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Abstract—Private information retrieval (PIR) allows a user to
retrieve a desired message out of K possible messages from N
databases (DBs) without revealing the identity of the desired
message. In this work, we consider the problem of PIR from
uncoded storage constrained DBs. Each DB has a storage capacity
of uKL bits, where L is the size of each message in bits,
and p € [1/N,1] is the normalized storage. In the storage
constrained PIR problem, there are two key challenges: a)
construction of communication efficient schemes through storage
content design at each DB that allow download efficient PIR; and
b) characterizing the optimal download cost via information-
theoretic lower bounds. The novel aspect of this work is to
characterize the optimum download cost of PIR with storage
constrained DBs for any value of storage. In particular, for any
(N, K), we show that the optimal tradeoff between storage (1)
and the download cost (D(1)) is given by the lower convex hull
of the pairs (%, (1+++ 5+ -+ %)) for t =1,2,..., N.
The main contribution of this paper is the converse proof, i.e.,
obtaining lower bounds on the download cost for PIR as a
function of the available storage.

I. INTRODUCTION

The classical private information retrieval (PIR) problem
involves N non-colluding databases (DBs), each DB stores
K messages. The goal of the user is to efficiently retrieve a
message without revealing the message identity. Based on the
Shannon theoretic formulation, the rate of a PIR scheme is the
ratio between the number of desired vs downloaded bits, and
PIR capacity is then defined as the maximum achievable rate.
Recently in [1], the capacity of PIR (or the inverse of download
cost) was characterized as (1 +1/N +...1/NE=1)~1,

Since the appearance of [1], significant recent progress has
been made on a variety of variations of the basic PIR problem.
We briefly describe some of these advances next. The case of
T-colluding PIR (or TPIR in short) was investigated in [2],
where any 7" DBs out of N are able to collude. Robust PIR, in
which any subset of DBs fail to respond was also investigated
in [2]. In a recent work, [3] characterized the capacity of
PIR with byzantine DBs (or BPIR), i.e., a scenario in which
any subset of DBs are adverserial (i.e. they can respond with
incorrect answers). The problem of PIR with DBs storing
MDS coded messages was considered in [4] and the capacity
was subsequently characterized by Banawan and Ulukus in
[5]. The problem of symmetric PIR (SPIR) was studied in [6].
In this setting, privacy is enforced in both directions, i.e., user
must be able to retrieve the message of interest privately, while
at the same time the DBs must avoid any information leakage
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to the user about the remaining messages. The capacity of
cache aided PIR (in which the user has a local cache of
limited storage) was recently characterized in [7], and it was
shown that memory sharing based PIR scheme is information-
theoretically optimal (also see recent works [8]-[10] on other
variations of the cache aided PIR problem).

Majority of above works, however, assume the presence
of replicated DBs, each storing all the K messages. Indeed,
exceptions to this statement include the works on the case
when DBs store MDS coded data for robust PIR. Furthermore,
[11] also investigated the problem of limited storage PIR
for the special case of K = 2 messages and N = 2
DBs. They present interesting lower and upper bounds on the
capacity for this special case, and show the optimality of the
proposed scheme for the case of linear schemes. However, the
generalization to any (N, K') parameters for arbitrary storage
constrained PIR problem remains elusive.

Summary of Contribution— In this work, we consider the
problem of PIR for uncoded storage constrained DBs. Each
DB has a storage capacity of K L bits, where K is the number
of messages, L is the size of each message in bits, and p €
[1/N,1] is the normalized storage. On one extreme, when p =
1/N, then the user has to download all the K messages to
achieve privacy. On the other hand, 1 = 1 is the replicated
DBs case setteled in [1], where the download cost is minimal.
Thus, we aim to characterize this trade-off for any value of .

In our prior work, [12], we presented an achievable scheme
for this problem which works for all (N, K') and all storage
parameters ;. The main contribution of this paper is to show
that the scheme in [12] is information-theoretically optimal
for uncoded storage placement strategies. The key technical
challenge is in proving the lower bounds, which go beyond
the techniques introduced in [1], to incorporate the fact that
PIR must be feasible from storage constrained DBs. The main
differences, however, is that we retain the terms of information
theoretic capacity which was discarded in [1].

