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Abstract—Private information retrieval (PIR) allows a user to
retrieve a desired message out of K possible messages from N
databases (DBs) without revealing the identity of the desired
message. In this work, we consider the problem of PIR from
uncoded storage constrained DBs. Each DB has a storage capacity
of μKL bits, where L is the size of each message in bits,
and μ ∈ [1/N, 1] is the normalized storage. In the storage
constrained PIR problem, there are two key challenges: a)
construction of communication efficient schemes through storage
content design at each DB that allow download efficient PIR; and
b) characterizing the optimal download cost via information-
theoretic lower bounds. The novel aspect of this work is to
characterize the optimum download cost of PIR with storage
constrained DBs for any value of storage. In particular, for any
(N,K), we show that the optimal tradeoff between storage (μ)
and the download cost (D(μ)) is given by the lower convex hull
of the pairs ( t

N
,
(
1 + 1

t
+ 1

t2
+ · · ·+ 1

tK−1

)
) for t = 1, 2, . . . , N .

The main contribution of this paper is the converse proof, i.e.,
obtaining lower bounds on the download cost for PIR as a
function of the available storage.

I. INTRODUCTION

The classical private information retrieval (PIR) problem

involves N non-colluding databases (DBs), each DB stores

K messages. The goal of the user is to efficiently retrieve a

message without revealing the message identity. Based on the

Shannon theoretic formulation, the rate of a PIR scheme is the

ratio between the number of desired vs downloaded bits, and

PIR capacity is then defined as the maximum achievable rate.

Recently in [1], the capacity of PIR (or the inverse of download

cost) was characterized as (1 + 1/N + . . . 1/NK−1)−1.

Since the appearance of [1], significant recent progress has

been made on a variety of variations of the basic PIR problem.

We briefly describe some of these advances next. The case of

T -colluding PIR (or TPIR in short) was investigated in [2],

where any T DBs out of N are able to collude. Robust PIR, in

which any subset of DBs fail to respond was also investigated

in [2]. In a recent work, [3] characterized the capacity of

PIR with byzantine DBs (or BPIR), i.e., a scenario in which

any subset of DBs are adverserial (i.e. they can respond with

incorrect answers). The problem of PIR with DBs storing

MDS coded messages was considered in [4] and the capacity

was subsequently characterized by Banawan and Ulukus in

[5]. The problem of symmetric PIR (SPIR) was studied in [6].

In this setting, privacy is enforced in both directions, i.e., user

must be able to retrieve the message of interest privately, while

at the same time the DBs must avoid any information leakage
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to the user about the remaining messages. The capacity of

cache aided PIR (in which the user has a local cache of

limited storage) was recently characterized in [7], and it was

shown that memory sharing based PIR scheme is information-

theoretically optimal (also see recent works [8]–[10] on other

variations of the cache aided PIR problem).

Majority of above works, however, assume the presence

of replicated DBs, each storing all the K messages. Indeed,

exceptions to this statement include the works on the case

when DBs store MDS coded data for robust PIR. Furthermore,

[11] also investigated the problem of limited storage PIR

for the special case of K = 2 messages and N = 2
DBs. They present interesting lower and upper bounds on the

capacity for this special case, and show the optimality of the

proposed scheme for the case of linear schemes. However, the

generalization to any (N,K) parameters for arbitrary storage

constrained PIR problem remains elusive.

Summary of Contribution– In this work, we consider the

problem of PIR for uncoded storage constrained DBs. Each

DB has a storage capacity of μKL bits, where K is the number

of messages, L is the size of each message in bits, and μ ∈
[1/N, 1] is the normalized storage. On one extreme, when μ =
1/N , then the user has to download all the K messages to

achieve privacy. On the other hand, μ = 1 is the replicated

DBs case setteled in [1], where the download cost is minimal.

Thus, we aim to characterize this trade-off for any value of μ.

In our prior work, [12], we presented an achievable scheme

for this problem which works for all (N,K) and all storage

parameters μ. The main contribution of this paper is to show

that the scheme in [12] is information-theoretically optimal

for uncoded storage placement strategies. The key technical

challenge is in proving the lower bounds, which go beyond

the techniques introduced in [1], to incorporate the fact that

PIR must be feasible from storage constrained DBs. The main

differences, however, is that we retain the terms of information

theoretic capacity which was discarded in [1].

