
Scheduling Distributed Resources
in Heterogeneous Private Clouds

George Kesidis, Yuquan Shan, Aman Jain, Bhuvan Urgaonkar
School of Elelctrical Engineering and Computer Science

Pennsylvania State University

University Park, PA

{gik2,yxs182,axj182,buu1}@psu.edu

Jalal Khamse-Ashari and Ioannis Lambadaris
Department of Systems and Computer Engineering

Carleton University

Ottawa, Canada

{jalalkhamseashari,ioannis}@sce.carleton.ca

Abstract—We first consider the static problem of allocating
resources to (i.e., scheduling) multiple distributed application
frameworks, possibly with different priorities and server pref-
erences, in a private cloud with heterogeneous servers. Several
fair scheduling mechanisms have been proposed for this purpose.
We extend prior results on max-min fair (MMF) and propor-
tional fair (PF) scheduling to this constrained multiresource and
multiserver case for generic fair scheduling criteria. The task
efficiencies (a metric related to proportional fairness) of max-
min fair allocations found by progressive filling are compared by
illustrative examples. In the second part of this paper, we consider
the online problem (with framework churn) by implementing
variants of these schedulers in Apache Mesos using progressive
filling to dynamically approximate max-min fair allocations. We
evaluate the implemented schedulers in terms of overall execution
time of realistic distributed Spark workloads. Our experiments
show that resource efficiency is improved and execution times
are reduced when the scheduler is “server specific” or when
it leverages characterized required resources of the workloads
(when known).

Index Terms—private cloud, scheduling, heterogeneity, pro-
gressive filling

I. INTRODUCTION

We consider a cloud provider that needs to run multiple

software application frameworks on its IT infrastructure. The

cloud provider’s infrastructure consists of multiple servers

(slaves, workers) connected by a network. A server may be

a physical machine or virtual machine (e.g., an instance or

a container). Each framework desires multiple IT resources

(CPU, memory, network bandwidth, etc.) for each of its tasks.

The provider’s challenge then is to determine who should get

how many resources from which servers. Our interest is in a

private cloud setting wherein notions of fairness have often

been used as the basis for this resource allocation problem.

Previously proposed fair schedulers include Dominant Re-

source Fairness (DRF) [12] extended to multiple servers1,

Task Share Fairness (TSF) [34], Per Server Dominant Share

Fairness (PS-DSF) [17], [16], among others, e.g., [5]. DRF is

resource based, whereas TSF and “containerized” DRF [11]

This research was supported in part by NSF CNS 1526133, NSF CNS
1717571 and a Cisco Systems URP gift.

1DRF was originally defined for a single server in [12]. The multiple-server
version, called DRFH in [35], [11], is also commonly called just DRF as done
in Apache Mesos [13] and as we do herein also.

are task based2. In the following, we additionally consider

variants of these schedulers that employ current residual

(unreserved) capacities of the servers in the fairness criteria

(somewhat similar to “best fit” variants [35]).

The contributions and organization of this paper is as

follows. In Section II, we give background on the multiserver,

multiresource scheduling problem. In Section III, we general-

ize static optimization problems whose solutions correspond

to max-min fairness (MMF) and proportional fairness (PF) to

multiple resources and multiple servers, the latter related to

resource efficiency. In Section IV, an illustrative numerical

example is given using progressive filling to compare the task

efficiencies of different schedulers, including variants using

residual/unreserved server resource capacities specified herein.

In Section V, we consider online scheduling (potentially in the

presence of framework churn) and describe our open-source

prototypes of different schedulers implemented on Apache

Mesos, a practical middleware platform to manage plural

distributed application frameworks for a private cloud. We

give the results of a comparative performance study (assessing

total execution times) in a heterogeneous setting using realistic

Spark workloads.

II. BACKGROUND

Typically static problem formulations are considered under

a variety of simplifying assumptions on framework behavior. It

is assumed that frameworks congest all the available servers.

