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Abstract

Neural Information Processing Systems (NIPS) is a top-tier annual conference in machine
learning. The 2016 edition of the conference comprised more than 2,400 paper submissions,
3,000 reviewers, and 8,000 attendees. This represents a growth of nearly 40% in terms of
submissions, 96% in terms of reviewers, and over 100% in terms of attendees as compared
to the previous year. The massive scale as well as rapid growth of the conference calls for a
thorough quality assessment of the peer-review process and novel means of improvement.
In this paper, we analyze several aspects of the data collected during the review process,
including an experiment investigating the efficacy of collecting ordinal rankings from
reviewers. We make a number of key observations, provide suggestions that may be useful
for subsequent conferences, and discuss open problems towards the goal of improving peer
review.
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1. Introduction

The review process for NIPS 2016 involved 2,425 papers submitted by 5,756 authors, 100
area chairs, and 3,242 active reviewers submitting 13,674 reviews in total. Designing a review
process as fair as possible at this scale was a challenge. In order to scale, all parts of the
process have to be as decentralized as possible. Just to get a feeling, if the two program
chairs were supposed to take final decisions just for the 5% most challenging submissions,
which means that they would have to read and decide on 150 papers — this is the scale of a
whole conference such as COLT. Furthermore, the complexity of the logistics and software
to manage the review process is rather high already. A controlled experiment (Lawrence and
Cortes, 2014) from NIPS 2014 has shown that there is a high disagreement in the reviews.
Hence the primary goal must be to keep bias and variance of the decisions as small as
possible.

In this paper, we present an analysis of many aspects of the data collected throughout
the review phase of the NIPS 2016 conference, performed subsequent to the completion
of the review process. Our goal in this analysis is to examine various aspects of the data
collected from the peer-review process to check for any systematic issues. Before delving into
the details, we note the following limitations of this analysis:

• There is no ground truth ranking of the papers or knowledge of the set of papers which
should ideally have been accepted.

• The analysis is post hoc, unlike the controlled experiment from NIPS 2014 (Lawrence
and Cortes, 2014).

• The analysis primarily evaluates the ratings and rankings provided by reviewers, and
does not study the textual comments provided by the reviewers.

The analysis is used to obtain insights into the peer-review process, usable suggestions for
subsequent conferences, and important open problems towards improving peer-review in
academia.

Here is a summary of our findings:

(i) there are very few positive bids by reviewers and area chairs (Section 3.1);

(ii) graph-theoretic techniques can be used to ensure a good reviewer assignment (Sec-
tion 3.2);

(iii) there is significant miscalibration with respect to the rating scale (Section 3.3);

(iv) review scores provided by invited and volunteer reviewers have comparable biases and
variance, and junior reviewers report a lower confidence (Section 3.4);

(v) there is little change in reviewer scores after rebuttals (Section 3.5);

(vi) there is no observable bias towards any research area in accepted papers (Section 3.6);

(vii) there is lower disagreement among reviewers in NIPS 2016 as compared to NIPS 2015
(Section 3.7);
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(viii) a significant fraction of scores provided by the reviewers are tied, and ordinal rankings
can ameliorate this issue (Section 3.8);

(ix) there are some inconsistencies in the reviews and these can be identified in an automated
manner using ordinal rankings (Section 3.9).

We describe the review procedure followed at NIPS 2016 in Section 2. We present an
elaborate description of the analysis and the results in Section 3. Alongside each analysis,
we present a set of key observations, action items for future conferences, and some open
problems that arise out of the analysis. We conclude the paper with a discussion in Section 4.

2. Review procedure

In this section, we present an overview of the design of the review process at NIPS 2016.

2.1 Selecting area chairs and reviewers

Area Chairs (ACs) are the backbone of the NIPS reviewing process. Their role is similar
to that of an associate editor for a journal. Each AC typically handles 20-30 submissions,
so with an estimated number of submissions between 2000 and 3000, we needed to recruit
about 100 area chairs. As it is impossible to intimately know all the diverse research areas
covered by NIPS, we came up with the following procedure. We asked the NIPS Board and
all the ACs of NIPS from the past two years to nominate potential ACs for this year. In
this manner, we covered the entire variety of NIPS topics and obtained qualified suggestions.
We obtained around 350 suggestions. We asked the NIPS Board to go through the list of
suggested ACs and vote in favor of suggested ACs. We also accounted for the distribution of
subject areas of submitted papers of the previous year’s NIPS conference. Combining all
these inputs, we compiled a final list of ACs: by the end of January we had recruited exactly
100 ACs. In a subsequent step, we formed “buddy pairs” among the ACs. Based on the ACs
preferences, each AC got assigned a buddy AC. We revisit the role of buddy pairs in more
detail later.

The process of recruiting reviewers is time consuming, it essentially went on from
January until the submission deadline at end of May. A significant departure from the review
processes of NIPS from earlier years, this time we had two kinds of reviewers, “invited senior
reviewers” (Pool 1) and “volunteer reviewers” (Pool 2):

• Pool 1, invited senior reviewers: We asked all ACs to suggest at least 30 reviewers
who have completed their PhDs (however, this requirement was not strictly observed by
all ACs). We then also asked all confirmed reviewers to “clone themselves” by inviting
at least one researcher with a similar research background and with at least as good a
qualification as themselves.

• Pool 2, volunteer author-reviewers: The rapid growth in the number of submissions
at NIPS poses the formidable challenge of accordingly scaling the number of reviewers.
An obvious means to achieve this objective is to ask authors to become reviewers as
well. This idea has been used in the past, for example, to evaluate NSF grant proposals
(Mervis, 2014) or to allocate telescope time (Merrifield and Saari, 2009). In order to
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implement this idea, without constraining unwilling authors, we requested authors to
volunteer during the submission process by naming at least one author per paper as
volunteer reviewers.

The area chairs were aware of the respective pools to which each of their reviewers
belonged. The number of reviewers that we eventually ended up with writing reviews are as
follows:

Number
of reviewers

Senior
researchers /

faculty

Junior
researchers /
postdocs

PhD
students

Not
Specified

Total

Pool 1: Invited 1236 566 255 7 2064
Pool 2: Volunteer 143 206 827 2 1178

The total number of reviews in each category are as follows:

Number
of reviews

Senior
researchers /

faculty

Junior
researchers /
postdocs

PhD
students

Not
Specified

Total

Pool 1: Invited 5759 2559 888 38 9244
Pool 2: Volunteer 576 795 3050 9 4430

2.2 Assignment of papers to reviewers and area chairs

The assignment of papers to area chairs was made in the following manner. Prior to the
review process, the ACs and reviewers were allowed to see the list of submitted papers and
“bid” whether they were interested or disinterested in handling/reviewing any paper. For
any paper, an AC/reviewer could either indicate “Not Willing” or “In-a-pinch” – which we
count as negative bids, or indicate “Willing” or “Eager” – which we count as positive bids, or
choose to not bid for that paper. The Toronto paper matching system or TPMS was then
employed to compute an affinity score for every AC (and reviewer) with every submitted
paper based on the content of the paper and the academic profile of the AC or reviewer. In
addition, every AC/reviewer as well as the submitter of every paper was asked to select a
set of most relevant subject areas, and these subject areas were also employed to compute a
similarity between every AC/reviewer and every paper.

Based on the similarity scores and bids, an overall similarity score is computed for
every {paper, AC} and every {paper, reviewer} pair: score = 2b(saffinity + ssubject)/2, where
saffinity ∈ [0, 1] is the affinity score obtained from TPMS, ssubject ∈ [0, 1] is the score obtained
by comparing the subject areas of the paper and the subject areas selected by the AC or
reviewer, and b ∈ [−1, 1] is the bidding score provided by the AC or reviewer. Based on these
overall similarity scores, a preliminary paper assignment to ACs was then produced in an
automated manner using the TPMS assignment algorithm (Charlin and Zemel, 2013). The
ACs were given a provision to decline handling certain papers for various reasons such as
conflicts of interest. These papers were re-assigned manually by the program chairs.

