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ABSTRACT ARTICLE HISTORY
Spatial scan statistics is one of the most important models in order to Received 23 December 2017
detect high activity or hotspots in real world applications such as  Accepted 4 June 2018
epidemiology, public health, astronomy and criminology applications on
geographic data. Traditional scan statistic uses regular shapes like circles B frenin
to detect areas of high activity; the same model was extended to  yPrp.i oG
eclipses to improve the model. More recent works identify irregular  getection; polygon
shaped hotspots for data with geographical boundaries, where  propagation
information about population within the geographical boundaries is

available. With the introduction of better mapping technology, mapping

individual cases to latitude and longitude became easier compared to

aggregated data for which the previous models were developed. We

propose an approach of spatial hotspot detection for point data set with

no geographical boundary information. Our algorithm detects hotspots

as a polygon made up of a set of triangles that are computed by a

Polygon Propagation algorithm. The time complexity of the algorithm is

non-linear to the number of observations, which does not scale well for

larger datasets. To improve the model, we also introduce a MapReduce

version of our algorithm to identify hotspots for larger datasets.

KEYWORDS

1. Introduction

In recent years, there has been an increased interest in detecting and evaluating spatial hotspots.
These specialized models are used in various applications like epidemiology, disease surveillance,
crime prevention, and environmental sciences to identify spatial concentrations of abnormal activity.
Discovery of such abnormality helps to not only identify underlying causes of the abnormality but
also counter the situation. Hotspot detection is the process of identifying these areas of high occur-
rence of abnormal activities. One common way to measure abnormality is by measuring the density
occurrences at a location. A hotspot has a significantly higher density of observations than the
expected baseline; conversely, a coldspot has a lower density of observations than the expected
baseline.

In this work, we propose to detect hotspots from the observations based on the spatial distribution
of events. Prior work in the area of hotspots detection assumes that the locations are segmented into
regions-based geographical boundaries and the at-risk population. In the absence of this infor-
mation, unique shapes like a circle or square are used to generate regions to identify hotspots.
Our work is mostly concentrated on identifying an irregular shape of the hotspot, like the cases
of disease spreading across riverbanks, wind patterns or power lines (Feychting and Alhbom
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1993; Biggeri et al. 1996; Campbell et al. 2002). This irregular shaped hotspot provides a better fit
over the affected areas where resources can be allocated efficiently.

There are two mechanisms for detecting hotspots: point data set approach, and region-based
approach (Duczmal and Assuncao 2004). The first approach, point based hotspot detection, assigns
a point to every occurrence on the map. For example, each patient infected or each crime committed
is considered a point on the map; then the clusters of the high occurrence of observations are identified
and classified as hotspots for the study area. Burton (1963) first introduced spatial statistical models to
detect clusters. Openshaw et al. (1987) and Turnbull et al. (1990) first developed models to identify
hotspots for observing how the disease spread. Kulldorff (1997) further developed this model by over-
laying the target area with circles toidentify these hotspot regions; this model is called scan statistic. His
work was further extended to include ellipses instead of circles to identify irregularly shaped clusters
(KulldorfF et al. 2006). The second approach, region-based hotspot detection, divides the map into M
regions, these regions can be an N x N grid superimposed on a map or geographical regions like states
or counties. A hotspot is defined as a zone of connected regions that maximize a certain statistic such as
likelihood value. Duczmal and Assuncao (2004) proposed a graph-based model to identify hotspots in
aregion using simulated annealing. Patil and Taillie (2004) and Tango and Takahashi (2005) proposed
algorithms for region-based hotspot detection. While the point based hotspot detection approach is
more precise and accurate than the region-based one, these approaches are not designed to handle lar-
ger datasets with irregular patterns of hotspots due to scalability issues. Most of the models developed
for point data are limited to specific shapes to keep the computational costs manageable. Existing
models to identify irregular shaped hotspots use region-based hotspot detection. Based on earlier
work, we propose to detect irregular hotspots on a point dataset.

To detect irregular shaped hotspots from a point dataset, we propose an algorithm based on iden-
tifying polygons from the points in the dataset, called Polygon Propagation. Our approach can be
summarized in four steps. (1) Each observation is represented as a latitude and longitude coordinate.
These coordinates are plotted on a Euclidean plane and triangulated. The total number of obser-
vations in the triangle is the sum of observations at each vertex. (2) The likelihood ratio is calculated
for each triangle based on at-risk population or assuming the Poisson distribution of observations
across the region. We then identify the triangles with a likelihood value above a minimum threshold.
A greedy Polygon Propagation algorithm is used to propagate all of the triangles above the minimum
threshold to identify polygons by growing the triangles. (3) We perform statistical testing at each
stage to identify significance levels to detect the most significant hotspot. (4) All the propagated poly-
gons are compared to identify the hotspot based on statistical hypothesis testing. Monte Carlo simu-
lation is used to test the null hypothesis of hotspots.