II. STORAGE CONSTRAINED PIR: SYSTEM MODEL

We consider the PIR problem with N non-colluding DBs

and K independent messages W1, . . . ,WK , where each mes-

sage is of size L bits, i.e., H(Wk) = L, ∀k. We assume

that each DB has a storage capacity of μKL bits. Denoting

Z1, . . . , ZN as the contents stored across the DBs, then we

have the storage constraints as H(Zn) = μKL, for n ∈ [1 :
N ]. For the scope of this paper, we focus on uncoded storage,

i.e., each DB can store uncoded bits of each message subject to
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the storage constraint. Furthermore, we assume that the storage

strategy employed by the user is completely public, i.e., each

DB knows which contents are stored at all the other DBs.

The normalized storage parameter μ can take values in

the range 1/N ≤ μ ≤ 1. The case when μ = 1 is the

setting of replicated DBs, with each DB storing all the K
messages. The lower bound μ ≥ 1/N is in fact a necessary

condition for reliable decoding. To request a message, a user

privately selects a number k between 1 and K corresponding

to the desired message Wk. Then the user generates N queries

Q
[k]
1 , Q

[k]
2 , . . . , Q

[k]
N , where Q

[k]
n is sent to the nth DB (DBn),

and the queries are independent of the messages, i.e.,

I(W1, . . . ,WK ;Q
[k]
1 , . . . , Q

[k]
N ) = 0, ∀k ∈ [1 : K]. (1)

Upon receiving the query Q
[k]
n , DBn returns an answer A

[k]
n

to the user, which is a function of the corresponding query

and the data stored in the DBn, i.e.,

H(A[k]
n |Q[k]

n , Zn) = 0, ∀k ∈ [1 : K], ∀n ∈ [1 : N ]. (2)

From all the answers, the user must be able to correctly

decode the desired message Wk, i.e., the following correctness

constraint must be satisfied for all k ∈ [1 : K]:

H(Wk|A[k]
1 , . . . , A

[k]
N , Q

[k]
1 , . . . , Q

[k]
N ) = o(L), (3)

where o(L) represents a function where o(L)/L → 0 as L →
∞. In order to prevent the DBs from learning the identity of

requested message, privacy must be guaranteed through the

following statistical equivalence for all k1 �= k2 ∈ [1 : K]:

(Q[k1]
n , A[k1]

n ,W1, . . . ,WK , Z1, . . . , ZN )

∼ (Q[k2]
n , A[k2]

n ,W1, . . . ,WK , Z1, . . . , ZN ). (4)

For a storage parameter μ, we say that a pair (D,L) is

achievable if there exists a PIR scheme with storage, querying,

and decoding functions, which satisfy the above constraints.

The performance of a PIR scheme is characterized by the

number of bits of desired information per downloaded bit.

In particular, if D is the total number of downloaded bits,

and L is the size of the desired message, then the normalized

downloaded cost is D/L. In other words, the PIR rate is L/D.

The goal is to characterize the optimal normalized download

cost as a function of the DB storage parameter μ:

D∗(μ) = min {D/L : (D,L) is achievable}. (5)

The storage constrained capacity of PIR is the inverse of

the normalized download cost, i.e., C∗(μ) = max {L/D :
(D,L) is achievable}. In [12], we devised an achievable

scheme for storage constrained PIR problem. We next present

the main result of this paper which shows that the scheme in

[12] is information-theoretically optimal.

III. MAIN RESULT AND DISCUSSIONS

Theorem 1: For the uncoded storage constrained PIR prob-
lem with N DBs, K messages (of size L bits each), and
a per DB storage constraint of μKL bits, the information-
theoretically optimal tradeoff between storage and download

1
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(Download Cost)

1
3

2
3
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3

1 + 1
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D∗(μ) =
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4

D∗(μ) =
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36

Fig. 1. Optimal Tradeoff between download and storage for (N,K) = (3, 3).

cost is given by the lower convex hull of the following
(μ,D(μ)) pairs, for t = 1, 2, . . . , N ,

(μ, D(μ)) =

(
t

N
, 1 +

1

t
+ · · ·+ 1

tK−1

)
. (6)

Fig. 1 shows the optimal tradeoff between download cost

and storage for N = 3 DBs and K = 3 messages. We can

make the following interesting observations from this figure:

a) μ = 1 corresponds to replicated DBs, for which the optimal

download cost is the same as that in [1]; b) μ = 1/N
corresponds to the minimum value of storage, for which the

optimal scheme is to download all messages to ensure privacy;

and c) for intermediate values, i.e., 1/N < μ < 1, the optimal

trade off is achieved by memory sharing between different PIR

schemes, which are designed for specific values of μ (in this

example, μ = 1/3, 2/3 and μ = 1).

