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Abstract—Private information retrieval (PIR) allows a user to
retrieve a desired message out of 𝐾 possible messages from 𝑁
databases without revealing the identity of the desired message.
There has been significant recent progress on understanding
fundamental information-theoretic limits of PIR, and in particu-
lar the download cost of PIR for several variations. Majority
of existing works however, assume the presence of replicated
databases, each storing all the 𝐾 messages. In this work, we
consider the problem of PIR from storage constrained databases.
Each database has a storage capacity of 𝜇𝐾𝐿 bits, where 𝐾 is
the number of messages, 𝐿 is the size of each message in bits,
and 𝜇 ∈ [1/𝑁, 1] is the normalized storage.

In the storage constrained PIR problem, there are two key
design questions: a) how to store content across each database
under storage constraints; and b) construction of schemes that
allow efficient PIR through storage constrained databases. The
main contribution of this work is a general achievable scheme for
PIR from storage constrained databases for any value of storage.
In particular, for any (𝑁,𝐾), with normalized storage 𝜇 = 𝑡/𝑁 ,
where the parameter 𝑡 can take integer values 𝑡 ∈ {1, 2, . . . , 𝑁},
we show that our proposed PIR scheme achieves a download cost
of

(
1 + 1

𝑡
+ 1

𝑡2
+ ⋅ ⋅ ⋅+ 1

𝑡𝐾−1

)
. The extreme case when 𝜇 = 1 (i.e.,

𝑡 = 𝑁 ) corresponds to the setting of replicated databases with
full storage. For this extremal setting, our scheme recovers the
information-theoretically optimal download cost characterized by
Sun and Jafar as

(
1 + 1

𝑁
+ ⋅ ⋅ ⋅+ 1

𝑁𝐾−1

)
. For the other extreme,

when 𝜇 = 1/𝑁 (i.e., 𝑡 = 1), the proposed scheme achieves a
download cost of 𝐾. The most interesting aspect of the result is
that for intermediate values of storage, i.e., 1/𝑁 < 𝜇 < 1, the
proposed scheme can strictly outperform memory-sharing between
extreme values of storage.

I. INTRODUCTION

Within the past few decades, there has been a surge in
research towards solving various problems related to private
information retrieval. The goal behind the private information
retrieval (PIR) problem is to determine the most efficient
solution that allows a user to retrieve a certain message from a
set of distributed databases - each contains multiple messages
- without any of those databases determining which message
has been requested. Since the introduction of PIR in [1], this
problem has received significant attention in the computer
science community [2]–[5] and PIR protocols have found use
in information-theoretic security, oblivious transfer protocols,
locally decodable codes and numerous other areas.

The classical PIR problem involves 𝑁 non-colluding
databases, where each stores 𝐾 messages. A user requests a
message by generating a query to each database. The databases
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each respond to the user with an answer. Then the user must
be able to correctly obtain the desired message from all 𝑁
answers. To ensure privacy, every query and every answer is
independent of the requested message. Based on the Shannon
theoretic formulation, the rate of the private information re-
trieval problem is set as the number of desired information
bits per number of downloaded bits. The information theory
capacity, 𝐶, is then the maximum PIR rate possible. Previous
works observe the PIR rate with full storage among the
databases, i.e. each database stores every message. Under this
assumption, one of the first achievable PIR rate was found by
Shah, Rashmi and Ramchandran [6] to equal 1− 1

𝑁 .

In a very interesting recent work [7], Sun and Jafar
characterized the exact information-theoretic capacity (or the
inverse of download cost) of the (𝑁,𝐾) PIR problem as
(1 + 1/𝑁 + . . . + 1/𝑁𝐾−1)−1, improving upon the previous
best known achievable rate for the PIR problem [6]. Since
the appearance of [7], significant progress has been made on
a variety of variations of the basic PIR problem. We briefly
describe some of these advances next. The case of 𝑇 -colluding
PIR (or TPIR in short) was investigated in [8], where any 𝑇
databases out of 𝑁 are able to collude, i.e., they can share
the queries. Robust PIR, in which any 𝑁 out of 𝑀 databases
(with 𝑁 ≤ 𝑀 ) fail to respond was also investigated in [8],
for which the capacity is found to be the same as that of
TPIR. In a recent work, [9] characterized the capacity of
PIR with byzantine databases (or BPIR), i.e., a scenario in
which any 𝐿 out of 𝑁 databases are adversarial (i.e. they
can respond with incorrect bits after receiving the query).
The above previous works assumed the presence of replicated
databases, i.e., each database stores all the 𝐾 messages. The
capacity of PIR with databases storing MDS coded messages
was considered in [10] and the capacity was subsequently
characterized by Banawan and Ulukus in [11]. This setting
was further investigated for the scenario where any 𝑇 out
of 𝑁 databases can collude, an aspect termed MDS-TPIR
[12], [13] although its capacity remains open for general set
of parameters. The problem of symmetric PIR (SPIR) was
studied in [14]. In this setting, privacy is enforced in both
directions: i.e., user must be able to retrieve the message
of interest privately while at the same time the databases
must avoid any information leakage to the user about the
remaining messages. The exact capacities for this symmetric
PIR problem both for non-coded (SPIR) and MDS-coded
(MDS-SPIR) messages were characterized in [14], [15]. The
case of multi-message PIR (MPIR) was investigated in [16],
[17], in which the user wants to privately retrieve 𝑃 ≥ 1 out of
𝐾 messages. The capacity of cache constrained PIR (in which

978-1-5386-3180-5/18/$31.00 ©2018 IEEE



the user has a local cache of limited storage) was recently
characterized in [18], and it was shown that memory sharing
based PIR scheme is information theoretically optimal (also
see recent works [19]–[21] on other variations of the cache
aided PIR problem).The majority of above works however,
assume the presence of replicated databases, each storing all
the 𝐾 messages. Indeed, exceptions to this statement include
the work on the case when database store MDS coded data, and
the databases must also satisfy the 𝑘-out-of-𝑁 recovarability
constraint. Furthermore, [22] also investigated the problem of
limited storage PIR for the special case of 𝐾 = 2 messages
and 𝑁 = 2 databases. They present interesting lower and
upper bounds on the capacity for this special case, and show
the optimality of the proposed scheme for the case of linear
schemes. However, at this point, generalization of the scheme
for (𝑁,𝐾) = (2, 2) to arbitrary (𝑁,𝐾) remains elusive.