The Polygon Propagation step of combining neighboring triangles into polygons is computation-
ally expensive. To solve this problem, we also propose an extension to our model by building a
MapReduce approach of Polygon Propagation. The MapReduce version of the approach is highly
effective and resulted in significant decrease in execution time. Qur main contribution in this
paper is an algorithm that detects irregular-shape hotspots with a point dataset. The algorithm is
unsupervised with only one single parameter. In addition, a scalable variant of the proposed algor-
ithm was developed to overcome the expensive computational requirements of our algorithm. We
tested this approach on a large breast cancer dataset from the State of New York.

The remaining sections of the paper are organized in the following way. Section 2 reviews related
work. Section 3 explains the proposed hotspot detection approach in detail. Section 4 clarifies the
MapReduce approach of the algorithm. Section 5 presents the experimental results on synthetic
and real-world datasets. Section 6 concludes this paper and discusses the future work.

2. Related work

The spatial hotspot detection problem is naturally related to spatial autocorrelation, a measure of
spatial dependence between values of random variables over the geographic location. The most
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often used and cited spatial autocorrelation method is Moran’s I (Zhang and Lin 2007). Moran’sIis a
statistical measurement of spatial autocorrelation based on the correlation among nearby locations
(Moran 1948, 1950). Global Moran’s I evaluates the pattern expressed in the dataset as being either
clustered, dispersed, or random. It is most effective when the spatial pattern is consistent across the
dataset; however, such data homogeneity is rare in the real world. Li, Calder, and Cressie (2007)
pointed out that the limitation of Moran’s I is poorly understood: Moran’s I is only a good estimator
of the spatial autoregressive model’s spatial dependence parameter when the parameter is close to
0. They developed an alternative closed-form measure of spatial autocorrelation, Approximate
Profile-Likelihood Estimator (APLE), and demonstrated the APLE provided a better assessment
of the strength of spatial autocorrelation, especially when the spatial dependence parameter is not
near 0, than alternative measures of spatial dependence such as Moran’s I and Ord’s statistics
(Ord 1975). Moran’s I was decomposed to evaluate spatial autocorrelation in cases of coexisting
high-value clustering and low-value clustering (Zhang and Lin 2007). Local Moran’s I was also
applied to identify local outliers (Anselin 1995) and pollution hotspots (Zhang et al. 2008). However,
as Tiefelsdorf and Boots (1997) pointed out that local Moran’s I will only be significant for extreme
absolute residuals at and around the reference location and clusters of average regression residuals
cannot be detected by local Moran’s L.

Similar to Moran’s I, Getis-Ord General G statistic is a global multiplicative representation of
spatial autocorrelation and can be used to evaluate if there is spatial clustering of feature values
(Getis and Ord 1992; Ord and Getis 1995, 2001; Getis 2007). It is most appropriate when the dataset
is a fairly even distribution, and the purpose of the analysis is looking for unexpected spatial spikes of
high-values. The limitation of this method is that if there is coexistence of high-value clusters and
low-value clusters, they tend to cancel each other out. Getis-Ord Gi* is a local statistics measurement
to assess each feature within the context of neighboring features and compare the local situation to
the global situation (Getis and Ord 1992; Getis 2007). Getis-Ord Gi* can identify statistically signifi-
cant spatial clusters of high-values (hotspots) and low-values (cold spots). A statistically significant
hotspot is a feature has a high-value and is surrounded by other features with high-values: the local
sum for a feature and its neighbors is significantly different from the expected local sum. However,
the Getis-Ord G family statistic requires spatial weight matrices, which are not straightforward to
obtain (Getis and Ord 1992; Getis 2009; Getis and Aldstadt 2010). Also, in the case of hotspot analy-
sis using the Getis-Ord Gi* statistic for point incident data, an aggregation of point data to polygons
is required before the analysis. This required aggregation may be undesired since you may be more
interested in assessing the incident intensity with the point data than in analysing the spatial cluster-
ing of the incidents.

Kulldorff (1997) designed a hotspot detection model based on scan statistics to detect spatial clus-
ters of high activity. This model superimposes circles of various radii over the study area and detects
the area of high activity by circumscribing these circles at each of the regions of the map. Hotspots
are detected by identifying circles that are statistically significant; Monte Carlo simulation is used to
calculate significance against the null hypothesis. This approach identifies circular hotspots irrespec-
tive of the original distribution of high activity.

Sahajpal, Ramaraju, and Bhatt (2004) proposed a genetic algorithm to identify high activity
regions with irregular shapes. The authors used genetic algorithms to find overlapping circles that
are locally optimized to identify hotspot regions. Neill and Moore (2004) developed a hotspot detec-
tion model, which generates rectangles of varying sizes over the study area. A K-D tree based
approach is used to prune the regions that are not promising, combine adjacent rectangles and ident-
ify hotspots.