That is, it is assumed that there is sufficient work to com-

pletely occupy at least one resource in every server. It is also

assumed that the frameworks’ required resources (presumably

to achieve certain performance needs) are well characterized,

e.g., [9], [18], [20], [3], [25], [36], [7], [1], [19]. Frameworks

are assumed to have linearly elastic resource demands in the

following sense. Each task has a known requirement dn,r for

the resource type r. Therefore, if xn,i were the number of

tasks of framework n placed on server i, the framework would

consume xn,idn,r amount of resource r on server i. xn,i may

2Containerized DRF has a “sharing-incentive” property not possessed by
DRF, and TSF possesses “strategy-proofness” and “envy-freeness” properties
which are not possessed by containerized DRF [34]. Unlike DRF and TSF, PS-
DSF is not necessarily Pareto optimal but is “bottleneck” fair. These properties
are not addressed herein

102

2018 IEEE International Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems

2375-0227/18/$31.00 ©2018 IEEE
DOI 10.1109/MASCOTS.2018.00018

take on non-negative real values rather than being restricted to

be non-negative integer valued3. Finally, frameworks may have

different service priorities and server preference constraints

(as in e.g., service-quality constraints [37] or cache-affinity

constraints), see also [34].

Note that in some settings (not considered herein), a goal is

to minimize the number of servers to accommodate workloads

with finite needs, again as in multidimensional bin-packing

problems [4], [6], [8]. Such problem formulations are typically

motivated by the desire to economize on energy. However,

frequently cycling power to (booting up) servers may result

in software errors and there are energy spikes associated with

boot-up resulting in increased electricity costs [10].

Typically in existing papers, max-min fairness (MMF)

with respect to a proposed criteria is specified assuming the

aforementioned congested regime under the following (linear)

capacity constraints:

∀i, r,
∑
n

xn,idn,r ≤ ci,r s.t. xn,i > 0 ⇒ δn,i = 1; (1)

where ci,r is the amount of available resource r in server

i, and frameworks n indicate preferences for servers i by

δn,i ∈ {0, 1}. Note that quantization (containerization) issues

associated with workload resource demands are considered in

[11].

MMF allocation may be expressed as the solution of a con-

strained centralized optimization problem. Alternatively, max-

min fairness with respect to the proposed fairness criteria may

be approximated by a greedy, iterative “progressive filling”

allocation. The latter approach is often preferred because of

the benefits this offers for online implementations. Moreover,

progressive filling arguments can be used to establish other

potentially desirable fairness properties of schedulers defined

for private clouds [12], [17].

In this paper, we relate this task efficiency objective to

“proportional” fairness (PF).

III. MULITRESOURCE, MULTISERVER MMF AND PF

To generalize previous results on MMF and PF to multiple

resource types on multiple servers, consider the following

general-purpose fairness criterion for framework n,

Un = φ−1
n

∑
i

un,ixn,i, (2)

for scalars un,i > 0 and priorities φn > 0. Under DRF [12],

[35], frameworks n are selected using criterion

Mn =
1

φn
xn max

r

dn,r∑
j cj,r

, (3)

where xn =
∑

i xn,i. The PS-DSF criterion can be written as

Kn,j =

∑
i xn,idn,ρ(n,j)

φncj,ρ(n,j)
(4)

3With x integer valued, such problems belong to the class of combinatorial-
optimization Multidimensional Knapsack Problems (MKPs), e.g., [4], [26],
[33], [6], which are NP-hard. They have been extensively studied, including
relaxations to simplified problems that yield approximately optimal solutions,
e.g., by Integer Linear Programs solved by iterated/online means.

where bottleneck resource ρ is such that

dn,ρ(n,j)/cj,ρ(n,j) := max
r

dn,r/cj,r when δn,j = 1.(5)

The feasibility conditions are (1).

Regarding fully booked resources in server i under alloca-

tions x = {xn,i}, let

Ri := {(x, r) |
∑
n

xn,idn,r = ci,r}.

Definition 1: A feasible allocation {xn,i} satisfying (1) is

said to be U -MMF if:

U� > Um, xm,i > 0, and ∃r s.t.
∑
n

xn,idn,r = ci,r

implies that x�,i = 0.

Note that if instead x�,i > 0 in this definition, then x�,i can

be reduced and xm,i increased to reduce U� − Um. Also, if

{xn,i} is U -MMF and xm,i, x�,i > 0 for some server i then

Um = U�. Consider the optimization problem

max
x

∑
n

φng(Un) s.t. (1), (6)

for strictly concave and increasing g with g(0) = 0.

