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Abstract—Link prediction refers to estimating the likelihood
of a link appearing in the future based on the current status of a
graph. Link prediction problem applications in various domains
such as bioinformatics, social network analysis, cybersecurity and
e-commerce. Some of these graphs are massive and are constantly
evolving. Many applications require these graph streams to be
processed them in real-time, to predict the link based on the
most recent information as the graph features may change
over time. Existing approaches to process large graphs for
link prediction is non-trivial due to the following reasons: 1)
Graphs required to predict the links are too large to be stored
in a single RAM. Link prediction on these large graphs is
expensive in terms of computation resources and time required
to perform link prediction, 2) Sketch-based approaches are
not suitable in applications where accuracy is critical (such as
analyzing criminal social networks or supply chain networks)
and 3) Sketch-based approaches also fail to handle dynamic
graphs, where edges are not only added, but also removed. This
results in changes to the graph topology, making the features
previously computed to be obsolete. Distributed data stream
frameworks such as Apache Flink could be potentially used for
distributed graph processing. However, there are no techniques
to handle link prediction on distributed graph streams. In this
paper, we consider three fundamental, neighborhood-based link
prediction measures, Jaccard coefficient, Preferential attachment,
and common neighbors and enable an accurate measurement
of them to address link prediction problem in dynamic graph
streams. We propose a neighborhood-centric graph processing
approach to handle graphs that exploits the locality, parallelism,
and incremental computation of existing distributed frameworks
to calculate these graph features with exact results. We perform
experimental studies on various real-world graph streams. The
results demonstrate that our graph measures are accurate and
are more efficient than the existing vertex-centric approaches to
graph processing.

Index Terms—Dynamic graph streams, real-time link predic-
tion, neighborhood-based processing, Apache Flink

I. INTRODUCTION

Graphs are traditionally used to represent relationships be-
tween data in many data mining applications. The relationships
include interactions or dependencies between various entities.
One classic example of graph mining is the link prediction
problem. Given a snapshot of a graph G(t) at the time %,
link prediction problem aims to infer new edges that will
appear in a graph snapshot G(t;) within the time interval [¢, ¢],
where ¢ < t;. Link prediction is an important problem in the
data mining and the network science community. The link
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prediction problem has practical implications in the domains
of social networks [1], bioinformatics [2], and the world
wide web [3]. Existing link prediction algorithms use graph
snapshots to design supervised or unsupervised models to
predict new links. These snapshots are assumed to either
fit in memory or disk and are readily available for graph
computation in a standalone or a distributed environment [4].

Rapid growth in the availability of data has made the graphs
too massive to be maintained in the main memory or the
disks. For example, a social network graph with millions
of users and billions of user-interactions, web history, and
sharing history are too big to fit in the memory or disk of
a single machine. In addition, these networks are often not
static, instead evolve dynamically at an unprecedented rate.
Majority of the applications where link prediction is used are
time sensitive and it is beneficial to predict links in real-time
[5].

Existing algorithms fail to address link prediction on graph
streams due to three main reasons. First, link prediction algo-
rithms rely on static graph snapshots. However, link prediction
problem is a dynamic problem. The edges or link formed more
recently have a higher impact on the way new links are formed
compared to older relationships. Thus, using a static snapshot
of data ignores the recency and seasonal patterns of data that
can be captured in real-time. Second, a graph stream contains
massive amounts of data that are too large to be materialized
in memory of disks. Even in a distributed data processing
environment, multi-pass traversals are required for any non-
trivial graph computation. This presents major challenges in
the areas of data partitioning, communication management,
and computation parallelization. Third, majority of the graph
streams are dynamic, i.e. these graph streams not only include
insertion of edges, but also include deletion of edges and
nodes. Thus, approaches like sketching on graphs streams that
approximate graph features in real-time are not applicable on
dynamic graph streams.