The AC of each paper was responsible to first assign one senior, highly qualified reviewer
manually. Two more invited reviewers from pool 1 and three volunteer reviewers from pool 2
were then assigned automatically to each paper using the same procedure as described above.
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The ACs were asked to verify whether each of their assigned papers had at least 3 highly
competent reviewers; the ACs could manually change reviewer assignments to ensure that
this is the case. During the decision process, additional emergency reviewers were invited to
provide complementary reviews if some of the reviewers had not turned in their reviews or if
no consensus was reached among the selected reviewers.

2.3 Review criteria and scores

We completely changed the scoring method this year. In previous years, NIPS papers
were rated using a single score between 1 and 10. A single score alone did not allow
reviewers to give a differentiated quantitative appreciation on various aspects of paper quality.
Furthermore, the role of the ACs was implicitly to combine the decisions of the reviewers (late
integration) rather than combining the reviews to make the final decision (early integration).
Introducing multiple scores allowed us to better separate the roles: the reviewers were in
charge of evaluating the papers; the ACs were in charge of making decisions based on all the
evaluations. Furthermore the multiple specialized scores allowed the ACs to guide reviewers
to focus discussions on “facts” rather than “opinion” in the discussion phase. We asked
reviewers to provide a separate score for each of the following four criteria:
• Technical quality,

• Novelty/originality,

• Potential impact or usefulness,

• Clarity and presentation.
The scores were on a scale of 1 to 5, with the following rubric provided to the reviewers:

5 = Award level (1/1000 submissions),

4 = Oral level (top 3% submissions),

3 = Poster level (top 30% submissions),

2 = Sub-standard for NIPS,

1 = Low or very low.
The scoring guidelines also reflect the hierarchy of the papers: the conference selects the top
few papers for awards, the next best accepted papers are presented as oral presentations,
and the remaining accepted papers are presented as posters at the conference. The scores
provided by reviewers had to be complemented by justifications in designated text boxes.
We also asked the reviewers to flag “fatal flaws” in the papers they reviewed. For each paper,
we also asked the reviewers to declare their overall “level of confidence”:

3 = Expert (read the paper in detail, know the area, quite certain of opinion),

2 = Confident (read it all, understood it all reasonably well),

1 = Less confident (might not have understood significant parts).

2.4 Discussions and rebuttals

Once most reviews were in, authors had the opportunity to look at the reviews and write a
rebuttal. One section of the rebuttal was revealed to all the reviewers of the paper, and a
second section was private and visible only to the ACs. Some reviews were still missing at
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this point, but it would not have helped to delay the rebuttal deadline as the missing reviews
trickled in only slowly. Subsequently, ACs and reviewers engaged in discussions about the
pros and cons of the submitted papers. To support the ACs, we sent individual reports to
all area chairs to flag papers whose reviews were of too low confidence, too high variance or
where reviews were still missing. In many cases, area chairs recruited additional emergency
reviewers to increase the overall quality of the decisions.

2.5 Decision procedure

The decision procedure involved making an acceptance or rejection decision for each paper,
and furthermore, to select a subset of (the best) accepted papers for oral presentation.

We introduced a decentralized decision process based on pairs of ACs (“buddy pairs”).
Each AC got assigned one buddy AC. Each pair of buddy ACs was responsible for all papers
in their joint bag and made the accept/reject decisions jointly, following guidelines given
by the program chairs. Difficult cases were taken to the program chairs, which included
cases involving conflicts of interest and plagiarism. In order to harmonize decisions across
buddy pairs, all area chairs had access to various statistics and histograms over the set of
their papers and the set of all submitted papers. To decide which accepted paper would get
an oral presentation, each buddy pair was asked to champion one or two papers from their
joint bag as a candidate for an oral presentation. The final selection was then made by the
program chairs, with the goals of exhibiting the diversity of NIPS papers and exposing the
community with novel and thought-provoking ideas. In the end, 568 papers got accepted to
the conference, and 45 of these papers were selected for oral presentations.

Like previous years, we adopted a “double blind” review policy. That is, the author(s)
of each paper did not get to know the identity of the reviewers and vice versa throughout
the review process. ACs got to know the identity of the reviewers and the author(s) for
the papers under their responsibility. During the discussion phase, reviewers who reviewed
the same papers got to know each other’s identity. Lastly, PCs and program managers had
access to all information about the submissions, the ACs, the reviewers, and the authors.

2.6 Experimental ordinal reviews

In the main NIPS 2016 review process, we elicited only cardinal scores from the reviewers
– one score in 1 to 5 for each of four criteria. Subsequent to the review process, we then
requested each reviewer to also provide a total ranking of the papers that they reviewed.
We received rankings from a total of 2189 reviewers. Note that the collection of ordinal
data was performed subsequent to the normal review submission but before release of the
final decisions. The ordinal data was not used as a part of the decision procedure in the
conference.

3. Detailed analysis

In this section, we present details of our analyses of the review data and the associated
results. Each subsection contains one analysis and concludes with a summary that highlights
the key observations, concrete action items for future conferences, and open problems that
arise from the analysis.
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The results are computed for a snapshot of reviews at the end of the review process
when the acceptance decisions were made. This choice does not affect our results since there
was very little change in the scores provided by reviewers across different time instants. All
t-tests conducted correspond to two-sample t-tests with unequal variances. All mentions of
p-values correspond to two-sided tail probabilities. All mentions of statistical significance
correspond to a p-value threshold of 0.01 (we also provide the exact p-values alongside).
Multiple testing is accounted for using the Bonferroni correction. The effect sizes refer to
Cohen’s d. Wherever applicable, the error bars in the figures represent 95% confidence
intervals.

Wherever applicable, we also perform our analyses on a subset of the submitted papers
which we term as the top 2k papers. The top 2k papers comprise all of the 568 accepted
papers, and an equal number (568) of the rejected papers. The 568 rejected papers are
chosen as those with the maximum mean score (where the mean for any paper is taken across
all reviewers and all reviewers).

3.1 Reviewer and AC bids

A large number of conferences in computer science ask area chairs and/or reviewers to bid
which papers they would like or not like to review, in order to obtain a better understanding
of the expertise and the preferences of reviewers. Such an improved understanding is desirable
as it leads to a more informed assignment of reviewers to papers, thereby improving the
overall quality of the review process.

Figure 1 depicts the distribution of number of bids on papers submitted by area chairs
and reviewers in NIPS 2016. Panels (a) and (b) of the figure depict the distribution of
counts per paper for reviewers and area chairs respectively; panels (c) and (d) depict the
distribution per area chairs and reviewers. The “not willing” and “in-a-pinch” bids were
considered negative bids, whereas “willing” and “eager” bids were considered positive bids.
From the data, we observe that there are very few positive bids, but a considerably higher
number of negative bids.

The distribution of number of bids by reviewers is skewed by few reviewers who bid
(positive and negative) on too many papers: 27% of reviewers make 90% of all bids, and
50% of reviewers make 90% of all positive bids. Moreover, there are 148 reviewers with no
(positive or negative) bids and 1201 reviewers with at most 2 positive bids. In comparison,
NIPS 2016 assigned at least 3 papers to most reviewers (and many other conferences also do
likewise). We thus observe that a large number of reviewers do not even provide positive bids
amounting to the number of papers they would review. As a consequence of the low number
of bids by reviewers, we are left with 278 papers with at most 2 positive bids and 816 papers
with at most 5 positive bids. In contrast, NIPS 2016 assigned 6 reviewers to most papers.
There is thus a significant fraction of papers with fewer positive bids than the number of
requisite reviewers. Finally there are 1090 papers with no positive bids by any AC.
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Figure 1: Histogram of number of positive and negative bids (x-axis; on a logarithmic
scale) per entity (counts on y-axis) for various entities. The first column in each histogram
represents number of entities with 0 bids. For example, the first column of panel (c) depicts
that 756 reviewers made zero positive bids and 425 reviewers made zero negative bids.

Summary 1: Reviewer and AC bids

Key observations:

• There are very few positive bids by reviewers, with 278 papers receiving at most
2 positive bids and 816 papers receiving at most 5 positive bids.

• From the reviewers’ side, the bids are highly skewed: 50% of reviewers make 90%
of all positive bids, 148 reviewers make no (positive or negative) bids, and 1201
reviewers make at most 2 positive bids.

• There are 1090 papers with no positive bids by any AC.

Action items:

• When a reviewer or AC logs into the system, show unbid papers on top.

