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1. Introduction

Jahn–Teller (JT) models [1, 2] explain a rich variety of phe-
nomena in condensed matter and chemical physics [3–6]. 
Modern studies have explored the role of JT distortions in 
e.g. possible mechanisms for unconventional superconductiv-
ity [6], colossal magnetoresistance [7], multiferroics [8], and 
single-molecule transport [9]. The unifying feature of these 
phenomena is that they involve significant coupling of orbital 
and vibrational degrees of freedom.

One of the simplest JT models is that consisting of a degen-
erate pair of electronic states coupled to a similarly degenerate 

vibrational mode [10], the so-called E ⊗ e system [11] (we 
employ the standard convention that the irreducible repre-
sentation (irrep) corresponding to the electronic multiplet is 
labeled by an upper case letter, while that of the vibrations is 
given by a lower case). This model has been employed, for 
example, to describe the distortion of CuII and MnIII in an 
octahedral environment [12] (figure 1), and properties of tria-
tomic systems near the equilateral configuration [13]. A well-
known characteristic of this system is that when only linear 
vibronic couplings are included, it displays circular symmetry 
[11] (figure 2). The reason is the linear E ⊗ e Hamiltonian is 
invariant under simultaneous rotations of the electronic states 
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and vibrational coordinates (see equation (7)). The space of 
rotations of the plane [SO(2)] is topologically equivalent to 
the one-dimensional circle S1. Therefore, the symmetry group 
of linear E ⊗ e is continuous (as opposed to the discrete point 
groups). This has extreme implications, e.g. there exists a con-
tinuous family of minima (trough) in the ground-state adiaba-
tic potential energy surface (APES) (figure 2), the vibronic 
ground-state is doubly degenerate, and the vibronic (pseudo)
angular momentum is quantized in odd half-integral units, 
thus indicating a vibronic motion with spinorial character  
[3, 11]. All of these are surprising, as none are generic proper-
ties of finite molecular systems irrespective of the existence of 
point group symmetry. They are also intrinsically quant um-
mechanical (even though a semiclassical treatment leads to an 
effective classical Hamiltonian which describes the properties 
of the system when � → 0 [14]).

Continuous symmetries in JT systems have sometimes 
been described as accidental or emergent, since the molecular 
Hamiltonian is only constrained to be a molecular point (dou-
ble) group scalar. Deeper mathematical analysis has revealed 
the continuous invariance properties of JT models follows 
from the interplay between the representations of molecular 
point (double) groups adopted by the electronic and nuclear 
degrees of freedom [15–17]. In particular, Pooler laid out the 
representation theory underlying linear JT problems with con-
tinuous symmetries [15, 16]. Roughly speaking, for the lat-
ter to occur, the JT distortions need to be isotropic, and the 
space of electronic Hamiltonians must be equivalent to the 
vibrational configuration space as irreducible representations 
(irreps) of a Lie group G. In this way, the molecular Hilbert 
space H ≡ Hvib ⊗Hel carries a G-action.

Due to the constraints on the fundamental parameters of 
continuously-symmetric JT models, these have been only 
rarely employed to extract quantitative information about 
physical systems (though some examples are given below). 
Quadratic or non-degenerate linear vibronic couplings are 
known to break continuous symmetries [3, 18]. For instance, 
in the presence of quadratic couplings, the continuous set of 
E ⊗ e minima imposed by SO(2) symmetry becomes a discrete 
set separated by saddle points [3, 18, 19]. The APES associ-
ated to this model is said to be warped (figure 3). However, if 
the distorted JT surfaces can be obtained by a gap-preserving 
continuous deformation (homotopy) of the electronic ground-
state APES, then basic features of the continuously-symmetric 
JT system will remain relevant (figure 3) [19]. These include 
the vibronic ground-state degeneracy and symmetry, as well 
as any other non-trivial effects originating from the existence 

of a Berry phase [19–21]. On the other hand, if the warp-
ing generates new electronic-state intersections (esis, which 
include the ubiquitous conical intersections (cis) [22–24]) on 
the electronic ground-state APES in regions accessible at low-
energies, then the warped JT system becomes topologically 
different [19, 25]. In other words, the symmetry and degen-
eracy of the vibronic ground-state changes. While it is well-
known that warping necessarily generates additional esis on 
the JT APES [19, 26, 27], these are brought from the vibra-
tional configuration space infinity (where they coalesce when 
nonlinear vibronic couplings vanish) (see figure 3). Thus, if 
the warping is weak enough, and the new esis are as a result 
far away, then at low-energies the molecular system will be 
confined to a region that excludes esis other than that which 
defines the JT model; in this case, homotopic invariants of the 
continuously-symmetric electronic ground-state APES will be 
preserved [19, 20].

A less known example of the robustness of the properties of JT 
models with continuous symmetries was given by Markiewicz 
[28]. To understand, recall that  continuous-symmetry breaking 
in the dynamical JT problem without quadratic or higher-order 
vibronic couplings will happen under one of the following 
three conditions: (a) different vibrational frequencies for the 
JT active modes irreps, but equal JT stabilization energies, 
(b) equal vibrational frequencies, but different JT stabiliza-
tion energies, and (c) different vibrational frequencies and JT 
stabilization energies. In [28], the linear E ⊗ (b1 ⊕ b2) model 
(which can be understood as arising from symmetry break-
ing of the vibrational modes of E ⊗ e) was employed to study 
case (a). This has a continuous set of ground-state minima, 
but pseudoangular momentum is not conserved (the b1 and 
b2 vibrations have different frequencies). However, the aver-
age wavepacket pseudoangular momentum was numerically 
verified to be quantized for different values of vibrational fre-
quency anisotropy. While the dynamical continuous symmetry 
was broken, it left clear signatures.

There have been also some experimental studies of 
JT  centers which benefited from an analysis based on an 
ideal model admitting continuous symmetries. For exam-
ple, O’Brien [29] employed the SO(3)-invariant version of 
T ⊗ (e ⊕ t2) to investigate the spectra of F+ centers (crystal 

Figure 1. Eg vibrational modes and electronic orbitals for a system 
with Oh symmetry.

Figure 2. Ground and excited-state branches of the E ⊗ e APES.
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vacancies occupied by holes) in CaO, and obtained quantita-
tively accurate absorption bandshapes. The same model also 
provided accurate fits to the absorption spectrum of F-centers 
(electron-occupied vacancies) in CsF. Another example is 

Pooler’s and O’Brien’s [30] study of the P2
1/2 → P2

3/2  line-

shapes of Tl atoms in halides. Tl is a heavy-atom and its 
energy levels are strongly influenced by spin–orbit coupling. 
The JT problem for this model is Γ8 ⊗ (e ⊕ t2), where Γ8 (also 
denoted by G3/2) refers to the quartet double group representa-
tion of cubic systems [31]. With the assumption of degener-
ate vibronic couplings and harmonic frequencies, qualitative 
agreement with exper imental data was also obtained.

In summary, while strong constraints need to be satisfied 
for a JT system to feature continuous symmetries, i.e. to carry 
a Lie group action, their study adds valuable insight to the 
generic problem of cis, as they are minimal models featuring 
universal properties of systems that contains them. Moreover, 
the high symmetry of such systems imply that they form 
convenient starting points for the investigation of the com-
plex interplay between orbital, structural, and charge order in 
extended systems with JT active sites.