Summary of Contribution and Insights– In this work,
we consider the problem of PIR from storage constrained
databases. Each database has a storage capacity of 𝜇𝐾𝐿
bits, where 𝐾 is the number of messages, 𝐿 is the size of
each message in bits, and 𝜇 ∈ [1/𝑁, 1] is the normalized
storage. In the storage constrained PIR problem, there are
two key design questions: a) how to store content across
each database under storage constraints; and b) construction of
schemes that allow efficient PIR through storage constrained
databases. The main contribution of this work is an achievable
scheme for PIR from storage constrained databases for any
arbitrary (𝑁,𝐾), and any value of storage. In particular, for
any (𝑁,𝐾), with normalized storage 𝜇 = 𝑡/𝑁 , where the
parameter 𝑡 can take integer values 𝑡 ∈ {1, 2, . . . , 𝑁}, we
show that our proposed PIR scheme achieves a download cost
of (1 + 1

𝑡 +
1
𝑡2 + ⋅ ⋅ ⋅+ 1

𝑡𝐾−1 ).

There are two main ingredients in our storage constrained
PIR scheme which we briefly explain next. The first ingredient
is the storage strategy across databases, which is inspired by
the work of Maddah-Ali and Niesen [23] on the fundamental
limits of caching. In particular, we split each message into
a number of sub-messages (also known as sub-packets in the
caching literature), and index each sub-message by a sub-set of
the 𝑁 databases, which end up storing the sub-message. The
amount of per-message sub-packetization is carefully chosen
to satisfy the storage constraint at each database. As it turns
out, this storage strategy naturally helps in the design of the
second main ingredient, i.e., the design of efficient PIR by
utilizing the limited storage. To this end, we tailor the key
components of (full storage) PIR scheme of Sun and Jafar
to the case of limited storage setting, by enforcing symmetry
across messages, and exploiting side-information from other
databases. The main differences from that of Sun and Jafar
are two fold: a) from a privacy perspective, enforcement
of message symmetry is necessary only across sub-packets
for each message that are stored at a database; b) on the
other hand, side-information can only be partially exploited
depending on the contents shared across databases, which in
turn depends on the amount of storage.

The extreme case when 𝜇 = 1 (i.e., 𝑡 = 𝑁 ) corresponds
to the setting of replicated databases with full storage. For
this extremal setting, our scheme recovers the information-
theoretically optimal download cost characterized by Sun and
Jafar as (1+ 1

𝑁 +⋅ ⋅ ⋅+ 1
𝑁𝐾−1 ). For the other extreme, when 𝜇 =

1/𝑁 (i.e., 𝑡 = 1), the proposed scheme achieves a download
cost of 𝐾, which is information theoretically optimal. The
most interesting aspect of the result is that for intermediate
values of storage, i.e., 1/𝑁 < 𝜇 < 1, the proposed scheme
strictly outperforms memory-sharing.

II. STORAGE CONSTRAINED PIR: PROBLEM STATEMENT

Consider a PIR problem where there are 𝑁 non-colluding
databases and 𝐾 independent messages 𝑊1,𝑊2, . . . ,𝑊𝐾 ,
where each message is of size 𝐿 bits, i.e.,

𝐻(𝑊1) = 𝐻(𝑊2) = . . . = 𝐻(𝑊𝐾) = 𝐿. (1)

We assume that each database has a storage capacity of 𝜇𝐾𝐿
bits. If we denote 𝑍1, 𝑍2, . . . , 𝑍𝑁 as the contents stored across
the databases, then we have the following storage constraint
for each database:

𝐻(𝑍1) = 𝐻(𝑍2) = . . . = 𝐻(𝑍𝑁 ) = 𝜇𝐾𝐿. (2)

We allow the user to design what contents can be stored at
each database subject to the storage constraint. Furthermore,
we assume that the storage strategy employed by the user is
completely public i.e., each database knows which contents
are stored at all the other databases. The normalized storage
parameter 𝜇 can take values in the range 1/𝑁 ≤ 𝜇 ≤ 1. The
case when 𝜇 = 1 is the setting of replicated databases, with
each database storing all the 𝐾 messages. The lower bound
𝜇 ≥ 1/𝑁 is in fact a necessary condition for reliable decoding.

To request a message, a user privately selects a number
𝜃 between 1 and 𝐾 to correspond with the desired message
𝑊𝜃. Then the user generates 𝑁 queries 𝑄

[𝜃]
1 , 𝑄

[𝜃]
2 , . . . , 𝑄

[𝜃]
𝑁 that

will be sent to the 𝑁 databases. The superscript 𝜃 indicates
the desired message, which can be substituted with any of the
𝐾 messages. Privacy must be ensured from the moment the
user decides on the message being requested. Therefore, the
queries must be independent of the messages.

