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ABSTRACT
The ability to determine the joint spectral properties of photon pairs produced by the processes
of spontaneous parametric downconversion (SPDC) and spontaneous four-wave mixing (SFWM)
is crucial for guaranteeing the usability of heralded single photons and polarization-entangled
pairs for multi-photon protocols. In this paper, we compare six different techniques that yield
either a characterization of the joint spectral intensity or of the closely related purity of heralded
single photons. These six techniques include: (i) scanning monochromator measurements, (ii) a
variant of Fourier transform spectroscopy designed to extract the desired information exploiting
a resource-optimized technique, (iii) dispersive fibre spectroscopy, (iv) stimulated-emission-based
measurement, (v) measurement of the second-order correlation function g(2) for one of the two
photons, and (vi) two-source Hong–Ou–Mandel interferometry. We discuss the relative performance
of these techniques for the specific cases of a SPDC source designed to be factorable and SFWM
sources of varying purity, and compare the techniques’ relative advantages and disadvantages.
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1. Introduction to joint spectral
characterization

Pairs of polarization-entangled photons are a critical
resource for optical quantum information processing.
The nonlinear optical processes of spontaneous paramet-
ric downconversion (SPDC) and spontaneous four wave
mixing (SFWM) are commonly used to produce photon
pairs, usually with additional (and often undesirable)
correlations in frequency and transverse momentum (1,
2). Correlations between the signal and idler photons
cause the detection of one of the photons in a given pair
to herald its partner into a mixed state, which inhibits
interference between independent sources. For example,
a key building block of a scalable quantum communica-
tion network, the quantum repeater, requires interfering
photons from a series of independent sources (3–5). Joint
spectral measurement is an important tool for character-
izing and optimizing the behavior of such sources (6).

In this work, we describe, implement and compare
six techniques that yield either a characterization of the
joint spectral intensity or of the closely related purity
of heralded single photons, in order to provide an in-
depth overview that highlights the purposes for which
each technique is suited, demonstrates the procedures
required to implement each technique, and presents a

CONTACT Paul G. Kwiat kwiat@illinois.edu

quantitative comparison of the information the tech-
niques can provide. This section provides a brief intro-
duction to the principles of joint spectral measurement,
while in the next two sections we discuss the details of
specific measurement techniques. Section 2 describes
four independent measurements of the joint spectrum,
using scanning monochromators, two-dimensional
Fourier transform spectroscopy, dispersive fibre spec-
troscopy and stimulated-emission-based measurement.
Section 3 discusses measurements based on correlation
functions and two-sourceHong–Ou–Mandel (HOM) in-
terference; while these last techniques do not provide
a direct means to visualize the joint spectrum, they do
directly relate to theheralded single-photonpurity,which
is often the metric of interest. The field of joint spectral
characterization is quickly evolving, and thus the meth-
ods covered here do not include more recently devel-
oped techniques (see, for example, (7)), and the quoted
rates and acquisition times represent those achievable
with commonly-used silicon avalanche photodiode de-
tectors rather than high-efficiency superconducting de-
tectors (see, for example, (8)). In the conclusions, we
summarize the experimental results and quantify figures
of merit based on our implementations.
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1.1. A simplemodel

To illustrate the use of joint spectral measurement, we
first consider a simplified version of the joint spectrum of
photon pairs. This model motivates the more complete
theory and provides an intuition for how to think about
the joint spectrum.

Suppose that the only constraint on the SPDC process,
in which a pump photon of frequency ωp is converted
into a pair of ‘signal’ and ‘idler’ photons (at ωs and ωi,
respectively), is conservation of energy, i.e.ωp = ωs+ωi.
(For SFWM, instead of just one pump photon, two are
annihilated to create the signal and idler photons; for
degenerate pump photons, the following discussion can
be applied with the energy conservation condition 2ωp =
ωs+ωi.). If the pump spectral amplitude is described by a
Gaussian function A(ωp) centred at frequency 2ω0, with
bandwidth σ , we can write

A(ωp) = M exp

[
− (ωp − 2ω0)

2

2σ 2

]
, (1)

whereM is a normalization constant to preserve unit area
of |A(ωp)|2. To simplify the analysis, we can redefine the
pump spectral amplitude in terms of νp ≡ ωp−2ω0, such
that it has a mean of zero. This applies to the signal and
idler frequencies as well, where for degenerate signal and
idler photons we define νs ≡ ωs − ω0 and νi ≡ ωi − ω0.
Substituting these definitions into Equation (1), we can
write the joint amplitude of the photon pairs as

f (νs, νi) = A(ωp = ωs + ωi)

= M exp

[
−ν2s + ν2i

2σ 2 − 2νsνi
2σ 2

]
.

(2)

The joint spectral intensity, or joint spectrum, |f (νs,
νi)|2 can then be understood as the two-dimensional
probability distribution associated with signal and idler
emission frequencies, which we have plotted in Figure
1(a) for a particular value of σ . In general, the joint
spectrummay ormay not be separable into functions that
represent the spectral amplitudes of the signal and idler
photons individually. The degree of non-separability de-
termines how correlated the signal and idler photons are,
which we will discuss in the next section.

1.2. Schmidtmodes

In order to quantify the degree of correlation between
signal and idler photons one can apply the very useful
Schmidt decomposition. The resulting Schmidt number
can be used to quantify the entanglement between two
systems, and hence the purity of each system individually.

The Schmidt decomposition1 (9, 10) allows a pure state
of a composite system AB to be decomposed into a sum
over products of orthonormal states of A and B:

fA,B =
∑
i

√
λi gA,i gB,i, (3)

where the Schmidt coefficients
√

λi satisfy the normaliza-
tion condition

∑
i λi = 1. In a highly multi-dimensional

space, this answers the difficult question of exactly which
mode(s) to collect in order to maximize the probability
of detection: the one(s) with the largest coefficients λi.
The Schmidt coefficients can be used to define an excep-
tionally useful quantity known as the Schmidt number2

K , which can be described as the effective number of
populated eigenmodes:

K = 1∑
i λ

2
i
. (4)

Why is this useful? First, it naturally quantifies the
degree of entanglement in the physical system of interest,
that also conveniently relates to the entropy of the system,
i.e.

∑
λi log2 λi (11). Also, the inverse Schmidt number

1/K of the collected joint spectrum is equal to two other
relevant quantities in an SPDC or SFWM source: the
purity P of a heralded single photon and the visibility V
of a two-source HOM interferogram (13). Note that if
fA,B is separable, the sum in Equation (4) is trivial, as by
definition we can simply write fA,B = gAgB, so K = 1.
Similarly, for a maximally polarization-entangled two-
photon state fA,B = (

HAHB + VAVB
)
/
√
2, λ1 = λ2 =

1/2 and the number of modes is K = 1/( 14 + 1
4 ) = 2.

However, in the case of Equation (2), the continuous
basis and symmetry of the problem indicate that the
Schmidt number becomes a sum of N → ∞ equally
weighted terms, λi = 1

N . Thus, the Schmidt number is
K = 1/(

∑N
i=1 1/N

2), but the denominator goes to zero
as N → ∞, indicating that an infinite number of modes
are required to describe this distribution.

Now suppose that we apply a Gaussian spectral filter
(with bandwidth σf ) to the signal and idler modes. After
filtering, the joint spectrum from Equation (2) becomes

f (νs, νi) = A exp

[
−ν2s + ν2i

2σ 2 − 2νsνi
2σ 2

]

× exp

[
− ν2s
2σ 2

f

]
exp

[
− ν2i
2σ 2

f

]
, (5)

which is plotted inFigure 1 for different filter bandwidths.
Note that if σf is large, we recover the unfiltered case of
Equation (2), while ifσf is small, the filter termdominates
and the joint spectrum becomes separable. The Schmidt
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(a) (b) (c)

Figure 1.Modeled JSI with (a) no filtering (Equation (2)), (b) filter width equal to the pump bandwidth (Equation (5)), and (c) filter width
equal to 1

5 of the pump bandwidth.