The connection between JT models and Lie groups has 
been explored before [15, 16, 18, 32–38]. In this work we 
review and present some novel perspectives on this relation-
ship based on the theory of symmetric spaces [39–41]. The 
general relevance of symmetric spaces to quantum mechanics 
can be illustrated with the Threefold way classification of non-
relativistic Hamiltonian ensembles [42]. Dyson proved that, 
in the absence of anticommuting symmetries, any quantum-
mechanical system belongs to either one of three symmetry 
classes: real orthogonal, real symplectic and complex unitary. 
The real orthogonal class contains all time-reversal invariant 
(TRI) bosonic systems, while the TRI fermionic Hamiltonians 
correspond to the real symplectic, and the complex unitary 
ensemble contains models with broken time-reversal symme-
try. Dyson’s classification (and its generalization [43, 44]) is 
the basis for the application of random matrix models in con-
densed matter, nuclear [45], and chemical physics [46, 47]. 
In fact, as we will see later, there exist several connections 
between topological phenomena arising in JT models and 
condensed matter physics (section 3.3).

Let us illustrate some of the previous remarks with the 
simplest JT model with continuous symmetry, the linear 
E ⊗ e system. The molecular Hamiltonian can be written as 
a sum of a purely vibrational part and a vibronic component,

H(Q, P) = Hvib(Q, P) + HJT(Q), Q ∈ R
2, (1)

where Q = (Q1, Q2), and P = (P1, P2) are the displacements 
from the JT center (the molecular shape with Q = 0, hosting 
the electronically degenerate multiplet) and their canonically 
conjugate momenta, respectively (figure 1). The vibrational 
contribution is given by the 2D isotropic harmonic oscillator 
Hamiltonian,

Hvib(Q, P) =
P2

1

2
+

P2
2

2
+

1
2
ω2(Q2

1 + Q2
2), (2)

where ω is the vibrational frequency for the e modes. The JT 
Hamiltonian HJT(Q) contains the interaction between nuclear 
and electronic degrees of freedom. Given that E ⊗ e is a TRI 
spinless model, the time-reversal symmetry operator T satis-
fies T2  =  1, and we can take the electronic Hilbert space Hel 
to be a real vector space with basis functions invariant under 
T. Thus, the vibronic E ⊗ e Hamiltonian can be written as:

HJT(Q) = FQe−i σ2
2 φσ3ei σ2

2 φ, (3)

where F ∈ R− {0} is the reduced vibronic coupling constant 

(from the Wigner–Eckart theorem), Q =
√

Q2
1 + Q2

2 ∈ R
+, 

tanφ = Q2/Q1,φ ∈ S1, and σj, j = 1, 2, 3, are the Pauli matri-
ces acting on Hel. A change of electronic frame (basis) that 
preserves the reality of the electronic eigenvectors for all Q 
can be parametrized by

M(θ) = e−i σ2
2 θ ∈ SO(2), θ ∈ S

1. (4)

Let R(θ) be the rotation of vibrational configuration space 
defined by

R(θ) : (Q,φ) �→ (Q,φ+ θ). (5)

It is equivalent to mapping φ �→ φ+ θ in equation (3). Hence, 
a change of electronic frame is equivalent to a rotation of the 
vibrational configuration space,

M(θ)HJT (Q)M−1(θ) = HJT
[
R−1(θ)Q

]
. (6)

As we now see, the JT Hamiltonian (and therefore, also the 
molecular) is invariant under the simultaneous action of SO(2) 
on the electronic and vibrational Hilbert spaces defined by

M(θ)HJT [R(θ)Q]M−1(θ) = HJT(Q). (7)

The equation  above explains the circular symmetry of 
 figure 2: the SO(2) action on the space of molecular (nuclear) 

Figure 3. Left: weakly warped APES for E ⊗ e; right: strongly-warped APES for the same model.

J. Phys.: Condens. Matter  ( ) 333001



Topical Review

4

geometries maps a nuclear configuration into another with the 
same Q, but that is equivalent to a change of (electronic) basis 
of Hel. Therefore, all invariant properties of the electronic 
Hamiltonian are preserved (e.g. its eigenvalues) under a vibra-
tional space rotation (pseudorotation). This explains the choice 
of displacement coordinates for JT distortions (Q �= 0): φ is 
changed under SO(2) action on the vibrational configuration 
space (pseudorotation), while variation of Q corresponds to 
(radial) motion that modifies the adiabatic electronic spectrum.

Equation (7) demonstrates the invariance of the linear E ⊗ e 
Hamiltonian with respect to the continuous SO(2) action on 
electronic and nuclear degrees of freedom. It also implies a 
conserved quantity by Noether’s theorem [48], the vibronic 
pseudoangular momentum J (setting � = 1 hereafter),

J = −i
∂

∂φ
+

σ3

2
, (8)

where the first term is a linear operator on the vibrational 
Hilbert space Hvib, while the second acts on the electronic Hel 
[11, 12] (see equation (3)). Equation (8) is a simple, but exotic 
result: it implies fractionalization of the vibronic pseudoangu-
lar momentum.

We also find that every molecular geometry of E ⊗ e lives 
in an SO(2) orbit labeled by the radial coordinate (figure 4). 
Formally, to each Q �= 0 we assign the space of molecular 
structures

O(Q) = {φ ∈ [0, 2π)|R(φ)(Q, 0)T = (Q1, Q2)
T}, (9)

containing all Q = Q(cosφ, sinφ) with equal electronic 
energy spectrum. Therefore, the APES can be decomposed 
into a one-dimensional space of SO(2) orbits, i.e.

Q ∈
⋃

Q′�0

O(Q′). (10)

Each point O(Q) of the orbit space, with the exception of 
O(0), has an internal space corresponding to a circle S1 of 
molecular geometries which can be mapped into each other 
by free pseudorotational motion (figure 5).

These simple considerations on the SO(2) invariance of 
E ⊗ e have allowed us to quickly understand a variety of its 
non-trivial features. In particular, (i) the APES was simpli-
fied by decomposing it into a space of orbits of the 2D proper 
rotation group SO(2), (ii) the existence and meaning of radial 
and pseudoangular coordinates were explained, and (iii) the 

Figure 4. Lhs: E ⊗ e contours with equal adiabatic electronic spectrum; Rhs: reduced orbit space.

Figure 5. Pseudorotational motion in vibrational and electronic configuration space (the orbital at the center is the adiabatic electronic 
ground-state).
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anomalous vibronic angular momentum conservation law of 
E ⊗ e was quickly obtained. In more complex JT systems 
carrying a Lie group action, the above points are going to be 
generalized. For instance, there will be more than one angu-
lar and one radial coordinate, so that orbits will require more 
than a single number to be specified uniquely. There will also 
be orbits of different types with qualitatively distinct internal 
(pseudorotational) motion.

In the remainder of this topical review we will employ the 
invariance properties of symmetric spaces to investigate sev-
eral aspects of the higher-dimensional generalizations of the 
SO(2)-invariant E ⊗ e model discussed above. In the process 
we will present simple proofs of established facts about JT 
systems, as well as obtain some new fundamental results on 
the topological properties of JT APESs. The content is organ-
ized as follows: in section 2 we discuss the general relation-
ship between linear JT problems with continuous symmetries 
and symmetric spaces. Section 3 applies the framework pre-
sented in the previous to characterize local and global proper-
ties of the JT APES. In section 4 we discuss the connection 
between the investigated models and molecular systems with 
accidental cis involving more than two APESs. A summary of 
the presented material and a discussion of future directions is 
given in section 5.

