2018 IEEE International Symposium on Information Theory (ISIT)

Approximately Optimal Distributed Data Shuffling

Mohamed Adel Attia

Ravi Tandon

Department of Electrical and Computer Engineering
University of Arizona, Tucson, AZ
Email: {madel, tandonr}@email.arizona.edu

Abstract—Data shuffling between distributed workers is one of
the critical steps in implementing large-scale learning algorithms.
The focus of this work is to understand the fundamental trade-off
between the amount of storage and the communication overhead
for distributed data shuffling. We first present an information
theoretic formulation for the data shuffling problem, accounting
for the underlying problem parameters (i.e., number of workers,
K, number of data points, NV, and the available storage, S per
node). Then, we derive an information theoretic lower bound on
the communication overhead for data shuffling as a function of
these parameters. Next, we present a novel coded communication
scheme and show that the resulting communication overhead
of the proposed scheme is within a multiplicative factor of at
most 2 from the lower bound. Furthermore, we introduce an
improved aligned coded shuffling scheme, which achieves the
optimal storage vs communication trade-off for KX < 5, and
further reduces the maximum multiplicative gap down to 7/6,
for K > 5.

I. INTRODUCTION

Distributed computing comes at the unavoidable communi-
cation cost due to data shuffling among distributed workers.
Data shuffling can arise in many applications such as: a)
random shuffling of the data-set across different points before
each learning epoch so that each worker is assigned new train-
ing data, which provides statistical benefits, e.g., distributed
gradient descent algorithm and its stochastic variations [1];
b) shuffling the data-set across attributes to assign different
features to each worker, e.g., in mobile cloud gaming systems;
and c) shuffling the data between the mappers and the reducers
in the MapReduce framework. The application of coding
theory to the data shuffling problem was first considered in [2],
using excess storage at the workers in a probabilistic fashion,
to create coded multicasting opportunities. In [3], the authors
presented coded data shuffling in the MapReduce setting, with
more redundant computations at the mappers, leading to a
communication vs computation trade-off.

In this paper, we focus on the distributed data shuffling
problem in a master-worker setting. At each learning epoch,
the data set is randomly shuffled at the master node, and
different data chunks need to be sent to the workers for
distributed computation, which leads to the communication
overhead. On one extreme, when all the workers can store the
whole data set, no communication is needed for any random
shuffle. On the other hand, when the storage is just enough to
store the assigned data, also referred to as the no excess storage
case, the communication is expected to be maximal. The goal

This work was supported by the NSF grant CAREER-1651492.

of this work is to characterize the fundamental information-
theoretic trade-off between the communication overhead and
the available storage at the distributed workers.

In our prior work [4], we characterized the optimal tradeoff
for K = 2 and K = 3 workers. In [5], it was shown that
even for the no excess storage case, coding opportunities can
still be leveraged. In [6], a pliable index coding approach for
data shuffling was considered for semi-random shuffles. In this
work however, we consider the tradeoff between worst-case
rate over all possible shuffles and storage. The data shuffling
problem is also related to the index coding problem [7]. The
key difference is that the side information in the data shuffling
problem (i.e., data stored at distributed workers) is generally
not static, and the side information itself can change over time.

Summary of contributions: We first derive an information
theoretic lower bound on the worst-case communication over-
head for the data shuffling problem, based on a novel bounding
methodology, similar in spirit to the recent converse proofs
in the coded caching literature [8], [9]. Next, we introduce
our achievable scheme based on a “structurally invariant
placement and update” procedure that maintains the structure
of the storage and allows the use of coded data delivery
similar to [10]. We show that the rate of this scheme is
within a multiplicative gap of 2 for all problem parameters.
In order to close this gap, we then introduce a novel aligned
coded shuffling scheme combining the ideas of coding and
interference alignment. This scheme matches with the lower
bound for all K < 5, and reduces the multiplicative gap to
7/6, for all K > 5.