(a) (b) (c)

Figure 2. (a)–(c) The first three Schmidt modes for a two-dimensional diagonal Gaussian ellipse. Lighter areas are maxima; darker areas
are minima.

modes and their relative weights for varying filter band-
widths are shown in Figures 2 and 3, respectively. In this
general case, it can be shown (2) that the inverse Schmidt
number 1/K is given by

1
K

=
√√√√1 − 1(

1 + ( σ
σf

)2
)2 , (6)

which has the expected behaviour that K → ∞ as σf →
∞ (the unfiltered case), and K → 1 as σf → 0 (the
tightly filtered case). Note that while the discussion pre-
sented above, which is strictly valid only in the limit of
a very short nonlinear medium, is aimed at providing
useful physical intuition, in a realistic situation the two-
photon state is characterized by a joint spectrum which
depends on phasematching properties as well as on the
spatial shape of the pump, including the degree of fo-
cusing. In general, the joint spectrum may be expressed
as |f (νs, νi)|2 = |A(νs, νi)|2|�(νs, νi)|2, where �(νs, νi)
is determined by: (i) the phasematching properties of the
nonlinearmedium (related tomomentum conservation),
and (ii) the spatial shape of the pump field (2). For most
situations, energy andmomentum conservation lead to a
joint spectrum |f (νs, νi)|2 which exhibits spectral corre-
lations, so that spectral filtering can be used as discussed
above in order to render the state factorable.

(a) (b) (c)

Figure 3. Relative values of Schmidt decomposition eigenvalues
for the unfiltered/filtered/highly filtered joint spectra of Figure 1.
The resulting Schmidt numbers (defined by Equation (4)) for the
three cases are (a) K = ∞, (b) K = 1.15, and (c) K = 1.001.

1.3. The spectrally filtered source

As discussed in the introduction, an ideal photon pair
source for scalable optical quantum information pro-
cessing would not exhibit joint spectral correlations be-
tween the signal and idler photons. The discussion in
the previous subsection illustrates how these correlations
arise from energy conservation, and also how spectral
filtering may eliminate them. However, this solution has
a significant drawback: if the quantum state involves
strong spectral correlations, the filters will block the great
majority of the emitted photon pairs. This can be seen
easily from a plot of the joint spectrum in Figure 1(a): an
uncorrelated sub-ensemble of the emitted photon pairs
will lead to only a small fraction of the emitted photon
pair-flux (in the theoretical limit of a perfectly correlated
joint spectrum, the fraction is actually zero). Anotherway
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to see this is through the Schmidt decomposition: the
best filtered, uncorrelated collection mode one can hope
for is the most populated Schmidt mode. If the Schmidt
number is large, there are many significantly populated
Schmidt modes, and any one of them will contain only a
small fraction of the total photon-pair flux.

Instead of employing spectral filtering to ‘fix’ a highly
correlated source, it would be desirable3 to produce a
joint spectrum which is already intrinsically uncorre-
lated. This is the motivation behind the various ‘engi-
neered source’ techniques (1, 2, 12–18, 24). We have
characterized an engineered photon pair source that em-
ploys type-I degenerate SPDC inβ-bariumborate (BBO),
pumped with a pulsed 405 nm beam, obtained from a
frequency-doubled ultrashort pulse train (35 fs time
duration with 76-MHz repetition rate) from a Titanium
Sapphire laser centred at 810 nm; andphoton-pair sources
that employ SFWM in birefringent optical fibre, pumped
with a pulsed 700 nm beam with 80 fs time duration and
80MHz repetition rate from a Titanium Sapphire laser.

2. Measuring the joint spectrum

2.1. Overview of joint spectral measurement

The most direct joint spectral measurement possible
would register the signal and idler frequencies over many
successive events, and from that estimate the underlying
probability distribution.However, directlymeasuring the
frequency of a single photon is impractical, so we instead
make use of optical elements which map frequency to
spatial mode. For example, the angle at which light re-
fracts from a prism or diffracts from an optical grating
depends on frequency, allowing a measurement of the
position of a photon to determine its frequency. This
principle is used in a scanning monochromator, which
uses a narrow slit to determine the position (and thus the
frequency) of a photon after a prism or grating. Thus,
one could use two scanning monochromators counting
photons in coincidence to construct a joint spectral in-
tensity (19, 20), as described in Section 2.2. This tech-
nique is relatively simple and accurate, especially if using
commercially available monochromators. However, it is
not particularly fast, as any given photon pair is detected
only if both photons pass through their monochromator
slits, which for a reasonable resolution leads to a pair
collection efficiency on the order of 0.1%. One could
upgrade the scanning monochromator technique to one
which determines position with an array of, e.g. 20–
40 single-photon counters, which must then be inde-
pendently time-resolved or otherwise able to count in
coincidence. Such a scheme in principle extracts usable
information from every photon pair, but requires spe-
cialized detection and multicorrelation electronics (21).

Another possibility is to use Fourier transform spec-
troscopy to measure frequency in the time domain, as in
Section 2.3. This exploits a self-interference effect and the
property that the extremely short (∼femtosecond) time
regime of the electric field oscillations is easily accessible
by an optical delay in a bulk optical medium. This pro-
vides a useful characterization of the joint spectrum, but
is not an ideal measurement; it is not particularly simple
due to the required scanning interferometers and the
Fourier transform that relates the time-domainmeasure-
ment to the desired frequency-domain result. It is also
relatively slow, though Section 2.3.2 describes a speed-up
that makes the measurement more practical.

Dispersive-fibre spectroscopy, described in Section2.4,
provides another usefulmeasurement of the joint spectral
intensity (22). In this scheme, we make use of dispersion
in a long optical fibre to yield a frequency-dependent time
of detection, from which the spectrum may be inferred.
This technique is one of themost direct measurements of
the joint spectral intensity available, and is relatively fast
and simple. The main disadvantage of dispersive-fibre
spectroscopy is its high sensitivity to timing accuracy in
detection electronics, and the lack of sufficiently low-loss
dispersive fibres in all spectral regions.

Stimulated-emission-based measurement, described
in Section 2.5, uses the corresponding stimulated ver-
sion of the spontaneous photon-pair generation process
to characterize the source (23). This measurement pro-
cedure requires an additional stimulating laser that is
tunable across the signal or idler frequencies. The flux
of stimulated photons is proportional to the flux of spon-
taneous photons with a proportionality constant equal to
the number of photons in the stimulating seed, resulting
in count rates many orders of magnitude higher than
the spontaneously produced photons alone; thus, single-
photon detectors are not required, only a standard spec-
trometer. This technique is one of the most efficient and
high-resolution methods of measuring the joint spectral
intensity, providing significantly shorter collection time
and a significantly higher signal-to-noise ratio.

Another advantage of the stimulated-emission-based
technique is that it can be extended to also measure the
joint spectral phase, as demonstrated in Ref. (38) (in this
work we measure only the joint spectral intensity using
this technique). The ability to measure the joint spectral
phase is useful as correlations between the signal and
idler photons can be present in the phase as well as in the
intensity of the joint spectrum, for example when pump-
ing the nonlinear medium with a non-transform-limited
pulse train; note that if the pump is transform-limited, it
is often acceptable tomeasure just the joint spectral inten-
sity. In Section 3, we discuss two different measurement
techniques which yield the heralded single-photon purity
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directly (rather than via the joint spectrum) and which
also include the effect of the joint spectral phase, namely
g (2) correlation function measurement and two-source
Hong–Ou–Mandel interferometry.

In this paper, we present a comparison of these six
measurement techniques, i.e. scanning monochromator
measurement, Fourier spectroscopy, dispersive-fibre
spectroscopy, stimulated-emission-based measurement,
g (2) correlation function measurement, and two-crystal
Hong–Ou–Mandel interferometry, specifically impleme-
nted for the sources described in Refs. (18) and (24). We
demonstrate a subset of the techniques for each source.
For the first source, which is based on frequency-
degenerate and non-collinear photon pairs obtained via
SPDC from a type-I BBO crystal pumped with an ul-
trashort pump from a Ti:sapphire laser, we apply the
techniques of Fourier spectroscopy, dispersive-fibre spec-
troscopy, g (2) correlation function measurement, and
two-crystal Hong–Ou–Mandel interferometry. For the
second source, which is based on non-degenerate
photon-pairs obtained via SFWM from a polarization-
maintaining optical fibre pumped with an ultrashort
pump from a Ti:sapphire laser (degenerate pumps), we
apply the techniques of scanning monochromator mea-
surement, stimulated-emission-basedmeasurement, and
g (2) correlation function measurement. In the conclu-
sion, we compare all of these techniques’ relative advan-
tages and disadvantages and quantify their resolution,
sensitivity, and efficiency.