Proposition 1: A solution x = {xn,i} of the optimization

(6) s.t. (1) has at least one resource r fully booked in each

server i. In addition, there is a unique U -MMF solution if also

δm,i = 1 = δl,i and (x, r) ∈ Ri ⇒ dm,r = dl,r. (7)

Note that for uniqueness, the proof given in [15] requires

the strong assumption (7) that frameworks that can share

servers have identical demand parameters d for fully utilized

resources.

For weighted PF, consider the objective

max
x

∑
n

φnga(xn), (8)

i.e., without dividing by φn in the argument of ga [24]. For

parameter a > 0 specifically take

ga(X) =

{
log(X) if a = 1
(1− a)−1X1−a else

i.e., g′a(X) = 1/Xa, again see [24]. Obviously, in the case of

a = 1 (g = log), whether the factor φ is in the argument of g
is immaterial.

The following generalizes Lemma 2 of [24] on Proportional

Fairness. See also the proportional-fairness/efficiency trade-off

framework of [14] for a single server.

Proposition 2: A solution x∗ of the optimization (8) s.t. (1)

is uniquely (weighted) (φ, a) x-PF, i.e., for any other feasible

solution x,

Φ(x, x∗) :=
∑
n

φn
xn − x∗

n

(x∗
n)

a
≤ 0. (9)

The proof is given in [15]. A possible definition of the

efficiency of a feasible allocation is∑
n

φn

∑
i

xn,i =
∑
n

φnxn, (10)

103

(corresponding to a = 0), i.e., the weighted total number

of tasks scheduled. The optimization of Proposition 2 with

a = 1 gives an allocation x∗ that is related to a task efficient

allocation. Clearly, x∗ satisfying (9) for all other allocations

x with a = 1 does not necessarily maximize (10). This issue

is analogous to estimating the mean of the ratio of positive

random variables E(X/X∗) using the ratio of the means

EX/EX∗, see e.g. p. 351 of [32] or (11) of [27] . For simplicity

in the following, we use (10) instead of (9).

Note that the priority φn of framework n could factor its re-

source footprint {dn,r}r. Alternatively, the resource footprints

of the frameworks can be explicitly incorporated into the main

optimization objective via a fairness criterion. The proof of the

following corollary is just as that of Proposition 2. Recall that

the generic fairness criterion Un (2) is a linear combination

of {xn,i}i.
Corollary 1: A solution x∗ of the optimization problem

max
x

∑
n

φn log(Un) s.t. (1)

is uniquely (φ, 1) U -PF, i.e., for any other feasible x,

∑
n

φn
Un − U∗

n

U∗
n

≤ 0.

Again, optimal {U∗
n} would be unique but x∗ = {x∗

n,i}n,i
may not be.

Recall for DRF and PS-DSF, the Kn =
∑

i Kn,i and Mn,

respectively, are proportional to xn. Thus, using Un = Kn or

Un = Mn in Corollary 1 reduces to the result of Proposition

2 when a = 1.

IV. ILLUSTRATIVE NUMERICAL STUDY OF FAIR

SCHEDULING BY PROGRESSIVE FILLING

In the following evaluation studies, we use progressive fill-
ing [2], [12], an online scheduling approach for approximating

fair allocation under a certain fairness criterion. In progressive

filling, resources are incrementally (taskwise) allocated to

frameworks n in a greedy fashion: simply, the framework

n with smallest fairness criterion Un (or Un,i), based on

existing allocations {xn,i}n,i, will be allocated a resource

increment {εdn,i}i for small4 ε > 0. If a framework’s resource

demands cannot be accommodated with available resources,

the framework with the next smallest fairness criterion will

be allocated. Also, for brevity, we consider only cases with

frameworks of equal priority (∀n, n′, φn = φn′) and without

server-preference constraints (i.e., δn,i ≡ 1).