2. Symmetric spaces underlying JT models with 

continuous symmetries

We start this section by revisiting the conditions satisfied by 
JT systems admitting continuous symmetries. These are used 
to determine the symmetric spaces corresponding to each ele-
ment of the set of JT models studied in this article. We also 
discuss some general properties of symmetric spaces which 
will be useful for establishing several universal properties of 
JT systems carrying a Lie group action.

Consider a JT problem defined by the coupling between 
electronic states belonging to the irrep Γ of a point group S 
(S is the symmetry group of the nuclear geometry at the JT 
center Q = 0) spanned by the basis vectors {γi}i=1,2,...,|Γ|, 
and JT active vibrations transforming like the vectors of the 
(generically) reducible representation Λ = ⊕iΛi, where Λi is 
a non-totally symmetric irrep of S with basis {λi1 ,λi2 ...λi|Λi|

}. 
The electronic multiplet is only defined to belong to a single 
irrep, for none of the studied models contain reducible elec-
tronic representations (Wiseman showed how to generalize 
the theory of [16] to the case of direct sum electronic Hilbert 
spaces [37]). Generalizing equations  (1)–(3), the molecular 
Hamiltonian of the system including only linear vibronic cou-
plings is given by [3]

H(Q, P) =
∑
Λi

P2
Λi

2mΛi

+
∑
Λi

1
2

mΛiω
2
Λi

Q2
Λi

+ HJT(Q), (11)

HJT(Q) =
∑
Λi

FΛiΓQΛi · VΛiΓ, (12)

where QΛi = (QΛiλi1
, QΛiλi2

..., QΛiλi|Λi|
) (with similar nota-

tion for PΛi), mΛi and ωΛi  are the mass and harmonic frequency 
of the nuclear displacements Λi, FΛi is the reduced vibronic 
coupling constant associated with the same modes (from the 
Wigner–Eckart theorem), and VΛiΓ is a vector of Clebsch–
Gordan matrices, i.e. VΛiΓ = (VΛiλi1Γ

, VΛiλi2Γ
..., VΛiλi|Λi|

Γ)
T , 

with e.g.

VΛiλi1Γ
=

∑
γk∈Γ

∑
γl∈Γ

〈Γγk|Λiλi1Γγl〉|Γγk〉〈Γγl|. (13)

Pooler has given the formal theory underlying the 
 construction of molecular JT Hamiltonians with continuous 
symmetries, i.e. invariant under the action of a Lie group  
[15, 16]. First, it was shown that the space of electronic tensor 
operators living in Γ⊗ Γ can be decomposed into even and 
odd subspaces, which we will denote by M and P , respec-
tively. The operators in M belong to the symmetric part of 
Γ⊗ Γ− A1 (where A1 is the totally symmetric irrep) if the 
system is spinless (we discuss the fermionic case later). The 
odd live in the antisymmetric. Therefore, P  is a Lie subal-
gebra of Γ⊗ Γ− A1 (since the commutator of antisymmetric 
matrices is antisymmetric). Conversely, the commutator of 
even operators is an odd element, so the latter do not span a 
Lie algebra. For example, in E ⊗ eM is spanned by the Pauli 
matrices σ1 and σ3, while σ2  is the generator of P .

P  generates the |Γ|-dimensional special orthogonal group, 
SO(|Γ|). If M is isomorphic to an irrep Λ of SO(|Γ|), then 
H(Q, P) is invariant under the action of the same group on 
both electronic and nuclear degrees of freedom, if and only if 
the vibrational configuration space can also be embedded in 
(i.e. transforms like) the irrep Λ of SO(|Γ|) [16]. In E ⊗ e, σ2  
generates SO(2), as the elements of the latter can be written as 
U(φ) = e−iφσ2/2. Conjugation of σ1 and σ3 with U(φ) shows 
that M transforms in the vector irrep of SO(2), and so do 
the JT coordinates Q1 and Q2 (see equations (2)–(6)). Hence, 
 linear E ⊗ e shows vibronic SO(2) invariance.

In other words, sufficient conditions for invariance under 
continuous transformations of electronic and vibrational 
degrees of freedom in JT models are that: (a) only linear 
vibronic couplings are non-vanishing, and (b) the space of 
traceless electronic Hamiltonians and the vibrational configu-
ration space are isomorphic as irreps of a Lie group G.

The above conditions require that the electronic multiplet 
Γ is equally coupled to every JT active mode, while mΛi = m 
and ωΛi = ωΛ for all Λi ⊂ Λ. Physically, they imply equal 
JT stabilization energies for molecular distortions along each 
Λi, and (pseudo)rotational symmetry in the purely vibrational 
part of H(Q, P), respectively.

The embeddings of the vibrational and electronic point 
group irreps Λ = ⊕λi and Γ into Lie group irreps will not be 
subject of future discussion. The interested reader may consult 
[15, 16, 49] for details. Henceforth, we take the conditions for 
continuous invariance of JT Hamiltonians to be fulfilled and 
study its consequences. For the sake of simplicity, we will not 
make a distinction between the continuous and point group 
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irreps anymore, so that from now on Λ and Γ correspond to 
the appropriate continuous group irreps of SO(N) or USp(2N) 
(in the fermionic case discussed below) depending on the total 
spin of the considered electronic JT multiplet.

The relations satisfied by the Hel operators in P  and M 
can be summarized by

[M,M] = P , [P ,M] = M, [P ,P] = P . (14)

They imply that L = M⊕P is a Lie algebra [41]. In other 
words, L corresponds to the tangent space of a Lie group L at 
the (group) identity. The odd operators define a subalgebra P . 
They generate the Lie subgroup P ⊂ L. Importantly, the elec-
tronic matrices in M define tangent vectors for the symmetric 
space L/P [39–41]. In fact, the algebraic definition of symmetric 
spaces is encapsulated by the relations shown in equation (14). 
Some of their relevant properties will be discussed below.

Time-reversal symmetry implies the existence of a basis 
where the electronic Hamiltonian matrix elements are real. 
Thus, only the electronic tensor operators of L ⊂ sl(|Γ|,R) 
(the space of traceless real matrices) which are in the symmet-
ric part of Γ⊗ Γ− A1 lead to allowed quantum Hamiltonians. 
Hence, HJT(Q) belongs to M = L/P . Moreover, the 
antisymmetric electronic tensor operators generate the special 
orthogonal group SO(|Γ|). Its generators define the Lie alge-
bra so(|Γ|): the space of infinitesimal rotations of Hel. Thus, 
so(|Γ|) acts on the electronic Hilbert space operator HJT(Q) 
by infinitesimal rotations. As we show below, while the 
defined so(N) action occurs on Hel, it is equivalent to infini-
tesimal rotation of the internal displacements Q → Q + δQ in 
JT models with continuous symmetries.

In the spinless case, M⊕P  spans either (a) sl(|Γ|,R) 
(see below for the T2  =  −1 case), or (b) one of its proper 
subsets [15]. Examples of class (a) are the Lie group invari-
ant for mulations of E ⊗ e [11], T ⊗ (e ⊕ t2) [50], T ⊗ h [51], 
G ⊗ (g ⊕ h) [35], H ⊗ (g ⊕ 2h) [36, 49, 52]. These include JT 
active dist ortions representing all independent ways to split the 
electronic degeneracy at Q = 0. In these models, the continu-
ous symmetry is maximal, since the symmetry of the molecular 
Hamiltonian cannot be increased without changing the number 
of dimensions of Hel. Conversely, class (b) contains H ⊗ h 
[36, 51], H ⊗ (g ⊕ h) [36], etc [15]. Their vibronic coupling 
matrices only span a proper subset of sl(N,R)/so(N,R), and 
the molecular Hamiltonian symmetry can be increased by 
including the remaining symmetry-allowed independent JT 
active couplings. Thus, the latter models do not include one 
or more of the possible JT active distortions. In this paper we 
focus on the JT models with maximal continuous symmetries 
(see table 1), for they share a variety of deeply related proper-
ties. Thus, from now on, anytime we mention JT models car-
rying a Lie group action, it should be understood that we are 
referring to models in class (a), unless otherwise noted.