∀𝑘 ∈ [𝐾], 𝐼(𝑊1,𝑊2, . . . ,𝑊𝐾 ;𝑄
[𝑘]
1 , 𝑄

[𝑘]
2 , . . . , 𝑄

[𝑘]
𝑁 ) = 0 (3)

The user requests message 𝑊𝑘 by sending a query 𝑄
[𝑘]
𝑛 to the

𝑛-th database, which then generates and returns an answer 𝐴[𝑘]
𝑛

back to the user. The answer is a function of the corresponding
query and the data stored in the 𝑛-th database.

∀𝑘 ∈ [𝐾], ∀𝑛 ∈ [𝑁 ], 𝐻(𝐴[𝑘]
𝑛 ∣𝑄[𝑘]

𝑛 , 𝑍𝑛) = 0 (4)

From all of the answers from each database, the user must
be able to correctly decode the desired message 𝑊𝑘 with a
small probability of error. The correctness constraint is as
follows

𝐻(𝑊𝑘∣𝐴[𝑘]
1 , . . . , 𝐴

[𝑘]
𝑁 , 𝑄

[𝑘]
1 , . . . , 𝑄

[𝑘]
𝑁 ) = 𝑜(𝐿) (5)

where 𝑜(𝐿) represents a function of 𝐿 such that 𝑜(𝐿)/𝐿
approaches 0 as 𝐿 approaches infinity.

In order to prevent the databases from learning which
message has been requested, the following privacy constraint
must be satisfied.

(𝑄[𝑖]
𝑛 , 𝐴[𝑖]

𝑛 ,𝑊1, . . . ,𝑊𝐾 , 𝑍1, . . . , 𝑍𝑛)

∼ (𝑄[𝑗]
𝑛 , 𝐴[𝑗]

𝑛 ,𝑊1, . . . ,𝑊𝐾 , 𝑍1, . . . , 𝑍𝑛), ∀𝑖 ∕= 𝑗 (6)



Fig. 1. Storage Constrained Private Information Retrieval.

For a storage parameter 𝜇, we say that a pair (𝐷,𝐿) is
achievable if there exists a Storage Constrained PIR scheme
with storage, querying, and decoding functions,which satisfy
the storage, correctness and privacy constraints. The perfor-
mance of a PIR scheme is characterized by the number of bits
of desired information (𝐿) per downloaded bit. In particular,
if 𝐷 is the total number of downloaded bits, and 𝐿 is the
size of the desired message, then the normalized downloaded
cost is 𝐷/𝐿. In other words, the PIR rate is 𝐿/𝐷. The goal
is to characterize the optimal normalized download cost as a
function of the per-database storage parameter 𝜇:

𝐷∗(𝜇) = min {𝐷/𝐿 : (𝐷,𝐿) is achievable}. (7)

The storage-constrained capacity of PIR is the inverse of the
normalized download cost

𝐶∗(𝜇) = max {𝐿/𝐷 : (𝐷,𝐿) is achievable}. (8)

We first state the following Lemma which shows that
the optimal download cost 𝐷∗(𝜇) (or the inverse of capacity
1/𝐶∗(𝜇)) is a convex function of the normalized storage 𝜇.

Lemma 1: The optimal download cost 𝐷∗(𝜇) is a convex
function of 𝜇. In other words, for any (𝜇1, 𝜇2), and 𝛼 ∈ [0, 1],
the optimal download cost satisfies

𝐷∗(𝛼𝜇1 + (1− 𝛼)𝜇2) ≤ 𝛼𝐷∗(𝜇1) + (1− 𝛼)𝐷∗(𝜇2). (9)

Proof of Lemma 1– Let us consider two storage parameters
𝜇1, and 𝜇2, with optimal download costs 𝐷∗(𝜇1), and 𝐷∗(𝜇2)
respectively using two storage constrained PIR schemes, say
Scheme 1 and Scheme 2. Let us now consider a new storage
point 𝜇 = 𝛼𝜇1+(1−𝛼)𝜇2, for which we can construct a PIR
scheme as follows: we take each message 𝑊𝑖 and divide it
into two independent parts 𝑊𝑖 =

(
𝑊

(1)
𝑖 ,𝑊

(2)
𝑖

)
, where 𝑊

(1)
𝑖

is of size 𝐿1 = 𝛼𝐿 bits, and 𝑊
(2)
𝑖 is of size 𝐿2 = (1 − 𝛼)𝐿

bits. The total size of each message is hence 𝐿. For each sub-
message, the databases utilize the storage and PIR schemes 1,
and 2 respectively. In particular, Scheme 1 requires a storage of
𝜇1𝛼𝐾𝐿 bits, and Scheme 2 requires a storage of 𝜇2(1−𝛼)𝐾𝐿
bits. Furthermore, PIR from Scheme 1 requires a download
of 𝐷∗(𝜇1)𝐿1 = 𝛼𝐷∗(𝜇1)𝐿 bits and scheme 2 requires a

Fig. 2. The tradeoff between storage and download cost for PIR.

download of (1−𝛼)𝐷∗(𝜇2)𝐿 bits. Hence, the total downloaded
data is therefore (𝛼𝐷∗(𝜇1)+(1−𝛼)𝐷∗(𝜇2))𝐿, and hence the
normalized download cost for this memory-sharing scheme is
(𝛼𝐷∗(𝜇1) + (1 − 𝛼)𝐷∗(𝜇2)). Furthermore, the total storage
used by each database is 𝑆 = (𝛼𝜇1+(1−𝛼)𝜇2)𝐾𝐿 = 𝜇𝐾𝐿,
i.e., the normalized storage parameter is 𝜇 = 𝛼𝜇1+(1−𝛼)𝜇2.
Since 𝐷∗(𝛼𝜇1+(1−𝛼)𝜇2) by definition is optimal download
cost for normalized storage (𝛼𝜇1 + (1 − 𝛼)𝜇2), it must be
upper bounded by the download cost of the memory sharing
scheme. Hence, the following inequality follows

𝐷∗(𝛼𝜇1 + (1− 𝛼)𝜇2) ≤ 𝛼𝐷∗(𝜇1) + (1− 𝛼)𝐷∗(𝜇2), (10)

which proves the convexity of 𝐷∗(𝜇). We next present the
main result of this paper in the following theorem.