II. STORAGE CONSTRAINED PIR: SYSTEM MODEL

We consider the PIR problem with N non-colluding DBs
and K independent messages W1, ..., Wg, where each mes-
sage is of size L bits, i.e.,, H(Wy) = L,Vk. We assume
that each DB has a storage capacity of p /K L bits. Denoting
Z1,...,Z N as the contents stored across the DBs, then we
have the storage constraints as H(Z,,) = KL, forn € [1 :
N]. For the scope of this paper, we focus on uncoded storage,
i.e., each DB can store uncoded bits of each message subject to
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the storage constraint. Furthermore, we assume that the storage
strategy employed by the user is completely public, i.e., each
DB knows which contents are stored at all the other DBs.

The normalized storage parameter p can take values in
the range 1/N < pu < 1. The case when p = 1 is the
setting of replicated DBs, with each DB storing all the K
messages. The lower bound x> 1/N is in fact a necessary
condition for reliable decoding. To request a message, a user
privately selects a number k between 1 and K corresponding
to the desired message Wj,. Then the user generates N queries
Q[lk], [Qk], e QEI\C,], where Q! is sent to the n** DB (DB,,),
and the queries are independent of the messages, i.e.,

IWh, .. Wk QP My =0, vke[1:K]. (1)

Upon receiving the query Q,[f ], DB,, returns an answer Agﬁ ]
to the user, which is a function of the corresponding query
and the data stored in the DB,,, i.e.,

HARIQM, 7z,)=0, Vke[l:K],Vne[l:N. @

From all the answers, the user must be able to correctly
decode the desired message Wy, i.e., the following correctness
constraint must be satisfied for all k£ € [1 : K]:

HWwi| AW, Al QW QM = o), (3

where o(L) represents a function where o(L)/L — 0 as L —
oo. In order to prevent the DBs from learning the identity of
requested message, privacy must be guaranteed through the
following statistical equivalence for all k; # ko € [1: K]

(QECI]?A%ILWM'"7WKth"~7ZN)
N(ng]’AgCQ]?Wl?'"7WKaZ17'"aZN)' (4)

For a storage parameter u, we say that a pair (D, L) is
achievable if there exists a PIR scheme with storage, querying,
and decoding functions, which satisfy the above constraints.
The performance of a PIR scheme is characterized by the
number of bits of desired information per downloaded bit.
In particular, if D is the total number of downloaded bits,
and L is the size of the desired message, then the normalized
downloaded cost is D /L. In other words, the PIR rate is L/D.
The goal is to characterize the optimal normalized download
cost as a function of the DB storage parameter /i

D*(u) =min {D/L : (D, L) is achievable}. ®)

The storage constrained capacity of PIR is the inverse of
the normalized download cost, i.e., C*(1) = max {L/D :
(D, L) is achievable}. In [12], we devised an achievable
scheme for storage constrained PIR problem. We next present
the main result of this paper which shows that the scheme in
[12] is information-theoretically optimal.

III. MAIN RESULT AND DISCUSSIONS

Theorem 1: For the uncoded storage constrained PIR prob-
lem with N DBs, K messages (of size L bits each), and
a per DB storage constraint of uK L bits, the information-
theoretically optimal tradeoff between storage and download

(Download Cost)
D(p)

: : (Storage)
1 2 1 H

Fig. 1. Optimal Tradeoff between download and storage for (N, K) = (3, 3).

cost is given by the lower convex hull of the following
(1w, D(p)) pairs, fort =1,2,..., N,

t 1 1
(,u, D(M)):<Na1+t+"'+tKl>. (6)

Fig. 1 shows the optimal tradeoff between download cost

and storage for N = 3 DBs and K = 3 messages. We can
make the following interesting observations from this figure:
a) u = 1 corresponds to replicated DBs, for which the optimal
download cost is the same as that in [1]; b) u = 1/N
corresponds to the minimum value of storage, for which the
optimal scheme is to download all messages to ensure privacy;
and c) for intermediate values, i.e., 1/N < p < 1, the optimal
trade off is achieved by memory sharing between different PIR
schemes, which are designed for specific values of x (in this
example, p = 1/3,2/3 and u = 1).
Achievable Scheme— The general achievable scheme, for any
(N, K) and any p, has been presented in our prior work [12].
We briefly describe the idea here for the example of N = K =
3. The three messages are denoted as A, B and C. Following
Theorem 1, the tradeoff has three critical points as shown in
Fig. 1 (labeled as Py, P> and P3). As the point P is trivial
and Ps follows from [1], we focus on point P, where p =
t/N = 2/3. For this point, we assume that each message is of
size L = 2% x 3 = 24 bits. In particular, we split each message
into (g) = 3 sub-messages and label each by a unique subset
of [1:3] of size t = 2, e.g., A = {aq1 2}, aq1,3}, 02,31}, and
each sub-message is of size 2% = 8 bits:

A= {ahjg}, ey 0?172}, 0%173}, N 7(1?173}, 0%2,3}, ey 0?273}},
B =A{b{19y- 0101001310 D131, Dlagys - - Dlagy b
C = {0%172}, ceey 6?172}, 01173}, e ’0?1,3}7 0%2,3}, ey C?273}}.

Subsequently, DB,, stores those sub-messages (of each mes-
sage) whose index contains n. For instance, DB stores
{a{l)g}, af1,3}» b{172}, b{1)3}, C{1,2}» 0{1)3}} Hence, the total
storage required per DB is 6 x 8 = 48 bits. The PIR scheme
works in three stages as shown in Table I (assuming that the
user wants message A).

We can readily verify that from the 42 bits downloaded
from all three DBs, the user is able to correctly retrieve the 24
bits of message A. Hence, the download cost of the scheme
is D(u = 2) = 33 = 7/4, and point P, is achieved. The
intermediate values of u, between the points P, P, and Ps,
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TABLE I
STORAGE CONSTRAINED PIR: (N, K) = (3,3),u =

DB DB

i _2
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‘1%1,2}7 b%l,Z}’ C}1,2} a%1,2}7 17%1,2}7 C%1,2}
al bl cl
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a1 0y T6{1 9

a1s .31 b2y 2.5y

afy 0y 001 2

afy 3y T 513 a{a 3y 0023 afa3) T 023

af10y + iy a1 0y + 12y af1 5y + 13y
033} T €13
b{1,3) +¢(1,3)
bioa) T (o)

afy gyHb3) aytels sy

a2 51000 377 s)

aly 3y 13y @y 3 + a3}
bl12) + <12y
blasy + sy

afy 2yt 2yF 1 2)

bzm} + C31,2}
b3y T sy

aly optbi1 atel1 2)

1 syt srtelis) | 9loaptis syt Cln g

can be achieved by memory-sharing (see [12, Lemma 1] for
more details), showing that the lower convex hull is achievable.
Converse Proof- Due to space limitations, the main ideas
behind the general converse proof are presented through the
example of N = 3 DBs and K = 3 messages, while the
complete general proof can be found in [13]. From Fig. 1, it
is clear that we need to show the following two bounds:

< 17—15/1; >85—33,u.
- 4 - 36
To this end, let us start with the following bound on D:
1 1
D — L+ o(L) > I(Wiaa; Qfily, Ay W),

D* () D* () (7)

3
which follows from [1, Lemma 1]. We next show that the term
in RHS above can be lower bounded as

[(Wia.a); QL Al [W1) > T(Wiags @1, AL i)

)

A
= Termy

HI(Wiz.a; Q[zl]vA[zl] |W1, Z1)+1(Wia:3)5 le]aA;[gl] (W1, Z1.9) -

A A
= Termy = Terms

To prove the above bound, we use the chain rule for mutual
information and expand the above term as

[(Wia.ap; QL Al [W1) = T(Wias @1, AP )
+ I(W[QS]v Q[Ql]v A[Ql] |Wla Q[ll]v A[ll])
+ I(Wi2.3; le] ) AE] W, QE]:Q] J AH]:Q])’

We note that the first term in the RHS of (10) is the same
as Term;. We next show that the second term in the RHS of
(10) is lower bounded by Terms as follows:

I(Wingp; Q5 AN W, QU Al
— 7Y, AN Wy, QM Al — QM Al Wy, QI Al

(10)

QU AL W, 20,0 AT H (@A W5 21,Q1 ALY
HQY, AV W, 2, Q) — H@QY, AP Wi, 21, Q)
= I(Wpag: Q5 AW, 21, Q1)
D (Wi Q5 AM, QU 1)

> I(Wigap; QY AN W, 21), (11)

where (a) follows from the fact that conditioning reduces
entropy (which allows us to introduce Z; in the first term),
and the fact that Z; is a function of W|.3 (hence it can be
introduced in the second term); (b) follows from the fact that
A[ll] is a function of (7, Q[ll]); and step (c¢) follows from (1).
The third term in the RHS of (10) can be similarly lower
bounded by Terms. This completes the proof of (9).
Hence, from (8) and (9), we lower bound D as:

D + o(L) > L + Term; + Termy + Termg. (12)

Before further lower bounding Term;, Terms and Terms, we
state the symmetric assumption on PIR schemes.