Kulldorff et al. (2006) extended the spatial hotspot detection to an elliptic version of the spatial
scan statistic, generalizing the circular shape of the scanning window. It uses an elliptic scanning
window of variable location, shape (eccentricity), angle and size, with and without an eccentricity
penalty. This model detects irregular hotspots by fitting ellipses of various angles, sizes. However,
all of these models still suffer from identifying an area to best ‘fit’ the hotspot region on the map.
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Tango and Takahashi (2005) presented Flexscan, a flexibly shaped scan statistic that detects irre-
gular shapes by aggregating overlapping circles over the study region. A spatial scan statistic imposes
circles of various sizes on the study area and the Flexscan aggregates the circles in neighboring areas.
To reduce the number of overlapping regions they have an upper bound on the size of the cluster. In
this study, they limited the size of the cluster to 10-15% of the study area. Their model is optimized
for detecting small and medium hotspots.

Patil and Taillie (2004) proposed an alternative approach to limiting the number of neighborhood
regions to merge using an ‘upper-level set’ threshold. The neighboring regions are merged only if the
bridge region is also important. A new region is added to existing regions if they are adjacent to each
other and also to the upper limit set. Wieland et al. (2007) proposed a minimum spanning tree based
model to absorb the nearby regions by taking the variance of maximum likelihood ratio to maximize
the likelihood of the new window.

Murray, Grubesic, and Wei (2014) presented a spatially significant cluster detection approach that
detects contiguous spatial clusters from pre-defined regions. An optimized version of log likelihood
ratio is used to identify the hotspots. The authors prove that the global log likelihood value can be
achieved by identifying the local clusters with highest log likelihood ratios. The proposed spatial clus-
ter detection model can preserve the connected nature of the hotspot by explicitly imposing a con-
tiguity requirement on the identified member clusters.

Duczmal et al. (2007) proposed an approach where each region is represented as a node in the
graph and neighboring nodes connected by an edge. This model connects the neighboring nodes
while increasing the cost associated with creating large clusters. There are other similar models
that are able to detect irregular clusters (Duczmal and Assuncao 2004; Conley, Gahegan, and Macgill
2005; Assuncao et al. 2006). Most of these models work for the hotspots with regions that are defined
before the detection of hotspots. There has also been some work done on point-based detection
models that generate a grid first to identify spatial hotspots (Dong et al. 2012). However, all of
these modes are plagued with the complexity of parameters.

In this paper, we present an approach to detect hotspots from point dataset, where an observation
represents one or more cases. The whole observation area is triangulated using a triangulation algor-
ithm that generates triangular polygons from point data. Hotspots are identified by propagating the
initial polygons. This model can also be applied to regional datasets where each region is treated asan
independent polygon. In addition, this model is expensive to handle and in order to deal with this
problem we also present a MapReduce version of this algorithm to scale with larger datasets.

3. Methodology

In this section, we explain the hotspot detection model using Polygon Propagation. In Section 3.1, we pre-
sent the basic concepts in identifying a hotspot by extending scan statistics. Section 3.2 presents the orig-
inal Polygon Propagation algorithm. Section 3.3 presents the polygon generation process. In Section 3.4,
we present the Polygon Propagation algorithm to identify hotspots from already detected polygons.

3.1. Scan statistics

In the previous works using Bernoulli model and Poisson model (Kulldorff 1997; Neill, Moore, and
Sabhnani 2005; Duczmal et al. 2007), scan statistics was used to identify the most likely cluster to test
the incidence of a measure in a region. The Poisson generalized likelihood ratio (GLR) was chosen as
the density measure because of the intention that the model in this research could also work without
population-at-risk data, which might not be available. The Poisson GLR is defined as:

a Xt C =\
L= (—"‘) ( “‘) (1)
Mg C—pa
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where, c4 is thenumber of observations during a given time period in region A. y 4 is the expected number
of observations during the same time period in region A and is calculated using the formula (2):

py = ngx C/N (2)

where, n4 is the population at-risk in the study area A, C is the total number of observations in the region
during the study time period and N is the total population in the region. In the absence of at-risk popu-
lation data, we assume that the population is evenly distributed. The cluster with the maximum GLR has
the least chance of being a random occurrence. This model can be applied on models without population
at-risk data. The GLR and LGLR - the Log (GLR) were used in the prior work. For the course of this
research, LGLR is used as the log-likelihood ratio function.

To evaluate the significance of the polygons generated, a Monte Carlo simulation is used (Kulldorff
et al. 2005). The p-value of a polygon is calculated by repeatedly simulated under the null hypothesis
condition on the number of total cases in the study area, which is denoted by C. The proposed Polygon
Propagation algorithm is applied on each simulated dataset,and LGLR is calculated for the polygons in
all the datasets. The LGLR values of polygons in the original dataset are compared against the LGLR
values of polygons in the simulated datasets. The p-value is calculated by formula (3):

p=R+1)/M+1) 3)

where, R is the number of hotspots from simulated datasets whose LGLR is greater than LGLR from
original data and M is the number of simulations. If the LGLR is among the highest when compared to
the LGLR values of the replicated datasets, the maximum p-value of the cluster is considered to be 0.01
for K =999, based on Kulldorff et al. (2005).

