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Abstract—Data shuffling between distributed workers is one of
the critical steps in implementing large-scale learning algorithms.
The focus of this work is to understand the fundamental trade-off
between the amount of storage and the communication overhead
for distributed data shuffling. We first present an information
theoretic formulation for the data shuffling problem, accounting
for the underlying problem parameters (i.e., number of workers,
K, number of data points, N , and the available storage, S per
node). Then, we derive an information theoretic lower bound on
the communication overhead for data shuffling as a function of
these parameters. Next, we present a novel coded communication
scheme and show that the resulting communication overhead
of the proposed scheme is within a multiplicative factor of at
most 2 from the lower bound. Furthermore, we introduce an
improved aligned coded shuffling scheme, which achieves the
optimal storage vs communication trade-off for K < 5, and
further reduces the maximum multiplicative gap down to 7/6,
for K ≥ 5.

I. INTRODUCTION

Distributed computing comes at the unavoidable communi-

cation cost due to data shuffling among distributed workers.

Data shuffling can arise in many applications such as: a)

random shuffling of the data-set across different points before

each learning epoch so that each worker is assigned new train-

ing data, which provides statistical benefits, e.g., distributed

gradient descent algorithm and its stochastic variations [1];

b) shuffling the data-set across attributes to assign different

features to each worker, e.g., in mobile cloud gaming systems;

and c) shuffling the data between the mappers and the reducers

in the MapReduce framework. The application of coding

theory to the data shuffling problem was first considered in [2],

using excess storage at the workers in a probabilistic fashion,

to create coded multicasting opportunities. In [3], the authors

presented coded data shuffling in the MapReduce setting, with

more redundant computations at the mappers, leading to a

communication vs computation trade-off.

In this paper, we focus on the distributed data shuffling

problem in a master-worker setting. At each learning epoch,

the data set is randomly shuffled at the master node, and

different data chunks need to be sent to the workers for

distributed computation, which leads to the communication

overhead. On one extreme, when all the workers can store the

whole data set, no communication is needed for any random

shuffle. On the other hand, when the storage is just enough to

store the assigned data, also referred to as the no excess storage
case, the communication is expected to be maximal. The goal
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of this work is to characterize the fundamental information-

theoretic trade-off between the communication overhead and

the available storage at the distributed workers.

In our prior work [4], we characterized the optimal tradeoff

for K = 2 and K = 3 workers. In [5], it was shown that

even for the no excess storage case, coding opportunities can

still be leveraged. In [6], a pliable index coding approach for

data shuffling was considered for semi-random shuffles. In this

work however, we consider the tradeoff between worst-case

rate over all possible shuffles and storage. The data shuffling

problem is also related to the index coding problem [7]. The

key difference is that the side information in the data shuffling

problem (i.e., data stored at distributed workers) is generally

not static, and the side information itself can change over time.

Summary of contributions: We first derive an information

theoretic lower bound on the worst-case communication over-

head for the data shuffling problem, based on a novel bounding

methodology, similar in spirit to the recent converse proofs

in the coded caching literature [8], [9]. Next, we introduce

our achievable scheme based on a “structurally invariant
placement and update" procedure that maintains the structure

of the storage and allows the use of coded data delivery

similar to [10]. We show that the rate of this scheme is

within a multiplicative gap of 2 for all problem parameters.

In order to close this gap, we then introduce a novel aligned
coded shuffling scheme combining the ideas of coding and

interference alignment. This scheme matches with the lower

bound for all K < 5, and reduces the multiplicative gap to

7/6, for all K ≥ 5.

II. SYSTEM MODEL

We assume a master node which has a data-set A, contain-

ing N data points, D1, . . . , DN , of size d bits each, and K
distributed workers connected to the master node via a shared

link. Treating the data points Dn as i.i.d. random variables,

we therefore have H(A) = N × H(Dn) = Nd. At each

iteration, indexed by t, the master node divides the data-set A
into K equal sized data batches (assuming N is divisible by

K), which correspond to a random permutation of the data-set,

πt : A → {At(1), . . . ,At(K)}, where At(k) denotes the data

partition designated to be processed by worker wk at time t.
Since the data batches are disjoint and span the whole data-

set, i.e., ∪k∈[1:K]At(k) = A, and At(i) ∩ At(j) = φ, for all

i �= j, we have H(At(k)) = N
K d, for all k ∈ [1 : K].