Remark 1 (Symmetric Scheme Assumption): For symmetric
PIR schemes, we assume that the queries, answers, and the
storage placement are symmetric across DBs. In particular,
for this example, we have the following symmetry condition:
for [K| = |K'|, and |N| = |N|, we have

I(Whapk: QL AM Wi, Zy)
= I(W[1:3]\,<,;Q£f,],A£§]|W;C,,ZN/), (13)

where NN/ KK C[1:3,nel:3]\N,n €[l:
3J\N', k, k' € [1 : 3], and | A| is the cardinality of any
set A. For instance, we have I(W[lZQ];Q[QS]7A[23]|W37 Zs) =
[(Wiap: Q5 AW, 2,).

Lemma 1: For symmetric PIR schemes as defined in Re-
mark 1, we can lower bound the three terms in (9) as follows:

4 1
Term; > §L + EH(W3|W[1:2]7 Zy)

1
+ gH(W:zIWu:z],Z[m]) +o(L),

1 1
Termg > §H(W2|W17Zﬁ + ZH(W3|W[1:2]721)

1
+ §H(W3|W[1;2]7Z[1:2]) +o(L),
Termsz > H(Wa|Wh, Zj1.9)) + H(W3|Wi1.2), Zj1.2)) + o(L).

The full proof of Lemma 1 is presented in Appendix A.
Remark 2: Due to space limitation, we have specialized the
converse proof for symmetric PIR schemes. This assumption
can be readily removed by averaging (8) and (9) over all
possible permutations of the DBs and the messages indexes.
Using Lemma 1 in (12), we obtain the following bound:

13
9

11
+EH(W3|W[1:2]; Zp1.9))+H (W2 W, Zp1.97) + o(L). (14)

It is interesting to observe that by trivially lower bounding
the entopy terms in the RHS of (14) by zero, we recover the
converse result in [1], i.e., D/L > 1+ 1/3 +1/3% = 13/9.
This bound is tight when each DB has the storage capacity to
store all messages, i.e., if u = 1, since Z,, = (W1, Wa, W3)
for n € [1 : 3]. However, for storage constrained DBs, these
remaining terms contribute to the lower bound and are central
to proving optimality. We now specialize the lower bound in
(14) for the case of uncoded storage placement as defined next.

1 5
D> L+§H(W2|W17 Z1)+EH(W3|W[1:2]7 Zy)
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Remark 3 (Uncoded Storage Assumption): For uncoded
storage, the DBs store uncoded functions of the K messages.
We consider a generic uncoded placement strategy as follows:
let us consider message W}, and denote W,f as the set of
bits of W), that are stored at the DBs in the set S. For this
example, each message W, can then be written as Wj =
{W,;{l},W,;{Q},W,;{B},W,jl’g},W,;{l’B},W,;{Q’B},W,;{l’z’?’}}.

For symmetric uncoded schemes (as defined by Remarks 1
and 3), we denote the sizes of the sub-messages of the mesage
Wi, Vk € [1: 3], as follows:

HW) = HWE) = Hw™) = a1,
HW) = W) = HW> ™) =asL,

HW3 = 2,1, (15)

where x1, 22,23 > 0. Since each message is of size L bits,

the variables (21,22,73) must satisfy (3)z1L + (3)zoL +
(g) xsL = L, which gives us the following constraint C;:

(Message Size Constraint: C1) 3z + 3z2 +x3 =1. (16)

Furthermore, each DB must satisfy the storage constraint,
i.e., total data stored at each DB cannot exceed uKL =
3uL bits. For instance, DB; can store the sub-messages
W,jl}, W;1’2},Wk{1’3}, W,il’Q’B}, Vk € [1 : 3], and hence we
must satisfy (3 x ((3)z1L + (3)a2L + (5)asL) = 3ul), ie.,