The significance test primarily identifies a significant polygon in the data; there are also secondary
polygons that do not overlap with the most significant polygon. The LGLR of secondary polygons is
also evaluated if they reject the null hypothesis. If the secondary polygons reject the null hypothesis
on their own strength, then the secondary clusters are also identified as hotspots.

3.2. Original polygon propagation

The basic idea behind the Polygon Propagation approach is to identify the areas of high activity by
grouping together the observations that are close to each other, ie. nearby neighbors. The basic
approach is presented in Figure 1. A mesh of triangles is generated from the point data where
each vertex of the triangle represents an observation in Euclidean or Cartesian space. Each obser-
vation may represent one or more cases at that location. The total number of cases represented
by a triangle is the sum of all cases represented by its vertices. If the number of cases per unit
area of the triangle is greater than a particular threshold, it is considered a candidate polygon.
The candidate polygon is then expanded by absorbing its neighbors, as long as the polygon post
absorption satisfies the initial threshold. The polygon is expanded until all the neighbors are
absorbed, or all the high-intensity area has been covered. The process is then repeated with another
polygon and is continued until all the observations are visited. This ensures that the polygons cover
all the areas that exhibit high activity in the observation region. Finally, the region of high activity is
tested for null hypothesis and the hotspot is identified.

However, just using the number of cases to detect an area of high activity may yield a patch of
continuous areas covering the entire map. To counter this phenomenon, each polygon spread is
restricted by the stability of the polygon. To maintain the integrity of the polygon, a compactness
parameter is introduced to limit the size of the polygon.

3.3. Polygon generation

An overview of the Polygon Propagation algorithm is presented in Figure 2. In a region, each obser-
vation is represented by its latitude and longitude values as Euclidean or Cartesian coordinates and
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(a) ' (b) ' (c)
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Figure 1. A Simple lllustration of Polygon Propagation.

the number of cases at that particular location. For example, in a distribution of flu cases at a street
level of granularity, each observation may represent one or more cases. In aggregated dataset, for
example the breast cancer study the number of cases captured at county level, one observation
may represent more than one case from that county. In our research, we don not distinguish
these two scenarios; all points are treated as if they have their own coordinates as well as physical
meaning.

A high-level overview of hotspot detection is presented in Algorithm 1. Given the set of obser-
vations in a region, the original data is triangulated using a sweep line Delaunay triangulation
algorithm (Zalik 2005). The GenerateCandidatePolygons method is presented in Algorithm

ettt
Polygon Propagation
Add polygon to

|
|
! |
i I
Delaunay I the list |
Triangulation | | I
|
i
! I
Add triangles : :
to the list : I
: v :
|| Retrieve polygon Identify :
Calculate LGLR -—-i-b with the largest ¥ polygons to be ¥ palygons are |
merged? |
: LGLR merged 1
| F 3 :
|
! |
: Remove polygon :
: from the list |
i
! v .
| Add polygon to | Probable
: the final list | hotspots
|
I

Figure 2. Polygon Propagation Implementation Framework.
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2. The triangles generated in this step are considered candidate polygons, where each polygon is a
triangle. The number of cases in the polygon is calculated based on the number of cases at obser-
vations encompassed by the polygon. For example, for point data where each point represents a
single observation, the total number of cases represented by the triangle is three. The number
increases if each point contains more than one case at that observation. The log-likelihood
ratio value is calculated using Equation (1), and p is calculated based on at-risk population in
the triangle.

Each triangle generated in this step has two states — marked or unmarked. A candidate tri-
angle P is marked if LGLR(P)> minLGLR. minLGLR is the minimum likelihood threshold to
identify an important candidate triangle. A candidate triangle is labeled unmarked if it does
not satisfy the minLGLR criteria. The candidate polygons that are marked can be
propagated while those that are unmarked cannot initiate the propagation. The Delaunay triangu-
lation algorithm has a time complexity of O(NlogN), where N is the number of points or cases in
the region.

Algorithm 1. Polygon Propagation.

1. Input: Set of points:R; Number of points in Region: N;Minimum LGLR:minL GLR; Observations for null
hypothesis:K; Confidence threshold:0

2 Output: A set of significant cylindrical Polygons

3 T, <- Delauneytriangulation(T);

4. P<-GenerateCandidatePolygons(Tr; minLGLR)

5. mergedPolygons<- PropagatePolygons(P)

6 simPolygons <- NULL

7 fori<-1to Kdo

8 generate a simulated dataset under null hypothesis conditional on number of observations

9. use delauney triangulation to triangulate

10. tempP <- GenerateCandidatePolygons(Tri; minLGLR)
11. tempMerged<- PropagatePolygons(tempP)

12. simPolygons<- simPolygons U tempMerged

13.  endFor

14.  finalPolygons<-NULL
15.  foreach p in mergedPolygons do

16. k<-rank of LGLR(p) compared to LGLR(p'), p’ belongs simpolygons
17. rank < —k/K + 1

18. if(rank <= ) then finalPolygons <-finalPolygons U p

19. endFor

20.  return finalPolygons
Algorithm 2. Candidate Set Generation.