II. SYSTEM MODEL

We assume a master node which has a data-set A, contain-
ing N data points, Dy,..., Dy, of size d bits each, and K
distributed workers connected to the master node via a shared
link. Treating the data points D,, as i.i.d. random variables,
we therefore have H(A) = N x H(D,) = Nd. At each
iteration, indexed by ¢, the master node divides the data-set A
into K equal sized data batches (assuming N is divisible by
K), which correspond to a random permutation of the data-set,
mt it A — {AY1),..., AY(K)}, where A'(k) denotes the data
partition designated to be processed by worker wy at time t.
Since the data batches are disjoint and span the whole data-
set, i.e., Upep.i)A' (k) = A, and A'(i) N A*(j) = ¢, for all
i # j, we have H(A'(k)) = £d, for all k € [1: K.

After getting the data batch, each worker locally computes a
function (such as the gradient or sub-gradients of the assigned

2018 IEEE International Symposium on Information Theory (ISIT)

data points) to be processed subsequently at the master node.
We assume that each worker wy, has a storage Zj, of size Sd
bits, which is used to store some function of the data-set, and
S denotes the storage parameter. Considering Z}, as a random
variable, we then have

H(Z})=Sd, H(Z}|A)=0, Vke[l:K]. (1)

For processing purposes, each worker wy must at least store
the assigned data batch A’ (k) (of size & d bits) at time ¢ in Z},
which gives the range of storage parameter as N/K < S < N.
Also, we get the processing constraint as

H(AY(K)|Z}) =0, Vkel[l:K]. Q)

In the next epoch ¢ + 1, the data-set is randomly reshuffled
at the master node according to a random permutation 7¢*! :
A — {ATL(1),..., A" (K)}. The two phases of the overall
process, namely Data Delivery of the new data batches and
Storage Update, are described next.

A. Data Delivery Phase

At time ¢t + 1, the master node sends a function of the data
batches for the subsequent shuffles (7, m11), Xrpmpyr) =
d(AY(1),..., AY(K), AT (1),..., A" (K)) over the shared
link, where ¢(-) is the data delivery encoding function. We
also define R(r, r,.,) as the normalized rate of the shared
link based on the shuffles (7, 7,1). We then have

H (X(ﬁﬂfwl)‘A) =0, H (X(ﬂtﬂftﬂ)) = R(Tftaﬂtﬂ)d‘ 3)

Each worker wj, should reliably decode the desired batch
A'*1(k) out of the transmitted function X (., ~,,), as well as
the data stored in the previous time slot Z}, i.e., A""1(k) =
(X (xy m001)» Z5), Where () is the decoding function at
the workers. Therefore, for reliable decoding, we have the
following decodability constraint at each worker:

H (AN K)Z X (mpmp) =0, VEE[L: K] (4
B. Storage Update Phase

At the next iteration ¢ + 1, the storage for each worker wy
is updated to Z,i“, which is a function of the old storage
content Z}, as well as transmitted function X(rpmisr)s 1-€
Zy™ = (X (ry mei1)s Z1), Where p is the update function.
Therefore, we have the following storage-update constraint:

H(Z£+1|ZIZ7X(7Q,7Q+1)) = O, Vk € [1 : K] (5)

The excess storage after storing A'*!(k) in Z/*', given by
(S — %), can be used to opportunistically store a function
of the remaining K — 1 data batches. For the scope of this
work, we focus on uncoded storage schemes, meaning that
the excess storage is dedicated to store uncoded functions of
the remaining K — 1 batches. We give the notation A1 (i, k),
where i # k, as that part of A" (¢) which worker wy, stores
in it’s excess storage at time ¢ + 1. As a result, we can write
the content of Z,i“ for uncoded storage placement as

2 = {AH(R), Uiepxp e AT (0, F) } - ©

Rworst—case
A

Lower Bound

[Theorem 2]
(13/4,1/4)

(3.1/3) 9= S
Fig. 1. Lower and upper bounds on Rjqicase for N = K =4 .
Our goal in this work is to characterize the
optimal worst-case communication R(‘;,or?t,case(S) £
min max R®YH (S), where Ri&vH (S) is the
(¢, me41) (m¢,me41)

(@571117#)(713,7134-1)
rate of a scheme (¢,), 1), based on the shuffle (7, w¢41).