• Inform reviewers of the procedure employed to use their bids for assigning papers.
Make reviewers aware of the benefits of bidding, such as receiving more relevant
papers to read and serving the community by improving the review process.

Open problems:

• How to incentivize more (positive) bids so that the organizers understand prefer-
ences better for accurate reviewer assignment?

• Design a principled means of combining bids, paper content-reviewer profile
similarity, and subject similarity.
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Figure 2: Histogram of number of reviews.

3.2 Reviewer assignment

Figure 2 depicts the histograms of the number of reviewers assigned per paper, and the
number of papers handled by each reviewer.

In order to ensure that the information about each paper “spreads” across the entire
system, it is important that there is no set of reviewers or papers that has only a small
overlap with the remaining reviewers and papers (Olfati-Saber et al., 2007; Shah et al.,
2016a). To analyze whether this was the case, we considered two graphs. We built a reviewer
graph that has reviewers as vertices, and an edge between any two reviewers if there exists
at least one paper that has been reviewed by both of them. Analogously we built a paper
graph, where vertices represent papers, and we connect two papers by an edge if there exists a
reviewer who has reviewed both papers. Note that the graph structure is in part dictated by
a constraint on the maximum number of papers per reviewer as well as the specified number
of reviewers per paper.

Our objective is to examine the structure of the graphs and determine if there were any
separated communities of nodes. In order to do so, we employ a method based on spectral
clustering. Formally, denote any graph as G = (V,E) where V is set of nodes, and E is
the set of (undirected) edges between nodes, and let |V | denote the number of nodes in the
graph. We can denote graph connectivity by its associated adjacency matrix A which is a
(|V | × |V |) matrix; we have Aij = 1 if there is an edge between nodes i and j and Aij = 0
otherwise. With this notation, a quantity known as the “conductance” Φ of any set of nodes
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Figure 3: Conductance value as function of varying cluster size. The x-axes in these plots
represent the normalized cluster size k/|V |.
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Figure 4: Graphs depicting connectivity of reviewers and that of papers for NIPS 2015 and
NIPS 2016. The nodes in black (dark) show set of nodes identified by the local minima in
the conductance plots (Figure 3) for NIPS 2015, and the remaining nodes are plotted in blue
(light).
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Figure 5: Histogram of subject areas in the identified cluster (from Figure 4) of reviewers in
NIPS 2015 which is not well connected with the set of remaining reviewers.

S ⊂ V is then defined as:

Φ(S) =

∑
i∈S,j 6∈S

Aij

max{|S|, |V \S|}
,

where V \S is the complement of set S. A lower value of the conductance indicates that the
nodes in the cut are less connected to the remaining graph. Next, with a minor abuse of
notation, the conductance of a graph as function of cluster sizes is defined as:

Φ(k) = min
S∈V,|S|=k

Φ(S),

for every k ∈ {1, . . . , |V | − 1}. The plot of k versus Φ(k) is called a Network Community
Profile or NCP plot (Leskovec et al., 2008). The NCP plot measures the quality of the least
connected community (lowest conductance) in a large network, as a function of the size of the
community. Although computing the function Φ(k) exactly may be computationally hard,
an approximate value can be computed using a simple “second left eigenvector” procedure
(Section 2.3 of Benson et al., 2015). A well connected graph would have a smooth plot of
Φ(k) with a minima at around k = |V |/2.

Figure 3 shows the NCP plot for an increasing number of papers (respectively reviewers)
in the paper graph (respectively reviewer graph). For reference we also plot the same curve
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for graphs associated with NIPS 2015 conference. Both plots for NIPS 2015 have local
minima at around k = 0.96|V |, indicating that there is a densely connected community of
reviewers and papers that are not well connected with the rest of the graph. In contrast,
the plot associated with NIPS 2016 decreases smoothly and reaches its global minimum
when half of the nodes are in one cluster and the other half in another cluster, indicating an
absence of such a fragmentation.

In Figure 4, we plot the graph of reviewers and papers using the algorithm of Fruchterman
and Reingold (1991). In these figures we identify the set of nodes that are identified using the
aforementioned NCP method; these nodes are colored black (dark) in the figure in contrast
to the blue (light) color of the remaining nodes. We can see from the Figure 4 that these
nodes are on the periphery of the network with lower connectivity compared to the rest of
the graph.

We further examine the cluster of reviewers in NIPS 2015 which is not well connected
with the rest. In Figure 5, we plot the decomposition of this set in terms of the primary
subject areas indicated by the reviewers. Our analysis reveals that a bulk of this cluster
comprises a single subject area—reinforcement learning. Conversely, 50 out of 78 reviewers
who identified their primary subject area as reinforcement learning lie in this cluster. All in
all, graph connectivity issues of this form can lead to increased noise or bias in the overall
decisions. Our main message for future conferences is to employ such methods of graph
analysis in order to catch issues of this form at a global level (not just local to individual
ACs) before the reviews are assigned.

Summary 2: Reviewer assignment

Key observations:

• A cluster of papers and reviewers primarily in the reinforcement learning area
are not well connected to the remaining papers and reviewers in the NIPS 2015
reviewer assignments. We did not find any such separated cluster in NIPS 2016.

Action items:

• Use graph-theoretic techniques to check global structure of graph for reviewer
assignment.

Open problems:

• Design principled graph-theoretic techniques, tailored specifically to the nuances
of peer-review graphs, to verify soundness of reviewer assignments.

3.3 Review-score distribution and mismatches in calibration

Recall from Section 2.3 that in the review process, for each criterion, the reviewers were
asked to provide a score on a scale of 1 to 5. Specifically, they were asked to provide a score
of 5 for submissions they considered as being in the top 0.1%, a score of 4 for submissions
that they deemed to be in the top 3%, and a score of 3 for submissions they deemed to be in
the top 30%. In this section, we compare the actual empirical distribution of reviewer scores
with the distribution prescribed in the guidelines to reviewers.

11



Shah, Tabibian, Muandet, Guyon, von Luxburg

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
mean score

0.0

0.5

1.0

1.5

reject accept as poster accept as oral

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
mean score

0.0

0.5

1.0

1.5

reject accept as poster accept as oral

(a) clarity (b) impact

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
mean score

0.0

0.5

1.0

1.5

reject accept as poster accept as oral

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
mean score

0.0

0.5

1.0

1.5

reject accept as poster accept as oral

(c) novelty (d) quality

Figure 6: Distribution of the mean value (across reviewers) of the score per paper for different
criteria, separated according to the final decisions.

We begin by computing the distribution of the mean value (across reviewers) of the score
per paper for different criteria, separated according to the final decisions. We plot these
distributions in Figure 6 for each of the four criteria of clarity, impact, novelty, and quality
separately.

At first glance, these histograms and numbers look quite reasonable. However, what was
surprising to us was the percentage of papers that received any particular score – see Table 1.
Even though the reviewers were asked to give a paper a score of 3 (poster level) or higher
only if they think the paper lies in the top 30% of all papers, nearly 60% of the scores were 3
or higher. Similar effects occurred for scores 4 and 5.

One possible explanation for this phenomenon is that there were a large number of
high-quality submissions to NIPS 2016. Such an improvement in quality has obvious upsides

1
(low or very low)

2
(sub-standard)

3
(poster level:
top 30%)

4
(oral level:
top 3%)

5
(award level:
top 0.1%)

Impact 6.6% 36.4% 45.9% 10.7% 0.4%
Quality 6.7% 38.3% 45.0% 9.6% 0.4%
Novelty 6.4% 35.0% 48.4% 9.8% 0.4%
Clarity 7.1% 28.1% 48.9% 14.7% 1.2%

Table 1: Distribution of the reviews according to the provided scores for each of the four
criteria. The column headings indicate the guidelines that were provided to the reviewers.
Observe that the percentage of reviews providing scores of 3, 4 or 5 is considerably higher
than the requested values.
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such as uplifting the overall experience of the conference. The downside is that the burden
on selecting the accepted papers among all those good submissions is with the area chairs,
who now still had to reduce the 60% good papers to 23% accepted papers. A second possible
explanation is that the reviewers were not calibrated that well with respect to the paper
quality. A third possible explanation is that the elicitation was in terms of a score in the set
{1, 2, 3, 4, 5} which represents a linear scale with equal spacing, whereas the text instructions
expected reviewers to rate on a non-linear scale. This mismatch could be a source of bias in
the elicited ratings. Using a linear rating scale when the actual elicitation is non-linear is a
common practice in many conferences, and it will be useful to perform a similar analysis on
the data from these conferences. In either case, we understand that this obviously led to the
frustration of many authors, whose papers received good scores but were rejected.