Achievable Scheme– The general achievable scheme, for any

(N,K) and any μ, has been presented in our prior work [12].

We briefly describe the idea here for the example of N = K =
3. The three messages are denoted as A,B and C. Following

Theorem 1, the tradeoff has three critical points as shown in

Fig. 1 (labeled as P1, P2 and P3). As the point P1 is trivial

and P3 follows from [1], we focus on point P2, where μ =
t/N = 2/3. For this point, we assume that each message is of

size L = 23×3 = 24 bits. In particular, we split each message

into
(
3
2

)
= 3 sub-messages and label each by a unique subset

of [1 : 3] of size t = 2, e.g., A = {a{1,2}, a{1,3}, a{2,3}}, and

each sub-message is of size 23 = 8 bits:

A = {a1{1,2}, . . . , a8{1,2}, a1{1,3}, . . . ,a8{1,3}, a1{2,3}, . . . , a8{2,3}},
B = {b1{1,2}, . . . , b8{1,2}, b1{1,3}, . . . , b8{1,3}, b1{2,3}, . . . , b8{2,3}},
C = {c1{1,2}, . . . , c8{1,2}, c1{1,3}, . . . , c8{1,3}, c1{2,3}, . . . , c8{2,3}}.
Subsequently, DBn stores those sub-messages (of each mes-

sage) whose index contains n. For instance, DB1 stores

{a{1,2}, a{1,3}, b{1,2}, b{1,3}, c{1,2}, c{1,3}} Hence, the total

storage required per DB is 6× 8 = 48 bits. The PIR scheme

works in three stages as shown in Table I (assuming that the

user wants message A).

We can readily verify that from the 42 bits downloaded

from all three DBs, the user is able to correctly retrieve the 24
bits of message A. Hence, the download cost of the scheme

is D(μ = 2
3 ) = 42

24 = 7/4, and point P2 is achieved. The

intermediate values of μ, between the points P1, P2, and P3,
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TABLE I
STORAGE CONSTRAINED PIR: (N,K) = (3, 3), μ = t

N
= 2

3

DB1 DB2 DB3

a1{1,2}, b
1
{1,2}, c

1
{1,2} a2{1,2}, b

2
{1,2}, c

2
{1,2} a2{1,3}, b

2
{1,3}, c

2
{1,3}

a1{1,3}, b
1
{1,3}, c

1
{1,3} a1{2,3}, b

1
{2,3}, c

1
{2,3} a2{2,3}, b

2
{2,3}, c

2
{2,3}

a3{1,2} + b2{1,2} a5{1,2} + b1{1,2} a5{1,3} + b1{1,3}
a3{1,3} + b2{1,3} a3{2,3} + b2{2,3} a5{2,3} + b1{2,3}
a4{1,2} + c2{1,2} a6{1,2} + c1{1,2} a6{1,3} + c1{1,3}
a4{1,3} + c2{1,3} a4{2,3} + c2{2,3} a6{2,3} + c1{2,3}
b3{1,2} + c3{1,2} b4{1,2} + c4{1,2} b4{1,3} + c4{1,3}
b3{1,3} + c3{1,3} b3{2,3} + c3{2,3} b4{2,3} + c4{2,3}

a7{1,2}+b4{1,2}+c4{1,2} a8{1,2}+b3{1,2}+c3{1,2} a8{1,3}+b3{1,3}+c3{1,3}
a7{1,3}+b4{1,3}+c4{1,3} a7{2,3}+b4{2,3}+c4{2,3} a8{2,3}+b3{2,3}+c3{2,3}

can be achieved by memory-sharing (see [12, Lemma 1] for

more details), showing that the lower convex hull is achievable.