The electronic Hamiltonian can only be constructed with 
the even tensor operators Vα ∈ M. Therefore, the constraints 
given above imply the most general JT Hamiltonian for a 
Γ⊗ Λ system with a continuous symmetry can be written as:

H(Q, P) =
P2
Λ

2m
+

1
2

kΛQ2
Λ + FΛ

∑
α∈M

QαVα, (15)

where kΛ = mω2
Λ. Note the matrices Vα ⊂ M and the 

so(|Γ|) generators are both real and traceless, so their direct 
sum is the algebra sl(|Γ|,R), i.e. L = sl(|Γ|,R). As a con-
sequence, the underlying symmetric spaces for the spinless 
class of JT Hamiltonians with continuous symmetries is 
SL(|Γ|,R)/SO(|Γ|) (or SU(|Γ|)/SO(|Γ|) if we take the skew-
hermitian Hel time-evolution generators iVα as the generators 
of the symmetric space).

A fundamental property of symmetric spaces is their rank 
[39, 41]: the number of anisotropic spatial directions on these 
manifolds. Physically, the rank of a given JT model is equal 
to the number of linearly independent JT active nuclear dist-
ortions unrelated by SO(|Γ|) (or USp(|Γ|) in the fermionic 
case) transformations on electronic or vibrational degrees 
of freedom. In other words, motion along anisotropic direc-
tions induces changes in the eigenvalues of the electronic 
Hamiltonian. For instance, in E ⊗ e only geometries with the 
same radial coordinate Q are related by nuclear pseudorotation 
(figure 4). Therefore, in the space of time-evolution operators 
of E ⊗ e, there exists a single direction which is anisotropic. 
This conforms with the fact that the rank of SU(2)/SO(2) is 
one [39, 41].

Another view on the rank of a symmetric space is that it 
specifies the dimensionality of its maximal abelian (commu-
tative) subalgebra (also commonly denoted as Cartan subal-
gebra) C [39]. By a theorem of symmetric spaces theory, any 
m ∈ L/P is related to an element mC of the Cartan subalgebra 
C by conjugation with an element of the Lie group P (with 
tangent space P  at the identity of P) [39],

m = gmCg−1, g ∈ P,mC ∈ C. (16)

The rank of the symmetric space SL(|Γ|,R)/SO(|Γ|) (or 
SU(|Γ|)/SO(|Γ|)), is equal to |Γ| − 1 [41].

We can always take the Cartan subalgebra of 
sl(|Γ|,R|)/so(|Γ|) to be given by |Γ| − 1 linearly independ-
ent traceless diagonal matrices of sl(|Γ|,R) [41]. In this case, 
equation  (16) is the simple statement that any real traceless 
symmetric matrix m can be diagonalized by an orthogonal 
transformation. We note that conjugation preserves com-
mutation relations, so the choice of Cartan subalgebra is not 
unique. Thus, a set of diagonal matrices may be the simplest, 
but it is not the only.

It follows that the electronic part of the molecular 
Hamiltonian (equation (15)) can be rewritten as

Table 1. JT models with continuous symmetries investigated in 
this paper. The last column gives examples of discrete symmetry 
groups from which each model may be obtained by imposing the 
appropriate constraints [55]. S∗ refers to the double group obtained 
from a point group S.

JT model T2 Symmetric Space Examples

E ⊗ e [11] 1 SU(2)/SO(2) C3v, Oh

T ⊗ (e ⊕ t2) [50] 1 SU(3)/SO(3) Td, Oh, I, Ih

G ⊗ (g ⊕ h) [35] 1 SU(4)/SO(4) I,Ih

H ⊗ (g ⊕ 2h) [36] 1 SU(5)/SO(5) I,Ih

Γ8(G3/2)⊗ (e ⊕ t2) [30] −1 SU(4)/USp(4) Td∗, O∗h , I∗h
Γ9(I5/2)⊗ (g ⊕ 2h) [38] −1 SU(6)/USp(6) I∗, I∗h
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HJT(Q) = FΛ

∑
α∈M

QαVα

= U(Q)

(
FΛ

∑
αC∈MC

QαC VαC

)
U−1(Q),

U(Q) ∈ SO(|Γ|), (17)

where MC ⊂ M is a choice of Cartan subalgebra for 
M ≡ sl(|Γ|,R)/so(|Γ|). By the invariance of H(Q, P) under 
simultaneous SO(|Γ|) action on electronic and vibrational 
degrees of freedom, there exists an embedding of SO(|Γ|) 
in SO(|Λ|) [since proper rotations (orthogonal transforma-
tions with determinant equal to one) of the vibrational con-
figuration space are described by the latter group]. Hence, 
there is a continuous injective map, R : SO(|Γ|) → SO(|Λ|) 
satisfying∑
αC∈MC

U(Q)QαC VαC U−1(Q) =
∑
α

[R−1(β)QC]αVα, (18)

where β denotes an SO(|Λ|) point, R(β) specifies the 
SO(|Λ|) rotation satisfying R−1(β)QC = Q, and QC  is the 
nuclear displacement with nonvanishing components only 
along the directions which are dual to the Cartan subalgebra 
matrices VαC. Equation (18) is the mathematical represen-
tation of the statement that in JT models with continuous 
symmetries, a rotation of the electronic frame is equivalent 
to a rotation of the space of JT distorted structures. It is the 
generalization of equation (6) for N-dimensional electronic 
Hilbert spaces.

In cases where spin–orbit coupling is strong and time-rever-
sal symmetry is implemented by T satisfying T2  =  −1, the JT 
active modes live in the antisymmetric part of the Γ⊗ Γ− A1 
space, where Γ is now a spinorial double group irrep [2, 53]. 
The electronic Hilbert space for a fixed geometry can thus be 
given the structure of a quaternionic vector space [54]. The 
unitary transformations which preserve this structure form 
the unitary symplectic group U(|Γ|/2,H) ∼= USp(|Γ|) [41]. 
In this case, the molecular Hamiltonian is invariant under the 
simultaneous action of the symplectic group on the electronic 
and nuclear degrees of freedom whenever the symmetric part 
of Γ⊗ Γ generates the usp(|Γ|) algebra, the traceless antisym-
metric part lives in su∗(|Γ|)/usp(|Γ|) (su∗(|Γ|) ∼= sl(|Γ|/2,H) 
is the space of traceless |Γ| × |Γ| complex matrices invariant 
under conjugation by an antiunitary operator T satisfying 
T2  =  −1, or simply the space of traceless |Γ|/2 × |Γ|/2 matri-
ces with quaternionic entries [41]), and the vibrational degrees 
of freedom transform in the same irrep of USp(|Γ|) as the 
traceless antisymmetric electronic tensor operators [15, 16]. 
Therefore, in cases with strong spin–orbit coupling, the under-
lying symmetric spaces for JT models carrying a Lie group 
action consist of SU∗(|Γ|)/USp(|Γ|) (or SU(|Γ|)/USp(|Γ|), if 
instead of taking the Hamiltonians as generators, we consider 
the corresponding time-evolution generators iH). A list of all 
JT models carrying a Lie group action encompassed by this 
study is given in table 1, along with their corresponding sym-
metric spaces, and examples of point groups giving rise to 
these models.