After getting the data batch, each worker locally computes a

function (such as the gradient or sub-gradients of the assigned
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data points) to be processed subsequently at the master node.

We assume that each worker wk has a storage Zt
k of size Sd

bits, which is used to store some function of the data-set, and

S denotes the storage parameter. Considering Zt
k as a random

variable, we then have

H(Zt
k) = Sd, H(Zt

k|A) = 0, ∀k ∈ [1 : K]. (1)

For processing purposes, each worker wk must at least store

the assigned data batch At(k) (of size N
K d bits) at time t in Zt

k,

which gives the range of storage parameter as N/K ≤ S ≤ N .

Also, we get the processing constraint as

H(At(k)|Zt
k) = 0, ∀k ∈ [1 : K]. (2)

In the next epoch t+1, the data-set is randomly reshuffled

at the master node according to a random permutation πt+1 :
A → {At+1(1), . . . ,At+1(K)}. The two phases of the overall

process, namely Data Delivery of the new data batches and

Storage Update, are described next.

A. Data Delivery Phase

At time t+1, the master node sends a function of the data

batches for the subsequent shuffles (πt, πt+1), X(πt,πt+1) =
φ(At(1), . . . ,At(K),At+1(1), . . . ,At+1(K)) over the shared

link, where φ(·) is the data delivery encoding function. We

also define R(πt,πt+1) as the normalized rate of the shared

link based on the shuffles (πt, πt+1). We then have

H
(
X(πt,πt+1)|A

)
= 0, H

(
X(πt,πt+1)

)
= R(πt,πt+1)d. (3)

Each worker wk should reliably decode the desired batch

At+1(k) out of the transmitted function X(πt,πt+1), as well as

the data stored in the previous time slot Zt
k, i.e., At+1(k) =

ψ(X(πt,πt+1), Z
t
k), where ψ(·) is the decoding function at

the workers. Therefore, for reliable decoding, we have the

following decodability constraint at each worker:

H
(At+1(k)|Zt

k, X(πt,πt+1)

)
= 0, ∀k ∈ [1 : K]. (4)

B. Storage Update Phase

At the next iteration t+ 1, the storage for each worker wk

is updated to Zt+1
k , which is a function of the old storage

content Zt
k as well as transmitted function X(πt,πt+1), i.e.,

Zt+1
k = μ(X(πt,πt+1), Z

t
k), where μ is the update function.

Therefore, we have the following storage-update constraint:

H(Zt+1
k |Zt

k, X(πt,πt+1)) = 0, ∀k ∈ [1 : K]. (5)

The excess storage after storing At+1(k) in Zt+1
k , given by(

S − N
K

)
, can be used to opportunistically store a function

of the remaining K − 1 data batches. For the scope of this

work, we focus on uncoded storage schemes, meaning that

the excess storage is dedicated to store uncoded functions of

the remaining K−1 batches. We give the notation At+1(i, k),
where i �= k, as that part of At+1(i) which worker wk stores

in it’s excess storage at time t+ 1. As a result, we can write

the content of Zt+1
k for uncoded storage placement as

Zt+1
k =

{At+1(k),∪i∈[1:K]\kAt+1(i, k)
}
. (6)

Rworst-case

S(3, 1/3)

(2, 1)

(1, 3)

(7/4, 3/2)

(5/2, 2/3)

(13/4, 1/4)

(1, 4)

[Theorem 1]
Upper Bound

Lower Bound
[Theorem 2]

(4, 0)

Fig. 1. Lower and upper bounds on R∗
worst-case for N = K = 4 .