Converse Proof– Due to space limitations, the main ideas

behind the general converse proof are presented through the

example of N = 3 DBs and K = 3 messages, while the

complete general proof can be found in [13]. From Fig. 1, it

is clear that we need to show the following two bounds:

D∗(μ) ≥ 17− 15μ

4
; D∗(μ) ≥ 85− 33μ

36
. (7)

To this end, let us start with the following bound on D:

D − L+ o(L) ≥ I(W[2:3];Q
[1]
[1:3], A

[1]
[1:3]|W1), (8)

which follows from [1, Lemma 1]. We next show that the term

in RHS above can be lower bounded as

I(W[2:3];Q
[1]
[1:3], A

[1]
[1:3]|W1) ≥ I(W[2:3];Q

[1]
1 , A

[1]
1 |W1)︸ ︷︷ ︸

� Term1

(9)

+I(W[2:3];Q
[1]
2 ,A

[1]
2 |W1,Z1)︸ ︷︷ ︸

� Term2

+I(W[2:3];Q
[1]
3 ,A

[1]
3 |W1,Z[1:2])︸ ︷︷ ︸

� Term3

.

To prove the above bound, we use the chain rule for mutual

information and expand the above term as

I(W[2:3];Q
[1]
[1:3], A

[1]
[1:3]|W1) = I(W[2:3];Q

[1]
1 , A

[1]
1 |W1)

+ I(W[2:3];Q
[1]
2 , A

[1]
2 |W1, Q

[1]
1 , A

[1]
1 )

+ I(W[2:3];Q
[1]
3 , A

[1]
3 |W1, Q

[1]
[1:2], A

[1]
[1:2]). (10)

We note that the first term in the RHS of (10) is the same

as Term1. We next show that the second term in the RHS of

(10) is lower bounded by Term2 as follows:

I(W[2:3];Q
[1]
2 , A

[1]
2 |W1, Q

[1]
1 , A

[1]
1 )

= H(Q
[1]
2 ,A

[1]
2 |W1, Q

[1]
1 ,A

[1]
1 )−H(Q

[1]
2 ,A

[1]
2 |W[1:3], Q

[1]
1 ,A

[1]
1 )

(a)

≥H(Q
[1]
2 ,A

[1]
2 |W1,Z1,Q

[1]
1 ,A

[1]
1 )−H(Q

[1]
2 ,A

[1]
2 |W[1:3],Z1,Q

[1]
1 ,A

[1]
1 )

(b)
= H(Q

[1]
2 , A

[1]
2 |W1, Z1, Q

[1]
1 )−H(Q

[1]
2 , A

[1]
2 |W[1:3], Z1, Q

[1]
1 )

= I(W[2:3];Q
[1]
2 , A

[1]
2 |W1, Z1, Q

[1]
1 )

(c)
= I(W[2:3];Q

[1]
2 , A

[1]
2 , Q

[1]
1 |W1, Z1)

≥ I(W[2:3];Q
[1]
2 , A

[1]
2 |W1, Z1), (11)

where (a) follows from the fact that conditioning reduces

entropy (which allows us to introduce Z1 in the first term),

and the fact that Z1 is a function of W[1:3] (hence it can be

introduced in the second term); (b) follows from the fact that

A
[1]
1 is a function of (Z1, Q

[1]
1 ); and step (c) follows from (1).

The third term in the RHS of (10) can be similarly lower

bounded by Term3. This completes the proof of (9).

Hence, from (8) and (9), we lower bound D as:

D + o(L) ≥ L+ Term1 + Term2 + Term3. (12)

Before further lower bounding Term1, Term2 and Term3, we

state the symmetric assumption on PIR schemes.

Remark 1 (Symmetric Scheme Assumption): For symmetric

PIR schemes, we assume that the queries, answers, and the

storage placement are symmetric across DBs. In particular,

for this example, we have the following symmetry condition:

for |K| = |K′|, and |N | = |N ′|, we have

I(W[1:3]\K;Q[k]
n , A[k]

n |WK, ZN )

= I(W[1:3]\K′ ;Q
[k′]
n′ , A

[k′]
n′ |WK′ , ZN ′), (13)

where N ,N ′,K,K′ ⊆ [1 : 3], n ∈ [1 : 3] \ N , n′ ∈ [1 :
3] \ N ′, k, k′ ∈ [1 : 3], and |A| is the cardinality of any

set A. For instance, we have I(W[1:2];Q
[3]
2 , A

[3]
2 |W3, Z2) =

I(W[1:2];Q
[3]
3 , A

[3]
3 |W3, Z2).