In order to develop a link prediction on dynamic real-time
graph streams, the following challenges need to be addressed:

o Near Real-time Prediction: Dynamic graph streams are
characterized by high velocity of streaming edges and
nodes. The changes to the graph topology should be



TABLE I
ABSOLUTE MEAN SQUARED ERROR FOR SKETCHES IN TEMPORAL GRAPHS
Features Datasets
Wikipedia | DBLP
Jaccard Coefficient 8.32% 7.74%
Common Neighbors 3.94% 6.49%
Preferential Attachment 5.18% 8.53%

TABLE I
LINK PREDICTION ACCURACY

2*Datasets 2*Sketch based | 2*actual accuracy
Wikipedia 8.38 12.96
DBLP Dataset | 80.91 98.24

incorporated into the graph as soon as the data is received
to predict new links in the graph in near-real time.

o Single Pass of Data: Once the data is ingested into
the graph, the graph measures extracted from the data
should be computed in a single pass as multiple passes
increases the complexity of computations. This increases
the computational time of the algorithm.

o Recency of Prediction: As new information is included
into the graph; the underlying graph topology also
changes. This results in new patterns of the graph con-
tinuously evolving, while old patterns fade. The link pre-
diction algorithm should be able to extract features from
recent information while ignoring historic information.

o Exact Measures: Existing sketch-based feature extraction
approaches to link prediction approximate features to
decrease the computation time. While this is a valid
trade off in some situations, this cannot be generalized to
situations like counter terrorism or cybersecurity. Table
I illustrates the percentage root mean squared error on
various features with sketch-based approaches proposed
in earlier works on Wikipedia and DBLP datasets. Table
IT shows the effect of these approximate measures on
the accuracy of the link prediction approach. These
benchmarks are computed based using the link prediction
accuracy evaluation criteria in [1].

o Link Prediction on Dynamic Graphs: The link prediction
approach should be able to handle both insertion and
deletion of edges in graph streams.

In this paper, we consider three elementary, neighborhood-
based link prediction measures, Jaccard coefficient, common
neighbors, and preferential attachment. These measures are
proven to be effective in link prediction in terms of link
prediction accuracy. In order to handle large scale graph com-
putations, we use a map-reduce based programming model to
process streaming graph data in a distributed environment. We
use Apache Flink’s inherent support for streaming operations
to design a neighborhood centric graph processing approach
to efficiently compute various graph features in a single pass.
This is accomplished by identifying parts of the graph that
undergone recent change that led to change in the graph
topology. The main contributions of this work are summarized
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as follows:

1) We design a real-time distributed feature extraction
approach for dynamic graph streams to aid in link
prediction. The features extracted include neighborhood
based approaches include Jaccard coefficient, common
neighbors, and preferential attachment. To the best of
our knowledge, this is the first work addressing the
distributed link prediction problem in dynamic graph
streams.

We design a neighborhood centric graph processing
approach that offers a lower level of abstraction than
existing vertex centric approaches. This approach en-
ables us to compute various measures for a vertex and its
neighborhood without being restricted to its immediate
neighbors. This approach reduces the communication
costs among various nodes.

We carryout extensive experimental studies on two
real-world graphs streams. Experimental results clearly
demonstrate the effectiveness and efficiency of the pro-
posed neighborhood centric graph processing approach.

2)

3)

II. RELATED WORK

In this work, we review existing work from three different
perspectives: 1) Link prediction on networks, 2) graph streams,
and 3) Distributed graph processing.

A. Link Prediction

Traditional link prediction algorithms can be categorized
into two classes: unsupervised and supervised. The unsuper-
vised link prediction algorithms are based on various graph
proximity measures or various topology-based measures [6].
Simple neighborhood-based features like the number of com-
mon neighbors, katz centrality, Jaccard coefficient, preferential
attachment, and adamic-adar are used to measure node prox-
imity in unsupervised measures [7]. Link prediction problem
can also be presented as a classification problem [8].