Our goal in this work is to characterize the

optimal worst-case communication R∗
worst-case(S)

Δ
=

min
(φ,ψ,μ)

max
(πt,πt+1)

R
(φ,ψ,μ)
(πt,πt+1)

(S), where R
(φ,ψ,μ)
(πt,πt+1)

(S) is the

rate of a scheme (φ, ψ, μ), based on the shuffle (πt, πt+1).

III. MAIN RESULTS AND DISCUSSIONS

The first Theorem presents an achievable scheme, which

yields an upper bound on R∗
worst-case(S).

Theorem 1: For the data shuffling problem, the lower
convex envelope of the following K + 1 storage-rate pairs
is achievable: for i ∈ [0 : K],(

S =

(
1 + i

K − 1

K

)
N

K
, Rupper

worst-case =
N(K − i)

K(i+ 1)

)
. (7)

The complete proof of Theorem 1 is presented in [11, Ap-

pendix A]. One of the crucial steps in the achievability proof

is the structural invariant placement and update of the storage

at the workers over time. This allows us to leverage coded

data delivery, which achieves the above rate-storage pairs. We

present an illustrative example for K = N = 4 to introduce

the main elements of the achievability proof.

Example 1: Consider the case of K = N = 4. We consider

the cyclic shuffle πt = (1, 2, 3, 4), and πt+1 = (2, 3, 4, 1).
A similar data delivery mechanism can be devised for any

arbitrary shuffle (see [11]). According to Theorem 1, the

achievable worst-case storage-rate trade-off is given by the

lower convex envelope of the 5 storage-rate pairs shown by

the red dashed curve in Figure 1. Using memory sharing (see

[11, Claim 1] for more details), once we achieve these pairs,

the lower convex envelope is also achievable. Due to space

limitation, we only consider here the achievability for the rate

pair (S = 7/4, R = 3/2), while the rest of the storage points

can be found in [11, Example 1].

Storage Placement: The storage placement for S = 7/4
is shown in Figure 2a. First, each data point Di is parti-

tioned into 4 sub-points. For instance, D1 is partitioned as

{D1,{1}, D1,{2}, D1,{3}, D1,{4}}, each of size d/4. At time t,
every worker wk fully stores the assigned data point, Dk, as

well as the sub-points labeled with k. For instance, w1 stores

D1 and the sub-points {D2,{1}, D3,{1}, D4,{1}}.

Data Delivery: Since the shuffle at time t + 1 is

πt+1 = (2, 3, 4, 1), every worker needs 3 sub-points of

the assigned data point, e.g., w1 needs the sub-points
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(b) Cache Update at time t+ 1

(a) Cache placement at time t
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Fig. 2. Structural invariant storage placement, (a), and update, (b), for
K = N = 4, and S = 7/4. Above the dotted line are assigned data
points, and below is the excess storage used to store the sub-points
labeled with the worker’s index.

{D2,{2}, D2,{3}, D2,{4}}, and every sub-point is available at

least in one of the remaining workers. Therefore, the master

node sends six coded symbols, each being useful for two

workers at the same time as follows: D2,{2} ⊕ D3,{1}, for

(w1, w2); D2,{3}⊕D4,{1}, for (w1, w3); D2,{4}⊕D1,{1}, for

(w1, w4); D3,{3} ⊕ D4,{2}, for (w2, w3); D3,{4} ⊕ D1,{2},

for (w2, w4); and D4,{4} ⊕ D1,{3}, for (w3, w4). The rate

of this transmission is 6 × d/4 = 3d/2 bits, and the pair

(S = 7/4, R = 3/2) is achieved.

Storage Update: The storage update at time t+ 1 follows the

storage placement at time t, and is shown Figure 2b. For

example, w1 stores D2 completely, and keeps from D1 only

the sub-point D1,{1}.

Our second main result in Theorem 2 gives an information

theoretic lower bound on R∗
worst-case.

Theorem 2: For the data shuffling problem, a lower bound
on R∗

worst-case is given by the lower convex envelope of the
following K storage-rate pairs: for m ∈ [1 : K],(

S = m
N

K
, Rlower

worst-case =
N(K −m)

Km

)
. (8)

The complete proof of Theorem 2 is in [11, Appendix B]. We

present the key ideas behind the converse proof in Example 2
which is presented after stating Theorem 3.