In addition to scores for the four criteria, the reviewer could also indicate whether the
paper had a “fatal flaw”. We observe that 32% of all papers were flagged to have a “fatal
flaw” by at least one reviewer.

Summary 3: Review-score distribution and mismatches in calibration

Key observations:

• The fraction of reviews with high ratings is significantly higher than what was
asked from the reviewers. For instance, nearly 60% of scores are 3 or higher even
though reviewers were asked of scores of 3 or higher only when they thought the
paper was in the top 30% of submissions.

Action items:

• If eliciting ratings, do not use numbered scales (that is, do not use “1”, “2”, . . . ).
Alternatively, one may employ other means of elicitation such as rankings.

• When making reviews visible to authors, show the percentile with respect to the
data instead of absolute scores, e.g., provide feedback of the form “your paper is
in the top 40% of all submitted papers in terms of novelty...”

• Include an expert in elicitation, survey methodology or user interface design to
help to design what and how to ask (O’Hagan et al., 2006).

Open problems:

• Since each reviewer reviews only a small subset of the submitted papers, how to
calibrate the reviews?

• What is the best interface for eliciting reviewer responses?

• What is the best way to present the review results to authors in order to provide
most useful feedback and minimizing distress?

3.4 Different types of reviewers

In this section, we compare the reviews provided by the volunteer (pool 2) reviewers to those
provided by the invited (pool 1) reviewers. The inclusion of volunteer reviewers has two
important benefits: (a) It increases the transparency of the review process. (b) Volunteer
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reviewers may be new today but in 2 years down the line they will gain experience and
become useful to accommodate the massive growth of the conference. Given these benefits
of including volunteer reviewers, this analysis looks for any systematic differences between
the review scores provided by the two pools of reviewers.
Mean scores.

Junior reviewers are often perceived to be more critical than senior reviewers (Tomiyama,
2007; Toor, 2009). As Tomiyama (2007) notes, “You submit your manuscript and then just
pray it doesn’t get sent to a junior faculty member – young faculty are merciless!” In this
section, we examine this hypothesis in the NIPS 2016 reviews. In Figure 7, we plot the
mean score provided by each group of reviewers for each individual criterion. We apply a
t-test on observed scores and compute the effect size to examine if there is a statistically
significant difference in the underlying means of the scores provided by different categories
of reviewers. For Pool 1 vs Pool 2, this analysis shows only clarity to have a statistically
significant difference between the two pools after accounting for multiple testing. Specifically,
the p-values (before accounting for multiple testing) and effect sizes for the four criteria are:
novelty p=0.2143, d= 0.0264, quality p=0.0061, d= 0.0581, impact p=0.0961, d= 0.0353,
and clarity p=1.91× 10−04, d= 0.0788. Sample sizes for Pool 1 and Pool 2 reviews are 9244
and 4430 respectively.

A similar analysis between senior researchers (e.g., faculty), junior researchers (e.g.,
postdocs), and PhD students reveals no significant difference between these categories. The
remainder of this paragraph details the p-values and effect sizes. The p-values (before
accounting for multiple testing) and effect sizes for senior researcher vs. junior researchers for
the four criteria are: quality p=0.0071, d= −0.0662, novelty p=0.0037, d= −0.0704, impact
p=0.0199, d= −0.0569, and clarity p=0.3064, d= −0.0253; for junior researcher vs. students:
quality p=0.4662, d= 0.0164, novelty p=0.8247, d= 0.0049, impact p=0.8733,d= −0.0036,
and clarity p=0.3529, d= 0.0209; for senior researcher vs. students: quality p=0.0440,
d= −0.0454, novelty p=0.0499, d= −0.0629, impact p=0.0076, d= −0.0601 and clarity
p=0.9968, d= 0.00009. The sample sizes for senior, junior and student reviews are: 6335,
3938, and 3354 respectively. This analysis excludes 47 reviews by reviewers who did not
identify themselves as any of the above categories.
Self-reported confidence. We next study the difference in the self-reported confidence
among different groups of reviewers. The mean value of reported confidence is plotted in
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Figure 7: Mean of scores provided for different criteria grouped by different reviewer types.
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Figure 8. In this case, we see a statistically significant correlation between seniority and
self-reported confidence. Following are p-values (before accounting for multiple testing) and
corresponding effect sizes: senior vs. junior researcher: p=4.1683× 10−11, d= 0.1604, senior
researcher vs. PhD student: p=3.308 × 10−57, d= 0.3577 and junior researcher vs. PhD
student: p=8.074× 10−15, d= 0.1758. We observe a similar difference in confidence score
and effect size between pool 1 and pool 2 reviewers: p=3.9679 × 10−44, d= 0.2943.
Consistency. We now study the consistency within reviewers of pool 1 (invited), and
within reviewers of pool 2 (volunteer). The consistency captures the amount of variance
or disagreements in the reviews provided by that pool. As noted by Ragone et al. (2013),
“the disagreement among reviewers is a useful metric to check and monitor during the review
process. Having a high disagreement means, in some way, that the judgment of the involved
peers is not sufficient to state the value of the contribution itself. This metric can be useful
to improve the quality of the review process...”

Concretely, consider any pair of reviewers within a given pool, any pair of papers that is
reviewed by both the reviewers, and any criterion. We say that this pair of reviewers agrees
on this pair of papers (for this criterion) if both reviewers rate the same paper higher than
the other; we say that this pair disagrees if the paper rated higher by one reviewer is rated
lower by the other. Ties are discarded. We count the total number of such agreements and
disagreements within each of the two pools.

Figure 9 plots the fraction of disagreements within each of the two pools for the cardinal
scores. At this aggregate level, we do not see enough difference to conclusively rate any one
pool’s intra-pool agreement above the other (note that the sample size for pool 2 is small, as
listed below). Specifically, for the Pearson’s chi-squared test and effect sizes of pool 1 vs.
pool 2, the results for the four criteria (before accounting for multiple testing) are: novelty
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Figure 8: Self-reported confidence grouped by different reviewer types.
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Figure 9: Proportions of inter-reviewer disagreements on each criterion.
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p=0.9269 d= -0.0426, quality p=0.8648, d= 0.0039, impact p=0.7296, d= -0.0936, and
clarity p=0.8029, d= -0.0709. The total sample sizes for the three categories of overall, pool
1 and pool 2 respectively across the four criteria are: novelty 554, 282 and 49; quality 523,
285 and 41; impact 513, 276 and 37; and clarity 572, 286 and 42. Section 3.8 presents similar
consistency results for the two pools in the ordinal rankings. (We also attempted to run this
analysis restricted to the top 2k papers, but this restriction results in a very low sample
complexity and hence underpowered tests.)
Participation in discussions. One fact that caught our attention was the amount of
participation in the discussion by the different reviewer groups: senior reviewers take much
more active roles in the discussions than junior researchers. Please see Section 3.5.1 for
details, where we provide a more detailed study of the discussion phase.

Summary 4: Different types of reviewers

Key observations:

• We find no evidence of a critical bias of junior reviewers (except for a small
difference in the “clarity” criterion).

• Self-reported confidence correlates with seniority.

• Volunteer reviewers yield benefits of scalability and transparency, with no ob-
servable biases and a similar inter-reviewer agreement as the invited pool. These
reviewers can soon be an asset in dealing with the rapid growth of conferences
such as NIPS.

Action items:

• Continue to include volunteer reviewers with an appropriate moderation of their
reviews.

Open problems:

• How do we make most effective use of volunteer reviewers in a manner that
authors can trust, which reduces randomness in the peer-review process, and
trains junior reviewers effectively?

3.5 Rebuttals and discussions

This section is devoted to the analysis of the rebuttal stage and the participation of reviewers
in discussions. We begin with some summary statistics. The authors of 2188 papers submitted
a rebuttal. There were a total of 12154 reviews that came in before the rebuttals started,
and with some more reviews received after the rebuttal round, the total number of {reviewer,
paper} pairs eventually ended up being 13674. Out of the 12154 reviews that were submitted
before the rebuttals, the scores of only 1193 changed subsequently. These changed review
scores were distributed among 886 papers.