Input: Set of triangles: T; Minimum LGLR: minLGLR
Output: Set of Candidate Triangles
P <- Null
For each t, belongs T

LGLR = calculateLGLR(z,)

If(LGLR > minLGLR)

Add ¢ to P

endFor
return P

bl I

3.4. Polygon propagation

The candidate polygons generated in the polygon generation step are propagated across the region to
identify regions of unusual observations relative to the population distribution. This process is pre-
sented in Algorithm 3.
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Algorithm 3. Propagate Polygons.

1. Input: set of candidate Polygons, P

2. Output: Final set of mergedPolygons, Z

3. Z<-NULL

4. While(P is not null)

5. Retrieve p from P. LGLR(p) is the max

6. For #p belongs to P and fp!=p and T,== T},
7. If(p and tp are neighbors)

8. H{(LGLR(p + tp)>LGLR(p)+LGLR(tp))
9. M <- Merge(p, tp)

10. Remove p,tp from P

11. AddMto P

12. End For

13, If p still in P

14. Remove p from P

15. AddptoZ

16. End if

17. End While

18. Return Z

Given a set of marked polygons and their log-likelihood ratio values, the polygon with the highest
LGLR value is always prioritized to be propagated. A set of all neighboring polygons are identified, a
polygon is considered neighboring if it shares an edge with the current polygon. Two polygons are
merged if the resulting polygon has an LGLR that is greater than the average LGLR of both polygons.

If a polygon does not have any marked polygons in its neighborhood, all the marked polygons
within a step are searched for merging, i.e. all marked polygons that are adjacent to neighboring
unmarked polygons from the current polygon. This enables the model to overcome depression
links in polygons, i.e. low activity regions connecting regions of high activity.

Finally, two or more polygons can be combined if and only if

(1) All the polygons are adjacent to each other.

(2) Combined LGLR of the resulting merged polygon is greater than the average of each of the indi-
vidual polygons.

(3) The combined LGLR of the resulting merged polygon satisfies the original minLGLR criteria.

For a small distribution of hotspots, the polygons generated are really close and clustered together.
For hotspots spread over a large area, the polygon usually represents a tree-shaped cluster that does
not add any new information regarding special geographical significance on the map. To handle this
situation, a new compactness score is proposed.

3.4.1. Compactness measure

To limit the unbounded spread of the hotspot, we encourage the model to prioritize the candidate
polygons that are more ‘round’. For a polygon to merge, the resulting polygon should satisfy the
compactness measure. The compactness measure a can be defined by formula (4):

a = Area(P)/Area(E) @)

where, P is the polygon and E is the smallest enclosing ellipse that encompasses all the points in poly-
gon P. The process of calculation of compactness is presented in Algorithm 4. A convex hull that
encompasses all the observations in the polygon is identified. The ellipse is calculated based on
the points on the perimeter of the convex hull. This compactness measure is reduced by prioritizing
to propagate the polygon within the encompassing ellipse rather than spreading across the geo-
graphical region. The compactness depends upon the shape of the polygon and not the size of the

polygon.
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Algorithm 4. Compactness Calculation

Input: Polygon, P

Output: Compactness Value, a

a=0

E<- Calculate an Ellipse that encompasses the given Polygon
a = Area of Polygon P/ Area of E

Return a

SR L

Along with the three conditions specified above, two polygons can be merged if and only if
a > min (a). Lower values of @ allows the polygon to expand beyond the ellipse even though all the
polygons within the ellipse are not fully explored. A higher value of a forces the model to expand the
region internally within an ellipse before spreading it across the region. Based on earlier work (Kulldorff
et al. 2005), the maximum size of the polygon is restricted to 10% of the total observation area.

4, Scalable polygon propagation

The time complexity of the Polygon Propagation algorithm is O(KN’log N), if N is a very large num-
ber then the time taken to execute this algorithm to identify hotspots could be very long. The
execution time to calculate encompassing ellipse is quite expensive. To make the task of detecting
hotspots more manageable, a parallelized framework is proposed to manage the execution time
when working with large data.

4.1. Mapreduce

MapReduce is a programing paradigm and an associated parallel and distributed implementation for
developing and executing parallel algorithms to process massive datasets on clusters of commodity
machines (Dean and Ghemawat 2008). MapReduce computation is based on manipulating a set of
key-value pairs. The computation takes a set of input key-value pairs and produces a set of key-value
pairs as an output. MapReduce computation contains two functions, map and reduce.