2.2. Scanningmonochromator technique

In the scanning monochromator measurement, shown
in Figure 4, the signal and idler photons are directed into
two separate diffraction grating-based monochromators.
At the output ports of the monochromators, the photons
are coupled into amulti-mode fibre, and a frequency scan
is performed by rotating the gratings: only the frequency
components coupled into the fibres are recorded and
thus the joint spectrum can be collected as a series of
pairs of frequency values. The photon pairs are detected
with avalanche photodiodes and counted in coincidence.
A scan is performed over the dual frequency range by
holding one diffraction grating at a constant orientation
while rotating the other diffraction grating, repeating
this procedure for a vector of angular orientation values
for the first grating, thus performing a two-dimensional
sweep of the signal and idler frequencies. The rate at
which coincidences are observed is very low, and thus
each data point requires a long integration time, limited
by the stability of the source over the time required for
the overall procedure. Thus, while the procedure is con-
ceptually straightforward, it is clearly inefficient.

monochromator 2

Source

MMF1

dichroic
mirror

MMF2

monochromator 1

MMF3

MMF4

APD2

APD1

&

Figure 4. Schematic of the scanning monchromator technique.
MMF: multi-mode fibre, APD: avalanche photodiode.

2.2.1. Scanningmonochromatormeasurement for
the SFWM source
Figure 4 shows a schematic of the experimental setup
for the scanning monochromator measurement. We ap-
ply the technique to a bow-tie polarization-maintaining
optical-fibre SFWM source (25, 26).We use an IDQuan-
tique 800 time-taggermodule to count coincidences, with
the coincidence window set to be 5.67 ns; the repetition
rate of the laser is 80MHz, so that this window is less
than half of the time between pulses. We scan over the
dual frequency range by holding one diffraction grating
at a constant orientation and taking 0.2 nm spectral steps
across the other diffraction grating, covering the range
624–632nm for the signal and 784–796nm for the idler.
The rate at which we observe coincidences is very low,
so we integrate for 60 s in each grating position; the
whole procedure takes approximately 40 h. The results
are shown in Figure 5(a); the dotted square represents the
spectral area where data were taken. While the presence
of a peak is clear, there are very few counts for each point,
resulting in a low signal-to-noise ratio. The number of
counts would increase with an even longer integration
time, but the increase in signal over noise must be bal-
anced with the effects of drift over the time required for
the overall procedure. Note that the purity, calculated
from themeasured joint spectral intensity while ignoring
any possible joint phase effects, of the heralded single-
photon state is 0.826 ± 0.004.

2.3. Fourier spectroscopy

The well-established technique of Fourier spectroscopy
(27) relies on the fact that a Michelson interferome-
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Figure 5. Joint spectral intensity of photon pairs produced in a bow-tie fibre SFWM source, (a) from the scanning monochromator
measurement, (b) from the stimulated-emission-based measurement.

ter with a variable relative path length in one of the
two arms can be used to extract the spectrum of the
incoming light from the Fourier transform of a time-
domain interferogram. Light with an unknown spectrum
is sent into a Michelson interferometer, as shown in Fig-
ure 6(a). Recording the output intensity while scanning
the path length difference in the interferometer, a time-
domain signal is measured from which the spectrum can
be obtained through a Fourier transform followed by
appropriate numerically implemented spectral filtering.
Mathematically, the time-domain interferogram Ĩ(τ ) is
related to the incoming spectral intensity I(ω) through a
Fourier cosine transform, with an offset term, as follows

Ĩ(τ ) ∝
∫ ∞

0
dωI(ω)[1 + cos (ωτ)], (7)

So, by simply computing the inverse transform on the
measured data, the spectrum of the signal is recovered:

I(ω) ∝
∫ ∞

0
dτ

(
I(τ ) − 1

2
I(τ = 0)

)
cos (ωτ). (8)

2.3.1. Two-dimensional Fourier spectroscopy
In the context of characterizing an SPDC photon-pair
source, performing Fourier spectroscopy on either the
signal or idler arm permits measuring the correspond-
ing single-photon spectrum. In order to measure the
joint spectrum, we employ a generalized version of this
technique (28) in which scanning interferometers are
placed in both the signal and idler arms, while collecting
coincidence counts, as shown in Figure 6(b). The time-
domain data collected by independently scanning the
interferometers are then related to the Fourier transform
of the joint spectrum:

Ĩ(τs, τi) ∝
∫ ∞

0
dωs

∫ ∞

0
dωiI(ωs,ωi)

(
1 + cos (ωsτs)

)
× (

1 + cos (ωiτi)
)
, (9)

where Ĩ(τs, τi) is the joint temporal intensity (JTI) and
I(ωs,ωi) is the joint spectral intensity (JSI). Analogously
to the one-dimensional case, performing a 2D Fourier
transform on themeasured data and retaining only terms
in the ωs > 0,ωi > 0 quadrant gives

∫
dτsdτi Ĩ(τs, τi) exp (iωsτs + iωiτi)

∝ δ(ωs)δ(ωi)
〈
N̂sN̂i

〉
+ 1

2
δ(ωs)

〈
N̂sÎi(ωi)

〉
+ 1

2
δ(ωi)

〈
N̂iÎs(ωs)

〉
+ 1

4
I(ωs,ωi), (10)

where Îi(ωi) and Îs(ωs) represent the spectral intensities
of the signal and idler beams, and N̂μ = ∫

dωÎμ(ω) (with
μ = s, i) are the total number operators for signal (s)
and idler (i) photons. While the terms shown represent
the top-right quadrant, as shown in Figure 7, symmetric
terms also appear in the other three quadrants. The first
term is located at the origin and is proportional to the
total number of coincidence counts. The middle terms
are located on the axes andprovide information about the
single-photon spectrum of the signal and idler photons,
conditioned on the detection of the conjugate photon.
The term of interest is the final term, which is propor-
tional to the JSI.

2.3.2. Diagonal Fourier spectroscopy
Unfortunately, collecting two-dimensional data is very
time consuming compared to one-dimensional Fourier
spectroscopy, requiringN2 rather thanN points to obtain
the same resolution.However, under the assumption that
the JSI is approximately Gaussian (which is valid for our
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Figure 6. Schematic diagram of (a) one-dimensional and (b) two-dimensional Fourier spectroscopy. Both systems use Michelson
interferometers, but in the two-dimensional case, the interferometer is duplicated in both arms of an SPDC source, and counts are
measured in coincidence.

Figure 7. Sketch of the frequency-domain signal resulting from two-dimensional Fourier spectroscopy.

source), we can take advantage of the structure of the two-
dimensional spectrum to measure the relevant parame-
ters with a one-dimensional scan. Specifically, because
the JSI is well approximated by a Gaussian ellipse with
its major and minor axes aligned with the diagonal fre-
quency axesωs+ωi andωs−ωi, the spectral correlations
can be well characterized by the diagonal widths along
these two axes. Thus, the Fourier transform of a 1D scan
along the ts + ti (ts − ti) axis yields the projection of the
2D spectrum along the ωs + ωi (ωs − ωi) axis, as shown
in Figure 7. If we model the joint frequency spectrum as
a 2D Gaussian ellipse, the relevant parameter for spectral
correlation is the ratio of the peakwidths along theωs+ωi
and ωs − ωi axes, σd/σa. The parameters σd and σa can
be extracted directly from the 1D scan described above,
characterizing the Gaussian ellipse

f (νs, νi) = A exp

[
− (

ν2s + ν2i
) (

1
4σ 2

d
+ 1

4σ 2
a

)

− 2νsνi

(
1

4σ 2
a

− 1
4σ 2

d

)]
. (11)

Recall from Equations (5) and (6) that we can determine
the heralded single-photon purity P (or equivalently, the
inverse Schmidt number 1/K) directly from a Gaussian
ellipse. Applying a change of variables and solving for σa
and σd in terms of σ and σf , we can rewrite Equation
(6) as

P =
√
1 −

(
r − 1
r + 1

)2
, (12)

where r ≡ σ 2
d /σ 2

a .

