2018 IEEE International Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems

Scheduling Distributed Resources
in Heterogeneous Private Clouds

George Kesidis, Yuquan Shan, Aman Jain, Bhuvan Urgaonkar Jalal Khamse-Ashari and Ioannis Lambadaris

School of Elelctrical Engineering and Computer Science

Pennsylvania State University
University Park, PA
{gik2,yxs182,axj182,buul } @psu.edu

Abstract—We first consider the static problem of allocating
resources to (i.e., scheduling) multiple distributed application
frameworks, possibly with different priorities and server pref-
erences, in a private cloud with heterogeneous servers. Several
fair scheduling mechanisms have been proposed for this purpose.
We extend prior results on max-min fair (MMF) and propor-
tional fair (PF) scheduling to this constrained multiresource and
multiserver case for generic fair scheduling criteria. The task
efficiencies (a metric related to proportional fairness) of max-
min fair allocations found by progressive filling are compared by
illustrative examples. In the second part of this paper, we consider
the online problem (with framework churn) by implementing
variants of these schedulers in Apache Mesos using progressive
filling to dynamically approximate max-min fair allocations. We
evaluate the implemented schedulers in terms of overall execution
time of realistic distributed Spark workloads. Our experiments
show that resource efficiency is improved and execution times
are reduced when the scheduler is “server specific”’ or when
it leverages characterized required resources of the workloads
(when known).

Index Terms—private cloud, scheduling, heterogeneity, pro-
gressive filling

I. INTRODUCTION

We consider a cloud provider that needs to run multiple
software application frameworks on its IT infrastructure. The
cloud provider’s infrastructure consists of multiple servers
(slaves, workers) connected by a network. A server may be
a physical machine or virtual machine (e.g., an instance or
a container). Each framework desires multiple IT resources
(CPU, memory, network bandwidth, etc.) for each of its tasks.
The provider’s challenge then is to determine who should get
how many resources from which servers. Our interest is in a
private cloud setting wherein notions of fairness have often
been used as the basis for this resource allocation problem.

Previously proposed fair schedulers include Dominant Re-
source Fairness (DRF) [12] extended to multiple servers',
Task Share Fairness (TSF) [34], Per Server Dominant Share
Fairness (PS-DSF) [17], [16], among others, e.g., [5]. DRF is
resource based, whereas TSF and “containerized” DRF [11]

This research was supported in part by NSF CNS 1526133, NSF CNS
1717571 and a Cisco Systems URP gift.

'DRF was originally defined for a single server in [12]. The multiple-server
version, called DRFH in [35], [11], is also commonly called just DRF as done
in Apache Mesos [13] and as we do herein also.

Department of Systems and Computer Engineering
Carleton University
Ottawa, Canada
{jalalkhamseashari,ioannis } @sce.carleton.ca

are task based’. In the following, we additionally consider
variants of these schedulers that employ current residual
(unreserved) capacities of the servers in the fairness criteria
(somewhat similar to “best fit” variants [35]).

The contributions and organization of this paper is as
follows. In Section II, we give background on the multiserver,
multiresource scheduling problem. In Section III, we general-
ize static optimization problems whose solutions correspond
to max-min fairness (MMF) and proportional fairness (PF) to
multiple resources and multiple servers, the latter related to
resource efficiency. In Section IV, an illustrative numerical
example is given using progressive filling to compare the task
efficiencies of different schedulers, including variants using
residual/unreserved server resource capacities specified herein.
In Section V, we consider online scheduling (potentially in the
presence of framework churn) and describe our open-source
prototypes of different schedulers implemented on Apache
Mesos, a practical middleware platform to manage plural
distributed application frameworks for a private cloud. We
give the results of a comparative performance study (assessing
total execution times) in a heterogeneous setting using realistic
Spark workloads.