III. MAIN RESULTS AND DISCUSSIONS

The first Theorem presents an achievable scheme, which
yields an upper bound on R .« case(S)-

Theorem 1: For the data shuffling problem, the lower
convex envelope of the following K + 1 storage-rate pairs

is achievable: for i € [0 : K|,

- K -1 g upper _N(K—l)
(S - (1 +1 K) K’ Rworst-case - K(Z+ 1))

The complete proof of Theorem 1 is presented in [11, Ap-
pendix A]. One of the crucial steps in the achievability proof
is the structural invariant placement and update of the storage
at the workers over time. This allows us to leverage coded
data delivery, which achieves the above rate-storage pairs. We
present an illustrative example for X' = N = 4 to introduce
the main elements of the achievability proof.

Example 1: Consider the case of K = N = 4. We consider
the cyclic shuffle 7 = (1,2,3,4), and 71 = (2,3,4,1).
A similar data delivery mechanism can be devised for any
arbitrary shuffle (see [11]). According to Theorem 1, the
achievable worst-case storage-rate trade-off is given by the
lower convex envelope of the 5 storage-rate pairs shown by
the red dashed curve in Figure 1. Using memory sharing (see
[11, Claim 1] for more details), once we achieve these pairs,
the lower convex envelope is also achievable. Due to space
limitation, we only consider here the achievability for the rate
pair (S = 7/4, R = 3/2), while the rest of the storage points
can be found in [11, Example 1].

Storage Placement: The storage placement for S = 7/4
is shown in Figure 2a. First, each data point D; is parti-
tioned into 4 sub-points. For instance, D; is partitioned as
{D1 1y, D1 12y, D1 (3}, D1 a3}, each of size d/4. At time ¢,
every worker wy, fully stores the assigned data point, Dy, as
well as the sub-points labeled with k. For instance, w; stores
Dy and the sub-points { D (11, D3 1y, D4 113 }-

Data Delivery: Since the shuffle at time ¢ + 1 is
m+1 = (2,3,4,1), every worker needs 3 sub-points of
the assigned data point, e.g., w; needs the sub-points

2018 IEEE International Symposium on Information Theory (ISIT)

(a) Cache placement at time ¢

Storage at w; Storage at ws

) [PralPrelPralPial] | 4@ PaolPeelPealPel|| 4y processing

(Lo || o] | [P || [B || P | e || < s

A(2,1) A'3,1) A'(4,1))(At(1,2) A%(3,2) Ab(4,2) storage

Storage at ws Storage at wy

At(3) |-D3,(1}||D3,{2)||D3,{3)||D3,(4}|| At(4) |D4,{1)||-D4,{2}||D4,(3}||D4,(4}|

B [Pl [P | []

At(1,3) A%(2,3) A°(4,3) Af(1,4) A%(2,4) A(3,4)

%} excess

storage

(b) Cache Update at time ¢ + 1

Storage at w; Storage at wy

A”“(l)I|D2.(1}||D2.{2)||D2,{3)||D2,{4)|| A (2) |D3,{1}||D3.(2}||D3,{3)||D3,{4}|| @ processing

Bl o i

storage
AFL(2,1) AH1(3,1) AtH(4,1 t+1(1,2) At+1(3,2) AtT1(4,2 ag

b

Storage at ws Storage at wy

A‘“(3)!P4,{1}”D4,(21|D4,{3)||D4,(4)|| AttL(4) |D1 (1)||D1 (2)||D1 {3 |-D1 {4}||

Pucod | [ood || Bl || |[Patol o el | s

ATL(1,3) AHHL(2,3) AtH1(4,3) AVTL(1,4) AV (2, 4) ATL(3,4 storage

Fig. 2. Structural invariant storage placement, (a), and update, (b), for
K =N =4, and S = 7/4. Above the dotted line are assigned data
points, and below is the excess storage used to store the sub-points
labeled with the worker’s index.

{Ds 42y, D3 13y, D2 {4} }, and every sub-point is available at
least in one of the remaining workers. Therefore, the master
node sends six coded symbols, each being useful for two
workers at the same time as follows: Dy 9y © D3 13, for
(w1, ws); Dy {3} @D Dy A1}» for (wy,ws); Dy {4} ® D, {1}s for
(wl,w4) D3 A3} S¥) D4 A2} for (wg,wg) D3 {4} &b D] A2}
for (wg,ws); and Dy 4y @ Dy g3y, for (w3, wy). The rate
of this transmission is 6 x d/4 = 3d/2 bits, and the pair
(S=7/4,R = 3/2) is achieved.
Storage Update: The storage update at time ¢ 4 1 follows the
storage placement at time ¢, and is shown Figure 2b. For
example, w; stores Dy completely, and keeps from D; only
the sub-point Dy (3.