There were 842 papers for which no reviewer participated in the discussions, 339 papers
for which exactly one reviewer participated, and 436, 376, 218, 135 and 49 papers for which
2, 3, 4, 5 and 6 reviewers participated respectively. There were a total of 5255 discussion
posts, and 4180 of the 13674 {reviewer, paper} pairs participated in the discussions.
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3.5.1 Who participates in discussions?

We compare the amount of participation of various groups of reviewers in the discussion
phase of the review process.
Pool 1 (invited) versus pool 2 (volunteer) reviewers. We compare the participation
of the reviewers in two pools in the discussions as follows, and plot the results in Figure 10(a).
In order to set a baseline, we first compute the total number of {pool 1 reviewer, paper}
pairs and the total number of {pool 2 reviewer, paper} pairs – these counts are computed
irrespective of whether the reviewer participated in the discussions or not. We plot the
proportions of these counts as the “count” bar in the figure. Next we compute the total
number of posts made by pool 1 reviewers and that made by pool 2 reviewers – the resulting
proportions are plotted as the “posts” bar in the figure. Finally, we compute the number of
{pool 1 reviewer, paper} pairs in which that reviewer put at least one post in the discussion
for that paper, and the number of {pool 2 reviewer, paper} pairs in which that reviewer
put at least one post in the discussion for that paper. We plot the two proportions in the
“papers” bar. The total sample sizes for the categories of counts, posts and papers are 13674,
5255 and 4180 respectively.

We tested whether the mean number of posts per {reviewer, paper} pair is identical for
the two pools of reviewers. For the null hypothesis that the means are identical for the two
pools of reviewers, the t-test yielded p = 1.36× 10−4. We also conducted this analysis for the
restriction of papers to the top 2k, and for this subset, the t-test yielded p = 9.458× 10−4.
We see a statistically significantly higher participation by the pool 1 reviewers as compared
to the pool 2 reviewers in the discussions. However, the absolute amount of participation
by either group is moderate at best, and the effect sizes are small with d= 0.0704 and d=
0.0894 for analysis of all papers and top 2k papers respectively.
Student versus non-student reviewers. We calculated the above three sets of quantities
for student and non-student reviewers. Figure 10(b) depicts the results. We tested whether
the mean number of posts per {reviewer, paper} pair for the student reviewers is identical to
the non-student reviewers. For the null hypothesis that the means are identical, the t-test
yielded p = 3.016 × 10−4. When restricted to the top 2k papers, the t-test yielded p =
8.932 × 10−4. We see a statistically significantly higher participation by the non-student
reviewers as compared to the student reviewers in the discussions. However, the total amount
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(a) invited and volunteer reviewers

papers posts count0.00
0.25
0.50
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Figure 10: Proportions of contributions from different types of reviewers in discussions
(“posts” and “papers”) and the total number of such reviewers (“count”).
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Figure 11: Mean absolute value of the change in the scores from before the rebuttal round to
the end of the discussion phase.

of participation by either group is not too large, and the effect sizes are small with d= 0.0695
and d= 0.0929 respectively.

3.5.2 How do discussions change the scores?

A total of 1193 out of 12154 reviews that were submitted before rebuttals changed subsequently.
These changed reviews were distributed among 886 papers. As a result, the amount of change
in review scores is quite small. Figure 11 depicts the score change – in absolute value –
averaged across all reviewers and all papers. While the allowed range of the scores is 1 to 5,
the change in mean score is less than 0.1.

From the point of view of reviewers, we see a significant correlation between participation
in the discussions and the final decisions. Specifically, for each paper we computed the mean
of the scores given by all reviewers who participated in the discussions and the mean of the
scores given by all reviewers who did not participate (when there was at least one reviewer
of each type). We discarded this paper if both types of reviewers provided an identical mean
score. If the participating reviewers gave a higher mean score than the non-participating
reviewers and if the paper was accepted, we counted it as an agreement of the final decision
with the participating reviewers. If the participating reviewers gave a lower mean score than
the non-participating reviewers and if the paper was not accepted, then also we count it as an
agreement of the final decision with the participating reviewers. Otherwise, we counted the
paper as having a disagreement between the final decisions and the participating reviewers.
From the data, we observe a statistically significant agreement of the final decisions and
the participating reviewers with p = 1.6 × 10−6 with d= 0.13. We continue to observe
a statistically significant correlation when this analysis is performed restricted to pool 1
reviewers (p = 7.7×10−4) or to pool 2 reviewers (p = 1.3×10−4) alone. Of course, we cannot
tell the causality from this correlation, as to whether the discussions actually influenced the
decisions or not.

All in all, we observe that only a small fraction of the reviews change scores following the
rebuttals. Moreover the magnitude of this change in scores is very small. This observation
suggests that this rebuttal process may not be very useful. That said, there are various
qualitative aspects that are not accommodated in this quantitative aggregate statistic. First,
it may be possible that more reviews changed with respect to the text comments but the
reviewers just did not bother to change the scores – we are unable to check this property since
there is no snapshot of the text comments before the rebuttal. Second, there are a reasonable
number of discussion posts, however, we do not know what fraction of these posts where
reviewers shifted from their earlier opinion. Third, the final decisions are correlated positively
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with the reviewers who participated in discussions. Taking these factors into account, we
think that the present rebuttal system should be put under the microscope regarding its
value for the time and effort of such a large number of people. It may also be worth trying
alternative systems of recourse for authors, such as a formal appeals process, that help to
put more focus on the actual borderline cases.

Summary 5: Rebuttals and discussions

Key observations:

• There is little change in scores post-rebuttal and a moderate amount of discussion.

• Invited and non-student reviewers participate marginally more in the discussions.

• Final decisions correlated with scores given by reviewers who participated in
discussions, even when stratified by individual pools.

Action items:

• Force every reviewer to change or confirm their scores after the end of the
discussion session.

Open problems:

• How to incentivize reviewer participation in rebuttals/discussions?

• How to de-bias reviewers from their initial opinion?

• Compare the amount of discussion and changes in scores with that in open review
processes (particularly when open reviews are used for conferences of this scale).

• Compare the efficiency of the rebuttal process with a post-decision appeal proce-
dure to catch only cases that deserve discussion (i.e., possible mistakes).

3.6 Distribution across subject areas

Figure 12 plots scatter plot of the number of submitted papers and the number of accepted
papers per (primary) subject area. Of course the proportions are not identical, but the plots
do not show any systematic bias either towards or against any particular areas. A chi-square
test of homogeneity of the two distributions failed to detect any significant difference between
the two distributions: p=0.6029, χ2(dof = 62,#samples = 2425) = 57.51.

Summary 6: Distribution across subject areas

Key observations:

• No observable bias across subject areas in terms of final acceptances.

Action items:

• Test for systematic biases for/against any subject area before announcing decisions.

Open problems:

• How to assimilate different, subjective opinions of reviewers across subject areas.
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Figure 12: Number of accepted vs submitted papers per (primary) subject area. The indices
of the subject areas are provided on the right of the corresponding points and their names
are provided in Appendix A. For subject areas with same number of accepted papers, the
labels associated with each subject area are listed (from left to right) in ascending order
of number of submitted papers; if the number of submitted papers is also identical then
the indices are grouped with an “&” sign. Both axes are on a logarithmic scale. The plot
excludes subject area 62 since it had no accepted papers.

3.7 Quantifying the randomness

Quantifying the extent to which the outcome of a peer-review process is different from a
random selection of papers is one of the most pressing questions for the scientific commu-
nity (Somerville, 2016). In this section, we conduct two analyses to quantify the randomness
in the review scores in NIPS 2016.
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3.7.1 Messy middle model

The NIPS 2014 experiment (Lawrence and Cortes, 2014) led to the proposal of an interesting
“messy middle” model (Price, 2014). The messy middle model postulates that the best and
the worst papers are clear accepts and clear rejects respectively, whereas the papers in the
middle suffer from random decisions that are independent of the content of the papers. The
messy middle model is obviously a stylized model, but it nevertheless suggests an interesting
investigation into the randomness in the reviews and decisions of the papers that lie in the
middle. In this section, we describe such an investigation using the NIPS 2016 data.