Remark 1 (Basic idea for the converse): A lower bound

over the optimal rate R∗
(πt,πt+1)

of a shuffle (πt, πt+1) also

lower bounds the worst-case since R∗
worst-case ≥ R∗

(πt,πt+1)
.

Therefore, we get lower bounds over R∗
worst-case by averaging

out a set of lower bounds for a sequence of shuffles. The

novel part in our proof is to carefully choose the right shuffles

which lead to the highest lower bound. In addition, we leverage

a novel bounding methodology similar to [8], [9], where the

optimal uncoded cache placement system is considered. The

difference in the data shuffling problem, is that the workers

in addition to storing the data under processing, have excess

storage and can also update their storage over time.

In our next result, we compare the upper and lower bounds

in Theorems 1 and 2, respectively.

Theorem 3: For the data shuffling problem, the multiplica-
tive gap between upper and lower bounds on R∗

worst-case given
by Theorems 1, and 2, respectively, is bounded as follows:

Rupper
worst-case

Rlower
worst-case

≤ K

K − 1
≤ 2. (9)

The complete proof of Theorem 3 can be found in [11,

Appendix C]. This Theorem shows that the gap between the

bounds vanishes as K increases, i.e., limK→∞
(

K
K−1

)
= 1.

Next, we discuss the example of N = K = 4 to present the

ideas behind the converse proof of Theorem 2.

Example 2: Assume the N = 4 data points are assigned at

time t according to πt = (1, 2, 3, 4). From (2), each worker

should store the assigned data point at time t, therefore,

H(At(k)|Zt
k) = H(Dk|Zt

k) = 0, ∀k ∈ [1 : 4]. (10)

Following Remark 1, we consider the following cyclic shuffle:

for a permutation σ : (1, 2, 3, 4) → (σ1, σ2, σ3, σ4), we have

At+1(σk) = At(σk−1) = Dσk−1
. Using the decodability

constraint in (4), worker wσk
must decode At+1(σk) = Dσk−1

from its cache content Zt
σk

as well as the transmission

X(πt,πt+1) which gives the following condition:

H(Dσk−1
|Zt

σk
, X(πt,πt+1)) = 0, ∀k ∈ [1 : 4]. (11)

Consequently, we get the following bound using (10) and (11):

H(A|Zt
σ2
, Zt

σ3
, Zt

σ4
, X(πt,πt+1))

(a)

≤ H(Dσ1
|Zt

σ2
, X(πt,πt+1)) +

4∑
k=2

H(Dσk
|Zt

σk
) = 0, (12)

where (a) follows since A = {D1, D2, D3, D4}, and from

the fact that H(A,B) ≤ H(A)+H(B) and that conditioning

reduces entropy. Next, we obtain the following bound:

4d = H(A)
(a)
= I(A;Zt

σ2
, Zt

σ3
, Zt

σ4
, X(πt,πt+1))

(b)

≤ H(Zt
σ2
, Zt

σ3
, Zt

σ4
, X(πt,πt+1))

≤ H(X(πt,πt+1)) +H(Zt
σ4
) +H(Zt

σ3
|Zt

σ4
, X(πt,πt+1))

+H(Zt
σ2
|Zt

σ3
, Zt

σ4
, X(πt,πt+1))

(c)

≤ R∗
worst-cased+H(Zt

σ4
) +H(Zt

σ3
|Zt

σ4
, Dσ3

, Dσ4
)

+H(Zt
σ2
|Zt

σ3
, Zt

σ4
, Dσ2 , Dσ3 , Dσ4)

(d)
= R∗

worst-cased+H(Dσ4
, Dσ1

(σ4), Dσ2
(σ4), Dσ3

(σ4))+

+H(Dσ1(σ3), Dσ2(σ3)|Zt
σ4
) +H(Dσ1(σ2)|Zt

σ3
, Zt

σ4
)