II. BACKGROUND

Typically static problem formulations are considered under
a variety of simplifying assumptions on framework behavior. It
is assumed that frameworks congest all the available servers.
That is, it is assumed that there is sufficient work to com-
pletely occupy at least one resource in every server. It is also
assumed that the frameworks’ required resources (presumably
to achieve certain performance needs) are well characterized,
e.g., [9], [18], [20], [3], [25], [36], [7], [1], [19]. Frameworks
are assumed to have linearly elastic resource demands in the
following sense. Each task has a known requirement d,, , for
the resource type 7. Therefore, if x,; were the number of
tasks of framework n placed on server ¢, the framework would
consume Z ;d,, amount of resource r on server i. &, ; may

2Containerized DRF has a “sharing-incentive” property not possessed by
DREF, and TSF possesses “strategy-proofness” and “envy-freeness” properties
which are not possessed by containerized DRF [34]. Unlike DRF and TSF, PS-
DSF is not necessarily Pareto optimal but is “bottleneck” fair. These properties
are not addressed herein

2375-0227/18/$31.00 ©2018 IEEE 102

IEEE
@ computer
DOI 10.1109/MASCOTS.2018.00018 ® psouety

take on non-negative real values rather than being restricted to
be non-negative integer valued®. Finally, frameworks may have
different service priorities and server preference constraints
(as in e.g., service-quality constraints [37] or cache-affinity
constraints), see also [34].

Note that in some settings (not considered herein), a goal is
to minimize the number of servers to accommodate workloads
with finite needs, again as in multidimensional bin-packing
problems [4], [6], [8]. Such problem formulations are typically
motivated by the desire to economize on energy. However,
frequently cycling power to (booting up) servers may result
in software errors and there are energy spikes associated with
boot-up resulting in increased electricity costs [10].

Typically in existing papers, max-min fairness (MMF)
with respect to a proposed criteria is specified assuming the
aforementioned congested regime under the following (linear)
capacity constraints:

Vi, r, Zmn,idn,r < Cir St T > 0 = 6n,i =1;

n

)]

where ¢; . is the amount of available resource r in server
i, and frameworks n indicate preferences for servers i by
0n,i € {0,1}. Note that quantization (containerization) issues
associated with workload resource demands are considered in
[11].

MMF allocation may be expressed as the solution of a con-
strained centralized optimization problem. Alternatively, max-
min fairness with respect to the proposed fairness criteria may
be approximated by a greedy, iterative “progressive filling”
allocation. The latter approach is often preferred because of
the benefits this offers for online implementations. Moreover,
progressive filling arguments can be used to establish other
potentially desirable fairness properties of schedulers defined
for private clouds [12], [17].

In this paper, we relate this task efficiency objective to
“proportional” fairness (PF).

III. MULITRESOURCE, MULTISERVER MMF AND PF

To generalize previous results on MMF and PF to multiple
resource types on multiple servers, consider the following
general-purpose fairness criterion for framework n,

—1 §
Un ¢n Un, iTn, i,
%

for scalars u, ; > 0 and priorities ¢,, > 0. Under DRF [12],
[35], frameworks n are selected using criterion

@

1 dn,r
— T, maxX ————

¢n r Zj Cjr ’
where z,, = ZL Zn,;. The PS-DSF criterion can be written as

¢nc]}ﬂ(”¢j)

M, 3

Kn,j (4)

3With z integer valued, such problems belong to the class of combinatorial-
optimization Multidimensional Knapsack Problems (MKPs), e.g., [4], [26],
[33], [6], which are NP-hard. They have been extensively studied, including
relaxations to simplified problems that yield approximately optimal solutions,
e.g., by Integer Linear Programs solved by iterated/online means.

103

where bottleneck resource p is such that

A p(n,g)/Cipng) = mraxdnm/cjm when 6, ; = 1.(5)

The feasibility conditions are (1).
Regarding fully booked resources in server ¢ under alloca-
tions « = {z,,;}, let

Ri = {(z,r) | D anidn, = cip}

Definition 1: A feasible allocation {z,, ;} satisfying (1) is
said to be U-MMF if:

U > Uy Ty >0, and I s.t.an,idnw =Cir
n

implies that x;; = 0.

Note that if instead z,; > 0 in this definition, then x,; can
be reduced and z,,; increased to reduce Uy, — Up,. Also, if
{zy,;} is U-MMF and z,, ;,z¢; > 0 for some server ¢ then
U, = U,. Consider the optimization problem

max Y ng(Un) sit. (1), 6)
n
for strictly concave and increasing g with g(0) = 0.
Proposition 1: A solution x = {z,;} of the optimization
(6) s.t. (1) has at least one resource r fully booked in each
server ¢. In addition, there is a unique U-MMF solution if also

(SmJ =1= (5171' and (13,7”) S Ri = dmm = dl,r~ (7)

Note that for uniqueness, the proof given in [15] requires
the strong assumption (7) that frameworks that can share
servers have identical demand parameters d for fully utilized
resources.