Our second main result in Theorem 2 gives an information
theoretic lower bound on Ry, ¢ case-

Theorem 2: For the data shuffling problem, a lower bound
on R . . IS given by the lower convex envelope of the
Jollowing K storage-rate pairs: for m € [1: K],

_ N lower _ N(K — m)
(S - mK Rworsr case — Km .

®)

The complete proof of Theorem 2 is in [11, Appendix B]. We
present the key ideas behind the converse proof in Example 2
which is presented after stating Theorem 3.

Remark 1 (Basic idea for the converse): A lower bound
over the optimal rate R’(k reen) of a shuffle (my, m41) also
lower bounds the worst-case since Ry orstcase = >(km,m+1)'
Therefore, we get lower bounds over R, ... by averaging
out a set of lower bounds for a sequence of shuffles. The
novel part in our proof is to carefully choose the right shuffles
which lead to the highest lower bound. In addition, we leverage

a novel bounding methodology similar to [8], [9], where the
optimal uncoded cache placement system is considered. The
difference in the data shuffling problem, is that the workers
in addition to storing the data under processing, have excess
storage and can also update their storage over time.

In our next result, we compare the upper and lower bounds
in Theorems 1 and 2, respectively.

Theorem 3: For the data shuffling problem, the multiplica-
tive gap between upper and lower bounds on R}, ... 8iven
by Theorems 1, and 2, respectively, is bounded as follows:

Rupper
worst-case

R{/;')(ﬂi'{-cuse T K-1

The complete proof of Theorem 3 can be found in [11,
Appendix C]. This Theorem shows that the gap between the
bounds vanishes as K increases, i.e., limgx o (25) = 1.

Next, we discuss the example of N = K = 4 to present the
ideas behind the converse proof of Theorem 2.

Example 2: Assume the N = 4 data points are assigned at
time ¢ according to m; = (1,2,3,4). From (2), each worker
should store the assigned data point at time ¢, therefore,

H(A"(k)|Z}) = H(Dg|Z}) =0, Vke|[l:4].

Following Remark 1, we consider the following cyclic shuffle:
for a permutation o : (1,2,3,4) — (01,02,03,04), we have
At (o) = Al(ok_1) = D,,_,. Using the decodability
constraint in (4), worker w,, must decode A'T! (o) = D,, _,
from its cache content Z! as well as the transmission
X(r,me1) Which gives the following condition:

H(DU,C71|Z§,C,X(,HJH1)) =0, Vkell:4]. (11)
Consequently, we get the following bound using (10) and (11):

(A‘ (bR 0'-37Z£t7‘47X(7Tf,77Tf,+1))
(@ .
< H(f71|ZO'2’X(7rt Te41) JrZH 0k|
k=2
where (a) follows since A = {Dy, Dy, D3, D4}, and from
the fact that H(A, B) < H(A)+ H(B) and that conditioning
reduces entropy. Next, we obtain the following bound:

<2 €))

(10)

,) =0, (12)

(@)
4d = H(A) (A th727 03 Zfr47 X(ﬂt,ﬂt+1))
(b) . .
< H(Z<72’ZU3’ZU4’X(THJH+1))

SH(X(’” 7Tt+1))+H(Zt)+H(Zt | O'4’X(7Tt,7Tt+1))
+H(Zt| 039 O'47X(7Tf7rf+1))

()

< R}

worst-case

+ H(Zt,|Zt

d+H(Zt)+ H(Z.|Z},, Doy, Do)
D027D037D0'4)

g3 0'47
R:/orst cased + H(DU47 D01 (04)

0> (04), 03(04))+
+ H(Dg,(03), Do, (03)| 2%,) + H(Do, (02)| 25, Z1,)
R*

WOrSt- cased + H() + H(Dﬂs (04)) + [H(Dﬂz (04))
+ H(Do,(03)| Do, (04))] + [H(Do, (04))
+H(D01(U3)|DU1(U4))+H(D01(02)|D01(03) ())]