Majority of these link prediction algorithms are designed
with the assumption that the graph snapshot is readily available
in the memory or the disk. This assumption does not hold for
real-world graphs as these graphs are too large to maintain in
the memory of a single machine. Most of the measures used
for link prediction are computationally expensive to extract in
a distributed environment. Additionally, a dynamic graph has
to extract the features from the graph before the next update
to the graph changes the topology of the graph.

B. Graph Streams

Majority of the graph applications are not static graphs,
instead streaming information modelled as entities and re-
lationships between entities. Thus, most of these relation-
ships can be processed as streaming graphs. These real-world
streaming graphs are defined by their high velocity, which
require the algorithms to handle these massive streaming
graphs in real-time. There has been significant interest in
processing graphs that are too large to store in the memory of
a single machine or disk [9]. Most of the work on streaming
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Fig. 1. Illustration of the Neighborhood Centric Approach (a) Example graph, (b) Illustration of the Neighborhood Centric approach

graphs is dedicated towards designing data structures that can
summarize the observed network structure in real-time. Graph
stream computations are performed on to solve the problems
like graph connectivity, vertex cover, and page rank algorithms
etc. [10]-[12].

Aggarwal et al. proposed one of the first approaches to clus-
ter a graph in streaming fashion using hash-based streaming
techniques [13]. A survey of streaming graph approaches is
presented in [14].

The major challenge with processing graph streams is to
balance the trade off between the cost of computation/storage
of the graph and the accuracy of the online approximation
of the sketches [4]. While majority of the proposed sketches
process the graph streams in a real-time fashion, they sacrifice
some of the accuracy of various graph measures. Majority of
the sketches are designed for temporal graph streams and are
not applicable for dynamic graph streams which also include
deletion of edges.

C. Distributed Graph Processing

With the increase in the size of the graphs and availability
of real-time graph streams, many distributed graph processing
frameworks are proposed to efficiently process large scale
graphs. In a distributed graph processing application, the graph
is split into multiple partitions, where each partition is assigned
to be processed on a single machine. Each partition interacts
with other partitions by explicitly or implicitly passing mes-
sages about the status of the partition [15]. Various abstractions
are designed to process graphs in a distributed environment.
Pregel is a distributed vertex centric framework that maintains
each vertex as a local state [16]. Vertices communicate with
each other through messages and operations are executed syn-
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chronously at each on each vertex. A partition centric approach
to distributed graph processing has been proposed to reduce
the redundant communication and accelerate convergence of
vertex centric programs [17].

Frameworks like GraphX and Gelly are proposed on exist-
ing distributed dataflow frameworks [18], [19]. These frame-
works offer high-level APIs and libraries for graph processing
on their dataflow engines. Kalavri et al. proposed a comprehen-
sive analysis of various high-level programming abstractions
for distributed graph processing [20]. The authors argue that
vertex-centric model is well suited for iterative, value prop-
agating algorithms. But, vertex centric models increase the
amount of network traffic generated due to message passing.
Neighborhood-centric model is designed to support operations
on custom subgraphs [21]. We extend the neighborhood cen-
tric approach to handle dynamic streaming graphs. We also
implement support for removal of edges and ability to perform
various graph operations.

III. METHODOLOGY

We assume a standard graph stream as a sequence of edges
E = (ep,e1,€2,... ,e,... ) of edges, where e¢; = (u,v,7),
1 >=0,u,v € V. An edge e represents an interaction between
entities u and v of the underlying graph and 7 represents the
time when the edge is incident. The execution workflow and
computer parallelization of the neighborhood-centric approach
is shown in Fig. 1. Fig. 1(a) shows the current graph that we
are trying to stream. The order of the edges is presented in the
Fig. 1(b) along with the neighborhood graph generated. Each
dashed box is a parallel executor whose key is the vertexId of
the vertex in that executor. In our programming environment,
we maintain two structures, vertex adjacency list and the



neighborhood graph. The vertex adjacency list contains the
vertexIds and the neighborlds, i.e. vertexIds’ of the neighbors.
In the neighborhood graph, the 2-hop neighborhood of every
vertex is stored. The vertex neighborhood is generated in the
vertex ingestion phase and the neighborhood graph is Every
new edge to the distributed graph processing system triggers
one of the three cases:

1) No vertexId found for both of the vertices in the current
set of neighborlds: This case is triggered when the edge
is created between two vertices that are not either not
present in the current graph or are not adjacent to any
of the active vertices. Two new adjacency lists and
neighborhood graphs are generated for both the vertex
ids and the other vertex is added to the neighborhood
of its adjacent vertex. Stages 1 and 3 in Fig. 1(b) are
examples of this phenomena. The edges (1,3) and (5,6)
are not attached to the existing graph structure when
they are ingested into the distributed graph. The adja-
cency list is created during the vertex ingestion phase
and the neighborhood graph is generated during the
neighborhood creation phase. The neighborhood graph
generated from these edges consists of a single edge
that is ingested during the neighborhood graph creation
process.

One of the vertexId is found in the neighborlds of
existing vertex: This case is triggered when an ingested
edge contains a previously known vertex and a new
vertex. The new vertex is added to adjacency list of
the existing vertex and a new adjacency list is created
with for the new vertex during the vertex ingestion
phase. During the neighborhood generation phase, the
new vertex is added to the neighborhood graph of all
vertices that are in the adjacency list of the existing
vertex, and a new neighborhood graph is generated for
the new vertex and all the neighbors of the adjacent
vertex are added to the neighborhood of the new vertex.
Stages 2 and 4 in Fig. 1(b) are an example of this
stage. Edges (2,3) and (4,5) contained new vertices 2
and 4 respectively when they were ingested. These new
vertices are added to the neighborhood of all the graphs
that contained their neighbors 3 and 5. In addition to
adding the neighbors, new neighborhood graphs for 2
and 4 are created and the current neighbors of 3 and 5
are added to the neighborhood.

Both the vertexIds are present in the neighborlds of
existing neighborhood graphs: This case is triggered
when both the vertices are connected to the existing
graphs. New vertices are added to the adjacency graph
of the other vertex in the edge. Then the newly added
vertex is appended to the neighborhood graphs of all
the other vertices in the adjacency graph. An example
of this case can be found in stages 5 and 6 of Fig. 1(b).

2)

3)

Once a neighborhood graph is updated, the graph features
for all the neighborlds in a neighborhood-based graph are com-
puted for Jaccard Index, common neighbors and preferential
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attachment based on the following formula.

_ [F@NTO)

~ P(@)UT(0)]
common neighbors(a,b) = |T'(a) ﬂ '(b)|

Jaccard index(a,b)

preferential attachment(a,b) = |[I'(a)| x |T'(b)|

where I'(n) is the neighbors of node n. The features for node
a and b are evaluated for the occurrence of a link in the future
time period. Implementing this approach on existing graph
libraries is difficult due to major issues with load balancing,
resource management, and communication management. In
order to solve these issues, we use a dataflow-based framework
called Flink [19].

Apache Flink is a distributed general-purpose data process-
ing platform that provides data distribution, communication,
and fault tolerance for distributed computations over data
streams. An application is represented by a Distributed Acyclic
Graph of operations, where the data-parallel tasks are consid-
ered the vertices and the edges correspond to data flowing
from one task to another. We build the proposed algorithm
using Gelly, Flink’s graph processing library.

IV. RESULTS
A. Experimental Setup

We demonstrate the accuracy, efficiency and cost of the
proposed approach of the proposed neighborhood centric ap-
proach in comparison with a graph sketch-based link predic-
tion approaches from earlier works [4], [22]. The sketch-based
implementations are rationally reconstructed in Java for stand-
alone and distributed implementations based on the earlier
work.