For weighted PF, consider the objective

mfx Z ¢n9a(wn)7 (®)
i.e., without dividing by ¢,, in the argument of g, [24]. For
parameter a > 0 specifically take

ga(X) = {l((igE)i))lelfa

ie., gh(X)=1/X® again see [24]. Obviously, in the case of
a =1 (g = log), whether the factor ¢ is in the argument of g
is immaterial.

The following generalizes Lemma 2 of [24] on Proportional
Fairness. See also the proportional-fairness/efficiency trade-off
framework of [14] for a single server.

Proposition 2: A solution z* of the optimization (8) s.t. (1)
is uniquely (weighted) (¢, a) z-PF, i.e., for any other feasible
solution z,

ifa=1
else

Ln

— .73:1
()

0. 9)

O(z,z%) = Z¢n =<
n
The proof is given in [15]. A possible definition of the

efficiency of a feasible allocation is

Z(Z)nzmn,z = Z¢nxn7

10)

(corresponding to a = 0), ie., the weighted total number
of tasks scheduled. The optimization of Proposition 2 with
a =1 gives an allocation z* that is related to a task efficient
allocation. Clearly, z* satisfying (9) for all other allocations
z with a = 1 does not necessarily maximize (10). This issue
is analogous to estimating the mean of the ratio of positive
random variables E(X/X™*) using the ratio of the means
EX/EX*, see e.g. p. 351 of [32] or (11) of [27] . For simplicity
in the following, we use (10) instead of (9).

Note that the priority ¢,, of framework n could factor its re-
source footprint {d,, , },. Alternatively, the resource footprints
of the frameworks can be explicitly incorporated into the main
optimization objective via a fairness criterion. The proof of the
following corollary is just as that of Proposition 2. Recall that
the generic fairness criterion U,, (2) is a linear combination
of {mn,z}z

Corollary 1: A solution z* of the optimization problem

maxz onlog(Uy,) st (1)
n
is uniquely (¢, 1) U-PF, i.e., for any other feasible x,

EnquUU_nU" < 0.

Again, optimal {U;} would be unique but z* = {z} ;}n.;
may not be. '

Recall for DRF and PS-DSF, the K,, = Y, K,,; and M,
respectively, are proportional to x,,. Thus, using U,, = K,, or
U,, = M, in Corollary 1 reduces to the result of Proposition
2 when a = 1.

IV. ILLUSTRATIVE NUMERICAL STUDY OF FAIR
SCHEDULING BY PROGRESSIVE FILLING

In the following evaluation studies, we use progressive fill-
ing [2], [12], an online scheduling approach for approximating
fair allocation under a certain fairness criterion. In progressive
filling, resources are incrementally (taskwise) allocated to
frameworks n in a greedy fashion: simply, the framework
n with smallest fairness criterion U, (or U,;), based on
existing allocations {x, ;}n,i, Will be allocated a resource
increment {ed,, ; }; for small* € > 0. If a framework’s resource
demands cannot be accommodated with available resources,
the framework with the next smallest fairness criterion will
be allocated. Also, for brevity, we consider only cases with
frameworks of equal priority (Vn,n', ¢, = ¢,/) and without
server-preference constraints (i.e., 0, ; = 1).

In this section, we consider the following typical example
of our numerical study with two heterogeneous distributed
application frameworks (n = 1,2) having resource demands
per unit workload:

d1,1 =5, d1,2 =1, d2,1 =1, d2,2 =5; (11

4Typically € = 1 when allocations x are measured in “tasks”.

104

(n,1) .
’m @D a2y | en | @2 || total
DRF [12], [35] 655 | 460 | 469 | 655 | 22.48
TSF [34] 65 &7 [47 65 224
RRR-PS-DSF 1944 | 1.15 | 1.07 | 19.42 || 41.08
BF-DRF [35] 20 2 0 19 1
PS-DSFE [17] 9 0 2 20 7y
PS-DSF 9 2 2 9)}
TABLE I

WORKLOAD ALLOCATIONS &, ; FOR DIFFERENT SCHEDULERS UNDER
PROGRESSIVE FILLING FOR ILLUSTRATIVE EXAMPLE WITH PARAMETERS
(11) AND (12). AVERAGED VALUES OVER 200 TRIALS REPORTED FOR THE
FIRST THREE SCHEDULERS OPERATING UNDER RRR SERVER SELECTION.