3. Local and global structure of JT orbits

We now take advantage of the framework introduced in the 
previous section to quickly obtain insight into the APESs of 
JT models carrying a Lie group action. As we show in sec-
tion  4, the results which we present here also have some 
significance for the treatment of dynamics in the neighbor-
hood of electronic degeneracies of generic molecular systems 
beyond JT models. Therefore, they display a degree of uni-
versality which is perhaps unanticipated in view of the non-
generic constraints satisfied by the continuous symmetries of 
the investigated models.

3.1. Symmetry-adapted coordinates and orbit spaces

Consider first the problem of choosing coordinates for vibra-
tional motion, which are adapted to the invariance proper-
ties of the underlying symmetric space. These have various 
advantages compared to cartesian coordinate systems, since 
they reduce the complexity of molecular potential energy sur-
faces (e.g. figure 4). For instance, in E ⊗ e [10, 11] and T ⊗ h  
[56, 57], the identification of radial and angular coordinates 
introduces significant simplification to treatments of the 
dynamical JT problem. They are also useful in describing the 
warped ground-state APES [18].

As we showed in section  1, coordinates adapted to the 
circular symmetry of the SO(2) E ⊗ e model can be trivially 
obtained. However, this is not the case for higher-dimensional 
models with SO(N), N > 2 or USp(2N) symmetries. The 
situation is ameliorated if only the space of minima of the JT 
APES is of interest, for the ground-state APES is homemor-
phic with the real (if T2  =  1 [18]) or quaternionic (when 
T2  =  −1) projective space (see sections 3.2.2 and 3.2.3). The 
real projective space (RPN ) can be obtained from the sphere 
SN by identifying antipodal points of the latter [58]. Therefore, 
hyperspherical coordinates are a natural choice for the study 
of vibrational motion on the spinless ground-state trough  
[35, 36] of the continuously-symmetric JT models. While 
profitable in discerning properties of the space of minima 
of the electronic ground-state APES, this approach gives no 
insight into the motion which is normal to the extremal sub-
space of the APES, nor does it explain the spectral flow of the 
Born–Oppenheimer JT Hamiltonian in non-stationary regions 
of the molecular vibrational configuration space. Thus, hyper-
spherical coordinates do not take full advantage of the invari-
ance properties of the systems studied here to maximally 
simplify the description of the molecular APES.

We will employ the isomorphism between traceless elec-
tronic Hamiltonian operators and vibrational displacements 
as irreps of a Lie group G, to choose vibrational coordinates 
adapted to the corresponding SO(N) (or USp(2N)) action. 
Consider first the specific case of the cubic JT problem 
T1 ⊗ (e ⊕ t2) [50], or equivalently the icosahedral T ⊗ h (the 
generalization to more complex models will be made later) 
[49]. The continuous symmetry of this system in the presence 
of degenerate couplings was originally investigated by O’Brien 
[50, 59]. The JT active displacements are characterized by 

J. Phys.: Condens. Matter  ( ) 333001



Topical Review

8

the vector Q = (Qθ, Qε, Qxy, Qzx, Qyz) [3]. A global dia-
batic basis for Hel is defined by Hel = span{|x〉, |y〉, |z〉} 
(which may be thought of as px, py and pz atomic orbitals). 
The traceless Hermitian electronic tensor operators are in the 
symmetric part of T1 ⊗ T1 − A1 and will be labeled by Vα, 
α ∈ {θ, ε, xy, zx, yz},

Vθ =

⎛
⎝

1
2 0 0
0 1

2 0
0 0 −1

⎞
⎠ , Vε =

⎛
⎜⎝−

√
3

2 0 0

0
√

3
2 0

0 0 0

⎞
⎟⎠ ,

(Vij)ab = −
√

3
2

(δiaδjb + δjaδib) ,

 

(19)

where i, j ∈ {x, y, z}, i �= j , δab = 1 if a  =  b and 0 otherwise.
The JT active distortions and the space of electronic 

Hamiltonians are isomorphic to the space of quadrupoles [54] 
(the 2 irrep of SO(3)), which is also isomorphic to the tangent 
space of SL(3,R)/SO(3) at the identity, i.e. sl(3,R)/so(3). 
Its Cartan subalgebra is two-dimensional. It may be taken to 
be for example, span{Vε, Vθ} or alternatively span{Vθ, Vxy}. 
Importantly, this implies there exists two SO(3) invariants in 
the universal enveloping algebra of sl(3,R)/so(3,R) [39]. 
From the SO(3)-equivalence between symmetric electronic 
tensor operators (minus the identity) and vibrational displace-
ments, it follows that there exists also two functions r1(Q) 
and r2(Q) of the nuclear degrees of freedom which are invari-
ant under the action of SO(3). They will be denoted radial 
coordinates. Let r1 denote the quadratic SO(3) invariant of 
sl(3,R)/so(3), r1(Q) = |Q|2 = Q, and r2(Q) be the cubic. 
The latter may be obtained from the secular determinant of 
HJT(Q) [39], or as the totally symmetric SO(3) irrep 0 in the 
decomposition of the tensor product 2 ⊗ 2 ⊗ 2, since the cubic 
invariant is a homogeneous polynomial of third degree in the 
vibrational coordinates (which transform like the 2 irrep of 
SO(3)) [33]. We provide a simple derivation of r2(Q) below.

This simple analysis indicates that each molecular geom-
etry of T ⊗ (e ⊕ t2) belongs to a single SO(3) orbit charac-
terized by two radial coordinates, r1 and r2 (compare to the 
E ⊗ e case which has orbits described by a single real num-
ber (figure 4, equations (9) and (10))). We denote a specific 
orbit of this model by O(r1, r2). It only includes molecu-
lar geometries with the same electronic spectrum, since r1 

and r2 are SO(3) invariants (no electronic SO(3) rotation 
will correspond to nuclear motion normal to O(r1, r2)). It 
follows that given a representative Q ∈ O(r1, r2), any ele-
ment Q′ ∈ O(r1, r2) may be obtained by an SO(3) action 
on Q, this rotation in turn corresponding to the electronic 
Hilbert space SO(3) transformation U(Q′, Q) satisfying 

U(Q, Q′)HJT(Q)U−1(Q, Q′) = HJT(Q′). Thus, the 5-dimen-

sional APES of T ⊗ (e ⊕ t2) may be reduced into a 2-dimen-
sional orbit space.

The remaining three vibrational degrees of free-
dom are expected to parametrize the internal space 
of the orbits O(r1, r2). Thus, SO(3)-adapted coor-
dinates for the molecular displacements are given  
by Q = Q(r1, r2,β,α,φ), ∀ r1 ∈ R− {0}, r2 ∈ [−1, 1] (see  

below), where (β,α,φ) parametrize SO(3) rotations. They can 

be understood as Euler angles in the space of JT active dis-
torted structures [33, 60]. We employ the zyz convention for 
the parametrization of SO(3) elements,

U(β,α,φ) = e−iφJz e−iαJy e−iβJz , (20)

where U(β,α,φ) acts on the 1 (vector) irrep of SO(3), the Ji 
are its Hermitian generators, (Ji)jk = iεijk, φ,β ∈ [0, 2π), and 
α ∈ [0,π].