The map function takes one key-value pair and produces a multiset of intermediate key-value
pairs that can be represented as {(k;, v,), (ky, v5), (ks, v3), ... }. The MapReduce framework groups
all the values associated with a single key and passes them to a single reduce function. Multiple map
functions can be executed in parallel for each key.

The reduce function takes the intermediate key and set of values associated with the key as an
input. The reduce function processes the group set of values to produce the output. The output
can be a single key-value pair or a set of key-value pairs. The output of reduce function can be
used as an input to another map function. Similar to the map function, reduce can also be executed
in parallel with each key executed by a single thread. We denote the machines executing map func-
tions as mappers and those executing the reduce functions as reducers.

The MapReduce framework reduces computation time by distributing the data across multiple
machines on the computational cluster and executing the code on the local machine where the
data resides. The appropriate key-value pairs should be identified to reduce the communication
between individual machines within the cluster.

4.2. Implementation

In the proposed system, each observation is saved with a timestamp and the geometric coordinate of
that observation. Figure 2 shows the block diagram of the system and how the information flows
through the system. We use two sets of mappers and reducers in this model.

The Polygon Propagation model starts with the serial implementation of the Delaunay Tri-
angulation model that is presented in the previous section. Then each triangle is passed on to
each mapper (represented as Map Phase 1), along with the historical observations within that



10 (@) S.KATRAGADDA ETAL.

triangle. Each mapper executes the functionality of candidate set generation and this idea is pre-
sented in Figure 3. The mappers then return all the candidate cylindrical triangles to the reducer.
A single reducer, which is represented as reducer 1, is used to collect all the polygons in Reduce
Phase 2.

Next, the polygons are split among all the mappers to propagate individual polygons; then each
mapper in Map Phase 2 executes the functionality of Figure 2, where polygons are propagated
among the polygons assigned to their mappers. All the polygons that are generated are passed
along to reducers in Reduce Phase 2. The reducers further merge the polygons from all the map-
pers using the same criteria used by the Polygon Propagation algorithm. Then all the polygons are
sent to the combiner, which splits the polygons into groups to be reassigned to the mappers. This
process of Polygon Propagation continues until the combiner receives the same set of polygons for
at least 10 iterations. The assumption is that if no polygons were merged for at least a few con-
secutive iterations, then all polygons have reached their final state, and thus cannot be merged
further.

5. Experiments

We tested our Polygon Propagation based method on two simulated datasets. The first dataset con-
tains simulation of four different shaped hotspots; our method is validated based on detecting these
four shapes. The second dataset is the simulated dataset of observations. Qur approach is compared
against Scan Statistics and Elliptical Scan Statistics. Finally, we validate our method using a real-
world dataset to show the strength of our model over the traditional scan statistics.
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Figure 3. MapReduce Framework for Polygon Propagation.
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5.1. Validation of polygon propagation

A series of simulated experiments are conducted to verify Polygon Propagation. A random set of 1000
observations are generated in Euclidean space, with one observation at each point. Four types of data-
sets are generated from these points, with multiple cases for particular observations representing hot-
spots. Four types of clusters are generated to test the Polygon Propagation algorithm; these clusters are
shown in Figure 4. The first strip-like cluster, represented in Figure 4(a), represents 35 triangles com-
prising of 36 observations and contains about 15% of the total triangles in the region. The second clus-
ter in Figure 4(b) represents an irregular strip-like cluster containing 75 triangles and represents 58
observations. The hotspot contains about 24% of the total number of triangles in the region. The
third hotspot is a cross-like cluster shown in Figure 4(c) containing a single vertical section and
two horizontal sections on either side. This hotspot has 87 triangles and 97 observations, which com-
prises of 31% of the total area. The final hotspot is a donut shaped hotspot with 112 triangles and 98
observations shown in Figure 4(d). This hotspot is about 35% of total polygons in the region.

Table 1 presents the results for the Polygon Propagation algorithm on these datasets. The Poly-
gon Propagation algorithm successfully identifies all the hotspots for different shapes. The minLGLR
value used for these analyses is 1. These results show that the Polygon Propagation algorithm works
perfectly for all the simulated datasets in this research.

5.2. Comparison with scan statistics

To validate the effectiveness of Polygon Propagation, we compare it to circular and elliptical scan
statistics. The SaTScan® program was downloaded from the SaTScan website (http://satscan.org).
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Figure 4. Different Simulated Hotspots That Are Used to Evaluate Polygon Propagation: (a) A Strip Cluster, (b) S- Shaped Cluster, (c)
Cross Shaped Cluster, (d) Donut Shaped Cluster.
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Table 1. Observed results for different shapes and sizes of hotspots using polygon propagation.