N‘
sched.

(1.1 ‘ (1,2) ‘ 2.0 ‘ 2.2

DRF [12], [35] 231 | 046 | 046 | 231

TSF [34] 229 | 046 | 046 | 2.29

RRR-PS-DSF 0.59 | 0.99 1 0.49
TABLE 1T

SAMPLE STANDARD DEVIATION OF ALLOCATIONS %, ; FOR DIFFERENT
SCHEDULERS UNDER RRR SERVER SELECTION WITH. AVERAGED VALUES
OVER 200 TRIALS REPORTED.

and two heterogeneous servers (i = 1, 2) having two different
resources with capacities:

11 = 100, C12 = 30, 21 = 30, C22 = 100. (12)

For DRF and TSF, the servers ¢ are chosen in round-robin
fashion, where the server order is randomly permuted in each
round; DRF under such randomized round-robin (RRR) server
selection is the default Mesos scheduler, c¢f. next section. One
can also formulate PS-DSF under RRR wherein RRR selects
the server and the PS-DSF criterion only selects the framework
for that server. Frameworks n are chosen by progressive filling
with integer-valued tasking (z), i.e., whole tasks are scheduled.

Numerical results for this illustrative example are given in
Table 1. & II. Similar results for unused (stranded) resources
are given in [15]. 200 trials were performed for DRF, TSF and
PS-DSF under RRR server selection. With Table II, we can
obtain confidence intervals for the averaged quantities given
in Table I for schedulers under RRR. Note how PS-DSF’s
performance under RRR is comparable to when frameworks
and servers are jointly selected [17] (and with low variance
in allocations). We also found that RRR-rPS-DSF performed
just as rPS-DSF over 200 trials.

We found task efficiencies improve using residual forms of
the fairness criterion. For example, the residual PS-DSF (rPS-
DSF) criterion is

K dn,’r
»,LJ,&j Iy Max

r (bn(cj,r - Zn’ xn/,jdn’,'r’)

That is, this criterion makes scheduling decisions by pro-
gressive filling using current residual (unreserved) capacities
based on the current allocations x. From Table I, we see the
improvement is modest for the case of PS-DSF. Improvements
are also obtained by best-fit server selection. For example,

best-fit DRF (BF-DREF) first selects framework n by DRF and
then selects the server whose residual capacity most closely
matches their resource demands {d,, , }, [35].

V. ONLINE SCHEDULING OF SPARK WORKLOADS WITH
MESOS USING DIFFERENT FAIR ALLOCATION
ALGORITHMS

In the following, we present example experimental results
comparing different schedulers implemented on Mesos. The
execution traces presented in the figures were collected though
Mesos’ REST API by our external script and are typical of
the multiple trials we ran.

A. Introduction including background on Mesos

The Mesos master (including its resource allocator, see
[22]) works in dynamic/online environment with churn in
the distributed computing/application frameworks it manages.
When all or part of a Mesos slave’ becomes available, its
resources are offered to the frameworks in progressive filling
fashion. The framework accepts the offered allocation in whole
or part. When a framework’s tasks are completed, the Mesos
master may be notified that the corresponding resources of
the slaves are released, and then the master will make new
allocation decisions. We consider two implementations of fair
resource scheduling algorithms in Mesos.

In oblivious® allocation, the allocator is not aware of the
resource demands of the frameworks’ so the allocator will of-
fer all the remaining resources of the server to the framework.
A framework running an uncharacterized application may be
configured to accept all resources offered to it.

In workload-characterized allocation, each active frame-
work n simply informs the Mesos allocator of its resource
demands per task, {d,,},. The Mesos allocator selects a
framework and allocates a single task worth of resources from
a given slave with unassigned (released) resources.

In the following, we compare different scheduling algo-
rithms implemented as the Mesos allocator. Given a pool of
slaves with unused resources, PS-DSF [17], rPS-DSF and best-
fit (BF) [35] allocations will depend on particular slaves. Ini-
tially, the slaves are always scheduled by the Mesos allocator
as a pool.

B. Running Spark on Mesos

We use Spark as an example that may have heterogeneous
resource demands, so Spark can certainly be replaced by any
other workload generators. Each Spark job (Mesos frame-
work) is divided into multiple tasks (threads). Multiple Spark
executors will be allocated for a Spark job. The executors
can simultaneously run a certain maximum number of tasks
depending on how many cores on the executor and how
many cores are required per task; when a task completes,
the executor informs the task orchestrator (Spark driver) to
request another, i.e. executors pull in work. Each executor is a

3 A Mesos slave is a server that provides resources.
6Called “coarse grain” in Mesos.
TIndeed, the frameworks themselves may not be aware.