In this section, we consider the following typical example

of our numerical study with two heterogeneous distributed

application frameworks (n = 1, 2) having resource demands

per unit workload:

d1,1 = 5, d1,2 = 1, d2,1 = 1, d2,2 = 5; (11)

4Typically ε = 1 when allocations x are measured in “tasks”.

��������sched.
(n, i)

(1,1) (1,2) (2,1) (2,2) total

DRF [12], [35] 6.55 4.69 4.69 6.55 22.48
TSF [34] 6.5 4.7 4.7 6.5 22.4

RRR-PS-DSF 19.44 1.15 1.07 19.42 41.08
BF-DRF [35] 20 2 0 19 41
PS-DSF [17] 19 0 2 20 41

rPS-DSF 19 2 2 19 42

TABLE I
WORKLOAD ALLOCATIONS xn,i FOR DIFFERENT SCHEDULERS UNDER

PROGRESSIVE FILLING FOR ILLUSTRATIVE EXAMPLE WITH PARAMETERS

(11) AND (12). AVERAGED VALUES OVER 200 TRIALS REPORTED FOR THE

FIRST THREE SCHEDULERS OPERATING UNDER RRR SERVER SELECTION.

��������sched.
(n, i)

(1,1) (1,2) (2,1) (2,2)

DRF [12], [35] 2.31 0.46 0.46 2.31
TSF [34] 2.29 0.46 0.46 2.29

RRR-PS-DSF 0.59 0.99 1 0.49

TABLE II
SAMPLE STANDARD DEVIATION OF ALLOCATIONS xn,i FOR DIFFERENT

SCHEDULERS UNDER RRR SERVER SELECTION WITH. AVERAGED VALUES

OVER 200 TRIALS REPORTED.

and two heterogeneous servers (i = 1, 2) having two different

resources with capacities:

c1,1 = 100, c1,2 = 30, c2,1 = 30, c2,2 = 100. (12)

For DRF and TSF, the servers i are chosen in round-robin

fashion, where the server order is randomly permuted in each

round; DRF under such randomized round-robin (RRR) server

selection is the default Mesos scheduler, cf. next section. One

can also formulate PS-DSF under RRR wherein RRR selects

the server and the PS-DSF criterion only selects the framework

for that server. Frameworks n are chosen by progressive filling

with integer-valued tasking (x), i.e., whole tasks are scheduled.

Numerical results for this illustrative example are given in

Table I. & II. Similar results for unused (stranded) resources

are given in [15]. 200 trials were performed for DRF, TSF and

PS-DSF under RRR server selection. With Table II, we can

obtain confidence intervals for the averaged quantities given

in Table I for schedulers under RRR. Note how PS-DSF’s

performance under RRR is comparable to when frameworks

and servers are jointly selected [17] (and with low variance

in allocations). We also found that RRR-rPS-DSF performed

just as rPS-DSF over 200 trials.

We found task efficiencies improve using residual forms of

the fairness criterion. For example, the residual PS-DSF (rPS-

DSF) criterion is

K̃n,j,xj
= xn max

r

dn,r
φn(cj,r −

∑
n′ xn′,jdn′,r)

That is, this criterion makes scheduling decisions by pro-

gressive filling using current residual (unreserved) capacities

based on the current allocations x. From Table I, we see the

improvement is modest for the case of PS-DSF. Improvements

are also obtained by best-fit server selection. For example,

104

best-fit DRF (BF-DRF) first selects framework n by DRF and

then selects the server whose residual capacity most closely

matches their resource demands {dn,r}r [35].

V. ONLINE SCHEDULING OF SPARK WORKLOADS WITH

MESOS USING DIFFERENT FAIR ALLOCATION

ALGORITHMS

In the following, we present example experimental results

comparing different schedulers implemented on Mesos. The

execution traces presented in the figures were collected though

Mesos’ REST API by our external script and are typical of

the multiple trials we ran.

A. Introduction including background on Mesos

The Mesos master (including its resource allocator, see

[22]) works in dynamic/online environment with churn in

the distributed computing/application frameworks it manages.

When all or part of a Mesos slave5 becomes available, its

resources are offered to the frameworks in progressive filling

fashion. The framework accepts the offered allocation in whole

or part. When a framework’s tasks are completed, the Mesos

master may be notified that the corresponding resources of

the slaves are released, and then the master will make new

allocation decisions. We consider two implementations of fair

resource scheduling algorithms in Mesos.