III. MAIN RESULT AND DISCUSSIONS

Theorem 1: For the storage constrained PIR problem with
𝑁 Databases, 𝐾 messages, (of size 𝐿 bits each), and a per
database storage constraint of 𝜇𝐾𝐿 bits, the lower convex hull
of the following (𝜇,𝐷(𝜇)) pairs is achievable.

(𝜇, 𝐷(𝜇)) =

(
𝑡

𝑁
, 1 +

1

𝑡
+ ⋅ ⋅ ⋅+ 1

𝑡𝐾−1

)
, (11)

for 𝑡 = 1, 2, . . . , 𝑁 .

Remark 1: The general tradeoff resulting from Theorem
1 is illustrated in Fig. 2. The smallest value of 𝜇 = 1/𝑁
corresponds to the parameter 𝑡 = 1, for which the download
cost is maximal and is equal to 𝐾. The other extreme value of
storage is 𝜇 = 1, corresponding to 𝑡 = 𝑁 , i.e., the setting of
full storage in which every database can store all the messages.
For this case, the optimal download cost was characterized by
Sun and Jafar [7] as (1 + 1

𝑁 + 1
𝑁2 + ..... + 1

𝑁𝐾−1 ), where N
is number of databases.

The proof of Theorem 1 has two main parts: a) the storage
design (i.e.,what to store across 𝑁 databases) subject to storage
constraints; and b) the design of the PIR scheme from storage
constrained databases. We next describe our storage scheme
while satisfying the constraint that each database has a storage
capability of at most 𝜇𝐾𝐿 bits.



Storage Scheme for 𝜇 = 𝑡/𝑁 : For a fixed parameter
𝑡 ∈ [1, . . . , 𝑁 ], we take each message 𝑊𝑖 and sub-divide it into(
𝑁
𝑡

)
sub-messages. In particular, each sub-message is indexed

by a subset of databases of size 𝑡. For instance, if 𝑡 = 2,
and 𝑁 = 3, then each message 𝑊𝑖 will be sub-divided into(
3
2

)
= 3 sub-messages as 𝑊𝑖 = (𝑊𝑖,{1,2},𝑊𝑖,{2,3},𝑊𝑖,{1,3}).

Furthermore, we assume that each sub-message is of size 𝑡𝐾

bits. Hence the total size of each message, i.e., 𝐿 is given
as 𝐿 =

(
𝑁
𝑡

)
𝑡𝐾 . Using this message splitting scheme, we

propose the storage scheme as follows: for every message,
each database stores all sub-messages which contain its index.
For instance, for the 𝑡 = 2, 𝑁 = 3 databases, and 𝐾 = 2
messages (say 𝐴, and 𝐵), we split the messages as 𝐴 =
(𝐴{1,2}, 𝐴{2,3}, 𝐴{1,3}), and 𝐵 = (𝐵{1,2}, 𝐵{2,3}, 𝐵{1,3}),
and the storage scheme is as follows:

∙ DB1 stores 𝐴{1,2}, 𝐴{1,3}, 𝐵{1,2}, 𝐵{1,3}

∙ DB2 stores 𝐴{1,2}, 𝐴{2,3}, 𝐵{1,2}, 𝐵{2,3}

∙ DB3 stores 𝐴{1,3}, 𝐴{2,3}, 𝐵{1,3}, 𝐵{2,3}

We next verify that the above scheme satisfies the storage
constraint. To this end, we note that for every message, each
database stores

(
𝑁−1
𝑡−1

)
sub-messages (this corresponds to the

number of sub-sets of databases of size 𝑡 in which the given
database is present). Hence, the total storage necessary for any
database is given as:

𝐾 ×
(
𝑁 − 1

𝑡− 1

)
× 𝑡𝐾

=
𝑡

𝑁
×𝐾 ×𝑁 ×

(
𝑁 − 1

𝑡− 1

)
× 𝑡𝐾−1

=
𝑡

𝑁
×𝐾 ×

((
𝑁

𝑡

)
𝑡𝐾

)

=
𝑡

𝑁
×𝐾 × 𝐿 = 𝜇𝐾𝐿.

This shows that the proposed scheme satisfies the storage
constraints for every database.

Before presenting the proof of the general PIR scheme for
any (𝑁,𝐾, 𝜇), we first provide some representative examples
which highlight the key new ideas and novel aspects that are
necessary for the general scheme. Our storage constrained PIR
scheme is similar in spirit to the scheme of Sun and Jafar in
the sense that we also enforce symmetry across databases and
message, and the exploitation of undesired side-information.
The significant difference from Sun and Jafar’s scheme is
that in storage constrained scenario, each database may not
have access to all of the side-information retrieved from other
databases. Hence, only those side-information bits can be ex-
ploited which are shared between databases. These similarities
and differences will become clearer in the following examples.