105

Mesos task in the default “coarse-grained” mode [30] and an
executor resides in a container of a Mesos slave [21]. Plural
executors can simultaneously reside on a single Mesos slave.
When starting a Spark job, the resources required to start an
executor (d) and the maximum number of executors that can
be created to execute the tasks of the job, may be specified. An
executor usually terminates as the entire Spark job terminates
[29] and hence its resources are released.

C. Experiment Configuration

In our experiments, there are two Spark submission groups
(“roles” in Mesos’ jargon): group Pi submits jobs that accu-
rately calculate # = 3.1415... via Monte Carlo simulation;
group WordCount submits word-count jobs for a 700MB+
document. The executors of Pi require 2 CPUs and about 2 GB
memory (Pi is CPU bottlenecked), while those of WordCount
require 1 CPU and about 3.5 GB memory (WordCount is
memory bottlenecked)®. Each group has five job submission
queues, which means there could be ten jobs running on the
cluster at the same time. Each queue initially has fifty jobs.
Again, each job is divided into tasks and tasks are run in plural
Spark executors (Mesos tasks) running on different Mesos
slaves.

The Mesos slaves are six servers (AWS c3.2xlarge virtual-
machine instances), two each of three types in our cluster.
A type-1 server provides 4 CPUs and 14 GB memory, so it
would be well utilized by 4 WordCount tasks. A type-2 server
provides 8 CPUs and 8 GB memory, so it would be well
utilized by 4 Pi tasks. A type-3 server provides 6 CPUs and
11 GB memory, so it would be well utilized by 2 Pi and 2
WordCount tasks. The Mesos master operates in a c3.2xlarge
with 8 cores and 15 GB memory.

D. Prototype implementation

We modified the allocator module of Mesos (version 1.5.0)
to use different scheduling criteria. We also modified the driver
in Spark to pass on a framework n’s resource needs per
task ({d,,}) in workload-characterized mode. Our code is
available online [23], [31].

E. Experimental Results for Different Schedulers

We ran the same total workload for the different Mesos
allocators under Randomized Round-Robin (RRR) slave se-
lection, except for BF-DRF. (In this section, we drop the
“RRR” qualifier). A summary of our results is that overall
execution time® is improved under workload characterization
and allocations that are server specific.

1) DRF vs. PS-DSF in oblivious mode: The resource al-
location under these two different fairness criteria are shown
in Figure 1. It can be seen that PS-DSF can achieve higher
resource utilization than DRF because its criterion naturally

8In fact, what is actually running inside Spark is not of interest in this
section, where we are only interested in the allocation efficiency of different
fairness criteria in Mesos.

Note that minimizing execution time is the aim of CPU scheduling
algorithms given individual task execution times.

matches the task demands to a specific server (a server-specific
criterion), so it “packs” tasks better into heterogeneous servers.
As a result, the entire job-batch under PS-DSF finishes earlier.
Also note that at the end of the experiment, there is a sudden
drop in allocated memory percentage. This is because the
memory-intensive Spark WordCount jobs finish earlier and
CPU is the bottleneck resource for the remaining Spark Pi
jobs.

Fractions of Allocated CPUs

282

561

840
1119
1398
1677
1956
2235
2514
2793
3072
3351
3630
3909
4188
4467
4746
5025
5304
5583
5862
6141
6420
6699
6978

Time (sec)

= Oblivious DRF == Oblivious PS-DSF

Fractions of Allocated Memory

== Oblivious DRF == Oblivious PS-DSF

Fig. 1. Comparison between DRF and PS-DSF in oblivious mode.

2) Schedulers in workload-characterized mode: The exper-
imental results under workload-characterized mode, as shown
in Fig. 2, are consistent with their oblivious counterparts -
PS-DSF has higher resource utilization than DRF. Also note
that the resource utilizations in workload-characterized mode
have less variance than those in oblivious mode, which will
be explained in Sec. V-E3.