We reconstructed all our stand-alone experiments are carried
out on a desktop machine with 2xIntel Xeon E5-2690 proces-
sor and 256 GB of memory running CentOS operating system.
All the methods are implemented in Java. The distributed
experiments are performed on 5 nodes each with 2xIntel Xeon
E5-2690 processors, 256 GB of memory running CentOS
operating system. The values of parameters K and L for
number of minwise hash functions and reservoir budget in
the graph sketch-based approaches are set to 100 for both the
parameters based on earlier work in [4].

B. Datasets

We chose two real-world publicly available datasets. The
edges in these datasets are tagged with temporal information
on when an edge becomes active. These graphs can be pro-
cessed as a stream of edges based on the timestamps provided.

1) DBLP: All the conference papers from 1956 - 2008 in
the DBLP database are extracted. The database contains
590,314 authors and 597,113 papers in total. For each
paper, authors are extracted, and unordered author pairs
are generated. In total, 1,814,356 author pairs are gen-
erated from the co-authorship information. These author



TABLE 111
RUNTIME COST (MS) TO COMPUTE GRAPH STRUCTURE IN DISTRIBUTED
ENVIRONMENT ON DBLP

Approach 025 | 05 | 0.75 | All

Vertex Centric Processing 103 139 | 162 | 198

Neighborhood Centric Processing | 197 | 229 | 256 | 284
TABLE IV

RUNTIME COST (MS) TO COMPUTE GRAPH STRUCTURE IN DISTRIBUTED
ENVIRONMENT ON WIKIPEDIA

Approach 025 | 05 | 0.75 | All
Vertex Centric Processing 125 153 189 | 233
Neighborhood Centric Processing | 224 | 251 | 306 | 342

pairs are treated as a graph stream to predict future
authorship links.

Wikipedia: This dataset contains all articles extracted
from a snapshot of Wikipedia [23]. The vertices are
Wikipedia articles and there exists an edge if article ¢
references article j. The time this link was created is
added as the time-stamp to the link. The graph stream
contains a stream of reference links between 1,832,117
vertices and 39,452,116 edges in total.

2)

C. Evaluation Methods

The datasets are divided based on the criteria specified in
[4]. We evaluate various algorithms based on three criteria:

1) Link prediction accuracy: The accuracy of the link
prediction approaches when compared against a random
classifier. The random classifier is built based on the
criteria specified in [1].

Computation cost: We compare various approaches on
the time taken to compute various measures for link
prediction.

Space cost: The space consumed by various data struc-
tures used to compute the graph measures used in the
link prediction algorithm.

2)

3)

V. RESULTS

A. Link Prediction

We evaluated the accuracy of link prediction for sketch
based approaches and the distributed graph processing ap-
proaches that include vertex centric processing and neighbor-
hood centric processing. The sketch-based approaches have a
lower prediction accuracy compared to the distributed graph-
based approaches in both DBLP and Wikipedia graph streams.
The decrease in accuracy of sketch-based approaches is due
to the approximations in sketch-based approaches that intro-
duce some noise in the graph-based measures which is then
translated to the link prediction accuracy. The percentage error
introduced by the sketch-based methods and the effect on
link prediction accuracy is presented in Tables I and II. The
neighborhood centric approach computes the graph measures
accurately.
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TABLE V
RUNTIME COST (MS) TO COMPUTE GRAPH MEASURES ON DBLP
Approach 025 | 05 | 0.75 | All
Sketch Based Processing 0.3 0.5 0.8 1.1
Distributed Sketch Based Processing | 0.2 0.4 0.6 0.9
Vertex Centric Processing 73 106 142 197
Neighborhood Centric Processing 8 14 23 31

TABLE VI

RUNTIME COST (MS) TO COMPUTE GRAPH MEASURES ON WIKIPEDIA

Approach 025 | 05 | 0.75 | All
Sketch Based Processing 0.4 0.7 0.8 1.1
Distributed Sketch Based Processing | 0.3 0.6 0.7 0.9
Vertex Centric Processing 128 | 173 | 238 | 297
Neighborhood Centric Processing 9 16 27 37