In oblivious6 allocation, the allocator is not aware of the

resource demands of the frameworks7 so the allocator will of-

fer all the remaining resources of the server to the framework.

A framework running an uncharacterized application may be

configured to accept all resources offered to it.

In workload-characterized allocation, each active frame-

work n simply informs the Mesos allocator of its resource

demands per task, {dn,r}r. The Mesos allocator selects a

framework and allocates a single task worth of resources from

a given slave with unassigned (released) resources.

In the following, we compare different scheduling algo-

rithms implemented as the Mesos allocator. Given a pool of

slaves with unused resources, PS-DSF [17], rPS-DSF and best-

fit (BF) [35] allocations will depend on particular slaves. Ini-

tially, the slaves are always scheduled by the Mesos allocator

as a pool.

B. Running Spark on Mesos

We use Spark as an example that may have heterogeneous

resource demands, so Spark can certainly be replaced by any

other workload generators. Each Spark job (Mesos frame-

work) is divided into multiple tasks (threads). Multiple Spark

executors will be allocated for a Spark job. The executors

can simultaneously run a certain maximum number of tasks

depending on how many cores on the executor and how

many cores are required per task; when a task completes,

the executor informs the task orchestrator (Spark driver) to

request another, i.e. executors pull in work. Each executor is a

5A Mesos slave is a server that provides resources.
6Called “coarse grain” in Mesos.
7Indeed, the frameworks themselves may not be aware.

Mesos task in the default “coarse-grained” mode [30] and an

executor resides in a container of a Mesos slave [21]. Plural

executors can simultaneously reside on a single Mesos slave.

When starting a Spark job, the resources required to start an

executor (d) and the maximum number of executors that can

be created to execute the tasks of the job, may be specified. An

executor usually terminates as the entire Spark job terminates

[29] and hence its resources are released.

C. Experiment Configuration

In our experiments, there are two Spark submission groups

(“roles” in Mesos’ jargon): group Pi submits jobs that accu-

rately calculate π = 3.1415... via Monte Carlo simulation;

group WordCount submits word-count jobs for a 700MB+

document. The executors of Pi require 2 CPUs and about 2 GB

memory (Pi is CPU bottlenecked), while those of WordCount

require 1 CPU and about 3.5 GB memory (WordCount is

memory bottlenecked)8. Each group has five job submission

queues, which means there could be ten jobs running on the

cluster at the same time. Each queue initially has fifty jobs.

Again, each job is divided into tasks and tasks are run in plural

Spark executors (Mesos tasks) running on different Mesos

slaves.

The Mesos slaves are six servers (AWS c3.2xlarge virtual-

machine instances), two each of three types in our cluster.

A type-1 server provides 4 CPUs and 14 GB memory, so it

would be well utilized by 4 WordCount tasks. A type-2 server

provides 8 CPUs and 8 GB memory, so it would be well

utilized by 4 Pi tasks. A type-3 server provides 6 CPUs and

11 GB memory, so it would be well utilized by 2 Pi and 2

WordCount tasks. The Mesos master operates in a c3.2xlarge

with 8 cores and 15 GB memory.

D. Prototype implementation

We modified the allocator module of Mesos (version 1.5.0)

to use different scheduling criteria. We also modified the driver

in Spark to pass on a framework n’s resource needs per

task ({dn,r}) in workload-characterized mode. Our code is

available online [23], [31].

E. Experimental Results for Different Schedulers

We ran the same total workload for the different Mesos

allocators under Randomized Round-Robin (RRR) slave se-

lection, except for BF-DRF. (In this section, we drop the

“RRR” qualifier). A summary of our results is that overall

execution time9 is improved under workload characterization

and allocations that are server specific.

1) DRF vs. PS-DSF in oblivious mode: The resource al-

location under these two different fairness criteria are shown

in Figure 1. It can be seen that PS-DSF can achieve higher

resource utilization than DRF because its criterion naturally

8In fact, what is actually running inside Spark is not of interest in this
section, where we are only interested in the allocation efficiency of different
fairness criteria in Mesos.