In Figure 3, we compare TSF [34] under RRR!?, rPS-
DSF (under RRR), and BF-DRF (again, “best fit” is an slave-
selection mechanism when there is a pool of slaves to choose
from). From the figure, the execution times of BF-DRF and
-rPS-DSF are comparable to PS-DRF (but ¢f. Section V-F) and
shorter than TSF (which is comparable to DRF).

3) Oblivious versus Workload Characterized modes: We
also compared oblivious and workload-characterized alloca-
tion for the same scheduling algorithm. Note that when a Spark
job finishes, its executors may not simultaneously release
resources from the Mesos allocator’s point-of-view. So under
oblivious allocation, it’s possible that multiple Spark jobs can
share the same server, as is typically the case under workload-
characterized scheduling. However, oblivious allocation is a
coarse-grained enforcement of progressive filling, where the

10Note that [34] also describes experimental results for a Mesos implemen-
tation of TSE.

106

Fractions of Allocated CPUs

282
561
840
1119
1398
1677
1956
2793
3072

o
a
3
@

2235
2514
3351
3909
4188
4467
4746
5025
5304
5583
5862
6141
6420
6699
6978

Time (sec)

>

e \\or| ized DRF ized PS-DSF

Fractions of Allocated Memory

=—\Workload-characterized DRF ====Workload-characterized PS-DSF

Fig. 2.
mode.

Comparison between DRF and PS-DSF in workload-characterized

Fractions of Allocated CPUs

228
453
678
903

1128

1353

1578

1803

2028

2253

2478

2703

2928

3153

4278

4503

4728

5178

5403

5628

5853

R
8

6303

&

3378
3828
4053
4953
6753
6978

% 3603

Workload-characterized TSF

Workload-characterized Best-fit DRF

—— Workload-characterized rPS-DSF

Fractions of Allocated Memory

Workload

S
2

Workload-characterized TS characterize

—— Workload-characterized rPS.DSF

Fig. 3. Comparison among TSF, Best-fit DRF and rPS-DSF (in the workload
characterized mode).

resources are less evenly distributed among the frameworks -
some frameworks may receive the entire remaining resources
on a slave in a single offer, leaving nothing available for
others. From Figure 4, note how under oblivious allocation
the amount of allocated resources drops more sharply when a
Spark job ends, and variance of utilized resources under obliv-
ious allocation is larger than under workload-characterized.
Consequently, the entire job-batch tends to finish sooner under
workload-characterized allocator. Similar results hold for PS-
DSF [28].

In another group of experiments, we show that for homo-

Fractions of Allocated CPUs

282

561

840
1119
1398
1677
1956
2235
2514
2793
3072
3351
3630
3909
4188
4467
4746
5025
5304
5583
5862
6141
6420
6699
6978

Ti

g

e (st

&
3

)

=—Oblivious DRF = \Norkload-characterized DRF

Fractions of Allocated Memory

270

537

804
1071
1338
1605
1872
pall)
2406
2673
2940
3207
3474
3741
4008
4275
4542
4809
5076
5343
5610
5877
6144
6411
6678
6945

o

m

@

ec)

== Oblivious DRF == \Norkload-characterized DRF

Fig. 4. Comparison between oblivious and workload-characterized modes
under DRF.

geneous servers, PS-DSF and DRF have comparable perfor-
mance [28].

F. BF-DRF versus rPS-DSF

Finally, with a different experimental set-up, we compare
BF-DRF (which first selects the framework and then selects
the “best fit” from among available slaves) and a representative
of a family of slave-specific schedulers, rPS-DRF under RRR.
Consider a case where there are three servers, one of each of
the above server types (types 1-3).

Suppose under a current allocation, we have one Spark-Pi
and two Spark-WordCount executors on the type-1 server, two
Spark-Pi and one Spark-WordCount executors on the type-2
server, and two Spark-Pi and two Spark-WordCount executors
on the type-3 server. So, whenever a Pi or WordCount frame-
work releases its executor’s resources back to the cluster, its
DRF “score” is reduced so the scheduler will always sends a
resource offer to the same client framework in this scenario.
On the other hand, rPS-DSF will make a decision considering
the amount of (remaining) resources on the slave, and so will
make a more efficient allocation.

We illustrate this with a numerical example in Figure 5. In
this experiment, we let each group submit their Spark jobs
through five queues with 20 jobs each. To create the above
scenario, instead of exposing all the slaves to the clients, we
register servers one by one from type-1 to type-3. From the
figure, note that both rPS-DSF and BF-DRF have an initial
inefficient memory allocation, but rPS-DSF is able to adapt
and quickly increase its memory efficiency, while BF-DRF
does not.