2.3.3. Fourier spectroscopymeasurements for the
SPDC source
Figure 8 shows our experimental setup for the Fourier
spectroscopy measurements. The critical difference be-
tween this and the theoretical discussion above is the
use of a common-path polarization interferometer rather
than a Michelson. This achieves the same function by
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Figure 8. Diagram of 2D Fourier spectroscopy setup for measuring the joint spectrum. The common-path polarization interferometer
in (a) uses a half-wave plate (HWP) to rotate light into the diagonal basis, followed by a birefringent quartz plate to initially delay
horizontally polarized light (H) relative to vertically polarized light (V). Then, quartz wedges are used to variably delay V relative to H.
Finally, another HWP rotates back into the H/V basis and a polarizing beam splitter (PBS) is used to pick off the H component. Two of
these polarization interferometers are used in (b) to analyse the joint spectrum.

Figure 9. Experimental measurement of joint spectrum for a pump bandwidth of 5.2 nm, collected through 20 nm filters, resulting in an
estimated purity of 0.96 ± 0.02. The ellipse represents the estimated joint spectrum, with the eccentricity along the diagonal providing
spectral correlation (or in this case, anti-correlation). The purity here applies only to the spectral state of heralded single photons, and
represents the degree of factorability of the joint spectral intensity, i.e. not including any possible phase correlations. The double peaks
seen in the frequency plot are due to a slight misalignment of the diagonal scan axis and are fit with two identical offset Gaussian peaks.

providing an optical path length difference due to the
different indices of refraction of ordinarily and extraor-
dinarily polarized light in birefringent quartz, rather than
a physical path length difference. The advantage of this
technique is that the twooptical paths take the samephys-
ical path, making the interferometer much more robust
against vibrations and thermal fluctuations. Specifically,
horizontally polarized light is rotated into the diagonal
basis using a half-wave plate4 before passing through

scanning quartz wedges with vertical optic axes. Diag-
onally polarized light is a superposition of ordinary (o)
and extraordinary (e) polarization in the crystal, which
pick up different phases,

|D〉 = |e〉 + |o〉√
2

→ 1√
2

(
e2π ineL/λ |e〉 + e2π inoL/λ |o〉) ,

(13)
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where L is the length of quartz, λ is the wavelength
and no and ne are the ordinary and extraordinary in-
dices of refraction at that wavelength. For our quartz
wedges (custom-made by RockyMountain Instruments)
at 810 nm, with a wedge angle of 32◦ and one wedge
mounted on a translation stage, this corresponds to a
relative delay of 15.75 fs per mm of stage motion (where
2.7 fs corresponds to a relative phase of 2π). A fixed-
length quartz plate is used to provide a delay offset in the
opposite direction using an optic axis mounted orthog-
onally to that of the wedges. Finally, the polarization is
rotated back to the horizontal (H)/ vertical (V) basis and
analysed with a polarizing beamsplitter. The probability
P of observing a horizontally polarized photon, i.e. the
photon exiting the horizontal port of the PBS, depends
on the relative phase �φ ≡ 2πL(no − ne)/λ as

P = cos (�φ)2 = 1
2

(
1 + cos (2�φ)

)
. (14)

Figure 9 shows typical results from applying this tech-
nique to our source, and illustrates the reconstruction of
the joint spectrum from themeasured data. The spectrum
is Fourier transformed to the frequency domain, and then
a Gaussian fit is applied to peaks corresponding to the
diagonal widths of the joint spectrum. From this, the her-
alded single-photon purity can be determined through
Equation (12).

As discussed above, the joint spectrum is given in gen-
eral as the product |f (νs, νi)|2 = |A(νs, νi)|2|�(νs, νi)|2.
Note that for a large pump bandwidth the function
|�(νs, νi)|2 will tend to dominate over a comparatively
broad |A(νs, νi)|2 so as to determine the resulting shape
of the joint spectrum |f (νs, νi)|2. Conversely, in the limit
of a monochromatic pump |A(νs, νi)|2 → δ(νs + νi),
the pump envelope function |A(νs, νi)|2 dominates, and
the spectral entanglement becomes maximal. Thus, as
the pump bandwidth σ is decreased, the degree of spec-
tral entanglement quantified by the Schmidt number K
increases while the heralded single-photon purity K−1

decreases. We have verified this behaviour experimen-
tally by extracting the heralded single-photonpurity from
the diagonal Fourier transform spectroscopy measure-
ment detailed above, for a number of different pump
bandwidths. The results of this measurement are shown
in Figure 10, along with a theoretical curve, showing
excellent agreement.

2.4. Fibre spectroscopy

As mentioned previously, interferometry is not the only
method possible for transforming the spectral informa-
tion of the two-photon state into a measurable form.
Another promising technique exploits dispersion in an
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Figure 10. Single-photon purity of our SPDC source, as measured
with our diagonal Fourier transform spectroscopy set-up, as a
function of the pump bandwidth. As expected, decreasing the
pump bandwidth has the effect of increasing the photon-pair
degree of spectral entanglement, thus increasing the Schmidt
number K and decreasing the single-photon purity P = 1/K .

optical fibre in order to map frequency components into
resolvable times of detection (22). This exploits the prop-
erty that short wavelengths travel more slowly than long
wavelengths in an optical medium (with ordinary dis-
persion). The experimental schematic is shown in Figure
11. Our fibre (Nufern 780HP) has a dispersion of ap-
proximately −120 ps/nm/km for light near 810 nm. For
example, in our 400-m length of fibre, a photon with a
wavelength of 809 nm will be delayed by approximately
50 ps compared to a photon at 810 nm. Thus, measuring
the time of arrival of a photon determines its wave-
length, assuming that the relative delay exceeds the detec-
tor timing jitter. Higher resolution can be achieved using
longer fibre lengths, but at the cost of greater loss; alterna-
tively, media with higher dispersion can be used, as was
shown recently through the use of chirped fibre Bragg
gratings (29).

Detection is accomplished with two Micro Photon
Devices avalanche photodiodes (APDs) with custom cir-
cuitry, chosen for low jitter (see Section 2.4.1) (30). The
transit time difference between the signal and idler pho-
tons in the single-mode fibre is on the order of 1ns,
while the dead-time of each APD is over 20 ns; for each
particular pair, there is a 50% chance that the photons
will arrive at different APDs and are thus counted in co-
incidence, and a 50% chance that the photons will arrive
at the same APD and are not counted in coincidence.
This could be improved by using two separate lengths of
fibre, but resources are typically better spent in obtaining
one longer length of fibre, as the fibre length determines
the amount of dispersion experienced by the photons,
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Figure 11. Schematic diagram of fibre spectroscopy. A half-
wave plate (HWP) and polarizing beamsplitter (PBS) are used
to combine the signal and idler modes into a 400-m length of
single-mode fibre (SMF). A fibre beamsplitter delivers light to two
avalanche photodiodes (APD), which are analysed by a time-to-
digital converter (TDC) together with a synchronization signal
from the pump via a photodiode (PD).

and thus the resolution of the measurement. The output
pulses from the detectors are registered by an Agilent
U1051A time-to-digital converter (‘time-tagger’), with 50
ps time-bin resolution, and counted in coincidence. The
coincidence signal is referenced to an Electro-Optics ET-
2030 photodiode measuring the pump, also registered by
the time-tagger.

The time-tagger is so named because it ‘tags’ input
pulses on anumber of channelswith a timeof arrival. This
allows convenient digital post-processing of events, with
the ability to find coincidences between different chan-
nels with arbitrary intra-channel temporal delays and
with arbitrary coincidence window widths; the specific
configuration used may be freely chosen after the data
are collected. The result is a very powerful tool for appli-
cations ranging from singles and coincidence counting,
to correlation-based jitter measurements (Section 2.4.1),
to complex multi-fold coincidences (Section 2.4.2).

2.4.1. Fibre spectroscopy calibration
In fibre spectroscopy, the timing jitter of the detection
electronics limits the accuracy of the measurement. A
high-jitter detector will lead to an uncertainty in the
frequency-time relationship. This limits the resolution of
the measurement, leading to a more circular joint spec-
trumand an artificially lowermeasured Schmidt number.
Thus, calibration is essential to determining themeasure-
ment accuracy; we perform this by first characterizing the
system jitter in the context of a spectroscopic measure-
ment of a calibrated classical source.