The messy middle model assumes random judgments for the middle papers. If the messy
middle model were correct then for any pair of papers in the middle, and any pair of common
reviewers, the probability of an agreement on the relative ranking of the two papers must be
identical to the probability of disagreement. With this model in mind, we restrict attention
to the papers in the middle, and then measure how far the agreements of the reviewers are
from equiprobable agreements and disagreements. An analysis of this quantity for various
notions of the “middle” papers yields insight into the messiness in the reviews for papers in
the middle.
Procedure: We now describe the procedure employed for the analysis. Here we let n
denote the total number of papers submitted to the conference and β denote the fraction of
papers accepted to the conference (we have n = 2425 and β = 0.237 in NIPS 2016). The
procedure is associated to two parameters: µ is the minimum number of samples required
and α is a threshold of messiness. We choose µ = 100 and α = 0.01 in our subsequent
analysis, noting that the overall conclusions are robust to these choices.

1. Rank order all papers with respect to their mean scores. Denote this ordering as Θ.

2. For every t ∈ [0, 1] and b ∈ [0, 1] (up to some granularity), do the following.

2.1 Initialize variables nagree[t, b] = ndisagree[t, b] = 0.

2.2 Consider the set of papers obtained by removing the top t fraction of papers and
bottom b fraction of papers from Θ. Denote this (unordered) set of “middle papers”
as M .

2.3 If (β − t)n < µ or ((1− β)− b)n < µ then continue to the next values of (t, b) in
Step 2.

2.4 Consider any pair of reviewers and any pair of papers in M that is reviewed by
both the reviewers. We say that this pair of reviewers agrees on this pair of papers
if both reviewers provide a higher mean score (mean computed across all criteria)
to the same paper as compared to the other paper. We say that this pair disagrees
if the paper rated higher by one reviewer (in terms of the mean score across the
criteria) is rated lower by the other reviewer. Ties are discarded. We count the
total number of such agreements (denoted as nagree[t, b]) and disagreements (denoted
as ndisagree[t, b]) within each of the two pools.

3. Find the largest value of (1−t−b) such that we have (nagree[t, b]+ndisagree[t, b]) ≥ µ and
nagree[t,b]

nagree[t,b]+ndisagree[t,b]
< 0.5+α. This largest value of (1−t−b) is defined as the size of the

messy middle.
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Figure 13: Amount of randomness in the reviews.

Let us spend a moment interpreting some steps of the procedure. Step 2.3 and the µ-
condition in Step 3 ensure that there are a sufficient number of samples for any computation
on the messy middle region. Specifically, the conditions (β − t)n < µ and ((1− β)− b)n < µ
ensure existence of a sufficient number of papers above and below the acceptance threshold.
Under this constraint, Step 3 then finds the largest window of papers in the middle such
that the fraction of reviewer-agreements is at most (0.5 + α). If the objective is to minimize
inter-reviewer disagreement (Cole et al., 1981; Whitehurst, 1984; Lindsey, 1988), then a
smaller size of the window is a desirable property.

We can now use this analysis to compare messy middle window sizes for two or more
conferences. When making such a comparison, we make one adjustment. In the last step
(Step 3), we consider only those values of (t, b) such that nagree[t, b] +ndisagree[t, b] ≥ µ for both
datasets. We compare the sizes of the messy middle considering only these values.

Results: We used this procedure to compute the size of the messy middle in NIPS 2016
and also in NIPS 2015. The granularity we used is 1/20, that is, t, b ∈ {0, 1/20, 2/20, . . . , 1}.
NIPS 2015 had a marginally higher average number of reviews per paper as compared to
NIPS 2016. We set µ = 100 and α = 0.01 (note that the conclusions drawn below are robust
to these choices). The results of the analysis are tabulated in Figure 13a.

In the NIPS 2016 data, we observe that the size of the messy middle is 30%. Specifically,
if we remove the bottom 70% of papers (and none of the top papers) then we see that the
inter-reviewer agreements are near-random, but farther from random otherwise. On the other
hand, we observe that the size of the messy middle is 45% in the NIPS 2015 data, which
occurs when removing 15% of the top papers and 40% of the bottom papers.

Such an analysis is useful in comparing the noise in the review data across conferences. It
can particularly be useful to evaluate the effects of any changes made in the peer-review process.
The ease of doing this post hoc analysis, without necessitating any controlled experiment,
is a significant benefit to this approach of analysis. In order to enable comparisons of the
size of the messy middle of NIPS 2016 with other conferences, we provide the values of
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nagree[t,b]
nagree[t,b]+ndisagree[t,b]

and (nagree[t, b] + ndisagree[t, b]) for the NIPS 2016 data for all values of
(t, b) in Appendix B.

It is important to note that this post hoc analysis is not strictly comparable to the
NIPS 2014 controlled experiment because we do not have access to a true ranking or a
counterfactual. That said, since such an analysis can easily be performed post hoc using the
data from reviews and does not require any special arrangement in the review process, it
would be useful to see how these results compare to the data from other conferences.

3.7.2 A bootstrapped analysis

In this section, we conduct an analysis to measure the randomness in the reviews in the
NIPS 2016 data compared to that of random selection. In our analysis, we first conduct 1000
iterations of the following procedure. For each paper, we consider the set of reviewers who
reviewed this paper. We then choose the same number of reviewers uniformly at random
with replacement from the set of original reviewers for this paper. We then take the mean of
the scores across all criteria and across all the sampled reviewers for that paper. Next we
rank order all papers in terms of these mean scores and choose the top 23.7% of the papers
as “accepted” in this iteration and the others as rejected.

Our analysis focuses on the variance of the acceptance decisions for each paper. At the
end of all iterations, for each paper, we compute the fraction of iterations in which the paper
was accepted. Letting βi ∈ [0, 1] denote this fraction for any paper i, the variance in the
acceptance decisions for this paper equals βi(1− βi). We plot a histogram of the computed
variances (for every paper) in Figure 13b. For comparison, note that in an ideal world, the
variance of the decisions for each paper would be zero. Observe that a large fraction of
rejected papers as well as a large fraction of papers that were accepted as oral presentations
have a near-zero variance. On the other hand, a notable fraction of papers accepted as
posters as well as those rejected have a variance close to its largest possible value of 1

4 .

We conclude with a clarifying comment. In the NIPS 2016 data, the messy middle
analysis outputs the top 30% of the papers as most noisy, while the bootstrap analysis shows
a very low variance on the top (oral) papers. This may appear as a contradiction, but it
is not. Notice that the messy middle analysis primarily focuses on the reviewers’ opinions
on the pairwise-relative values of reviews. On the other hand, the bootstrapped analysis
focuses on values of reviews in relation to all other papers. Thus we have that there is a
significant amount of disagreement at the top regarding which paper is better within the
top set of papers, but a significant agreement that most of these papers are good enough for
acceptance in an absolute sense.
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Summary 7: Quantifying the randomness

Key observations:

• A notable subset of papers incurs “messy middle” randomness. The messy middle
region is smaller in NIPS 2016 as compared to NIPS 2015.

• A bootstrapped analysis shows a significant variance in reviewer scores for a
notable fraction of papers that are accepted as posters. A large fraction of papers
accepted for oral presentations or rejected have near-zero variance.

Action items:

• Measure and compare post hoc goodness (using the analyses in this paper or
through other methods) of various review processes in order to choose a good
review process in a data-dependent manner.

Open problems:

• Principled design of statistical tests for post hoc comparison of goodness of
different review processes.

3.8 Ordinal data collection

The data collected from the reviewers in the NIPS 2016 review process comprises cardinal
ratings (in addition to the free-form text-based reviews) where reviewers score each paper on
four criteria on a scale of 1 to 5. A second form of data collection that is popular in many
applications, although not as much in conference reviews, is ordinal or comparative ranked
data. The ordinal data collection procedure that we consider asks each reviewer to provide a
total ordering of all papers that the reviewer reviewed.