9Note that minimizing execution time is the aim of CPU scheduling
algorithms given individual task execution times.

105

matches the task demands to a specific server (a server-specific

criterion), so it “packs” tasks better into heterogeneous servers.

As a result, the entire job-batch under PS-DSF finishes earlier.

Also note that at the end of the experiment, there is a sudden

drop in allocated memory percentage. This is because the

memory-intensive Spark WordCount jobs finish earlier and

CPU is the bottleneck resource for the remaining Spark Pi

jobs.

Fig. 1. Comparison between DRF and PS-DSF in oblivious mode.

2) Schedulers in workload-characterized mode: The exper-

imental results under workload-characterized mode, as shown

in Fig. 2, are consistent with their oblivious counterparts -

PS-DSF has higher resource utilization than DRF. Also note

that the resource utilizations in workload-characterized mode

have less variance than those in oblivious mode, which will

be explained in Sec. V-E3.

In Figure 3, we compare TSF [34] under RRR10, rPS-

DSF (under RRR), and BF-DRF (again, “best fit” is an slave-

selection mechanism when there is a pool of slaves to choose

from). From the figure, the execution times of BF-DRF and

-rPS-DSF are comparable to PS-DRF (but cf. Section V-F) and

shorter than TSF (which is comparable to DRF).
3) Oblivious versus Workload Characterized modes: We

also compared oblivious and workload-characterized alloca-

tion for the same scheduling algorithm. Note that when a Spark

job finishes, its executors may not simultaneously release

resources from the Mesos allocator’s point-of-view. So under

oblivious allocation, it’s possible that multiple Spark jobs can

share the same server, as is typically the case under workload-

characterized scheduling. However, oblivious allocation is a

coarse-grained enforcement of progressive filling, where the

10Note that [34] also describes experimental results for a Mesos implemen-
tation of TSF.

Fig. 2. Comparison between DRF and PS-DSF in workload-characterized
mode.

Fig. 3. Comparison among TSF, Best-fit DRF and rPS-DSF (in the workload
characterized mode).

resources are less evenly distributed among the frameworks -

some frameworks may receive the entire remaining resources

on a slave in a single offer, leaving nothing available for

others. From Figure 4, note how under oblivious allocation

the amount of allocated resources drops more sharply when a

Spark job ends, and variance of utilized resources under obliv-

ious allocation is larger than under workload-characterized.

Consequently, the entire job-batch tends to finish sooner under

workload-characterized allocator. Similar results hold for PS-

DSF [28].

In another group of experiments, we show that for homo-

106

Fig. 4. Comparison between oblivious and workload-characterized modes
under DRF.

geneous servers, PS-DSF and DRF have comparable perfor-

mance [28].

F. BF-DRF versus rPS-DSF

Finally, with a different experimental set-up, we compare

BF-DRF (which first selects the framework and then selects

the “best fit” from among available slaves) and a representative

of a family of slave-specific schedulers, rPS-DRF under RRR.

Consider a case where there are three servers, one of each of

the above server types (types 1-3).

Suppose under a current allocation, we have one Spark-Pi

and two Spark-WordCount executors on the type-1 server, two

Spark-Pi and one Spark-WordCount executors on the type-2

server, and two Spark-Pi and two Spark-WordCount executors

on the type-3 server. So, whenever a Pi or WordCount frame-

work releases its executor’s resources back to the cluster, its

DRF “score” is reduced so the scheduler will always sends a

resource offer to the same client framework in this scenario.

On the other hand, rPS-DSF will make a decision considering

the amount of (remaining) resources on the slave, and so will

make a more efficient allocation.

We illustrate this with a numerical example in Figure 5. In

this experiment, we let each group submit their Spark jobs

through five queues with 20 jobs each. To create the above

scenario, instead of exposing all the slaves to the clients, we

register servers one by one from type-1 to type-3. From the

figure, note that both rPS-DSF and BF-DRF have an initial

inefficient memory allocation, but rPS-DSF is able to adapt

and quickly increase its memory efficiency, while BF-DRF

does not.

Fig. 5. Performance of Best-fit DRF and rPS-DSF given initial suboptimal
allocation.