This calibration includes using the time-tagger tomea-
sure the distribution of response times of each com-
ponent in the experimental setup. We measured APDs
from Perkin-Elmer, ID Quantique, and Micro Photon
Devices, which had FWHM jitters of 358, 70, and 174 ps,
respectively. The best-performing detectors were MPD
avalanchephotodiodes (with customcircuitry fromMario
Stipcevic), which have a reasonably low jitter of 174 ps

Figure 12. Normalized spectral power density measurements
under 810 nm low-pass filtering. The measured spectrum from
an Ocean Optics HR2000 spectrometer is shown in red. The
inferred spectrum from the fibre spectroscopy is shown in
blue, re-centred on the peak of the spectrometer measurement
(as the measurement only gives wavelength relative to an
arbitrary reference). The green line shows the convolution of
the spectrometer data with a 275 ps FWHM Gaussian, i.e. the
measured timing jitter of our system.

anddonot have a significant non-Gaussian tail. Although
the ID Quantique detectors have a lower FWHM jitter,
they also have a long tail with a significant portion of the
total power (over 50%outside of the FWHMas compared
to approximately 24% for a Gaussian response), which
severely reduces the resolution of the measurement. The
time response of the time-tagger itself was measured us-
ing the correlation method, with a function generator si-
multaneously triggering two channels on the time-tagger.
This yielded a FWHM jitter of 64 ps, which is decon-
volved from all other jitter measurements. Additionally,
the time response of the Electro-Optics photodiode was
measured, yielding a FWHM jitter of 203 ps. Adding the
jitter values in quadrature gives a total-system jitter of√
2032 + 1742 + 642 = 275 ps with the MPD detectors.
We can compare this jitter with measurements ob-

tained using fibre spectroscopy on a known calibration
source. This measurement is similar to that pictured in
Figure 11 except that instead of an SPDC source and
two APDs measuring in coincidence, there is only the
pump, which is sent to a photodiode and a single APD.
Additionally, the pump is optionally filtered by a low-
pass filter to observe the response to a sharp spectral cut-
off. The time response is determined by looking at the
correlation between the APD and the photodiode, with
the photodiode serving as a fixed point of reference. This
is converted to a spectrumbymultiplying by a conversion
factor determined by the length and dispersion of the
fibre, and a manual offset which varies depending on
delays present in the experiment, but which does not
depend on the shape of the spectrum. Finally, the inferred
spectrum is compared to that measured directly with
an Ocean Optics HR2000 spectrometer, which is also
mathematically convolved with a Gaussian equivalent to
a system jitter of 275 ps. Figure 12 shows the results of
this measurement, which exhibits excellent agreement
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between the directly measured spectrum and the fibre-
spectroscopy-measured spectrum, given the character-
ized jitter of the system.

2.4.2. Fibre spectroscopymeasurement and
simulation for the SPDC source
The effect of jitter can be simulated using a Monte Carlo
technique, with photons drawn from an assumed spec-
trum receiving random jitters to produce a transformed
spectrum, as shown in Figure 13.5 This allows us to esti-
mate the uncertainty of the experimental measurements.
We also attempted to remove the detector response using
a Richardson-Lucy 6 deconvolution algorithm (31). This
is reasonably successful for removing a relatively small
jitter, but breaks down as jitter increases. As a rough
rule of thumb, deconvolution is unnecessary if the jitter
is less than half as large as the smallest spectral feature
(i.e. the narrow axis of the ellipses of Figure 13), and is
unreliable if the jitter is more than 2–4 times larger than
the smallest spectral feature (the latter criterion depends
on the amount of noise and the shape of the features).
Jitter on the order of the feature size is a ‘sweet spot’ for
applying deconvolution.

To perform the full joint spectral measurement, we
need to perform a complex multi-channel correlation.
This is not a typical use of the time-tagger, and is not
directly supported by the default configuration of the
driver software, so some modifications must be made.
The basic idea of the measurement is to count in three-
fold coincidence between the APDs and the photodiode,
with each triple-coincidence event being registered as an
event with�λs ≈ c(ts−tpd) and�λi ≈ c(ti−tpd), where
c is the speed of light and ts, ti, and tpd are the timestamps
of the signal photon, idler photon, and photodiode pulse,
respectively. The set of all such events can be binned
into a two-dimensional relative-timing histogram, then
converted to wavelength to produce a joint spectrum
similar to those of Figure 13 (see Figure 14). Finally, the
Schmidt decomposition can be applied to this histogram
to determine the Schmidt number as in Section 1.2.

Unfortunately, directly accessing these times of arrival
on all three channels is not practical given the extremely
large number of time-tags involved. Instead, we make
use of a fast and efficient multi-coincidence routine in
custom driver software. This allows the fast construction
of the desired histogram by the following method: first,
we observe that each bin in the histogram corresponds to
a three-fold coincidence with offsets �ts and �ti and
window size equal to the histogram bin width. Then,
by iterating over all offsets in the desired range, we can
construct the desired histogram. A comparison of the
results of this technique with Fourier spectroscopy mea-
surements and our simulations is shown in Figure 14.

The twomeasurements agree closely with each other, but
exhibit more correlation than the ideal simulated source.
We believe this discrepancy arises from experimental
factors not included in simulation, particularly temporal
and spatial chirp in the pump.

2.5. Stimulated-emission-basedmeasurement
technique

Stimulated-emission-basedmeasurement of the JSI relies
on the relationship between the spontaneous process and
its corresponding stimulated process (23). Specifically,
difference-frequency generation can be used to charac-
terize an SPDC source (32), and stimulated four-wave
mixing can be used to characterize an SFWM source
(33); the relation between the stimulated and sponta-
neous processes is depicted in Figure 15. We can see that
the spontaneous and stimulated spectra are related by
comparing the expected number of photons from each
process (23):

〈nσsks〉Aσiki

〈nσsksnσiki〉
≈ ∣∣Aσiki

∣∣2 (15)

where 〈nσsks〉Aσiki
is the average number of signal photons

with polarization σs and wave vector ks stimulated by
an idler seed with polarization σi and wave vector ki,
〈nσsksnσiki〉 is the average number of spontaneously gen-
erated photon pairs, and

∣∣Aσiki
∣∣2 is the average photon

number of the coherent seed pulse. Thus the number of
photons resulting from a spontaneous process is directly
proportional to the number of photons detected in its
corresponding stimulated process, with the proportion-
ality factor being the number of photons in the stim-
ulating laser. If we use a mW-power continuous wave
(CW) stimulating laser, this number is many orders of
magnitude higher than nσ ,σ ′ alone, leading to a signifi-
cantly shorter collection time and a significantly higher
signal-to-noise ratio than techniques based on coinci-
dence counting. Note that in experiment the dependence
of the stimulated signal power on seed power should be
confirmed to be in the linear regime for the seed powers
used (33). Note also that the stimulated emission tech-
nique is not sensitive to other processes thatmay generate
noise background, such as Raman scattering; thus, such
contributions should be characterized separately.

2.5.1. Stimulated-emission-basedmeasurement for
SFWM sources
The experimental set-up for performing the stimulated-
emission-basedmeasurement onSFWMsources is shown
in Figure 16. A CW laser (the ‘seed’) is coupled into
the fibre in addition to the pulsed pump. The seed laser
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Figure 13. Monte Carlo simulations of fibre spectroscopy with a detection timing jitter of (a) 50 ps, (b) 275 ps, and (c) 1 ns. Simulated
detector photons are detected with a Gaussian random jitter and binned into a 2D histogram with 50 ps time bin widths (the bin width
of our Agilent U1051A Time-to-Digital Converter). The true Schmidt number of this simulated source is 2.0, and the Schmidt numbers
after the application of jitter are (a) 1.98 ± 0.02, (b) 1.68 ± 0.01, (c) 1.14 ± 0.003. A Richardson-Lucy deconvolution algorithm can be
applied to attempt to remove the effect of the jitter, but this compensation breaks down for large jitters, resulting in (a) 1.98 ± 0.02
(b) 1.99 ± 0.02, (c) 1.20 ± 0.007. The simulation was performed with 32,000 simulated photon pairs, a fairly typical number for our
experimental measurements.