There are various tradeoffs between collecting cardinal ratings and ordinal rankings. In
the context of paper reviews, cardinal ratings make reviewers read each individual paper
more carefully (and not make snap judgments), and can elicit more than a just one bit of
information. On the other hand, ordinal rankings allow for nuanced comparative feedback,
help avoid ties, and are free of various biases and calibration issues that otherwise arise in
cardinal scores (Harzing et al., 2009; Krosnick and Alwin, 1988; Russell and Gray, 1994;
Rankin and Grube, 1980; Cambre et al., 2018). We refer the reader to the papers by Barnett
(2003); Stewart et al. (2005); Shah et al. (2016a,b); Heckel et al. (2016) and references therein
for more details on ordinal data collection and processing. In the present paper, we present
three sets of analyses with the ordinal rankings collected from reviewers.

3.8.1 Tie breaks

An ordinal ranking of the papers provided by a reviewer ensures that there are no ties in the
reviewer’s evaluations. On the other hand, asking cardinal scores can result in scores that
are tied, thereby preventing an opportunity for the AC to discern a difference between the
two papers from the provided scores.

In order to evaluate the prevalence of ties under cardinal scores, we performed the
following computation. For every {paper, paper, reviewer} triplet such that the reviewer

24



Analysis of NIPS 2016 Peer-review Process

reviewed both papers, and for any chosen criterion (i.e., quality, novelty, impact, and clarity),
we computed whether the reviewer provided the same score to both papers or not. We
totaled such ties and non-ties across all such triplets.

Figure 14 depicts the proportion of ties computed across all submitted papers. The total
sample size is 26106. Observe that a significant fraction – exceeding 30% for each of the four
criteria – of pairs of reviewer scores are tied. When only the top 2k papers were used in the
calculation, the fraction of ties in each criterion further increases by approximately 10% to
15% of the respective value in the setting of all papers. In conclusion, these results reveal a
significant proportion of ties in the cardinal scoring scheme. The use of ordinal rankings, on
the other hand, does not suffer from such a drawback.

3.8.2 Consistency of ordinal ranking data

While there is substantial literature on benefits of collecting data in an ordinal ranking form,
several past works also recommend verifying if the application setting under consideration is
appropriate for ordinal rankings. For instance, Russell and Gray (1994) state the benefits
of ranking for settings “where the items are highly discriminable”; Peng et al. (1997) ask
respondents to rank 18 values in order of importance but observe unstable and inconsistent
results; Harzing et al. (2009) argue that ranking generally requires a higher level of attention
than rating and that asking respondents to rank more than a handful of statements puts
a very high demand on their cognitive abilities. Accordingly, this section is devoted to
performing sanity checks on the ordinal ranking data obtained in NIPS 2016. We do so by
comparing certain measures of consistency of the ordinal data with the cardinal ratings for
the four criteria.
Agreements within ordinal rankings. For every pair of papers that have two reviewers
in common, we compute whether these two reviewers agree on the relative ordinal ranking of
the two papers or if they disagree. In more detail, we say that a pair of reviewers agrees on a
pair of papers if both reviewers rank the same paper higher than the other in their respective
ordinal rankings; we say that this pair disagrees if the paper ranked higher by one reviewer is
ranked lower by the other. Figure 15a depicts the proportion of disagreements for the ordinal
rankings in the entire set of papers, as well as broken down by the type of reviewer. First,
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Figure 14: Proportion of ties in reviewer scores. The bars titled “mean” and “median”
represent the mean and median scores across all four criteria.
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observe that the ordinal rankings have a comparable level of consistency as that observed
in the cardinal scores in Figure 9. Second, we observe no statistically significant difference
between the two pools: p=0.9849 for Pearson’s chi-squared test and effect size d= 0.0018.
The sample sizes are 696, 348 and 56 for all reviewers, pool 1 and pool 2 respectively.
Agreement of ordinal rankings with cardinal ratings. Let us now evaluate how well
the overall ordinal rankings associate with the cardinal scores given for the individual criteria.
For every pair of papers that have a common reviewer, we compare whether the relative
ordering of the cardinal scores for a given criterion agree with the ordinal ranking given by
the reviewer for the pair of papers. We report the proportion of disagreements in Figure 15b.
We observe the high amount of agreement of the ordinal rankings with the cardinal scores –
for instance, the median cardinal score agrees in about 90% of cases with the overall ordinal
rankings provided by the reviewers.
Agreement of ordinal rankings with final decisions. We finally compute the amount
of agreement between the ordinal rankings provided by the reviewers and the final decisions
of acceptance. We consider all {paper, paper, reviewer} triplets where the reviewer reviewed
both papers, and one of these papers was eventually accepted and the other was rejected.
For every such triplet, we evaluate whether the reviewer had ranked the accepted paper
higher than the rejected paper (“agreement”) or vice versa (“disagreement”). We report the
proportion of agreements and disagreements in Figure 15c. We see that there are roughly
five agreements for every disagreement.

When restricted to the top 2k papers, we observe that the disagreements of ordinal
rankings with final decisions increase to 27-28% in all three categories (overall, pool 1 and
pool 2) from 16-17% in the case of all papers. Note that the experiments on inter-reviewer
agreements do not permit an effective analysis when restricted to top 2k papers as the sample
size reduces quadratically (that is, reduces to a fraction .472 ≈ .2 of the sample size with all
papers).

3.8.3 Detecting anomalies

Ordinal rankings can be used to detect anomalies in reviews. We discuss this aspect in the
Section 3.9.

overall pool 1 pool 20.0

0.1

0.2

0.3

0.4

0.5

fra
ct

io
n 

of
 d

isa
gr

ee
m

en
t

(a)

quality novelty impact clarity mean median

(b)

overall pool 1 pool 2

(c)

Figure 15: Fraction of disagreements (a) within ordinal rankings between different pairs of
reviewer types; (b) between ordinal rankings and cardinal ratings (“mean” and “median” refer
to the mean and median of the cardinal scores for the four criteria); and (c) between ordinal
rankings and final acceptance decisions.
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Summary 8: Ordinal data collection

Key observations:

• Ordinal rankings are a viable option for collecting reviewer opinions.

• There are a large number of ties in ratings provided by reviewers: there are more
than 30% ties in each criterion and even greater fraction of ties in the top 2k
papers.

• Ordinal rankings can be used to check inconsistencies in the reviews.

Action items:

• Use a hybrid collection method which elicits and combines cardinal ratings and
ordinal rankings in a clever manner to avail benefits of both these types of data.

Open problems:

• Perform controlled experiments in order to quantify the benefits and possible
problems with ordinal rankings.

• Design algorithms to efficiently combine cardinal ratings for criteria and ordinal
overall rankings to provide useful guidelines to area chairs for their decisions.

3.9 Checking inconsistencies

In this section, we propose an automated technique to help reduce some human errors and
inconsistencies in the review process. In particular, we propose to automatically check
for inconsistencies in the review ratings provided by the reviewers. On finding any such
inconsistency, we propose to then have the area chairs either manually investigate this
inconsistency or to manually or automatically contact the reviewer requesting an explanation.
In what follows, we propose two notions of inconsistencies in regards to the NIPS 2016 review
process and quantify their presence in the NIPS 2016 review data.
Anomalies in criteria ratings. We investigate whether any reviewer indicated that paper
“A” is strictly better than paper “B” in all four criteria, but rank paper “A” lower than paper
“B” in the ordinal ranking. We find that there are 55 such pairs of reviews provided by 44
distinct reviewers. If we restrict attention to the top 2k papers, we find that that there are
10 such pairs of reviews provided by 10 distinct reviewers.1

Anomalies in fatal flaws. We now investigate if there are cases when a reviewer indicated
a fatal flaw in a paper, but that reviewer ranked it above another paper that did not have a
fatal flaw according to the reviewer. We found 349 such cases across 176 such reviewers. The
proportion of such cases is similar among volunteer and invited reviewers. Among the top 2k
papers, there are 55 such pairs across 33 reviewers.

One may think that the number of such cases is large because ordinal survey was done
after the review process, so people may not have remembered the papers well or may not
have done a thorough job as they knew it would not count towards the reviews. However,

1. Note that the total number of pairs of papers reduces more than 4-fold when moving from the set of all
papers to the top 2k set.
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the ordinal data actually is quite consistent with the cardinal data (Section 3.8.2). Hence we
do not think such a large discrepancy with fatal flaws can be explained solely due to such a
delay-related noise.