(e)
= R∗

worst-cased+H(Dσ4
) +H(Dσ3

(σ4)) + [H(Dσ2
(σ4))

+H(Dσ2
(σ3)|Dσ2

(σ4))] + [H(Dσ1
(σ4))

+H(Dσ1
(σ3)|Dσ1

(σ4)) +H(Dσ1
(σ2)|Dσ1

(σ3), Dσ1
(σ4))]
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(f)

≤ R∗
worst-cased+ d+H(Dσ3

(σ4)) +H(Dσ2
(σ3, σ4))

+H(Dσ1
(σ2, σ3, σ4)), (13)

where (a) follows from (12), (b) follows from (1), and (3),

where X(πt,πt+1) and Zt
k for k ∈ [1 : 4] are deterministic

functions of the data-set A, (c) follows from Remark 1, (10),

(11), and because conditioning reduces entropy, (d) follows

from the storage content in (6), where Di(j) is the part of

Di stored in the excess storage of worker wj at time t, (e)
follows due to the data points are independent and since out of

the cache contents Zt
j , the data sub-point Dk(i) only depends

on the sub-point Dk(j), for any i �= j �= k, (f) follows from

the chain rule of entropy where Di(W) is the part of Di stored

in the excess storage of the workers whose indexes are in W .

Summing up over all possible 4! = 24 permutations σ of

the ordered set (1, 2, 3, 4), we arrive at the following bound,

R∗
worst-cased ≥ 3d− 1

24

∑
σ∈[4!]

[H(Dσ1
(σ2)) +H(Dσ1

(σ2, σ3))

+H(Dσ1(σ2, σ3, σ4))], (14)

where [4!] is the set of all possible permutations of the set

(1, 2, 3, 4), and we changed the summation indexes due to the

symmetry in the summation.

We assume a generic placement strategy for storing the data

point Dk, at time t, in the excess storage of the workers wi,

where i �= k, by defining Dk,W as the partition of Dk stored

exclusively in the excess storage of the workers whose labels

are in the set W ⊆ [1 : 4]\k. Defining |Dk,W | = H(Dk,W)/d,

we can express the following entropies in terms of Dk,W :

H(Dk) =
∑

W⊆[1:4]\k
|Dk,W |d, H(Dk(i)) =

∑
W⊆[1:4]\k

i∈W

|Dk,W |d. (15)

The following two constraints are obtained in terms of Dk,W :

• Data size constraint: The total size of the data is given by

4 =
1

d

4∑
k=1

H(Dk)
(a)
=

3∑
�=0

4∑
k=1

∑
W⊆[1:4]\k

|W|=�

|Dk,W | =
3∑

�=0

x�, (16)

where (a) follows from (15), and x� ≥ 0 is defined as x�
Δ
=∑4

k=1

∑
W⊆[1:4]\k: |W|=� |Dk,W |, for � ∈ [0 : 3].

• Excess storage size constraint: The size of the total excess

storage of all the workers cannot exceed 4 (S − 1) d bits,

4 (S − 1)
(a)

≥
4∑

k=1

∑
W⊆[1:4]\k

i∈W

|W||Dk,W | (c)=
3∑

�=0

�x�, (17)

where (a) is true since a unique partition |Dk,W(i)| is counted

|W| number of times, which is the number of workers storing

this partition as excess storage.

In the summation term of (14), we obtain the term |Dk,W |
only for |W| ∈ {1, 2, 3}. Moreover, due to the symmetry, the

coefficient of |Dk,W | for any k ∈ [1 : K] and W ∈ [1 :
K] \ k is equal for every value of |W|. Assume this constant

coefficient is c� for |W| = �, where � ∈ {1, 2, 3}. Therefore,

we can simplify the bound in (14) as follows:

R∗
worst-case ≥ 3− c1x1 − c2x2 − c3x3. (18)

Obtaining the coefficient c� is equivalent to obtaining the

coefficient of |Dk,W | for any k ∈ [1 : K] and |W| = �. For

example, we obtain c1 by finding the coefficient of |D1,{2}|
in (14). We get |D1,{2}| in the first term of the summation

in (14), i.e., H(Dσ1
(σ2, σ3, σ4)), only if σ1 = 1 which is

satisfied in 6 out of the 24 permutations. In the second term,

we obtain |D1,{2}| only if σ1 = 1 and σ4 �= 2 in total number

of 4 permutations. In the third term, we obtain |D1,{2}| only

if σ1 = 1 and σ2 = 2 in total number of 2 permutations.