VI. SUMMARY AND FUTURE WORK

For a private-cloud setting, we considered scheduling a

group of heterogeneous, distributed frameworks to a group

of heterogeneous servers. We extended two general results on

max-min fairness and proportional fairness to this case for a

static problem under generic scheduling criteria. Subsequently,

we assessed the efficiency of approximate max-min fair alloca-

tions by progressive filling according to different fairness cri-

teria. Illustrative examples in heterogeneous settings show that

max-min fair PS-DSF and rPS-DSF scheduling, are superior to

DRF in terms of task efficiency performance (a metric related

to proportional fairness) and that the efficiency of these “server

specific” schedulers did not significantly suffer from the use of

randomized round-robin server selection. Task efficiency was

also improved when either the “best fit” approach to selecting

servers was used or the fairness criteria was modified to use

current residual/unreserved resource capacities. In [28], we

give the full results of an online experimental study using our

implementations of different schedulers on Spark and Mesos

[23], [31] for benchmark workloads considering an execution-

time performance metric.

In future work, we will consider scheduling (admission

control and placement) problems in a public cloud setting.

To this end, note that similar objectives to those considered

herein for a private-cloud setting, particularly (10), may be

reinterpreted as overall revenue based on bids φ for virtual

machines or containers with fixed resource allocations d. Also,

as profit margins diminish in a maturing marketplace, one

expects that public clouds will need to operate with greater

resource efficiency.

107

REFERENCES

[1] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guarantees for
web server end-systems: A control-theoretical approach. IEEE Trans.
Parallel Distrib. Syst., 13(1):80–96, 2002.

[2] D. Bertsekas and R. Gallager. Data Networks, 2nd Ed. Prentice Hall,
1992.

[3] A. Chandra, W. Gong, and P. Shenoy. Dynamic resource allocation for
shared data centers using online measurements. In Proceedings of the
2003 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’03, 2003.

[4] C. Chekuri and S. Khanna. On multi-dimensional packing problems.
SIAM Journal of Computing, 33(4):837–851, 2004.

[5] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica. HUG: Multi-resource
fairness for correlated and elastic demands. In Proc. USENIX NSDI,
March 2016.

[6] H. Christensen, A. Khan, S. Pokutta, and P. Tetali. Multidi-
mensional Bin Packing and Other Related Problems: A Survey.
https://people.math.gatech.edu/∼tetali/PUBLIS/CKPT.pdf, 2016.

[7] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase.
Correlating instrumentation data to system states: A building block for
automated diagnosis and control. In Proceedings of the 6th Conference
on Symposium on Opearting Systems Design & Implementation - Volume
6, OSDI’04, 2004.

[8] M. Cohen, V.Mirrokni, P. Keller, and M. Zadimoghaddam. Overcom-
mitment in Cloud Services Bin packing with Chance Constraints. In
Proc. ACM SIGMETRICS, Urbana-Campaign, IL, June 2017.

[9] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M. Vahdat. Model-
based resource provisioning in a web service utility. In Proceedings of
the 4th Conference on USENIX Symposium on Internet Technologies
and Systems - Volume 4, USITS’03, 2003.

[10] Duke utility bill tariff, 2012. http://www.considerthecarolinas.com/pdfs/
scscheduleopt.pdf.

[11] E. Friedman, A. Ghodsi, and C.-A. Psomas. Strategyproof allocation of
discrete jobs on multiple machines. In Proc. ACM Conf. on Economics
and Computation, 2014.

[12] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: Fair allocation of multiple
resource types. In Proc. USENIX NSDI, 2011.

[13] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R. Katz,
S. Shenker, and I. Stoica. Mesos: A Platform for Fine-grained Resource
Sharing in the Data Center. In Proc. USENIX NSDI, 2011.

[14] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. Multi-resource allocation:
Fairness-efficiency tradeoffs in a unifying framework. IEEE/ACM Trans.
Networking, 21(6), Dec. 2013.

[15] G. Kesidis, Y. Shan, Y. Wang, B. Urgaonkar, J. Khamse-Ashari, and
I. Lambadaris. Scheduling distributed resources in heterogeneous private
clouds. https://arxiv.org/abs/1705.06102, June 28, 2018.