Two possible explanations for such anomalies are as follows. Either the reviewer may not
have done an adequate job of the review, or the set of provided criteria are grossly inadequate
to express reviewers’ opinions. In either case, we suggest automatically checking for such
inconsistencies (irrespective of whether ordinal or cardinal final ratings are used) during the
review process, and contacting the respective reviewers to understand their reasoning.2 We
hope that such a checkpoint will be useful in improving the overall quality of the review
process.

Summary 9: Checking inconsistencies

Key observations:

• 55 cases (across 44 reviewers) of a reviewer rating a paper higher than another
for all criteria but inverting the relative ranking of the two papers in the overall
ordering.

• 349 cases where a reviewer indicated a fatal flaw in a paper but ranked it higher
than another paper without any indicated fatal flaw.

Action items:

• Check for inconsistencies in the reviews and contact respective reviewers.

Open problems:

• What other inconsistencies can be checked in an automated manner?

4. Discussion and conclusions

NIPS has historically been the terrain of much experimentation to improve the review process
and this paper is our contribution to advance the state of the art in review process design. It
is an on-going debate to which extent the decision process should be automated and what
means could be used to automate it. We provide some elements to fuel this discussion. In this
paper, we reported a post hoc analysis of the NIPS 2016 review process. Our analysis yielded
useful insights into the peer-review process, suggested action items for future conferences,
and resulted in several open problems towards improving the academic peer-review process,
as enumerated throughout this paper.

Our tools include several means of detecting potential artifacts or biases, and statistical
tests to validate hypotheses made: Comparing the distribution of topics in submitted papers
and accepted papers; creating a graph of proximity of reviewers (according to commonly
reviewed papers) and papers (according to common reviewers) to detect potential disconnected
communities; test to compare two pools of reviewers; quantifying the noise in the review
scores. We also observed that the histogram of scores obtained included a significantly larger

2. This analysis was performed after completion of the review process, and hence reviewers were not
contacted for these inconsistencies.
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fraction of papers than the guidelines suggested. This observation suggests a more careful
design of the elicitation interface and the type of feedback provided to authors.

Selection biases that arise when recruiting reviewers and ACs in a review process of this
scale are difficult to deal with. Some designs in the selection of reviewers lend themselves
more to bias than others. In NIPS2016, we made some design choices of the review process
with the intention of reducing these biases. For instance, the recruitment of volunteer
author-reviewers helped increase the diversity of the reviewer pool. They were less prone
to selection bias compared to selecting reviewers by invitation only, primarily based on AC
recommendations. With respect to reducing bias across AC decisions, we introduced the
“AC buddy system” in which pairs of ACs had to make decisions jointly about all their
papers. This method scales well with the increase in number of papers, but is sub-optimal
to calibrate well decisions since buddy pairs form disjoint decision units (no paper overlap
between buddy pairs). However, decision processes based on a conference between several or
all ACs, as done in earlier editions of the conference, are also not perfect because decisions
are sometimes dominated by self-confident and/or opinionated ACs. Although the evidence
we gathered from our analyses did not reveal any “obvious” bias, it does not mean that there
is none. We hope that some designs of our review process will shed some lights on ways of
improving bias-immune or bias-avoidance procedures for future conferences.

A major challenge facing the NIPS conference is that of scaling the review process with
the rapid growth of the conference. To this end, we introduced the idea of inviting volunteer
author reviewers. Training junior reviewers today will ensure a much larger and stronger
reviewer pool in a few years from now. Recruiting more reviewers (between 4 and 6 per
paper) ensured that each paper had a better chance to get a few competent reviews. We
gave a strong role to the ACs who arbitrated between good and bad reviews and made
the final decision. Some of the ACs systematically disregarded volunteer reviews, judging
that they could not be trusted. Additionally, next to many PhD students, this brought a
considerable amount of senior reviewers in the system as well. Our analysis did not reveal
any systematic bias or additional variance in the invited reviewer pool. However, more
senior reviewers seem to put more effort into providing detailed reviews, and participating to
rebuttals and discussions. Hence we need to find means of encouraging and possibly educating
more junior reviewers to participate in these aspects. As a means of self-assessment and
encouragement, reviewers could receive statistics about review length, amount of agreement
between reviewers, and participation to rebuttals and discussions, as well as figures concerning
their own participation.

We evaluated how rebuttals and discussions change the scores. Although this concerns
only a minority of papers, we believe that ACs have a key role in arbitrating decisions when
there is a controversy and that this is not easy to monitor merely with scores. Since scores
do not seem to be consistently updated by reviewers after rebuttal/discussions, maybe the
review process should include a score confirmation to make sure that absence of change in
score is not due to negligence. Mixing ordinal and cardinal scores may reduce the problems
of reviewer calibration, tie breaking, and identifying anomalies possibly due to human error.

All in all, it is important to realize that in a review process of this scale, there is not
a single person who really controls what is going on at all levels. Program chairs spend a
lot of time on quality control, but definitely cannot control the decisions on all individual
papers or the quality of individual reviewers. In the end, we have to trust the area chairs and
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reviewers: the better reviews all of us provide, the better the outcome of the review process.
We as a community must also continue to strive improving the peer-review process itself, via
experiments, analysis, and open discussions. This topic in itself is a fertile ground for future
research with many useful open problems including those enumerated throughout the paper.
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APPENDIX

In the appendix we present some additional details about the experiments.

Appendix A. Subject areas

Here are the subject areas associated to the subject area indices in Figure 12.
1. Deep learning/Neural networks 32 Causality
2. (Application) Computer Vision 33 Bayesian nonparametrics
3. Learning theory 34 Variational inference
4. Convex opt. and big data 35 Similarity and Distance Learning
5. Sparsity and feature selection 36 (Other) Statistics
6. Clustering 37 Spectral methods
7. Reinforcement learning 38 Active Learning
8. Large scale learning 39 Graph-based Learning
9. Graphical models 40 (Other) Bayesian Inference
10. Bandit algorithms 41 (Application) Collab. Filtering / Recommender Systems
11. Matrix factorization 42 Information Theory
12. Online learning 43 (Application) Signal and Speech Processing
13. (Other) Optimization 44 (Application) Social Networks
14. (Other) Neuroscience 45 (Other) Robotics and Control
15. Kernel methods 46 Nonlin. dim. reduction
16. Gaussian process 47 Model selection and structure learning
17. Multitask/Transfer learning 48 Ensemble methods and Boosting
18. Component Analysis (ICA, PCA, . . . ) 49 Stochastic methods
19. Combinatorial optimization 50 (Other) Cognitive Science
20. Time series analysis 51 Structured prediction
21. (Other) Probabilistic Models and Methods 52 Ranking and Preference Learning
22. (Other) Applications 53 Game Theory and Econometrics
23. (Other) Machine Learning Topics 54 (Application) Privacy, Anonymity, Security
24. (Cognitive/Neuro) Theoretical Neuroscience 55 (Cognitive/Neuro) Perception
25. (Other) Unsupervised Learning Methods 56 (Application) Bioinfo. and Systems Bio.
26. MCMC 57 Regularization and Large Margin Methods
27. Semi-supervised 58 (Other) Regression
28. (Other) Classification 59 (Application) Information Retrieval
29. (Application) Natural Language and Text 60 (Application) Web App. and Internet
30. (Application) Object and Pattern Recognition61 (Cognitive/Neuro) Reinforcement Learning
31. (Cognitive/Neuro) Neural Coding 62 (Cognitive/Neuro) Language
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Appendix B. Messy middle details

In Figure 16 we provide the values of the fraction of agreements r :=
nagree[t,b]

nagree[t,b]+ndisagree[t,b]

at the top of the corresponding cell and number of pairs m := (nagree[t, b] + ndisagree[t, b])
for every value of (t, b) at the bottom of the corresponding cell. Note that the values are
computed for all values of (t, b) ignoring the sample size restriction imposed by Step 2.3 of
the procedure outlined in Section 3.7.1. Each cell in the table is color-coded by the size of

the 95% confidence interval (on a log-scale) computed as (2× 1.96)
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Figure 16: The inter-reviewer agreement ratios in the messy middle. For each value of t
and b, we report two numbers: The agreement ratio r := nagree/(nagree + ndisagree) and the
number of overlapping paper-reviewer pairs m := (nagree + ndisagree). Each cell is color-coded
by the size of the 95% confidence interval (on a log scale).
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