@

(e

2018 IEEE International Symposium on Information Theory (ISIT)

(f)
< R;Orst Cased+d+ H(DUB
+ H(D,, (02,03,04)),

where (a) follows from (12), (b) follows from (1), and (3),
where X(r, r,,,) and Z] for k € [1 : 4] are deterministic
functions of the data-set A, (¢) follows from Remark 1, (10),
(11), and because conditioning reduces entropy, (d) follows
from the storage content in (6), where D;(j) is the part of
D; stored in the excess storage of worker w; at time ¢, (e)
follows due to the data points are independent and since out of
the cache contents Z; ¢, the data sub-point Dy (i) only depends
on the sub-point Dk(), for any i # j # k, (f) follows from
the chain rule of entropy where D,;(WV) is the part of D; stored
in the excess storage of the workers whose indexes are in V.

Summing up over all possible 4! = 24 permutations o of
the ordered set (1,2,3,4), we arrive at the following bound,

(04)) + H(Dy,(03,04))
(13)

" 1
Rworsl cased > 3d — ﬂ Z [H(DUI (02)) + H(DEH (02’ 03))
oel4!]

+H(D01(02»03a0—4))]7 (14)

where [4!] is the set of all possible permutations of the set
(1,2,3,4), and we changed the summation indexes due to the
symmetry in the summation.

We assume a generic placement strategy for storing the data
point Dy, at time ¢, in the excess storage of the workers w;,
where 7 # k, by defining Dy,)y as the partition of D, stored
exclusively in the excess storage of the workers whose labels
are in the set W C [1 : 4]\ k. Defining | Dy w| = H(Dy,w)/d,
we can express the following entropies in terms of Dy yy:

H(Dy) =Y |Dewld, H(Di(i) =Y |Dewld. (15)
WCEL:A\k wc[1 A\k
ieWw

The following two constraints are obtained in terms of Dy, yy:
e Data size constraint: The total size of the data is given by

4 4 3
1= HDYC IS Y (Dl = > ars 19
Y4 =0

k=1 =0 k=1 WC|[1: 4]\;;
W=

where (a) follows from (15), and =, > 0 is defined as x, 2
4

Dk=1 2w Lsa)\k: (w]=¢ | Drwls for £.€ [0 - 3].

o Excess storage size constraint: The size of the total excess

storage of all the workers cannot exceed 4 (S — 1) d bits,

Z S WIDiw] & Zm,

k=1 WC[LA\k
4%

A7)

where (a) is true since a unique partition | Dy, yy(4)] is counted
|[W| number of times, which is the number of workers storing
this partition as excess storage.

In the summation term of (14), we obtain the term | Dy,)y |
only for W) € {1,2,3}. Moreover, due to the symmetry, the
coefficient of |Dy | for any k € [1 : K] and W € [1
K]\ k is equal for every value of |WW|. Assume this constant

coefficient is ¢, for [W| = ¢, where ¢ € {1,2,3}. Therefore,
we can simplify the bound in (14) as follows:
R\t/orst case

> 3—011'1 — Clg — C3X3. (18)

Obtaining the coefficient ¢, is equivalent to obtaining the
coefficient of | Dy, yy| for any k € [1 : K] and |W| = (. For
example, we obtain ¢, by finding the coefficient of |D; (9}
in (14). We get |D; 19| in the first term of the summation
in (14), i.e., H(Dy, (02,03,04)), only if 01 = 1 which is
satisfied in 6 out of the 24 permutations. In the second term,
we obtain [Dy (2| only if oy = 1 and o4 # 2 in total number
of 4 permutations. In the third term, we obtain | Dy (2| only
if oy = 1 and 02 = 2 in total number of 2 permutations.
Therefore, the coefficient of |Dy (o] is ¢; = &2 = 1
Following the same steps, and as discussed in detail in [11,
Example 2], we obtain ¢, = % and c3 = 2. Therefore, we can

write the bound in (18) as follows:

T 2(E2
Ré/orstcase >3- 3 - 7 - T

We get three bounds over Ry, .. casc DY Selected elimination
of some of the variables ay, where £ € [0 : 3], from (19) using
the constraints in (16) and (17), as follows:

19)