In order to understand the internal space of each orbit, 
note that the JT distortion-induced electronic multiplet split-
ting can only happen in two different ways: either HJT(Q) 
(with Q �= 0) has three distinct eigenvalues or two degener-
ate and a single non-degenerate. The matrices representing the 
vibronic coupling due to t2 or e displacements demonstrate 
this point (equation (19)). HJT(Q) is related by an orthogo-
nal transformation to an element of the Cartan subalgebra 
of sl(3,R)/so(3) (section 2). In particular, if we choose Vθ 
and Vε to be a basis for the Cartan subalgebra, we find from 
equation (17),

HJT(Q) = FvU(β,α,φ)
(
Qε

cVε + Qθ
c Vθ

)
U−1(β,α,φ), (21)

HJT(Q) = −Fv|Q|U(β,α,φ)

×
⎛
⎝cos[γ(Qc)− 2π

3 ] 0 0
0 cos[γ(Qc) +

2π
3 ] 0

0 0 cos[γ(Qc)]

⎞
⎠U−1(β,α,φ),

 (22)

Figure 6. D3d, D4h epikernel and Ci kernel structures for the T1 ⊗ (eg ⊕ t2g) JT model. The first two have the same spectrum (in the 
presence of SO(3) symmetry) including a non-degenerate electronic ground-state and a doubly-degenerate excited state, while the latter 
is a lower symmetry structure with the same r1(Q) as the first two, but different r2(Q), reflecting the presence of three non-degenerate 
electronic states in its spectrum.
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where Fv  denotes the vibronic coupling constant, 
Qc = (Qθ

c , Qε
c, 0, 0, 0) defines an element of the Cartan sub-

algebra of sl(3,R)/so(3) specifying the eigenvalues of the JT 
Hamiltonian for a given geometry Q = R−1Qc, R ∈ SO(3), 
and γ(Q) = tan−1(Qε

c/Qθ
c ). These considerations drasti-

cally simplify the task of finding the coordinate mapping 
Q �→ r2(Q) (the cubic invariant of sl(3,R)/so(3)). It is pro-
portional to the O(λ3) term of det[HJT(Q)− Iλ] [39], which 
may now be easily calculated from equation (22),

r2(Q) = cos[3γ(Qc)]. (23)

For any Q, HJT(Q) is related by an orthogonal transformation 
to a unique HJT(Qc) with γ ∈ [0,π/3] [54], so r2 ∈ [−1, 1].

According to the above, motion along the Qθ and Qε direc-
tions provides all distinct possibilities for the splitting of the 
electronic multiplet when Q �= 0. This may also be seen by 
checking that the eigenvalues of Vij are equal to those of Vε, 
which in turn are different from those of Vθ. The orbit obtained 
by SO(3) action on Vθ defines a 2D subspace of the vibrational 
configuration space, since [Jz, Vθ] = 0. In more detail, suppose 
Q = Qeθ = (Q, 0, 0, 0, 0). Then, Qc = Q, and

U(0, 0,φ)QVθU−1(0, 0,φ) = QVθ. (24)

electronically degenerate doublet iff γ = 0 or γ = π/3, i.e. 
for r2 = ±1. For any other values of γ ∈ [0,π/3], the corre-
sponding electronic JT Hamiltonian belongs to a 3D orbit of 
SO(3).

Our analysis also reveals the topology of each type 
of orbit. The 2D orbits are parametrized by a 3D rota-
tion axis. Thus, each 2D orbit is isomorphic to RP2. The 
3D orbits are copies of SO(3)/V ∼= RP3/V  [58], where 
V = {U(0, 0, 0), U(0, 0,π), U(0,π, 0)U(π/2,π,π/2)}. The 
latter follows from the fact that all elements of V  are diagonal 
matrices, and both Vε and Vθ are left invariant under conjuga-
tion by an element of the subgroup V . Therefore, electronic 
Hilbert space transformations by elements of V  correspond to 
trivial action on the vibrational configuration space.

The qualitative analysis carried to this point indicates the 
APES of the SO(3)-invariant T ⊗ (e ⊕ t2) can be decomposed 
into a 2D orbit space. Only two topologically non-equivalent 
types of orbits exist in agreement with the two linearly inde-
pendent ways of lifting the degeneracy of triply-degenerate 
electronic states.

By applying equations  (19)–(21) to (22), we obtain 
the SO(3)-adapted parametrization of JT distortions [50], 
Q = Q(Q, γ,β,α,φ),

Qε = Q

[√
3

2
cos(γ) cos(2φ) sin2(α) +

1
2
sin(γ)[[1 + cos2(α)] cos(2φ) cos(2β)− cos(α) sin(2β) sin(2φ)]

]

Qθ = Q

[
1
2
cos(γ)(cos2(θ)− 1) +

√
3

2
sin(γ) sin2(α) cos(2β)

]

Qxy = Q

[√
3

2
cos(γ) sin2(α) sin(2φ) +

1
2
sin(γ)[(1 + cos2 α) sin(2φ) cos(2β) + 2 cos(α) cos(2φ) sin(2β)]

]

Qzx = Q

[√
3

2
cos(γ) sin(2α) cos(φ) +

1
2
sin(γ)[− sin(2α) cos(2β) cos(φ) + sin(α) sin(2β) sin(φ)]

]

Qyz = Q

[√
3

2
cos(γ) sin(2α) sin(φ) +

1
2
sin(γ)[− sin(α) sin(2φ) sin(2β)− sin(2α) sin(φ) cos(2β)]

]
.

 

(25)

This equation  implies the space of molecular geometries 
obtained by pseudorotation of the structure defined by 
Q = Qeθ is specified by only two of the three SO(3) param-
eters. In fact, the elements of the orbits containing Qeθ 
or −Qeθ, can be parametrized uniquely by a 3D rotation 
axis n = n(φ,α) = n(π + φ,π − α) (see equation  (20)). 
Conversely, rotations of the non-degenerate Cartan sub-
algebra basis vector Vε give a 3D subspace. If we take 
r1(Q) = |Q|2 = 1, the corresponding SO(3) orbit will be either 
two or three-dimensional depending on the value of r2(Q). For 
instance, while Q = eθ lives in a 2D orbit, eε = (0, 1, 0, 0, 0) 
belongs to a 3D. Note r2(±eθ) = ±1, while r2(eε) = 0. In 
fact, the T ⊗ (e ⊕ t2) JT Hamiltonian contains an adiabatic 

This parametrization was first given (in the context of JT 
models) by O’Brien [59]. It is also of paramount importance 
for studies of the fullerene T ⊗ h JT model [49, 56, 57]. The 
derivation above gives a simple systematic method for its con-
struction, which can be applied to the other, more complex JT 
systems with continuous symmetries (see below).

The coordinate transformations described by equation (25) 
allow a quick visualization of some of the features of the two 
types of orbits we discussed: when γ = 0, it follows that for 
a given |Q|, the geometry described by the displacement vec-
tor Q depends only on the pseudoangular variables α and 
φ, which thus characterize each 2D orbit. Pseudorotational 
motion in the 3D orbits (where γ �= 0 or π/3) is specified by 
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the Euler angles β,α,φ. The classification of the vibrational 
configuration space given above is particularly useful when 
investigating the possible Berry phases of fullerene derivatives 
and other molecules which undergo JT distortion described by 
the SO(3) multiplet. [56, 57].