Example 1 (𝑁 = 3 databases, 𝐾 = 2 messages): In this
example, we have 3 databases (𝐷𝐵1, 𝐷𝐵2, 𝐷𝐵3), and
𝐾 = 2 messages which we denote as 𝐴 and 𝐵. As shown
in Fig. 3, the tradeoff has three critical points (labeled as 𝑃1,
𝑃2 and 𝑃3). The point 𝑃1 corresponds to 𝜇 = 1/3, for which
the PIR scheme is trivial: download all 𝐾 = 2 messages.
On the other extreme, point 𝑃3 corresponds to 𝜇 = 1, for
which the optimal PIR scheme is due to Sun and Jafar, with

Fig. 3. Storage vs. download cost for (𝑁,𝐾) = (3, 2).

a download cost of 4/3. For the sake of illustrative purposes,
let us first revisit this scheme: each message is divided into
𝑁𝐾 = 32 = 9 bits (i.e., the messages 𝐴 and 𝐵 are represented
by 𝐴 = (𝑎1, 𝑎2, . . . , 𝑎9), and 𝐵 = (𝑏1, 𝑏2, . . . , 𝑏9). Suppose
that the user wants to retrieve message 𝐴 privately. Then, the
scheme of Sun-Jafar works as shown in Table I. The user
downloads single bits from each database for each of the two
messages. In the second stage, the user downloads the XOR’s
of the bits of both messages and exploits side-information
(i.e., the undesired bits of message 𝐵) downloaded from the
remaining (𝑁−1) = 2 databases. The user downloaded a total

TABLE I. SUN-JAFAR SCHEME FOR (𝑁,𝐾) = (3, 2)

DB1 DB2 DB3

𝑎1 𝑏1 𝑎2 𝑏2 𝑎3 𝑏3

𝑎4 + 𝑏2 𝑎6 + 𝑏1 𝑎8 + 𝑏1

𝑎5 + 𝑏3 𝑎7 + 𝑏3 𝑎9 + 𝑏2

of 12 bits, out of which the desired bits are 9 (corresponding
to message 𝐴). Hence, the download cost of this scheme is
𝐷(1) = 12/9 = 4/3.

Storage Constrained PIR scheme for 𝜇 = 2/3 (point 𝑃2): We
next present the scheme for 𝜇 = 2

3 , i.e., 𝑡 = 2. Since 𝑡 = 2, the
total size of each message is chosen as 𝐿 = 22

(
3
2

)
= 12 bits.

Total storage used by each database is given as 𝑆 = 𝜇𝐾𝐿 =
2
3 ×2×12 = 16 bits, and the data stored across each database
is shown in Table II.

Let us now assume that we want to retrieve message 𝐴
privately. We start downloading single bits (𝑎112, 𝑎113) from
𝐷𝐵1 and for message symmetry (𝑏112, 𝑏113) is also downloaded
from 𝐷𝐵1. Similarly, we download (𝑎212, 𝑎123), (𝑏

2
12, 𝑏123) from

𝐷𝐵2, and (𝑎213, 𝑎223), (𝑏213, 𝑏223) from 𝐷𝐵3 is downloaded
(see Table III). We next move to the second stage of the
scheme, in which the user exploits the side- information (or
undesired bits of message 𝐵). However, the main difference
from full storage is that not all side-information can be
exploited from every database due to the storage constraint. In
particular, we can notice that from the perspective of database
1, only those bits of the undesired message 𝐵 can be leveraged
as side-information that are stored at 𝐷𝐵1, i.e., the bits which



TABLE II. STORAGE FOR (𝑁,𝐾) = (3, 2) AND 𝜇 = 2/3 (𝑡 = 2)

𝐷𝐵1 𝐷𝐵2 𝐷𝐵3

𝑎112 𝑏112 𝑎112 𝑏112 𝑎113 𝑏113
𝑎113 𝑏113 𝑎123 𝑏123 𝑎123 𝑏123
𝑎212 𝑏212 𝑎212 𝑏212 𝑎213 𝑏213
𝑎213 𝑏213 𝑎223 𝑏223 𝑎223 𝑏223
𝑎312 𝑏312 𝑎312 𝑏312 𝑎313 𝑏313
𝑎313 𝑏313 𝑎323 𝑏323 𝑎323 𝑏323
𝑎412 𝑏412 𝑎412 𝑏412 𝑎413 𝑏413
𝑎413 𝑏413 𝑎423 𝑏423 𝑎423 𝑏423

TABLE III. STORAGE CONSTRAINED PIR SCHEME (𝜇 = 2/3)

DB1 DB2 DB3

𝑎112 𝑏112 𝑎212 𝑏212 𝑎213 𝑏213
𝑎113 𝑏113 𝑎123 𝑏123 𝑎223 𝑏223
𝑎312 + 𝑏212 𝑎412 + 𝑏112 𝑎413 + 𝑏113
𝑎313 + 𝑏213 𝑎323 + 𝑏123 𝑎423 + 𝑏123

have 𝐷𝐵1 as one of the indices in the subset of 𝑡 databases
that have stored that bit. For this example, only the bits 𝑏212
and 𝑏213 can be leveraged as side-information through 𝐷𝐵1.

From Table III, we can count the number of useful bits
downloaded as 12 and total number of bits downloaded 18.
This leads to the download cost of 18

12 = 3
2 which matches the

result of Theorem 1.