(a)
poos4 238y og

R:vorst -case = 3 4 (20)
" 7 25’ i) T3 (b) 7 — 25

Rworst -case > g ? ? E > 3) (21)
" 4 S 5xo xr1 ©4-8

Rworst -case > g g + ? + E > 3) (22)

where (a), (b) and (c) are true since x¢ > 0, for £ € [0 : 3].
The intersection of the three bounds in (20), (21), and (22) is
the lower convex hull of the 4 storage-rate pairs, (S = m, R =
4=m) for m € [1 : 4], which is the lower bound on R case
shown in Figure 1, satisfying Theorem 2 for K = N = 4.
We can also observe that the storage-rate pairs achieved in
Theorem 1, i.e., (7/4,3/2), (5/2,2/3), and (13/4,1/4), are
optimal. The maximum gap between the bounds is at S = 1,
and is given by 4/3, satisfying the bound in Theorem 3.

The next Theorem provides an improved gap through a new
scheme, which we call as “aligned coded shuffling".

Theorem 4: For the data shuffling problem, the lower bound
over Ry, in Theorem 2 is achievable for K < 5 (hence
leads to the optimal tradeoff), while for K > 5 is achievable
within a multiplicative gap which is bounded as

1
K-1 7

Rlower - K-—-1 S 6
worst-case

Rupper
worst-case

(23)

In [11, Appendix D], we present the complete proof of
Theorem 4 by closing the gap between the two bounds in
Theorems 1 and 2 for the storage values S = m%, and
m € {1, K —2, K —1}. To illustrate the new ideas, we revisit
Example 1 with K = 4 workers and N = 4 data points.
Example 3: From Figure 1, we notice that if we achieve
the storage-rate pairs, (1,3), (2,1), and (3,1/3), then we can

fully characterize Ry ..cae Using memory sharing (see [11,

2018 IEEE International Symposium on Information Theory (ISIT)

Claim 1]). To this end, we present the aligned coded shuffling
scheme for data delivery, which combines the ideas of coded
shuffling and interference alignment. Let us consider the same
shuffle as in Example 1, ie., m = {1,2,3,4}, and 7141 =
{2,3,4,1}. Due to space limitation, we only describe here
the achievability for the storage-rate pair (2, 1), while the rest
of the storage points can be found in [11, Example 3].
Storage Placement: At time ¢, every data point D); is parti-
tioned into 3 sub-points, each labeled by the indexes in the
set [1 : 4] excluding the index of the worker being assigned to
D,. For example, the data point D; (assigned to worker w;)
is partitioned as Dy = {D (2}, D1 g3}, D1 43 }- The storage
placement at time ¢ is shown in Figure 3a. First, every worker
stores the assigned data point. Then, every worker wy, stores
the sub-points labeled with k& from the remaining data points.
Aligned Coded Shuffling: According to the storage placement,
every worker needs 2 sub-points of the new assigned point at
time ¢ + 1. From an interference perspective, each one of the
needed sub-points is an interference to exactly one worker.
For example, at time ¢ + 1, D3 14y is (i) needed by ws, (ii)
available at (ws,w,), and (iii) interference at w;. Worker w;
thus faces interference from exactly two sub-points, D3 (43,
and D47{2} needed by ws, and ws, respectively. Therefore, we
first create the aligned coded symbol D3 (4 © Dy {2y which
is: (i) available at wy, (i) useful for (we,ws), and (iii) the
only source of aligned interference for w;. Similarly, we can
produce 4 aligned coded symbols, summarized as follows:

Coded Symbol Interference at Available at Useful for
D3 14y ® Dy () wy Wy wy & w3
D1 3y © Dy 11y wa wy w3 & wy
Dy (23 ® D2 {4y w3 wWa wy & wy
Dy (33 @ D3 {1y wy w3 wy & wy

Therefore, these 4 coded symbols provide every worker

with the 2 needed sub-points. Moreover, it suffices to send
only three independent linear combinations of these 4 coded
symbols, since every worker already has one of them avail-
able locally at its storage. The rate of this transmission is
R =3x1/3=1, and the pair (S =2, R = 1) is achievable
which closes the gap in Figure 1 for §' = 2.
Storage update and sub-points relabeling: The storage update
at time ¢ + 1 is needed to preserve the structure of the stored
data points. This involves relabeling some of the data sub-
points shown by red dashed frames in Figure 3b. For example,
the data point D1 is processed by w; at time ¢, and w4 at time
t + 1. Thus, to maintain the structural properties of storage at
time ¢ + 1, worker w; keeps from D, the sub-point D17{4}
and relabels it to Dy {1y, and the same relabeling for Dy y4)
also happens at worker wy. Relabeling of other points is done
similarly (see [11, Example 3]).