The considerations in this subsection can be general-
ized to the other JT models carrying a Lie group action (see 
table 1), including the fermionic cases with strong spin–orbit 
coupling (in the following, simply make the replacements 
sl(n,R) → sl(n,H) ∼= su∗(2n,C), and so(n) → usp(2n) and 
all results will remain valid for the fermionic models). Given 
that the maximal commuting subalgebra of sl(n,R)/so(n) is 
n  −  1-dimensional [41] (section 2), there exists a set of n  −  1 
anisotropic directions (motion along which does not preserve 
the energy of the electronic states) in the corresponding JT 
APES. Thus, these displacements fully determine the elec-
tronic spectrum. In, particular, we can define n  −  1 radial 
coordinates {ri(Q)} which change the electronic energies in 
an independent way. In the T ⊗ (e ⊕ t2) the adiabatic elec-
tronic energies are only function of the two radial coordinates 
r1(Q) = Q and r2(Q) (equation (23)). Motion along the for-
mer direction simply introduces a multiplicative factor to the 
spectrum (similarly to the radial coordinate of E ⊗ e), while a 
change in r2(Q) may take the system from a geometry where 
the excited electronic states are doubly-degenerate to a JT 
dist ortion which does not have electronic degeneracies The 
values taken by the radial displacements r1, r2, ..., rn−1 specify 
SO(N) orbits labeled by O(r1, ..., rn−1). Thus, the orbit space 
of an SO(N)-invariant model contains n  −  1 dimensions. 
Each orbit in this space corresponds to one of a finite num-
ber of types. The possibilities are determined by the degen-
eracies of the electronic Hamiltonian. As shown explicitly 
for the T ⊗ (e ⊕ t2) case, different orbits may have internal 
spaces with varying number of degrees of freedom. While the 
adiabatic electronic spectrum is completely specified by the 
radial displacements, a complete description of the molecu-
lar geometry requires specification of angular coordinates 
corresponding to the pseudorotational motion on each orbit. 
These can be parametrized by SO(n) variables (e.g. we used 
Euler angles in the SO(3) case). In the case of the icosahe-
dral G ⊗ (g ⊕ h) case (relevant to the investigation of fuller-
ene excited-states as well as silicon and boron ion clusters  
[35, 49, 61, 62]), the symmetric space is SU(4)/SO(4). It has 
3 radial and 6 angular coordinates which can be constructed 
from the set of JT active vibrations g ⊕ h. SU(5)/SO(5) arises 
in the H ⊗ (g ⊕ 2h) model, which includes four radial and ten 
angular coordinates. In all cases, the radial degrees of free-
dom can be directly obtained by looking at the coefficients 
of the invariant polynomials produced by the JT Hamiltonian 
secular determinant, det[HJT(Q)− Iλ]. Angular displace-
ments adapted to a simple description of pseudorotation can 
be retrieved by a generalization of the procedure carried for 
T1 ⊗ (e ⊕ t2). For example, in the case of G ⊗ (g ⊕ h), a 
molecular geometry with non-degenerate electronic spectrum 
will be characterized by at most two sets of Euler angles, as 
so(4) ∼= so(3)⊕ so(3) [41].

In summary, we explored the invariant properties of 
JT models carrying a continuous group action to obtain 

symmetry-adapted coordinates, which fully take advantage 
of the high-symmetry of these systems. As we have shown, 
these coordinates are directly related to the decomposition 
of the JT active vibrational motion into pseudorotational 
and radial. Pseudorotation preserves the adiabatic elec-
tronic spectrum, while radial motion nontrivially modifies 
the latter. Therefore, the APES can be reduced into an orbit 
space, where each point (orbit) corresponds to a set of JT 
distortions with equal electronic spectrum. Motion on the 
internal space of an orbit is generated by pseudoangular 
momentum which is conserved for the models discussed 
here. Nonetheless, weak symmetry-breaking effects (see 
section 3.4) can be treated readily with perturbation theory. 
Thus, this analysis provides significant simplification of 
the dynamical JT problem, as the orbit space has a much 
smaller number of degrees of freedom than the vibrational 
configuration space.

3.2. APES troughs and higher-energy orbits

In this subsection, we explore further properties of JT models 
to classify their troughs and higher-energy orbits according to 
the qualitatively distinct splittings of the corresponding adia-
batic electronic multiplets. In section 3.2.1, we show that the 
orbit corresponding to the space of electronic ground-state 
minima of all JT models with maximal continuous symme-
tries satisfy a simple condition, where the electronic ground-
state is non-degenerate, but all other excited-states have equal 
energy. This result is utilized in section 3.2.2, where we prove 
that the ground-state trough of each spinless (fermionic) JT 
model with continuous symmetries is topologically equiva-
lent to a real (quaternionic) projective space. Such equiva-
lence is fundamental for the discussion of the Berry phase in 
section 3.3. We also provide comments on the properties of 
higher-energy orbits in section 3.2.3.

3.2.1. Ground-state trough for JT models with maximal  
continuous symmetries. Here we generalize an argument 
of O’Brien [50] to show that for spinless JT models with 
maximal continuous symmetries, the equilibrium molecular 
geometries live in the SO(N) orbit O with adiabatic electronic 
spectrum given by

spec
[
ĤJT(Q)

]
= {x(Q), x(Q), ...,−(N − 1)x(Q)},

Q ∈ O, x(Q) > 0.
 

(26)

where N is the dimensionality of the  system’s electronic 
Hilbert space.

Suppose the vibrational states live in the Λ irrep of a point 
group S, and let the adiabatic electronic ground-state and its 
corresponding JT APES be denoted by |ψ0(Q)〉 and V(0)(Q), 

respectively. The latter has contributions from the JT stabi-

lization energy E(0)
JT (Q) and the harmonic potential energy 

kΛQ2/2, i.e.

V(0)(Q) = E(0)
JT (Q) +

1
2

kΛQ2, (27)
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where E(0)
JT (Q) = inf ĤJT(Q). Equilibrium molecular geom-

etries Q0 satisfy(
∇QV(0)

)
(Q0) = 0,∑

i,j

δQΛiδQΛj

(
∇QΛi∇QΛj V

(0)
)
(Q0) > 0,

 
(28)

where δQΛi = (Q − Q0)Λi. Using equation (27), the first con-
dition can be restated as

∂E(0)
JT

∂QΛλ
(Q)

∣∣∣∣
Q=Q0

= −kΛ(Q0)Λλ, ∀ λ ∈ {1, 2, ..., |Λ|}. (29)

By the continuous symmetry assumption there is a continu-
ous set of solutions to the above when Q �= 0, all of which 
are related by rotation of the vibrational displacements via an 
SO(N) action on R|Λ|.