107

Fractions of Allocated Memory

Workload-characterized Best-fit DRF ====Workload-characterized rPS-DSF

Fractions of Allocated CPUs

1
' LB T

e
Workload-characterized Best-fit DRF =====Workload-characterized rPS-DSF

Fig. 5. Performance of Best-fit DRF and rPS-DSF given initial suboptimal
allocation.

VI. SUMMARY AND FUTURE WORK

For a private-cloud setting, we considered scheduling a
group of heterogeneous, distributed frameworks to a group
of heterogeneous servers. We extended two general results on
max-min fairness and proportional fairness to this case for a
static problem under generic scheduling criteria. Subsequently,
we assessed the efficiency of approximate max-min fair alloca-
tions by progressive filling according to different fairness cri-
teria. [llustrative examples in heterogeneous settings show that
max-min fair PS-DSF and rPS-DSF scheduling, are superior to
DRF in terms of task efficiency performance (a metric related
to proportional fairness) and that the efficiency of these “server
specific” schedulers did not significantly suffer from the use of
randomized round-robin server selection. Task efficiency was
also improved when either the “best fit” approach to selecting
servers was used or the fairness criteria was modified to use
current residual/unreserved resource capacities. In [28], we
give the full results of an online experimental study using our
implementations of different schedulers on Spark and Mesos
[23], [31] for benchmark workloads considering an execution-
time performance metric.

In future work, we will consider scheduling (admission
control and placement) problems in a public cloud setting.
To this end, note that similar objectives to those considered
herein for a private-cloud setting, particularly (10), may be
reinterpreted as overall revenue based on bids ¢ for virtual
machines or containers with fixed resource allocations d. Also,
as profit margins diminish in a maturing marketplace, one
expects that public clouds will need to operate with greater
resource efficiency.

[1]

[2]

[3]

[4]

[51

[6]

[71

[8]

[91

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(7]

(18]

(19]

(20]
[21]
[22]
(23]

(24]

REFERENCES

T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guarantees for
web server end-systems: A control-theoretical approach. IEEE Trans.
Parallel Distrib. Syst., 13(1):80-96, 2002.

D. Bertsekas and R. Gallager. Data Networks, 2nd Ed. Prentice Hall,
1992.

A. Chandra, W. Gong, and P. Shenoy. Dynamic resource allocation for
shared data centers using online measurements. In Proceedings of the
2003 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS °03, 2003.

C. Chekuri and S. Khanna. On multi-dimensional packing problems.
SIAM Journal of Computing, 33(4):837-851, 2004.

M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica. HUG: Multi-resource
fairness for correlated and elastic demands. In Proc. USENIX NSDI,
March 2016.

H. Christensen, A. Khan, S. Pokutta, and P. Tetali. Multidi-
mensional Bin Packing and Other Related Problems: A Survey.
https://people.math.gatech.edu/~tetali/PUBLIS/CKPT.pdf, 2016.

I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase.
Correlating instrumentation data to system states: A building block for
automated diagnosis and control. In Proceedings of the 6th Conference
on Symposium on Opearting Systems Design & Implementation - Volume
6, OSDI’04, 2004.

M. Cohen, V.Mirrokni, P. Keller, and M. Zadimoghaddam. Overcom-
mitment in Cloud Services Bin packing with Chance Constraints. In
Proc. ACM SIGMETRICS, Urbana-Campaign, IL, June 2017.

R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M. Vahdat. Model-
based resource provisioning in a web service utility. In Proceedings of
the 4th Conference on USENIX Symposium on Internet Technologies
and Systems - Volume 4, USITS’03, 2003.

Duke utility bill tariff, 2012. http://www.considerthecarolinas.com/pdfs/
scscheduleopt.pdf.

E. Friedman, A. Ghodsi, and C.-A. Psomas. Strategyproof allocation of
discrete jobs on multiple machines. In Proc. ACM Conf. on Economics
and Computation, 2014.

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: Fair allocation of multiple
resource types. In Proc. USENIX NSDI, 2011.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R. Katz,
S. Shenker, and I. Stoica. Mesos: A Platform for Fine-grained Resource
Sharing in the Data Center. In Proc. USENIX NSDI, 2011.