(a) (b) (c)

Figure 14. Comparison of measurements on a source with no spectral filtering and an 8 nm bandwidth pump using (a) diagonal Fourier
spectroscopy (b) fibre spectroscopy and (c) a theoretical simulation showing ideal behaviour. Corresponding purities are (a) 0.88± 0.02,
(b) 0.87 ± 0.03, and (c) 0.998.

has a bandwidth of ∼30GHz and its centre frequency is
incrementally scanned over the frequency range of idler
photons produced in the spontaneous process so a stimu-
lated four-wavemixing process is driven and a stimulated
signal beam is produced. The stimulated signal is sent
into a standard spectrometer with a CCD that records the
signal’s spectrumat each seed frequency.A complete scan

for this source takes approximately 15min. The results
for bow-tie polarization-maintaining fibre are shown in
Figure 5(b). When compared to the monochromator re-
sult shown in Figure 5(a), the signal-to-noise ratio is
clearly much higher and the resolution is much better.
The purity calculated from the joint spectral intensity
measured using stimulated emission is 0.8322 ± 0.0004.
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Figure 15. Schematic of spontaneous processes and their
stimulated analogues. Line thickness represents intensity.

As the stimulated emission technique is relatively swift,
it allows the efficient testing of engineered sources. To
demonstrate this, we show in Figure 17 the JSI of three
SFWM sources in panda-type polarization-maintaining
fibre for three different fibre lengths that exhibit corre-
lated (Figure 17(a)), almost uncorrelated (Figure 17(b)),
and anti-correlated (Figure 17(b)) JSI for fibres of length
2.6, 1.6, and 1.1 cm, respectively. The purities calculated
from the measured JSI of these sources assuming a flat
joint spectral phase are 0.8018± 0.0003, 0.8975± 0.0001
and 0.8529 ± 0.0002, respectively.

3. Heralded single-photon purity measurement

In this section we measure the heralded single-photon
purity, which is phase-dependent and which in many
situations is the quantity of interest, in two ways:
indirectly, by taking advantage of the statistical properties
of SPDC and SFWM (Section 3.1), and directly by inter-
fering heralded single photons from two SPDC sources
(Section 3.2).

3.1. Correlation functionmeasurement

The second-order correlation function g (2)(t1, t2) rep-
resents the joint probability of detecting one photon at
a time t1 and another photon at a time t2. As we will
discuss in this section, the time-integrated g (2) func-
tion can be used to determine the purity of the heralded
single-photon quantum state. The second-order corre-
lation function g (2)(t1, t2) may be expressed, in terms
of time-dependent photon number operators n̂μ(t) =
â†μ(t)âμ(t), with μ = 1, 2, as

g (2)(t1, t2) =
〈: n̂1(t1)n̂2(t2) :〉〈
n̂1(t1)

〉 〈
n̂2(t2)

〉 , (16)

where 〈...〉 indicates normal ordering.
In our case, we are interested in measuring the g (2)

function of the signal or idler mode of an SPDC source.
This measurement can be accomplished by sending the
desired mode to a Hanbury Brown-Twiss interferometer
(34), as shown schematically in Figure 18(a), where the
1 and 2 labels correspond to the output ports of the
beamsplitter, each leading to an avalanche photodiode.
From Equation (16), the g (2)(t1, t2) function is given as
the ratio of the time-resolved coincidence rate between
the two detectors divided by the product of the time-
resolved single-channel detection rates in each of the two
detectors.

The possibility of temporally resolving the g (2) func-
tionwould hinge on a fast detector response, as compared
to the coherence time. The latter condition is not fulfilled
in our experimental apparatus: our broadband pulses
have coherence times in the tens of femtoseconds, while
the APD’s have typical response times in the hundreds of
picoseconds! Thus, in the experimentally realistic case of
a slow detector response, we instead measure the time-
integrated correlation function g (2) (35), expressed as

g (2) =
∫
dt1

∫
dt2

〈: n̂1(t1)n̂2(t2) :〉∫
dt1

〈
n̂1(t1)

〉 ∫
dt2

〈
n̂2(t2)

〉 , (17)

where the integral is taken over the detection window,
assumed to be long compared to the pulse duration.
The time-integrated g (2) is sensitive to the distribution
of Schmidt modes of the measured photons (although it
does not provide detailed temporal information as
g (2)(t1, t2) does) – this leads to its utility for determin-
ing the purity of the heralded single-photon state, as we
discuss in further detail below.

In carrying out this measurement with single-photon
detectors, one must either take care that the probabil-
ity of multiple photons arriving during each detector’s
‘dead-time’ is negligible, or alternatively employ photon-
number-resolving detectors. We satisfy the first condi-
tion by using a signal/idler average photon number per
pump pulse which is much less than 1 (approximately
0.001).

Recall that when carrying out a Schmidt decomposi-
tion, the two-photon state may be written in terms of
the Schmidt eigenvalues λj and the Schmidt annihilation
operators Âj for the signal mode and B̂j for the idler
mode, as

|
〉 =
∞∑
j=1

√
λjA†

j B
†
j |0〉. (18)



1154 K. ZIELNICKI ET AL.

In Ref. (35) it was shown that this time-integrated
g (2) function may be written, for the signal mode with
N̂s ≡ Â†

i Âi, as

g (2) =

〈
:
(∑∞

i=1N̂s

)2 :
〉

〈∑∞
i=1N̂s

〉2 , (19)

and an equivalent expression may be written with N̂i ≡
B̂†i B̂i for the idlermode. Note that for single-mode SPDC,
i.e. for which each of the signal and idler waves occupies a
single polarization/spatial/spectral mode, there is a single
term in each of the two sums in Equation (19), and
each wave then has thermal statistics with g (2) = 2. It is
interesting that for an SPDC source which departs from
being single-mode, the statistics for each of the signal
and idler waves is no longer thermal. Consider a concrete
example of two independent polarization modes, H and
V , each in a thermal state

g (2) =
〈
: (
n̂H + n̂V

)2 :
〉

〈
n̂H + n̂V

〉2 =
〈: n̂2H + 2n̂H n̂V + n̂2V :〉〈

n̂H
〉2 + 2

〈
n̂H

〉 〈
n̂V

〉 + 〈
n̂V

〉2
=

〈: n̂2H :〉 + 2
〈: n̂H n̂V :〉 + 〈: n̂2V :〉
4
〈
n̂
〉2

= 1
2

(〈: n̂2 :〉〈
n̂
〉2 +

〈: n̂H n̂V :〉〈
n̂
〉2

)
, (20)

where we have assumed for simplicity that the twomodes
are equally occupied, so that

〈
n̂H

〉2 = 〈
n̂V

〉2 ≡ 〈
n̂
〉2 and〈: n̂2H :〉 = 〈: n̂2V :〉 ≡ 〈: n̂2 :〉. The first term represents

a single-mode thermal state, and has a value of 2. The
second term, however, depends on correlations between
theH andV modes. These are independent, uncorrelated
modes, and so no photon bunching occurs, and this term
takes a value of 1. Thus, the sum for our two-mode state
is g (2) = 3/2.

This generalizes, for an SPDC source with a Schmidt
numberK , which corresponds to a sourcewithK effective
thermal modes, to the following result

g(2) = 1 + 1
K
, (21)

which is shown in Figure 18(b). Therefore, measuring
g (2) directly determines the effective number of modes as
K = 1/(g (2) − 1), and the heralded single-photon purity
as P = 1/K = g (2) − 1. It is remarkable that information
about the degree of entanglement in the photon pair (K)
and about the single-photon purity, can be obtained from
measuring only one arm of an SPDC source or an SFWM
source.7 Additionally, unlike the previously described

methods, this measurement is sensitive to the total num-
ber of independentmodes in the Schmidt decomposition,
and in particular it is sensitive to the joint spectral phase
(e.g. which could result from chirp in the pump).

3.1.1. Correlation functionmeasurement of the SPDC
source
The features outlined in the previous section enable us to
measure correlations present in the joint spectral phase;
although we knew such correlations could be caused by
a temporally chirped pump, we had no convenient way
to measure this chirp, as our pump wavelength is out-
side the range accommodated by typical autocorrelation
techniques. The g (2) measurement is sensitive to these
phase correlations, and thus also indirectly describes the
degree of temporal chirp in the pump. Figure 19 shows
the results of applying this technique to optimize disper-
sion compensation in the pump.With optimal dispersion
compensation, we measure g(2) = 1.66 ± 0.02 without
spectral filtering, and g (2) = 2.02 ± 0.04 with a 20 nm
bandwidth filter; these values corresponds to a heralded
single-photon purity of 0.66 ± 0.02 without spectral fil-
tering and 1.02 ± 0.04 with spectral filtering. The exact
nature of the reduction in the purity in the absence of
filtering, as compared with the values obtained with di-
agonal Fourier spectroscopy and/or fibre spectroscopy, is
not known, but it is likely due to a combination of higher-
order dispersion in the pump and unintended filtering.
A model based on second- and third-order dispersion
in the pump is shown in Figure 19; however, this model
does not completely account for the effect observed.