Example 2 (𝑁 = 3 databases, 𝐾 = 3 messages): In this
example, we have 3 databases (𝐷𝐵1, 𝐷𝐵2, 𝐷𝐵3), and
𝐾 = 3 messages which we denote as 𝐴,𝐵 and 𝐶. As shown
in Fig. 4, the tradeoff has three critical points (labeled as 𝑃1,
𝑃2 and 𝑃3). As the point 𝑃1 is trivial and 𝑃3 follows from
Sun-Jafar, we explain the achievability of the point 𝑃2. For
this point, we have 𝑡 = 2, and hence each message is of size
𝐿 = 𝑡𝐾

(
𝑁
𝑡

)
= 23 × 3 = 24 bits. In particular, we split each

message into
(
3
2

)
= 3 sub-messages, and each sub-message is

of size 23 = 8 bits as follows:

∙ 𝐴 = (𝑎112, . . . , 𝑎
8
12, 𝑎123, . . . , 𝑎

8
23, 𝑎113, . . . , 𝑎

8
13)

∙ 𝐵 = (𝑏112, . . . , 𝑏
8
12, 𝑏123, . . . , 𝑏

8
23, 𝑏113, . . . , 𝑏

8
13)

∙ 𝐶 = (𝑐112, . . . , 𝑐
8
12, 𝑐123, . . . , 𝑐

8
23, 𝑐113, . . . , 𝑐

8
13)

Subsequently, 𝐷𝐵𝑖 stores those bits (of each message) whose
index contains 𝑖. Hence, the total storage required per DB is
3×2×8 = 48 bits. With the storage designed, the PIR scheme
works as follows in three stages:

Stage 1: In this stage, we download single bits from the
messages. From 𝐷𝐵1, we download (𝑎112, 𝑎113), then we
download (𝑏112, 𝑏113), and (𝑐112, 𝑐113) to maintain message
symmetry. Similarly, (𝑎212, 𝑎123, 𝑏212, 𝑏123, 𝑐212, 𝑐123) and
(𝑎213, 𝑎223, 𝑏213, 𝑏223, 𝑐213, 𝑐223) are downloaded from 𝐷𝐵2

and 𝐷𝐵3 respectively.

Stage 2: In the second stage, we download pairs of bits with
the goal to maximally utilize the side-information (of undesired

Fig. 4. Storage vs. download cost for (𝑁,𝐾) = (3, 3).

messages) in the previous stage. Again, the key aspect to note
here is that when downloading bits from 𝐷𝐵1’s, we can only
utilize those bits as side-information which are stored at it.
For this example, we can utilize 𝑏212, 𝑐

2
12, 𝑏

2
13, 𝑐

2
13 since these

bits were downloaded from 𝐷𝐵2 and 𝐷𝐵3 in Stage 1, and
are also stored at 𝐷𝐵1. As shown in Table IV, we download
(𝑎312 + 𝑏212, 𝑎412 + 𝑐212, 𝑎513 + 𝑏213, 𝑎613 + 𝑐213) from 𝐷𝐵1. In
order to maintain message symmetry, we also download (𝑏312+
𝑐312, 𝑏313+ 𝑐313) from 𝐷𝐵1. We follow a similar process across
𝐷𝐵2 and 𝐷𝐵3.

TABLE IV. STORAGE CONSTRAINED PIR: (𝑁,𝐾) = (3, 3), 𝜇 = 2/3

DB1 DB2 DB3

𝑎112 𝑏112 𝑐112 𝑎212 𝑏212 𝑐212 𝑎213 𝑏213 𝑐213
𝑎113 𝑏113 𝑐113 𝑎123 𝑏123 𝑐123 𝑎223 𝑏223 𝑐223
𝑎312 + 𝑏212 𝑎512 + 𝑏112 𝑎513 + 𝑏113
𝑎313 + 𝑐213 𝑎323 + 𝑐112 𝑎523 + 𝑐113
𝑎412 + 𝑏213 𝑎612 + 𝑏223 𝑎613 + 𝑏123
𝑎413 + 𝑐213 𝑎423 + 𝑐223 𝑎623 + 𝑐123
𝑏312 + 𝑐312 𝑏412 + 𝑐412 𝑏413 + 𝑐413
𝑏313 + 𝑐313 𝑏323 + 𝑐323 𝑏423 + 𝑐423

𝑎712 + 𝑏412 + 𝑐412 𝑎812 + 𝑏312 + 𝑐312 𝑎813 + 𝑏412 + 𝑐412
𝑎713 + 𝑏413 + 𝑐413 𝑎723 + 𝑏423 + 𝑐423 𝑎813 + 𝑏323 + 𝑐323

Stage 3: In the final stage, we download triples of bits (i.e.,
𝑎+ 𝑏+ 𝑐’s) from each database. Following the same principle
as before, we can observe that when downloading from 𝐷𝐵1,
we can leverage (𝑏412+𝑐412) and (𝑏413+𝑐413) as side-information
which was downloaded in Stage 2, and is available at 𝐷𝐵1.
As shown in Table IV, we download 𝑎712+𝑏412+𝑐412 and 𝑎713+
𝑏413+𝑐413 from 𝐷𝐵1. We follow a similar process for the other
two databases. We can verify that from the data downloaded
from all three databases (which is 42 bits), the user is able to
correctly retrieve message 𝐴, i.e., the user is able to decode
all 24 desired bits (𝑎112, . . . , 𝑎

8
12, 𝑎123, . . . , 𝑎

8
23, 𝑎113, . . . , 𝑎

8
13).

Hence, the download cost of our scheme is 𝐷( 23 ) =
42
24 = 7/4

which is equal to the expression in Theorem 1 and also shown
in Fig. 4 (point 𝑃2).



TABLE V. GENERAL STORAGE CONSTRAINED PIR SCHEME: TOTAL VS. DESIRED DOWNLOADED BITS (PER DATABASE)

Stages Tuple Total (Per DB) Useful (Per DB)

Stage 1 Single
(
𝐾
1

)(
𝑁−1
𝑡−1

) (
𝑁−1
𝑡−1

)
Stage 2 Pair

(
𝐾
2

)
(𝑁 − 1)

(
𝑁−2
𝑡−2

)
(𝑡− 1)0

(
𝐾−1
1

)
(𝑁 − 1)

(
𝑁−2
𝑡−2

)
(𝑡− 1)0

Stage 3 Triple
(
𝐾
3

)
(𝑁 − 1)

(
𝑁−2
𝑡−2

)
(𝑡− 1)1

(
𝐾−1
2

)
(𝑁 − 1)

(
𝑁−2
𝑡−2

)
(𝑡− 1)1

. . . .