(Storage Constraint: C) 1 + 229 + 3 = L. (17)

For uncoded storage, we express the terms appearing in (14)
as functions of (x1,x,x3), defined in (15), as follows:

H(Wa|Wy, Z1) = HWL wis w2 = (221 + 20) L,
H(W3|W[1:2] 5 Zl):H(W§2},Wé{3}’W;2’3}) = (le J'_ x2)L’
H(Wa|Wi, Zj1.9)) = H(WQ{S}) =1L,

(

H(Wa| Wi, Zpegy) = HWL) = 2, L. (18)

Using (18) in (14) and taking the limit L — oo, we arrive at

pr>2>8 M 1
- L9 3 12
From constraints C7 and Co, we first express x; and x5 in
terms of x3, and bound (19) as

13 14 (/2 z3) 11 1 2z

D) > o (2 B (s 2
(“)9+3<3 ’“‘+3)+12<“ 3 3)
AT 1o 17w @ 17— 15

1 1 "8 T 1

where (a) follows since x3 > 0. This proves the first bound
in (7). Next, we express x5 in (19), in terms of x; to obtain

19)

(20)

13 142, 11 11z,
D*(p) > — —(1—p)—
(1) = g t—3 L —n :
11 1 (a) —
_ % _1p Tx1 < 85 33/1) 21
36 12 6 36

where (a) follows since 21 > 0. This proves the second bound
in (7), completing the proof of Theorem 1 for N = K = 3.

IV. CONCLUSIONS

In this paper, we characterized the optimum download cost
of PIR from uncoded storage constrained DBs. In particular,
for any (N, K), we show that the optimal tradeoff between
storage, u, and the download cost, D(pu), is given by the lower
convex hull of the pairs (%, (1+ 1+ & + -+ + ;x=)) for
t € [1 : N]. The main technical contribution of this paper is
obtaining lower bounds on the download cost for PIR as a
function of storage, which matches the achievable scheme in
[12], and hence characterizes the optimal tradeoff.
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APPENDIX A
PROOF OF LEMMA 1
We lower bound Term; as follows:
1 1
Term1 = I(W[Q:g)]; Q[l ], A[l ] |W1)

a) 1

@ S Wi QAL W) + T(Wiaig @, A4 W)
+ I(Wia.3); Qé” ) Ag,l] [W1)]

(b 1 2] 402 (2] 402

= g[I(W[z:s};Q1 7A1 \W1)+I(W[2:3];Q2 ,Ag |W1)

+ I (Wi Q) AD W)

1

g[I(W[ZS];A[E]‘Wl, [12])+I(W[2:3];A[22]|W17 [22])
+ T(Wigap; AZ W, Q]
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:%UHAFHVMQ?U+H@$WWG» S HH (AW, Q)
K é[ (AP, Q) +H(A[2]\W1’Q{?]3]’A[12])

N H(AP]IWl,Q{TJ.S],AE]Q])] _ [ (A{?]j]‘wva{?]:B])}
© éI(W[N]’ [13]\W17Q[13])
Q}%]avpﬁ;QﬁgPAﬂﬁﬂﬂﬁ)

@ éI(W[z::a]; Wa. Q1 Ay W) + o(L)
%[ (Wizeg); Wa|Wh) + I(Ws; Q[1 3] }?!3] W) +o(L)
%[L + I(Ws; QL) ARy [Wiaiap)] + o(L), 22)
AT,

where (a) follows from the symmetry assumption in Re-
mark 1; (b) follows from privacy constraint (4); (c¢) follows
from (2), i.e., the fact that every answer is a function of query
and all messages; (d) follows from the fact that conditioning
reduces entropy; (e) follows from (2); (f) follows from (1);
and (g) follows from correctness constraint in (3), i.e., Wy
must be decoded from Q 3]’ and Aﬁ]:g]. Next, the term T; in
(22) is lower bounded using similar steps to (9) as

Ty > I(Ws; Q[f] ) A[12] [Whia)) +1(Ws; Q[22]7A[22] Wi, Z1)

2T(1a) 2Ty

I(W37 QELA?] |W[1:2] ) Z[l:?]) . (23)

£T(0)