3.1.2. Correlation functionmeasurement of the
SFWM sources
We performed correlation measurements on the bowtie-
fibre SFWM source whose JSI is depicted in Figure 5.
The purity obtained from the g (2) value for this source is
0.63±0.02, which is lower than the stimulated-emission-
based measurement purity of 0.8325 and the monochro-
mator purity of 0.80.We alsomeasured g (2) values for the
three panda-fibre SFWM sources whose JSI are depicted
in Figure 17, to be 0.67 ± 0.05, 0.78 ± 0.07 and 0.71 ±
0.07, for 2.6, 1.6 and 1.1 cm lengths of fibre, respectively.
Our stimulated-emission-based measurements provide
an upper bound for the purity because not all of the
sidelobes in the JSI are measured, and because we did
not extend the technique to measure the relative spec-
tral phase between the signal and idler photons, which
could contain correlations that degrade the purity. A
summary of the results for the SFWM sources is pre-
sented in Table 2.
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Figure 16. Experimental set-up for the stimulated-emission-based measurement of the JSI of an optical fibre SFWM source. A half-wave
plate (HWP) and polarizing beamsplitter (PBS) are used to filter out the pump.

Figure 17. Joint spectral intensities from stimulated-emission-based measurements of panda-fibre SFWM sources of three different
lengths: (a) 2.6 cm, (b) 1.6 cm, and (c) 1.1 cm.

Table 1. Comparison of implied purity for each experimental characterization technique used for the SPDC source.

Fourier Dispersive Correlation Two-source
Transform Fibre Function HOM

Implied purity 0.88 ± 0.02 0.87 ± 0.03 0.66 ± 0.02 0.61 ± 0.05
(w/o filters) (w/o filters) (w/o filters) (w/o filters)
0.99 ± 0.01 0.995 ± 0.04 1.02 ± 0.02
(20 nm filters) (20 nm filters) (20 nm filters)

Table 2. Comparison of implied purity for each experimental characterization technique used for the SFWM sources. The fibre measured
was panda-type unless otherwise noted.

Scanning monochromator Stimulated-emission-based Correlation function

Implied 0.826 ± 0.004 0.8322 ± 0.0004 (bow-tie) 0.63 ± 0.02 (bow-tie)
purity (bow-tie) 0.8018 ± 0.0003 (2.6 cm) 0.67 ± 0.05 (2.6 cm)

0.8975 ± 0.0001 (1.6 cm) 0.78 ± 0.07 (1.6 cm)
0.8529 ± 0.0002 (1.1 cm) 0.71 ± 0.07 (1.1 cm)

1 2 3 4 5 6 7 8
0
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Figure 18. (a) Set-up for measuring g(2) in one arm of SPDC using a Hanbury Brown-Twiss interferometer and (b) calculated relationship
between g(2) for a source with K (effective) thermal modes.
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Figure 19. Values of inverse Schmidt number 1/K , measured from
the correlation function. This is equal to heralded single-photon
purity or g(2)(0)− 1. The horizontal axis shows a variable amount
of group delay dispersion (GDD) applied to our pump using a
prism pair compressor, controlling pump temporal chirp. A simple
prediction based only on second- and third-order dispersion,
where the third-order chirpwas fixed to the valuewhich optimizes
agreement with the experimental results, is shown in blue.

3.2. Two-Source Hong–Ou–Mandel interference

In many situations it is essential to interfere heralded
single photons from a given source with other single
photons from independent sources. The ability of sin-
gle photons from distinct sources to interfere is gov-
erned by the single-photon purity; thus, an interference
experiment may be used for the determination of the
purity. This more direct route, in contrast to exploiting
a spectral characterization of the source as in the cases
of diagonal Fourier-transform and fibre spectroscopies
described above, is considerably more time-consuming
however, because it relies on the simultaneous emission
(and detection) of two photon pairs, i.e. its intrinsically a
four-photon experiment.

Recall that Hong–Ou–Mandel interference relies on
two single photons which impinge on a beamsplitter;
when the two scenarioswhich can lead to the twophotons
emerging from different output ports of the beamsplit-
ter are indistinguishable, they interfere destructively and
a null in the coincidence rate across these two output
ports is expected. In a two-source HOM interferometer,
the two interfering photons originate from independent
sources; in our case the two sources are two type-I SPDC
crystals with orthogonally oriented optic axes, as is com-
monly used for the generation of polarization-entangled
photon pairs (36). Our implementation of the two-source
HOM interferometer employs a common-path polariza-
tion scheme with a similar motivation as in the case of
polarization interferometer of Section 2.3.3 (37), i.e. in
order to guarantee interferometric stability. Rather than
being distinguished by their spatialmode, the two sources
in fact share the same spatial mode, but have orthogonal
polarization modes.

Figure 20. Two-crystal common-path HOM interferometer. A
diagonally polarized beam pumps two crystals orthogonally
oriented to produce vertical and horizontal photon pairs. In the
signal arm, these distinguishable photons are directed to two
detectors, heralding the presence of one photon pair from each
crystal. In the idler arm, we use transverse walk-off in birefringent
α-BBO to combine the photons into a single spatial mode. The
quartz plate and quartz wedges compensate for the temporal
delay between thephotons,which are coupled into a single-mode
fibre and rotated into the diagonal/anti-diagonal basis. An HOM
dip can be observed as a suppression of four-fold coincidence
counts as the temporal compensation is adjusted.

The experimental set-up is shown in Figure 20. The
two photons in the upper arm shown in the diagram
are used as triggers; i.e. when a click is registered in
both of the upper-arm detectors, a photon pair with
orthogonal polarizations |HV〉 is heralded in the lower
arm. We observe HOM interference even though the
two photons arrive on the same beamsplitter input port
because we rotate the polarizations of the heralded pho-
tons into the diagonal (D)/ anti-diagonal (A) polarization
basis and use a polarizing beamsplitter in the horizontal
(H)/ vertical (V) basis. The two photons exit on the
same port of the polarizing beamsplitter, giving the char-
acteristic HOM suppression of (four-fold) coincidence
counts. The degree of indistinguishability of the heralded
single photons, linked to theHOMvisibilityV ,8 is related
to heralded single-photon purity P through the single-
photon density operator ρ̂ by

V = Tr
[
ρ̂2] ≡ P. (22)

An important implementation detail is the use of bire-
fringent walk-off in α-BBO for spatial compensation in
the idler arm.9 This removeswhich-crystal distinguishing
information at the beamsplitter and allows two-source
heralded single-photon interference.

Our measurement results under different conditions
are shown in Figure 21. In panel (a), we show aHOMdip
with a relatively low visibility, resulting from intentional
misalignment of the dispersion compensation, so that
the pump carries a non-zero quadratic chirp. In panel
(b), we show a HOM dip resulting from imperfect col-
lection mode matching, which was improved upon to
obtain the result shown in panel (c). In this last panel
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Table 3. Comparison of all characterization techniques.