. . . .

Stage 𝑖 𝑖-tuple
(
𝐾
𝑖

)
(𝑁 − 1)

(
𝑁−2
𝑡−2

)
(𝑡− 1)𝑖−2

(
𝐾−1
𝑖−1

)
(𝑁 − 1)

(
𝑁−2
𝑡−2

)
(𝑡− 1)𝑖−2

. . . .

. . . .

Stage 𝐾 𝐾-tuple
(
𝐾
𝐾

)
(𝑁 − 1)

(
𝑁−2
𝑡−2

)
(𝑡− 1)𝐾−2

(
𝐾−1
𝐾−1

)
(𝑁 − 1)

(
𝑁−2
𝑡−2

)
(𝑡− 1)𝐾−2

IV. PROOF OF THEOREM 1
(STORAGE CONSTRAINED PIR SCHEME)

In this section, we present the proof of the general storage
constrained PIR scheme for any (𝑁,𝐾). We focus on the
storage parameter 𝜇 = 𝑡/𝑁 for any 𝑡 ∈ [1 : 𝑁 ]. In the
general scheme, we follow the same philosophy introduced
in the examples. Namely, the general scheme works in a
sequence of 𝐾 stages, where in each stage, we download
tuples of bits by exploiting side-information obtained from
the previous stage, maintain message symmetry, as well as
symmetry across databases. Most importantly, the exploitation
of side-information is carefully designed to account for the
limited storage capabilities of the databases. We next present
the general scheme, and assume that we want to privately
retrieve message 1.

Stage 1: In the first stage, we start downloading single bits
of each message from each database. Let us focus on a single
database (say 𝐷𝐵1). From this database, we first download(
𝑁−1
𝑡−1

)
bits from the desired message 𝐴, where each bit is

from one of the
(
𝑁−1
𝑡−1

)
sub-messages of message 𝐴. In order

to maintain privacy, we introduce message symmetry, and
perform the same downloading operation for all the remaining
(𝐾−1) messages. Hence, from each DB, we download a total
of

(
𝐾
1

)(
𝑁−1
𝑡−1

)
bits, out of which the number of desired bits are(

𝑁−1
𝑡−1

)
. This is also shown in the first row of Table V.

Stage 2: In the second stage, we download pairs of bits.
To this end, let us focus on 𝐷𝐵1. From 𝐷𝐵1’s perspective,
we can download the desired bits of message 𝐴 along with
undesired bits of the remaining (𝐾 − 1) messages that have
been downloaded from the remaining (𝑁 − 1) databases and
are also stored at 𝐷𝐵1. We now carefully go over this sequence
of steps: a) first note that the number of pairings of a desired
message with undesired message is

(
𝐾−1
1

)
; b) second, the

number of other databases that can be paired with 𝐷𝐵1 are
(𝑁 − 1); c) for a fixed pairing with other database (say 𝐷𝐵𝑖,
𝑖 ∕= 1), the number of sub-messages which are stored at both
𝐷𝐵1 and 𝐷𝐵𝑖 are

(
𝑁−2
𝑡−2

)
. For each such sub-message, the

number of undesired bits that were stored at 𝐷𝐵1 and were
downloaded from 𝐷𝐵𝑖 in Stage 1 are (𝑡 − 1)0 = 1. Hence,
from 𝐷𝐵1 the number of desired bits downloaded in Stage 2
are

(
𝐾−1
1

)
(𝑁 − 1)

(
𝑁−2
𝑡−2

)
(𝑡− 1)0, whereas the total number of

downloaded bits are
(
𝐾
2

)
(𝑁 − 1)

(
𝑁−2
𝑡−2

)
(𝑡− 1)0.

Stage 𝑖: We continue to proceed and in the general stage 𝑖,
we download tuples of bits composed of 𝑖 different messages.
Again, focusing from 𝐷𝐵1’s perspective, we can download
the desired bits of message 𝐴 along with undesired bits of
the remaining (𝐾 − 1) messages that have been downloaded
from the remaining (𝑁 − 1) databases and are also stored
at 𝐷𝐵1. We now carefully go over this sequence of steps:
a) the number of pairings of a desired message with (𝑖 − 1)
undesired messages is

(
𝐾−1
𝑖−1

)
; b) second, the number of other

databases that can be paired with 𝐷𝐵1 are (𝑁 − 1); c) for
a fixed pairing with other database (say 𝐷𝐵ℓ, ℓ ∕= 1), the
number of sub-messages which are stored at both 𝐷𝐵1 and
𝐷𝐵ℓ are

(
𝑁−2
𝑡−2

)
. For each such sub-message, the number of

undesired bits that were stored at 𝐷𝐵1 and were downloaded
from 𝐷𝐵ℓ in Stage (𝑖−1) are (𝑡−1)𝑖−2. Hence, from 𝐷𝐵1 the
number of desired bits downloaded in Stage 𝑖 are

(
𝐾−1
𝑖−1

)
(𝑁 −

1)
(
𝑁−2
𝑡−2

)
(𝑡 − 1)𝑖−2, whereas the total number of downloaded

bits are
(
𝐾
𝑖

)
(𝑁 − 1)

(
𝑁−2
𝑡−2

)
(𝑡 − 1)𝑖−2. We similarly continue

till 𝐾 stages.