Therefore, the coefficient of |D1,{2}| is c1 = 6+4+2
24 = 1

2 .

Following the same steps, and as discussed in detail in [11,

Example 2], we obtain c2 = 2
3 and c3 = 3

4 . Therefore, we can

write the bound in (18) as follows:

R∗
worst-case ≥ 3− x1

2
− 2x2

3
− 3x3

4
. (19)

We get three bounds over R∗
worst-case by selected elimination

of some of the variables x�, where � ∈ [0 : 3], from (19) using

the constraints in (16) and (17), as follows:

R∗
worst-case ≥ 5− 2S +

x2

3
+

3x3

4

(a)

≥ 5− 2S, (20)

R∗
worst-case ≥

7

3
− 2S

3
+

x0

3
+

x3

12

(b)

≥ 7− 2S

3
, (21)

R∗
worst-case ≥

4

3
− S

3
+

5x0

6
+

x1

12

(c)

≥ 4− S

3
, (22)

where (a), (b) and (c) are true since x� ≥ 0, for � ∈ [0 : 3].
The intersection of the three bounds in (20), (21), and (22) is

the lower convex hull of the 4 storage-rate pairs, (S = m,R =
4−m
m ) for m ∈ [1 : 4], which is the lower bound on R∗

worst-case

shown in Figure 1, satisfying Theorem 2 for K = N = 4.

We can also observe that the storage-rate pairs achieved in

Theorem 1, i.e., (7/4, 3/2), (5/2, 2/3), and (13/4, 1/4), are

optimal. The maximum gap between the bounds is at S = 1,

and is given by 4/3, satisfying the bound in Theorem 3.

The next Theorem provides an improved gap through a new

scheme, which we call as “aligned coded shuffling".

Theorem 4: For the data shuffling problem, the lower bound
over R∗

worst-case in Theorem 2 is achievable for K < 5 (hence
leads to the optimal tradeoff), while for K ≥ 5 is achievable
within a multiplicative gap which is bounded as

Rupper
worst-case

Rlower
worst-case

≤ K − 1
3

K − 1
≤ 7

6
. (23)

In [11, Appendix D], we present the complete proof of

Theorem 4 by closing the gap between the two bounds in

Theorems 1 and 2 for the storage values S = mN
K , and

m ∈ {1,K−2,K−1}. To illustrate the new ideas, we revisit

Example 1 with K = 4 workers and N = 4 data points.

Example 3: From Figure 1, we notice that if we achieve

the storage-rate pairs, (1, 3), (2, 1), and (3, 1/3), then we can

fully characterize R∗
worst-case using memory sharing (see [11,
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Claim 1]). To this end, we present the aligned coded shuffling

scheme for data delivery, which combines the ideas of coded

shuffling and interference alignment. Let us consider the same

shuffle as in Example 1, i.e., πt = {1, 2, 3, 4}, and πt+1 =
{2, 3, 4, 1}. Due to space limitation, we only describe here

the achievability for the storage-rate pair (2, 1), while the rest

of the storage points can be found in [11, Example 3].

Storage Placement: At time t, every data point Di is parti-

tioned into 3 sub-points, each labeled by the indexes in the

set [1 : 4] excluding the index of the worker being assigned to

Di. For example, the data point D1 (assigned to worker w1)

is partitioned as D1 = {D1,{2}, D1,{3}, D1,{4}}. The storage

placement at time t is shown in Figure 3a. First, every worker

stores the assigned data point. Then, every worker wk stores

the sub-points labeled with k from the remaining data points.