C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. Multi-resource allocation:
Fairness-efficiency tradeoffs in a unifying framework. IEEE/ACM Trans.
Networking, 21(6), Dec. 2013.

G. Kesidis, Y. Shan, Y. Wang, B. Urgaonkar, J. Khamse-Ashari, and
I. Lambadaris. Scheduling distributed resources in heterogeneous private
clouds. https://arxiv.org/abs/1705.06102, June 28, 2018.

J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar, and Y. Zhao.
An Efficient and Fair Multi-Resource Allocation Mechanism for Hetero-
geneous Servers. http://arxiv.org/abs/1712.10114, Dec. 2017.

J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar, and Y. Zhao.
Per-Server Dominant-Share Fairness (PS-DSF): A Multi-Resource Fair
Allocation Mechanism for Heterogeneous Servers. In Proc. IEEE ICC,
Paris, May 2017.

R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A. Tantawi, and
A. Youssef. Performance management for cluster based web services.
In G. Goldszmidt and J. Schonwilder, editors, Integrated Network
Management VIII: Managing It All, pages 247-261. Springer US, 2003.
C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son. A feedback
control approach for guaranteeing relative delays in web servers. In
Proceedings of the Seventh Real-Time Technology and Applications
Symposium, RTAS ’01, 2001.

D. A. Menasce. Web server software architectures.
Computing, 7(6):78-81, 2003.

Apache Mesos - Containerizers. http://mesos.apache.org/documentation/
latest/containerizer-internals/.

Apache Mesos - Mesos
http://mesos.apache.org/documentation/latest/architecture/.
Mesos multi-scheduler. https://github.com/yuquanshan/mesos/tree/multi-
scheduler.

J. Mo and J. Walrand. Fair end-to-end window-based congestion control.
IEEE/ACM Trans. Networking, Vol. 8, No. 5:pp. 556-567, 2000.

IEEE Internet

Architecture.

108

[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]

[33]

[34]

[35]

[36]

[37]

M. N. Bennani and D. A. Menasce. Resource allocation for autonomic
data centers using analytic performance models. In Proceedings of the
Second International Conference on Automatic Computing, ICAC ’05.
IEEE Computer Society, 2005.

J. Puchinger, G. Raidl, and U. Pferschy. The multidimensional knapsack
problem: Structure and algorithms. INFORMS Journal on Computing,
22(2):250-265, Spring 2010.

H. Seltman. Approximation of mean and variance of a ratio.
http://www.stat.cmu.edu/ hseltman/files/ratio.pdf.

Y. Shan, A. Jain, G. Kesidis, B. Urgaonkar, J. Khamse-Ashari, and
I. Lambadaris. Online Scheduling of Spark Workloads with Mesos using
Different Fair Allocation Algorithms. https://arxiv.org/abs/1803.00922,
March 2, 2018.

Apache Spark - Dynamic Resource Allocation.
https://spark.apache.org/docs/latest/job-scheduling.html.

Apache Spark - Running Spark on Mesos.
https://spark.apache.org/docs/latest/running-on-mesos.html.

Spark with resource demand vectors.

https://github.com/yuquanshan/spark/tree/d-vector.

A. Stuart and K. Ord. Kendall’s Advanced Theory of Statistics. Arnold,
London, 6th edition, 1998.

M. Varnamkhasti. Overview of the algorithms for solving the multidi-
mensional knapsack problems. Advanced Studies in Biology, 4(1):3747,
2012.

W. Wang, B. Li, B. Liang, and J. Li. Multi-resource fair sharing for
datacenter jobs with placement constraints. In Proc. Supercomputing,
Salt Lake City, Utah, 2016.

W. Wang, B. Liang, and B. Li. Multi-resource fair allocation in
heterogeneous cloud computing systems. /EEE Transactions on Parallel
and Distributed Systems, 26(10):2822-2835, Oct. 2015.

W. Xu, P. Bodik, and D. Patterson. A flexible architecture for statistical
learning and data mining from system log streams. In Proceedings of
Workshop on Temporal Data Mining: Algorithms, Theory and Appli-
cations at the Fourth IEEE International Conference on Data Mining,
Brighton, UK, 2004.

K.-K. Yap, T.-Y. Huang, Y. Yiakoumis, S. Chinchali, N. McKeown, and
S. Katti. Scheduling packets over multiple interfaces while respecting
user preferences. In Proc. ACM CoNEXT, Dec. 2013.