Let us now calculate the total number of desired bits and
the total number of downloaded bits:

Desired bits (per DB)

=

(
𝑁 − 1

𝑡− 1

)
+

𝐾∑
𝑖=2

(
𝐾 − 1

𝑖− 1

)
(𝑁 − 1)

(
𝑁 − 2

𝑡− 2

)
(𝑡− 1)𝑖−2

=

(
𝑁 − 1

𝑡− 1

)
+ (𝑁 − 1)

(
𝑁 − 2

𝑡− 2

) 𝐾∑
𝑖=2

(
𝐾 − 1

𝑖− 1

)
(𝑡− 1)𝑖−2

=

(
𝑁 − 1

𝑡− 1

)
+

(𝑁 − 1)

(𝑡− 1)

(
𝑁 − 2

𝑡− 2

) 𝐾∑
𝑖=2

(
𝐾 − 1

𝑖− 1

)
(𝑡− 1)𝑖−1

=

(
𝑁 − 1

𝑡− 1

)
+

(𝑁 − 1)

(𝑡− 1)

(
𝑁 − 2

𝑡− 2

)
(𝑡𝐾−1 − 1)

=

(
𝑁 − 1

𝑡− 1

)
+

(𝑁 − 1)

(𝑡− 1)

(
𝑁 − 2

𝑡− 2

)
(𝑡𝐾−1 − 1)

=

(
𝑁 − 1

𝑡− 1

)
+

(
𝑁 − 1

𝑡− 1

)
(𝑡𝐾−1 − 1)

=

(
𝑁 − 1

𝑡− 1

)
𝑡𝐾−1 =

1

𝑁
×

(
𝑁

𝑡

)
𝑡𝐾 (12)

Since, above is the number of desired bits (per-DB), hence,
from all the 𝑁 databases, the user is able to recover all 𝐿 =



(
𝑁
𝑡

)
𝑡𝐾 bits of the desired message.

Total downloaded bits (per DB)

=

(
𝑁 − 1

𝑡− 1

)(
𝐾

1

)
+

𝐾∑
𝑖=2

(
𝐾

𝑖

)
(𝑁 − 1)

(
𝑁 − 2

𝑡− 2

)
(𝑡− 1)𝑖−2

=

(
𝑁 − 1

𝑡− 1

)(
𝐾

1

)
+ (𝑁 − 1)

(
𝑁 − 2

𝑡− 2

) 𝐾∑
𝑖=2

(
𝐾

𝑖

)
(𝑡− 1)𝑖−2

=

(
𝑁 − 1

𝑡− 1

)(
𝐾

1

)
+

(𝑁 − 1)

(𝑡− 1)

(
𝑁 − 2

𝑡− 2

) 𝐾∑
𝑖=2

(
𝐾

𝑖

)
(𝑡− 1)𝑖−1

=

(
𝑁 − 1

𝑡− 1

)(
𝐾

1

)
+

(
𝑁 − 1

𝑡− 1

) 𝐾∑
𝑖=2

(
𝐾

𝑖

)
(𝑡− 1)𝑖−1

=

(
𝑁 − 1

𝑡− 1

)(
𝐾 +

𝐾∑
𝑖=2

(
𝐾

𝑖

)
(𝑡− 1)𝑖−1

)

=

(
𝑁 − 1

𝑡− 1

)(
𝐾 +

1

𝑡− 1

𝐾∑
𝑖=2

(
𝐾

𝑖

)
(𝑡− 1)𝑖

)

=

(
𝑁 − 1

𝑡− 1

)(
𝐾 +

1

𝑡− 1
(𝑡𝐾 − 1− (𝑡− 1)𝐾)

)

=

(
𝑁 − 1

𝑡− 1

)
𝑡𝐾 − 1

𝑡− 1

=

(
𝑁 − 1

𝑡− 1

)
(1 + 𝑡+ 𝑡2 + . . .+ 𝑡𝐾−1)

Hence, the download cost 𝐷(𝜇) of the proposed storage
constrained PIR scheme when 𝜇 = 𝑡/𝑁 is given as

𝐷(𝜇) =
𝑁 × Total Downloaded bits (per DB)

𝑁 × Desired bits (per DB)

=

(
𝑁−1
𝑡−1

)
(1 + 𝑡+ 𝑡2 + . . .+ 𝑡𝐾−1)(

𝑁−1
𝑡−1

)
𝑡𝐾−1

= 1 +
1

𝑡
+

1

𝑡2
+ . . .+

1

𝑡𝐾−1
. (13)

This completes the proof of Theorem 1.

V. CONCLUSION

In this work, we initiated the study of the PIR problem
from storage constrained databases. The main contribution of
this work is a general achievable scheme for PIR from storage
constrained databases for any value of storage. In particular,
for any (𝑁,𝐾), with normalized storage 𝜇 = 𝑡/𝑁 , where
the parameter 𝑡 can take integer values 𝑡 ∈ {1, 2, . . . , 𝑁},
we show that our proposed PIR scheme achieves a download
cost of

(
1 + 1

𝑡 +
1
𝑡2 + ⋅ ⋅ ⋅+ 1

𝑡𝐾−1

)
. Furthermore, the lower

convex hull of all such (𝐷(𝜇), 𝜇) pairs is also achievable. In
the extreme setting, our scheme recovers the result of Sun
and Jafar (for the case of full storage). More generally, our
PIR scheme strictly outperforms memory sharing between the
extreme values of 𝜇. There are several interesting directions for
future work on this important variation of PIR. An immediate
interesting direction would be to obtain lower bounds on the
PIR capacity (or download cost) as a function of the stor-
age. Moreover, it would be interesting to investigate storage-
constrained PIR problems by considering scenarios such as (i)
colluding databases; and (ii) having additional constraints on

storage (such as data recoverability constraints from any ℓ out
of 𝑁 databases).
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