T(la) is similar to Term;, and hence, we can follow a similar
sequence of steps used in (22) to lower bound 7}, as follows:

T (i)EIW-W o AR W L
(1a) = 7 L(Ws; 3, Qi) 1:3| 1:2)) +o(L)

1
3 [I(Wi’n W3|W[1 2])+I(W37 Q[1 :3) {:1))]:3] ‘W[ltfi]) +o(L)
=L/3+o(L), (24)
where (a) follows by arguments similar to (a) — (g) in (22).
We note that 7|1y and T{;.) were trivially lower bounded by
zero in the converse proof for replicated DBs in [1]. Carefully
lower bounding these terms as a function of the content stored

across DBs is one of the key new aspects of the converse proof.
We proceed to lower bound Ty defined in (23) as follows:

Ty = 1(Ws;
a)l
( ) [ (W37Q[22]7A |W12 Z1)+I(W37Q3a

[2] A[z] Wi2), Z1)
P Wir.ay, Z0)]

—~
=

1
*[I(W%QQ ,A[ ]\W[1<2] Z1)+I(W3;Q£3]7A3 |Wii2), Z1))]

—

C

:f[mg A W91, 20, Q5N+ 1 (W3 AF W01, 20, Q)]

I\/§

OBl
§I(W3’ Q[I:B]’ A[z:g] (Whap, 21)

© 1
(W37 W3a Q[l :3)

= iH(W3|W[1:2]7 Zl) +

Ay Wiz, 21) +

o(L),

where (a) follows from the symmetry assumption in Re-
mark 1; (b) follows from (4); (c¢) follows from (1); (d) follows
by arguments similar to (¢) — (e) in (22), and (e) follows
from (3). We next bound term 7{) defined in (23) as follows:

T(lc) = I(Ws; ng},AgHW[m],Z[m])
Q5 A[3]|W1~2],Z[1~2])

o(L)
(25)

' 1w,

(b

>I<W A[B]IW[lz], 12, Q)
(c)
> I(W37Q[1 :3] 3 ‘W[1:2]7Z[1:2])

(d)
: I(W?n W3a Q[l ;3] E]'W[l:Q]v Z[1:2]) + O(L)
= H(Ws3|Wii.9, Z1.97) + o(L), (26)

where (a) follows from (4); (b) follows from (1); (c¢) follows
by arguments similar to (¢) — (e) in (22), and (d) follows
from (3). We lower bound 7} from (24), (25) and (26), and
then use it in (22) to arrive at the desired bound on Term:

4 1
Termy > o L + < H(Ws|Wp.2), 21)

1
+ gH(VV:),|VV[1:2]7Z[lzz]) + o(L).

We now present the steps to prove the lower bound on
Terms. This term is similar to term T (1), and hence, we can
follow a similar sequence of steps to arrive at:

Termy = [(Wiaap; @5, AN W1, 21)
(@) 1
2 §I(W[2:3]§ Wa, Qﬁ]:g]a Ag]:gﬂWh Z1) +o(L)
1
2 5H (W2|W1,Z1)+I(W3,Q[2 ot [2 3]|W[1 ), Z1)] + o(L)

1 .2 412

> §[H(W2|W17 Z1) + I(W3;Q5 A5 (W2, 21)
+ I(Ws; QE]v AEE] ‘W[1:2]7 Z[1:2])] +o(L)

(c)

1
> -H(Wy|Wh, Zy) + ZH(WS\W[LQ]’ Zy)

1
S H(W3|Wii.9), Zj1:9)) + o(L),

M| =

27

where (a) follows by arguments similar to (a) — (e) in (25),
(b) follows from arguments similar to (9), and (¢) follows from
the bounds in (25) and (26). This gives the desired bound on
Terms,. Finally, Terms can be lower bounded as follows:

Termsz = I(Wa.3); Q?],AQ] W1, Zj1.9))

(a)
> 1(Wia.3); Wa, QE]:g,pA;[gQ] [Wh, Zj1.2)) + o(L)

= H(Wa|W1, Zpy.g)) + 1(Ws; QY A£21|W[1:2], Zp1.9))+o(L)
(b)
> H(W|Wh, Zj1.9)) + H(W3|Wii.g), Z11:2)) +o(L), (28)

where (a) follows by arguments similar to (a) — (d) in (26),
and (b) follows from the bound in (26).