[16] J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar, and Y. Zhao.
An Efficient and Fair Multi-Resource Allocation Mechanism for Hetero-
geneous Servers. http://arxiv.org/abs/1712.10114, Dec. 2017.

[17] J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar, and Y. Zhao.
Per-Server Dominant-Share Fairness (PS-DSF): A Multi-Resource Fair
Allocation Mechanism for Heterogeneous Servers. In Proc. IEEE ICC,
Paris, May 2017.

[18] R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A. Tantawi, and
A. Youssef. Performance management for cluster based web services.
In G. Goldszmidt and J. Schönwälder, editors, Integrated Network
Management VIII: Managing It All, pages 247–261. Springer US, 2003.

[19] C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son. A feedback
control approach for guaranteeing relative delays in web servers. In
Proceedings of the Seventh Real-Time Technology and Applications
Symposium, RTAS ’01, 2001.

[20] D. A. Menasce. Web server software architectures. IEEE Internet
Computing, 7(6):78–81, 2003.

[21] Apache Mesos - Containerizers. http://mesos.apache.org/documentation/
latest/containerizer-internals/.

[22] Apache Mesos - Mesos Architecture.
http://mesos.apache.org/documentation/latest/architecture/.

[23] Mesos multi-scheduler. https://github.com/yuquanshan/mesos/tree/multi-
scheduler.

[24] J. Mo and J. Walrand. Fair end-to-end window-based congestion control.
IEEE/ACM Trans. Networking, Vol. 8, No. 5:pp. 556–567, 2000.

[25] M. N. Bennani and D. A. Menasce. Resource allocation for autonomic
data centers using analytic performance models. In Proceedings of the
Second International Conference on Automatic Computing, ICAC ’05.
IEEE Computer Society, 2005.

[26] J. Puchinger, G. Raidl, and U. Pferschy. The multidimensional knapsack
problem: Structure and algorithms. INFORMS Journal on Computing,
22(2):250–265, Spring 2010.

[27] H. Seltman. Approximation of mean and variance of a ratio.
http://www.stat.cmu.edu/ hseltman/files/ratio.pdf.

[28] Y. Shan, A. Jain, G. Kesidis, B. Urgaonkar, J. Khamse-Ashari, and
I. Lambadaris. Online Scheduling of Spark Workloads with Mesos using
Different Fair Allocation Algorithms. https://arxiv.org/abs/1803.00922,
March 2, 2018.

[29] Apache Spark - Dynamic Resource Allocation.
https://spark.apache.org/docs/latest/job-scheduling.html.

[30] Apache Spark - Running Spark on Mesos.
https://spark.apache.org/docs/latest/running-on-mesos.html.

[31] Spark with resource demand vectors.
https://github.com/yuquanshan/spark/tree/d-vector.

[32] A. Stuart and K. Ord. Kendall’s Advanced Theory of Statistics. Arnold,
London, 6th edition, 1998.

[33] M. Varnamkhasti. Overview of the algorithms for solving the multidi-
mensional knapsack problems. Advanced Studies in Biology, 4(1):3747,
2012.

[34] W. Wang, B. Li, B. Liang, and J. Li. Multi-resource fair sharing for
datacenter jobs with placement constraints. In Proc. Supercomputing,
Salt Lake City, Utah, 2016.

[35] W. Wang, B. Liang, and B. Li. Multi-resource fair allocation in
heterogeneous cloud computing systems. IEEE Transactions on Parallel
and Distributed Systems, 26(10):2822–2835, Oct. 2015.

[36] W. Xu, P. Bodik, and D. Patterson. A flexible architecture for statistical
learning and data mining from system log streams. In Proceedings of
Workshop on Temporal Data Mining: Algorithms, Theory and Appli-
cations at the Fourth IEEE International Conference on Data Mining,
Brighton, UK, 2004.

[37] K.-K. Yap, T.-Y. Huang, Y. Yiakoumis, S. Chinchali, N. McKeown, and
S. Katti. Scheduling packets over multiple interfaces while respecting
user preferences. In Proc. ACM CoNEXT, Dec. 2013.

108