Scanning Diagonal Fourier Dispersive Stimulated Correlation Hong–Ou–
monochromator transform fibre emission function Mandel

Reconstruct JSI? Yes Yes Yes Yes No No
Phase-sensitive? No No No Yes∗ Yes Yes
Spectral
resolution

0.20 nm×0.20 nm N/A 1 nm×1 nm 0.06 nm×0.17 nm N/A N/A

Spectral
resolution limited
by

Spectrometer Stage translation Electronic jitter Spectrometer, seed scanning N/A N/A

Peak count rate
(counts/sec)

0.57 2,236 2,058 N/A 0.1 0.1

Nominal acquisi-
tion time

39 h 700 s 300 s 200 s 1 h 1 day

Acquisition time per bin 60 s 1 s 0.6 s 10−3 s N/A N/A
Raw SNR 6 47 45 198 20 9
Scaled SNR 2.6 s−1nm−2 47 s−1 75 s−1nm−2 2×107 s−1nm−2 6 × 10−3 s−1 1 × 10−4 s−1

∗Not shown in this work. See (38).

we observe a maximum two-source HOM visibility of
0.61 ± 0.05, obtained without spectral filtering, which
is consistent with the measured g (2)-implied purity of
0.65 ± 0.02. Indeed, the g (2)-implied purity is an upper
limit on the HOM visibility, as the latter is sensitive
not just to the heralded single photons being in a pure
state, but also being in the same pure state. That we
are essentially able to reach this limit serves as an im-
portant cross-check between the information provided
by these two measurements. It validates the use of the
correlation functionmeasurement as aproxy forheralded
single-photon purity. This is useful because although the
two-source HOM measurement provides unambiguous
evidence for a lower bound on heralded single-photon
purity, it is extremely time intensive. Eachpoint onFigure
21 requires several hours of photon counting due to the
low rate of two-pair events, leading to an entire day or
more of data collection to obtain the full HOM dip. The
correlation function measurement, on the other hand,
can be performed with our source in under one hour.

4. Conclusions

Tables 1 and 2 summarize the results of applying the
explored techniques to our engineered SPDC source and
SFWMsources. The impliedpurities are consistent across
all the techniques, following the same trends as a func-
tion of filtering and length of fibre, and exhibiting lower
values for the phase-sensitive correlation function and
two-source HOMmeasurements, as expected.

Having performed all the techniques ourselves, we
have access to all the experimental parameters and can
compare the techniques explored, highlight their relative
advantages and disadvantages, and provide metrics that
can be used to indicate which techniques one may want
to pursue based on experimental constraints. This com-
parison is provided by Table 3. In the first two rows, we

summarize the capabilities of each technique to resolve
the JSI and measure the joint phase. For those tech-
niques capable of resolving the JSI we state the spectral
resolution of our implementation, which is based on
the size of a histogram bin in each data-set. As these
values are equipment-dependent, in the next row we
state the resource that limits the resolution. We list the
background-subtracted peak count rates, whether sin-
gles or coincidence counts. The nominal acquisition time
is the acquisition time per bin multiplied by the num-
ber of bins; in practice, the overall acquisition time may
be longer due to the finite time required to perform
computation and/ormechanical adjustments. Taking the
nominal acquisition time and dividing by the spectral
resolution gives an approximate acquisition time per bin
for our implementations. The ‘Raw SNR’ for counting
measurements is the signal-to-noise ratio (SNR) defined
in the context of Poisson statistics as the square root of
the maximum number of background-subtracted counts
in the measurement. For the stimulated-emission-based
measurement, it is determined by taking the mean about
the peak value and dividing by the standard deviation.
However, this raw signal-to-noise ratio fails to capture
the relative ease of data collection (for example, the scan-
ningmonochromatormeasurementmight inprinciple be
capable of yielding just as clear a signal as the stimulated
measurement, but we would need to use a monochroma-
tor with higher resolution and would need to wait a very
long time to achieve the samenumber of counts); thus, we
normalize the raw SNR by the product of the acquisition
time per bin and the spectral resolution. We present this
value as the ‘Scaled SNR’ in the last row of Table 3. In the
case of the correlation function andHOMmeasurements,
we scale by the total acquisition time. From this com-
parison we can see that the stimulated-emission-based
measurement has the highest scaled SNR. However, this
technique requires more resources than the correlation
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Figure 21. Results from two-source HOM with varying alignment
and dispersion compensation. The visibilities of the HOM dips are
(a) 0.24 ± 0.05, (b) 0.48 ± 0.04 and (c) 0.61 ± 0.05. These show
good agreement with accompanying g(2) measurements, which
imply amaximumvisibility of (a) 0.26±0.02 and (b–c) 0.66±0.02.
The low visibility in (a) is due to intentional misalignment of the
dispersion compensation. The difference between (b) and (c) is
due to imperfect collection mode matching in (b), which was
improved to obtain the result in (c). Red lines shown indicate
Gaussian fits to the data.

function measurements, which were particularly helpful
due to the relative simplicity of the measurement.

The optimal technique for a given application will
be determined by the resources available and the re-
quirements of the application. Given these constraints,

some techniques are easier to implement than others
and some provide more information than others. From
our experience, performing the correlation functionmea-
surement is a good place to start in characterizing the
correlations in a photon-pair source. It provides the pu-
rity of the heralded single-photon state with minimal
required equipment, and can serve as an initial diagnostic
before more detailed investigations in particular degrees
of freedom. If one then wishes to gain a detailed, high-
resolution, high signal-to-noisemeasurement of the joint
spectrum, and a tunable coherent light source with suf-
ficiently narrow bandwidth is available, the stimulated
emission tomography technique is a relatively straight-
forwardmeasurement that does not require long integra-
tion times or significant analysis procedures subsequent
to measurement. The dispersive-fibre method and diag-
onal Fourier-transform method provide good signal-to-
noise ratio measurements of the joint spectral intensity.
For the dispersive-fibre method, a time-to-digital con-
verter is required and the wavelengths of the photons
must be such that they undergo sufficient dispersion in
available fibre to provide the desired frequency resolu-
tion. The diagonal Fourier-transform method is suitable
if the joint spectrum is approximately Gaussian and only
the joint spectral intensity major and minor axes are
required. The monochromator measurement is the most
time-consuming technique and has poor signal-to-noise
ratio, but may be suitable in the case of a high brightness
source, when it is desirable to measure the joint spec-
tral intensity, and only the capabilities of single-photon
detection and sufficient resolution spectral filtering are
available. The Hong–Ou–Mandel measurement is more
difficult than the correlation function measurement as it
relies on four-fold coincidence detection. It is usually em-
ployed specifically when one wishes to demonstrate the
indistinguishability of two sources; as such it is a bench-
mark for source validation. We hope that our present
work will provide a useful description and comparison of
techniques available for joint spectral intensity and single
heralded-photon purity measurements.

Notes

1. Apractical note: calculating the Schmidt decomposition
is functionally equivalent to singular value decomposi-
tion, which is easily performed by any capable linear
algebra package.

2. Confusingly, the Schmidt number is also sometimes de-
fined as the total number of eigenmodeswithout weight-
ing by eigenvalues, andK is sometimes referred to as the
‘cooperativity parameter’.

3. It is worth noting that a filtered correlated source can
actually bemore desirable in some cases. For example, it
is possible to take advantage of correlations to improve
heralding efficiency (the chance of detecting an idler
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photon in a given mode conditional on the detection
of a signal photon). However, this is achieved at the
expense of reduced source brightness, i.e. fewer pairs
overall.

4. Due to the broad bandwidth involved, one must take
care to use waveplates with a flat retardance (that is,
the optical path-length difference between ordinary and
extraordinary polarization Le − Lo) in the wavelength
region of interest.

5. The system jitter is slightly more nuanced for a two-
dimensional measurement; the photodiode jitter is cor-
related with both the signal and idler detection, as both
are referenced to the photodiode signal. This shared
reference leads to the signal and idler detection times
appearing more correlated than they actually are. This
manifests in the positive diagonal direction in Figure
13, which corresponds to the sum of the two detection
times, and therefore the jitter of the reference does
not cancel. This contrasts with the anti-diagonal direc-
tion which corresponds to the difference of detection
times, where the photodiode jitter does cancel. How-
ever,Monte Carlo simulations of this effect indicate that
it is minor, leading to a purity bias of no more than 0.01
in our measurements.

6. Richardson-Lucy is an iterative maximum-likelihood-
baseddeconvolution algorithmdeveloped for imagepro-
cessing, specifically for removing a Gaussian blur from
an image. Initially, we attempted to use a naive matrix-
inversion-based deconvolution, but this proved to be
numerically unstable for our application due to the high
condition number of the joint-spectral matrix.

7. For this to be exactly true, the complementary modes
must be collected in the other arm. Otherwise, it is the
(smaller) set of modes collected by both arms that de-
termines heralded single-photon purity. This effect can
cause the single-armmeasurement to underestimate the
coincidence post-selected purity.

8. Defined as V ≡ 1 − Cmin, where Cmin is the minimum
count rate normalized by the baseline count rate.

9. One could instead implement spatial pre-compensation
on the pump, causing the two idler modes to directly
overlap.
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