Aligned Coded Shuffling: According to the storage placement,

every worker needs 2 sub-points of the new assigned point at

time t+ 1. From an interference perspective, each one of the

needed sub-points is an interference to exactly one worker.

For example, at time t + 1, D3,{4} is (i) needed by w2, (ii)

available at (w3, w4), and (iii) interference at w1. Worker w1

thus faces interference from exactly two sub-points, D3,{4},

and D4,{2} needed by w2, and w3, respectively. Therefore, we

first create the aligned coded symbol D3,{4} ⊕D4,{2} which

is: (i) available at w4, (ii) useful for (w2, w3), and (iii) the

only source of aligned interference for w1. Similarly, we can

produce 4 aligned coded symbols, summarized as follows:

Coded Symbol Interference at Available at Useful for

D3,{4} ⊕D4,{2} w1 w4 w2 & w3

D1,{3} ⊕D4,{1} w2 w1 w3 & w4

D1,{2} ⊕D2,{4} w3 w2 w1 & w4

D2,{3} ⊕D3,{1} w4 w3 w1 & w2

Therefore, these 4 coded symbols provide every worker

with the 2 needed sub-points. Moreover, it suffices to send

only three independent linear combinations of these 4 coded

symbols, since every worker already has one of them avail-

able locally at its storage. The rate of this transmission is

R = 3× 1/3 = 1, and the pair (S = 2, R = 1) is achievable

which closes the gap in Figure 1 for S = 2.

Storage update and sub-points relabeling: The storage update

at time t+ 1 is needed to preserve the structure of the stored

data points. This involves relabeling some of the data sub-

points shown by red dashed frames in Figure 3b. For example,

the data point D1 is processed by w1 at time t, and w4 at time

t+1. Thus, to maintain the structural properties of storage at

time t + 1, worker w1 keeps from D1, the sub-point D1,{4}
and relabels it to D1,{1}, and the same relabeling for D1,{4}
also happens at worker w4. Relabeling of other points is done

similarly (see [11, Example 3]).

IV. CONCLUSION

In this paper, we characterized the approximately optimal

worst-case communication vs storage tradeoff for the data

shuffling problem, within a constant multiplicative gap of 7/6.

We also characterized the optimal tradeoff for all K < 5

excess
storage

processing

excess
storage

processing

Storage at w4Storage at w3

Storage at w2Storage at w1

Storage at w4Storage at w3

Storage at w2Storage at w1

At(1) At(2)

At(3) At(4)

At+1(4)At+1(3)

At+1(2)At+1(1)

At+1(2,1) At+1(3,1) At+1(4,1) At+1(3,2) At+1(4,2)At+1(1,2)

At+1(1,3) At+1(2,3)At+1(4,3) At+1(3,4)At+1(2,4)At+1(1,4)

At(1,4) At(2,4) At(3,4)At(1,3) At(2,3) At(4,3)
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D1,{2} D1,{3} D1,{4} D2,{1} D2,{3} D2,{4}

D3,{4}D3,{1} D3,{2} D4,{3}D4,{2}D4,{1}

D2,{3} D2,{4} D3,{4}D3,{1}

D4,{2}D4,{1} D1,{2} D1,{3}

D2,{1} D4,{1}D3,{1} D1,{2} D4,{2}D3,{2}

D1,{3} D2,{3} D4,{3} D1,{4} D2,{4} D3,{4}
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(b) Cache Update and Relabeling at time t+ 1

D4,{4}

D4,{4} D1,{1}

D3,{3}D2,{2}

D3,{3}

D2,{2}D1,{1}

excess
storage

processing

excess
storage

processing

(a) Cache placement at time t

Fig. 3. Closing the gap for K = N = 4, and S = 2: (a) structural invariant
storage placement, (b) storage update and sub-point relabeling to maintain
storage structure.

through a novel aligned coded data shuffling scheme. Future

directions include closing the gap for K ≥ 5, and adding a

sub-divisibility constraint over the data points.
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