Type of Ratio of hotspot Number of observations in Number of polygons in Number of polygons
Hotspot polygons hotspot region hotspot detected
Straight Line 0.15 36 35 35

S Shaped 0.24 58 75 75

+ Shaped 0.31 95 87 87

Donut 035 112 98 98

The data for the algorithm is generated using 1000 points randomly distributed across a Euclidian
space, representing 1200 observations. The data contains 1.2 cases on average per observation dis-
tributed by 0-3 cases on random per observation with 80% of the observed values to be 1 and 0,
2, 3 observed cases with 5% probability. The population at-risk data is assumed to be uniformly dis-
tributed across all observations. Figure 5(a) shows an example of the ‘pure’ Polygon Propagation
algorithm that is propagated with traditional Polygon Propagation algorithm without any compact-
ness or cap on the number of cases per hotspot. Figure 5(b) displays the top 10% highest LGLR tri-
angles on the map.

The most likely clusters obtained from the given data are displayed in Figure 6. The minLGLR
value is set to 1 for the given dataset. Figure 6(a-d), displays the most likely clusters for the value
of @ =0.1 (minimum compactness), a=0.25, a =0.5, and a=0.75 (full compactness). An upper
limit of 20% of points in the dataset is set to be the maximum number of points per most likely clus-
ter. This value arrives after testing various threshold values during the experiments. Figure 6(e) and 6
(f) show the results of circular and elliptical scan statistics using the SaTScan® software. Table 2 dis-
plays the size of a, LGLR, the average number of cases per unit area of detected hotspot, and signifi-
cance values for hotspots generated using various models. The best-case scenario was observed for «
= 0.5, where the number of detected cases per unit area of the hotspot were higher than all the other
models including circular and elliptical scan statistics. The Polygon Propagation algorithm with a =
0.75 detects the hotspots with an average 24.1 cases per unit area. The total number of cases in the
detected hotspot for a=0.75 are lower compared to a =0.5. The hotspot for a=0.75 generates a
compact cluster compared to smaller values of a to form a stable cluster. This seems to be a
trade-off between a compact geographic area of high activity and identifying only areas of high
activity at a particular location.

The proposed Polygon Propagation algorithm can detect a total of 427 cases in the hotspot
region at 26.37 cases per unit area of the hotspot. The circular and elliptical scan statistics
detected 479 and 362 cases respectively. The number of cases per unit area of the hotspots
detected was 16.42 for circular scan statistics and 23.71 for elliptical scan statistics. The proposed
algorithm detects more compact hotspots compared to existing state of the art hotspot detection
approaches.

Figure 5. Important Polygons in the Region: (a) Irregularly-Shaped Connected Cluster without Any Compactness, (b) Top 10% High-
est LGLR Polygons in the Region.
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Figure 6. Comparison of Different Models on a Simulated Dataset: (a) Polygon Propagation, a=0.1, (b) Polygon Propagation, a =
0.25, (c) Polygon Propagation, a = 0.5, (d) Polygon Propagation, a =0.75, (e) Circular Scan Statistics, (f) Elliptical Scan Statistics.

5.3. Scalability testing

The approaches are tested for scalability for four different datasets: 1 K, 10 K, 50 K, 100 K observations.
The polygon propagation algorithm is executed on a desktop witha 2.5 GHz quad core processor and 8
GB of RAM. The MapReduce version of the polygon propagation algorithm is implemented on a 3-
desktop hadoop cluster, where each desktop has 2.0 GHz dual-six core processor and 16 GB of RAM.
The scalability of all three models along with Polygon Propagation with MapReduce is shown in
Figure 7. The computation time of scan statistics grows exponentially as the number of points increases
which is similar to Polygon Propagation algorithm, which also has the time complexity of O(K.N°log
N). We could not compute the elliptical scan statistic for 100,000 observations. The scalability of Poly-
gon Propagation with MapReduce is better than the serial version of Polygon Propagation with the
parallel version able to decrease the execution time by at least 80%.

5.4. Detection of breast cancer in New York

To validate Polygon Propagation on real data, we leveraged breast cancer data of the Environmental
Facilities and Cancer Mapping research in the state of New York (NYSDH 2015). The GIS data was
download from SaTScan website (https://www.satscan.org/datasets/nyscancer/) and processed by Bos-
coe, Talbo, and Kulldorff (2016). The research area covers the state of New York where the case data is
represented as a point, and each point corresponds to a census block group, the smallest unit for a
sample-based data tabulated by the U.S. Census Bureau’s Community Survey. The data was collected
in 2009, with a total of 72,926 patients and a population of 27,820,632. There is a total of 13,848 points

Table 2. Observed results for different models of polygon propagation and scan statistics.

Area of
Number of Cases inside Cases outside hotspot Cases per unit
Hotspot a triangles hotspot hotspot (sq km) area LGLR  P-value
6(a) 0.1 9 502 698 2432 20.64 24132 0001
6(b) 0.25 77 454 746 22.16 2049 202.16  0.001
6(c) 0.5 1 427 773 16.19 2637 17453  0.001
6(d) 0.75 32 31 879 1332 241 149.14  0.001
6(e) - 92 479 ppa 29.18 16.42 83.13  0.001

6(f) - 53 362 838 15.27 231 136.88  0.001
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in the dataset. We compared our polygon propagation based method with circular scan statistics, elliptic
scan statistics and Getis-Ord Gi* in this real-word experiment. In the Getis-Ord Gi* analysis, we tried
different methods of conceptualization of spatial relationship and chose Delaunay Triangulation method
to generate the spatial weights since we use the same method to expand polygons.