Lemma 1: For symmetric PIR schemes as defined in Re-
mark 1, we can lower bound the three terms in (9) as follows:

Term1 ≥ 4

9
L+

1

6
H(W3|W[1:2], Z1)

+
1

3
H(W3|W[1:2], Z[1:2]) + o(L),

Term2 ≥ 1

2
H(W2|W1, Z1) +

1

4
H(W3|W[1:2], Z1)

+
1

2
H(W3|W[1:2], Z[1:2]) + o(L),

Term3 ≥ H(W2|W1, Z[1:2]) +H(W3|W[1:2], Z[1:2]) + o(L).

The full proof of Lemma 1 is presented in Appendix A.

Remark 2: Due to space limitation, we have specialized the

converse proof for symmetric PIR schemes. This assumption

can be readily removed by averaging (8) and (9) over all

possible permutations of the DBs and the messages indexes.

Using Lemma 1 in (12), we obtain the following bound:

D≥ 13

9
L+

1

2
H(W2|W1, Z1)+

5

12
H(W3|W[1:2], Z1)

+
11

6
H(W3|W[1:2], Z[1:2])+H(W2|W1, Z[1:2]) + o(L). (14)

It is interesting to observe that by trivially lower bounding

the entopy terms in the RHS of (14) by zero, we recover the

converse result in [1], i.e., D/L ≥ 1 + 1/3 + 1/32 = 13/9.

This bound is tight when each DB has the storage capacity to

store all messages, i.e., if μ = 1, since Zn = (W1,W2,W3)
for n ∈ [1 : 3]. However, for storage constrained DBs, these

remaining terms contribute to the lower bound and are central

to proving optimality. We now specialize the lower bound in

(14) for the case of uncoded storage placement as defined next.
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Remark 3 (Uncoded Storage Assumption): For uncoded

storage, the DBs store uncoded functions of the K messages.

We consider a generic uncoded placement strategy as follows:

let us consider message Wk, and denote WS
k as the set of

bits of Wk that are stored at the DBs in the set S . For this

example, each message Wk can then be written as Wk =

{W {1}
k ,W

{2}
k ,W

{3}
k ,W

{1,2}
k ,W

{1,3}
k ,W

{2,3}
k ,W

{1,2,3}
k }.

For symmetric uncoded schemes (as defined by Remarks 1

and 3), we denote the sizes of the sub-messages of the mesage

Wk, ∀k ∈ [1 : 3], as follows:

H(W
{1}
k ) = H(W

{2}
k ) = H(W

{3}
k ) = x1L,

H(W
{1,2}
k ) = H(W

{1,3}
k ) = H(W

{2,3}
k )=x2L,

H(W
{1,2,3}
k ) = x3L, (15)

where x1, x2, x3 ≥ 0. Since each message is of size L bits,

the variables (x1, x2, x3) must satisfy
(
3
1

)
x1L +

(
3
2

)
x2L +(

3
3

)
x3L = L, which gives us the following constraint C1:

(Message Size Constraint: C1) 3x1 + 3x2 + x3 = 1. (16)

Furthermore, each DB must satisfy the storage constraint,

i.e., total data stored at each DB cannot exceed μKL =
3μL bits. For instance, DB1 can store the sub-messages

W
{1}
k ,W

{1,2}
k ,W

{1,3}
k ,W

{1,2,3}
k , ∀k ∈ [1 : 3], and hence we

must satisfy (3× (
(
2
0

)
x1L+

(
2
1

)
x2L+

(
2
2

)
x3L) = 3μL), i.e.,

(Storage Constraint: C2) x1 + 2x2 + x3 = μ. (17)

For uncoded storage, we express the terms appearing in (14)

as functions of (x1, x2, x3), defined in (15), as follows:

H(W2|W1, Z1) = H(W
{2}
2 ,W

{3}
2 ,W

{2,3}
2 ) = (2x1 + x2)L,

H(W3|W[1:2], Z1)=H(W
{2}
3 ,W

{3}
3 ,W

{2,3}
3 )=(2x1 + x2)L,

H(W2|W1, Z[1:2]) = H(W
{3}
2 ) = x1L,

H(W3|W[1:2], Z[1:2]) = H(W
{3}
3 ) = x1L. (18)