IV. CONCLUSION

In this paper, we characterized the approximately optimal
worst-case communication vs storage tradeoff for the data
shuffling problem, within a constant multiplicative gap of 7/6.
We also characterized the optimal tradeoff for all K < 5

(a) Cache placement at time ¢

Storage at w; Storage at ws

)| Pie] Pre]Paa] || 4@ | Puw] Paw] Paw] || 4p Procesine

(2] Lo] [Paan] [Pial]||[Poa]| [Pi]]| Storase
Ab(2,1) A%(3,1) A%(4,1) At(1,2) A%(3,2) A%(4,2

Storage at ws; Storage at wy

.At(3)| D3 (13| |Ds (23 Ds,{4)| At(4)| Dy 1} | [Dag2y || Da g3y | @I)rocessing

[P P] [Pa] B |[Pe] [Posa]]| & o
storage
A%(1,3) A%(2,3) A*(4,3) At(1,4) A%(2,4) A%(3,4)

(b) Cache Update and Relabeling at time ¢ + 1

Storage at w;

Storage at w,
AT (1) '_D'z_{l_)_: D3, (3}| | Da,ga | AL(2) Ds,(l}H__D;Q_),I D514y @pr()cessmg
D! (10_2,<_1>,|||| b e
D1 (1|4 D315
ASFL(2,1) AYTL(3,1) AFL(4,1 APHL(1,2) A1(3,2) AtHL(4,2
Storage at w3 w [Storage at w, '>
A'“(3)| Dy 1y || D2y ':D_:{_s_}H' A4)| [Dygay] Prgay | Prgay ! processing
T D excess
||D2,m ”LD_:s,{_z),|||DL{s}|| ‘DW}‘”‘D&M} LDy, {} storage
(Lo Dagy]#]
AtHL(1,3) AHL(2,3) AML(4,3)

AMHL(1,4) AL (2,4) AL(3,4)

Fig. 3. Closing the gap for K = N =4, and S = 2: (a) structural invariant
storage placement, (b) storage update and sub-point relabeling to maintain
storage structure.

through a novel aligned coded data shuffling scheme. Future
directions include closing the gap for K > 5, and adding a
sub-divisibility constraint over the data points.

REFERENCES

[1] L. Bottou, “Stochastic gradient descent tricks,” Neural Networks: Tricks
of the Trade, pp. 421-436, 2012.

[2] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1514-1529, 2018.

[3] S.Li, M. Maddah-Ali, Q. Yu, and A. Avestimehr, “A fundamental trade-
off between computation and communication in distributed computing,”
IEEE Transactions on Information Theory, vol. 64, no. 1, pp. 109-128,
2018.

[4] M. Attia and R. Tandon, “Information theoretic limits of data shuffling
for distributed learning,” in Proc. of the IEEE Global Communications
Conference (GLOBECOM), 2016.

, “On the worst-case communication overhead for distributed data

shuffling,” in Proc. of the Allerton conference, Sep. 2016.

[6] L. Song, C. Fragouli, and T. Zhao, “A pliable index coding approach
to data shuffling,” in Proc. of the IEEE International Symposium on
Information Theory (ISIT), 2017.

[7]1 Z. Bar-Yossef, Y. Birk, T. Jayram, and T. Kol, “Index coding with side
information,” IEEE Transactions on Information Theory, vol. 57, no. 3,
pp. 1479-1494, 2011.

[8] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of uncoded
cache placement,” in Proc. of the IEEE Information Theory Workshop
(ITW), Sept 2016, pp. 161-165.

[91 Q. Yu, M. Maddah-Ali, and A. Avestimehr, “The exact rate-memory
tradeoff for caching with uncoded prefetching,” in Proc. of the IEEE
International Symposium on Information Theory (ISIT), 2017.

[10] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856—
2867, Feb. 2015.

[11] M. Attia and R. Tandon, “Near optimal coded data shuffling for
distributed learning,” arXiv preprint arXiv:1801.01875, 2018. [Online].
Available: https://arxiv.org/pdf/1801.01875.pdf

(5]