The resultant hotspots with 99% confidence are shown in Figure 8. The maximum number of
points in a hotspot is set to 25% of the total number of points in the dataset. The minLGLR is set
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Figure 8. Hotspots detected for Breast Cancer Data in New York State: (a) Polygon Propagation, (b) Circular Scan Statistics, (c)
Elliptic Scan Statistics, & (d) Getis-Ord Gi*.
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to 1 for Polygon Propagation. The hotspots were detected for various values of a. The results are
presented for the best case result, the value of a is set to 0.5. The significance value is set to 0.01,
and the value of k for Monte Carlo simulation is set to 999.

The Polygon Propagation generated three hotspot areas in Figure 8: one in the Brooklyn area of
New York City area with a relative risk of 1.23, Queens area of New York extending into southern
border of Suffolk County with a relative risk of 1.35 and another hotspot in the Rochester area with a
relative risk of 1.27. On the other hand, circular scan statistics detects three clusters of high risk, with
one of them in Brooklyn area of New York City, another hotspot encompassing long island and one
hotspot to the west of Rochester with relative risk of 1.24, 1.15, and 1.14 respectively. Elliptical scan
statistics discovers two clusters of high activity, the hotspot in Rochester and Long Island with rela-
tive risk of 1.27 and 1.37 separately. The hotspots detected by circular and elliptical scan statistics are
relatively large: covering most of Long Island, with circular scan statistics extending into Connecti-
cut. The hotspots detected by Polygon Propagation are compact and only cover the area of high
activity. The Getis-Ord Gi* can only detect the hotspots with the form of input data, which is
point data in this case. It could not tell us how large the hotspot areas are; instead it identified hotspot
points for us. From Figure 8 we can see Getis-Ord Gi* method detected similar pattern of hotspots
comparing to other methods here; even it has wider spreading of hotspots.

The Polygon Propagation algorithm is also extended to detect cold spots to identify areas of low
observed cases compared to expected number of cases with consideration of at-risk population. This
can be calculated by detecting areas with lower LGLR values. The resultant cold spots are shown in
Figure 9 with comparison of those generated by circular scan statistics, elliptic scan statistics and
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Figure 9. Coldspots Detected for Breast Cancer Data in New York State: (a) Polygon Propagation, (b) Circular Scan Statistics, (c)
Elliptic Scan Statistics, & (d) Getis-Ord Gi*.
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Getis-Ord Gi*. A similar pattern of cold spots was detected from all methods except the Getis-Ord
Gi* has a relatively wider spreading of cold spot points. A single cold spot is detected in the Brooklyn
neighborhood of New York City. This means that the number of observed cases in the Brooklyn
community is significantly low given its high at-risk population. It might be an interesting finding
for public health researcher to investigate further. It is worth noting that those rural areas with
low number of cancer cases were not detected as cold spots because their at-risk population are
also very low.

Based on this experiment, we found that Getis-Ord Gi* is able to detect hotspots and cold spots
but the results are relative wider spreading than that of our method and Scan Statistics. Getis-Ord
Gi* cannot identify hotspot areas from point dataset, which is the purpose of this research. Compar-
ing to Scan Statistics, the proposed polygon propagation method can detect more compact hotspots
and cold spots (fewer false positive errors).

6. Conclusion

The Polygon Propagation algorithm is proposed to detect irregularly-shaped clusters from point data.
According to the comparison between Polygon Propagation and state of the art models (scan statistics),
Polygon Propagation has two advantages. First, Polygon Propagation can detect better heterogeneous
clusters that are irregularly shaped. Second, the area covered by the detected hotspot is reduced con-
siderably compared to scan statistics. The Polygon Propagation algorithm identifies the hotspots based
on a local search to identify these hotspots. A MapReduce approach to Polygon Propagation is also
proposed which significantly outperforms the traditional SaTScan® and Polygon Propagation algor-
ithms, which makes this approach efficient for large-scale spatial hotspot detection.

Although Polygon Propagation demonstrates better results than traditional scan statistics, the
true cluster generated by this model is still constrained by the stability of the detected cluster. A
future direction of research would be to identify a better way to calculate the stability of the detected
hotspot. The search for the hotspot is exhaustive and is relatviely expensive. Another direction of
research would be to extend this model to reduce the computational time of the search. This can
be accomplished by reducing the search space of the candidate polygons by using better indexing
techniques to identify the polygon that can increases the LGLR value. Another alternative is to
use optimization techniques like greedy algorithms and dynamic programing to identify the next
candidate polygon to expand.
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