Using (18) in (14) and taking the limit L → ∞, we arrive at

D∗(μ) ≥ D

L
≥ 13

9
+

14

3
x1 +

11

12
x2. (19)

From constraints C1 and C2, we first express x1 and x2 in

terms of x3, and bound (19) as

D∗(μ) ≥ 13

9
+

14

3

(
2

3
− μ+

x3

3

)
+

11

12

(
μ− 1

3
− 2x3

3

)

=
17

4
− 15μ

4
+

17x3

18

(a)

≥ 17− 15μ

4
, (20)

where (a) follows since x3 ≥ 0. This proves the first bound

in (7). Next, we express x2 in (19), in terms of x1 to obtain

D∗(μ) ≥ 13

9
+

14x1

3
+

11

12
(1− μ)− 11x1

6

=
85

36
− 11μ

12
+

17x1

6

(a)

≥ 85− 33μ

36
, (21)

where (a) follows since x1 ≥ 0. This proves the second bound

in (7), completing the proof of Theorem 1 for N = K = 3.

IV. CONCLUSIONS

In this paper, we characterized the optimum download cost

of PIR from uncoded storage constrained DBs. In particular,

for any (N,K), we show that the optimal tradeoff between

storage, μ, and the download cost, D(μ), is given by the lower

convex hull of the pairs ( t
N ,

(
1 + 1

t +
1
t2 + · · ·+ 1

tK−1

)
) for

t ∈ [1 : N ]. The main technical contribution of this paper is

obtaining lower bounds on the download cost for PIR as a

function of storage, which matches the achievable scheme in

[12], and hence characterizes the optimal tradeoff.
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APPENDIX A

PROOF OF LEMMA 1

We lower bound Term1 as follows:
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where (a) follows from the symmetry assumption in Re-

mark 1; (b) follows from privacy constraint (4); (c) follows

from (2), i.e., the fact that every answer is a function of query

and all messages; (d) follows from the fact that conditioning

reduces entropy; (e) follows from (2); (f) follows from (1);

and (g) follows from correctness constraint in (3), i.e., W2

must be decoded from Q
[2]
[1:3], and A

[2]
[1:3]. Next, the term T1 in

(22) is lower bounded using similar steps to (9) as

T1 ≥ I(W3;Q
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T(1a) is similar to Term1, and hence, we can follow a similar

sequence of steps used in (22) to lower bound T(1a) as follows:
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(a)

≥ 1

3
I(W3;W3, Q

[3]
[1:3], A

[3]
[1:3]|W[1:2]) + o(L)

=
1

3

[
I(W3;W3|W[1:2])+I(W3;Q

[3]
[1:3], A

[3]
[1:3]|W[1:3])

]
+o(L)

= L/3 + o(L), (24)

where (a) follows by arguments similar to (a) → (g) in (22).

We note that T(1b) and T(1c) were trivially lower bounded by

zero in the converse proof for replicated DBs in [1]. Carefully

lower bounding these terms as a function of the content stored

across DBs is one of the key new aspects of the converse proof.

We proceed to lower bound T(1b) defined in (23) as follows:
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where (a) follows from the symmetry assumption in Re-

mark 1; (b) follows from (4); (c) follows from (1); (d) follows

by arguments similar to (c) → (e) in (22), and (e) follows

from (3). We next bound term T(1c) defined in (23) as follows:
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where (a) follows from (4); (b) follows from (1); (c) follows

by arguments similar to (c) → (e) in (22), and (d) follows

from (3). We lower bound T1 from (24), (25) and (26), and

then use it in (22) to arrive at the desired bound on Term1:
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We now present the steps to prove the lower bound on

Term2. This term is similar to term T(1b), and hence, we can

follow a similar sequence of steps to arrive at:
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where (a) follows by arguments similar to (a) → (e) in (25),

(b) follows from arguments similar to (9), and (c) follows from

the bounds in (25) and (26). This gives the desired bound on

Term2. Finally, Term3 can be lower bounded as follows:
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where (a) follows by arguments similar to (a) → (d) in (26),

and (b) follows from the bound in (26).
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