B. Computation Cost

An important factor to evaluate link prediction in dynamic
graph streams is the time required to extract features from the
graphs. Link prediction algorithms should be able to compute
graph measures in real-time. We compare the performance of
the sketch-based link prediction on a desktop, the sketch-based
implementation in a distributed environment, vertex centric
processing and neighborhood centric processing. While the
sketch-based link prediction is online in a desktop environ-
ment, the distributed variation of it requires that the vertex of a
graph be materialized for the sketches to be computed. In order
to enable a fair comparison, of the distributed link prediction
models, we compare the cost involved to materialize the graph
in a distributed environment. We then compare the time taken
to compute all three measures to perform link prediction for
a pair of vertices.

In Table III, we present the average run-time cost to ingest
an edge into the graph structure in distributed processing
for 25%, 50%, 75%, and total edges in the DBLP graph
stream. The computation time includes the time taken to
identify individual vertices and then add the current edge to
existing vertices on vertex centric processing. The time for
neighborhood centric processing includes the time taken to
ingest an edge into all the neighborhood sub-graphs that the
vertices of the edge appear. The time taken to build the vertex
centric graph structure is lower compared to the time required
to build a neighborhood-based structure for both the graph
streams. This is due to the multiple map operations for a single
edge in neighborhood centric processing compared to 2 map
operations in vertex centric processing. The increased time
to process Wikipedia graph datastream compared to DBLP
graph datastream is due to high percentage of edges per vertex
in Wikipedia data stream compared to DBLP graph stream.
Table IV shows the average run-time cost to ingest the streams
Wikipedia data streams.

In Table V and VI, we report the average time taken
to compute Jaccard coefficient, preferential attachment, and
number of common neighbors per vertex pair on DBLP and
Wikipedia graph streams. The table shows the computation
time for graph streams comprising of 25%, 50%, 75% and



all the edges of the total graph stream. Here, distributed
sketch-based approach computes the features faster than sketch
computation on a desktop.

The true cost of feature measurement should also include
the time taken to compute the graph structure. If the time
taken to compute the vertex structure is considered, the sketch-
based approach is more efficient than the other approaches. As
mentioned previously, the approximations of graph measures
reduce the accuracy of link prediction. Neighborhood centric
processing is more efficient than vertex centric processing even
when considering the time taken to materialize the local graph
structure.

C. Space Cost

The space complexity of neighborhood centric processing
is O(n + nd?), where n is the number of vertices and
d is the average degree of the current graph. The space
complexity of the vertex centric processing is O(n + nd).
The space used to compute a 2-hop neighborhood for every
vertex increases the space required by the graph exponentially.
However, distributed computing machines are built to handle
huge datasets. With the increased accuracy of link prediction,
and minor increase in time taken to extract graph measures,
we think extra space is a valid trade off while computing link
prediction in a distributed environment.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the distributed link prediction
problem in dynamic graph streams. Graph streams have a
variety of applications in real-world in the domains of social
sciences, recommender systems, bioinformatics, and security.
In this paper, we demonstrated how basic link prediction
measures like Jaccard coefficient, Preferential attachment, and
common neighbors can be computed exactly and efficiently
in a distributed environment. We designed a neighborhood
centric graph processing approach based on partition centric
approaches in distributed computing to materialize the 2-hop
neighborhood of a graph in order to readily extract features
from a graph. Our experimental studies demonstrated that the
proposed approach enables the graph measures to be computed
at that time period without significant loss in efficiency.

In the future work, we plan on extending the neighborhood
centric approaches to include various path based features to
improve the link prediction accuracy. Another direction of
research is to reduce the space taken by the neighborhood
subgraphs by bit mapping the neighborhood links without
sacrificing the efficiency.
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