs 0Zs 0Zg

Z1
Z;
Z
=7, 17)
Zy
Zs

Zsg

R = , (18)

where
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5. Numerical simulation

The nonlinear dynamical system discussed in the previous section is plotted to illustrate the
collective variables numerically; see Figure 1. The parameter values are as follows: m =1,
1=99x102%1=98%x107% a=1x10",¢,=99%x10", c =-8x107% c3 = -8 x 1077,
and v = 1.01 x 107" [10, 12, 15, 30].

This continuous surface plot shows the dynamical relationship between the time and collective
variables, in Figure 1. It shows soliton amplitude, center position, inverse width of the pulse, chirp,
and phase keeping the original shape as time goes by. This is because group velocity and self-phase
modulation term produce the delicate balance dispersion and nonlinearity that accounts for the
formation of the stable soliton. It also describes Stokes Raman scattering that is due to transmitted
wave at higher frequency and anti-Stokes Raman scattering where transmitted wave is at lower
frequency by Figure 1(e) [29]. These results are consistent with Raman soliton scattering effect.

6. Conclusion

This chapter gives Raman soliton solutions in optical metamaterials that is studied with
polynomial nonlinearity. The polynomial mode nonlinearity is due to expanding the nonlinear
polarization PM in a series over the field E up to the seventh order [13-15]. The polynomial
mode nonlinearity is an extension of the Kerr and parabolic mode nonlinearity, which are from
third- and fifth-order polarization pNE [15, 30], respectively. The analytical results are
supplemented with numerical simulation by collective variables. The continuous surface plot
shows the dynamical relationship between the time and collective variables. It shows soliton
amplitude, center position, inverse width of the pulse, chirp, and phase keeping the original
shape as time goes by since group velocity and self-phase modulation term produce the
delicate balance dispersion and nonlinearity. It also describes Stokes Raman scattering that is
due to transmitted wave at higher frequency and anti-Stokes Raman scattering where trans-
mitted wave is at lower frequency by Figure 1(e) [8, 29].

In the future, the set of plot with m # 1 will be plotted, and third-order dispersion (TOD) and
fourth-order dispersion (FOD) will be included [15]. Nonlinear polarization of medium in
the form of a power-series expansion, keeping the terms up to the ninth order, will be
explored [10].
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