Let a basis for linearly independent traceless symmetric 
electronic tensor operators be denoted by MΛλ. Then, ĤJT(Q) 
can be expressed by

ĤJT(Q) = FΛ

|Λ|∑
λ=1

MΛλQΛλ. (30)

The presence of SO(N) symmetry implies the existence of a 
choice of electronic states and vibrational coordinates such 
that, N  −  1 of the matrices MΛλ are diagonal (which may be 
taken as the Cartan subalgebra discussed in sections 2 and 3), 
while the rest are symmetric with only two non-vanishing (off-
diagonal) elements [63]. A general element of the former and 
latter sets will be called Dλ and Oλ, respectively. The diagonal 
matrices can be parametrized in the following manner [63]:

D1 = {1,−1, 0, ..., 0}, D2 =
1√
3
{1, 1,−2, 0, ...0}, ...,

DN−1 =

√
2

N(N − 1)
{1, 1, ...,−N + 1},

 

(31)

where each set contains the entries of the corresponding 
diagonal matrix. We take the entries of the OΛ to be equal 
to  −1. For instance, the matrices of equation (19) can be put 
in exactly this form by the mapping VΛ �→ (2/

√
3)VΛ. We 

expect DN−1 to dictate the splitting of the JT degeneracy at 
the electronic ground-state minima, since a molecular dist-
ortion along the direction corresponding to DN−1 maximally 
stabilizes the electronic ground-state at the expense of desta-
bilization of all higher-energy states. In fact, this insight 
agrees with Liehr’s minimax conjecture [64, 65], which 
was later generalized and denoted epikernel principle by 
Ceulemans [18, 66, 67]. This states that the extrema of the 
JT ground-state APES are likely to be encountered in regions 
of the vibrational configuration space which preserve a large 
subgroup of the symmetry group at Q = 0. The maximal 
subgroup of SO(N) is SO(N  −  1). The latter is indeed pre-
served under a molecular distortion along the displacement 
QN−1 corresponding to the JT splitting defined by DN−1. 
To see this, note that DN−1 has N  −  1 degenerate eigenval-
ues. Hence, it is invariant with respect to SO(N − 1)⊗ 1 

transformations acting non-trivially only on the degenerate 
electronic subspace.

Let MΛN−1 = DN−1, and consider the ground-state JT 
APES at Q = QN−1 ≡ Q(0, 0, ..., 1),

V(0)(QN−1) = −FΛ

√
2(N − 1)

N
Q +

1
2

kΛQ2. (32)

The condition for QN−1 to be an extremum of V(0) is satisfied 
by

Q =
FΛ

kΛ

√
2(N − 1)

N
,

V(0)(QN−1) = −F2
Λ

kΛ

N − 1
N

,

V(i)(QN−1) =
F2
Λ

kΛ

N + 1
N

, i ∈ {1, 2, ..., N − 1},

 

(33)

where V(i)(QN−1) is the generalization of equation  (27) 
to the degenerate set of excited-states at QN−1. We will use 
second-order perturbation theory to study the behavior of the 
JT ground-state APES in a neighborhood of QN−1 with radius 
|δQ| = ε → 0+ [50]. The 0th-order distorted APES is defined 
by

H0(QN−1 + δQ) = HJT(QN−1) +
1
2

kΛ (QN−1 + δQ)
2 , (34)

while the vibronic perturbation due to infinitesimal motion 
δQ can be written as:

H′(δQ) = FΛ

∑
λ

δQΛλMΛλ. (35)

Thus, to second-order in perturbation theory the electronic 
ground-state APES is given by:

V(0)(QN−1 + δQ) = V(0)(QN−1) + kΛQN−1 · δQ

+
1
2

kΛ(δQ)2 + FΛ

|Λ|∑
λ=1

[MΛλ]NNδQΛλ

+

|Λ|∑
λ=1

N−1∑
i=1

F2
Λ [MΛλ]

2
iN

V(0)(QN−1)− V(i)(QN−1)
δQ2

Λλ.

 (36)

The above can be simplified by using equation (33) to obtain 
the relation V(0)(QN−1)− V(i)(QN−1) = −2F2

Λ/kΛ, and 
equation (31) for [MΛλ]NN , whence

δV(0)(QN−1) = kΛQδQΛ|Λ| +
1
2

kΛ(δQ)2

− FΛ

√
2(N − 1)

N
δQΛ|Λ| − kΛ

|Λ|∑
λ=1

N−1∑
i=1

[MΛλ]
2
iN

2
δQ2

Λλ,
 

(37)

where δV(0)(QN−1) = V(0)(QN−1 + δQ)− V(0)(QN−1). As 
expected, the first and third terms cancel so that the ground-
state JT APES is given by

δV(0)(QN−1) =
kΛ
2

|Λ|∑
λ=1

[
1 −

N−1∑
i=1

[MΛλ]
2
iN

]
δQ2

Λλ. (38)
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Among the |Λ| independent JT distortions, only those with 
electronic coupling matrix MΛλ containing off-diagonal ele-
ments [M]iN  =  −1 contribute to the second sum of the above 
equation. There exists N  −  1 such symmetric matrices. Their 
contributions to δV(0)(QN−1) will be cancelled by the first 
term of equation  (38). Let MΛa denote a matrix in the sub-
set of the symmetric electronic tensor operators MΛλ which 
includes all diagonal matrices Da (equation (31)) and the sym-
metric matrices OΛ with vanishing iN entry. Then, it follows 
that

δV(0)(QN−1) =
∑

a

1
2

kΛδQ2
Λa. (39)

Hence, we find that the SO(N) orbit O (equation (26)) defines 
a continuous set of absolute minima for the ground-state JT 
APES. This derivation corroborates the intuition that the dis-
placement QN−1 provides maximal stabilization of the elec-
tronic ground-state, while simultaneously giving a proof of 
the epikernel principle for vibronic models with continuous 
symmetries. Additional discussion of the latter is given in sec-
tions 3.2.3 and 3.4.

3.2.2. Topological equivalence between ground-state troughs 
and projective spaces. In this section, we utilize the result 
obtained in the previous to demonstrate the topological equiva-
lence (homeomorphism) between the space of minima of the 
ground-state APES of JT models with continuous symmetries 
and the space of rays (lines) of real (for a spinless JT model) 
or quaternionic (in cases where spin–orbit coupling is strong) 
finite Hilbert spaces. The equivalence in the bosonic case has 
been previously pointed by Ceulemans [18]. In any case, we 
provide a derivation for both bosonic and fermionic cases, as 
the latter result is a simple generalization of the former. Basi-
cally, we will show that the there exists a bijective relation-
ship between the set of physically inequivalent electronic wave 
functions (Kramers doublets), i.e. unrelated by multiplication 
by a phase (Kramers pair rotation) in the spinless (fermionic) 
case, and the space of molecular geometries which are minima 
of the electronic JT APES. Topological equivalence follows 
from the bijection and continuity of the maps between the 
electronic states (doublets) and the minimal-energy molecular 
geometries.

To emphasize the remarkable physical content of the state-
ment we are about to prove, we shall paraphrase the claim. It 
ascertains that an arbitrary electronic wave function (Kramers 
pair) is guaranteed to be the electronic (Kramers) ground 
state at a specific molecular geometry in the minimum energy 
trough. Conversely, any molecular geometry in this trough is 
associated with a unique ground-state electronic wave function 
(Kramers doublet), up to a phase (SU(2) rotation). Notably, 
even when all possible electronic wave functions are sam-
pled along the trough, they correspond to the same electronic 
energy.

Bosonic troughs. In accordance with the JT theorem, the 
adiabatic electronic ground-state of a molecular JT model is 
non-degenerate. As explained in the last sections, a continu-
ous set O of global minima of the APES is guaranteed to exist 

in the presence of SO(N) symmetry. In particular, if Q0 ∈ O, 
then for any Q in O, there exists T(Q, Q0) ∈ SO(N), such that

Q = T(Q, Q0)Q0. (40)

In what follows, it will be important that at the space of 
ground-state minima O, the electronic spectrum is assumed 
to be of the form derived in the previous section. The most 
obvious implication of this spectrum is that the electronic 
Hamiltonian is invariant under unitary transformations of 
the electronic Hilbert space that act non-trivially only on the 
subspace spanned by the degenerate excited states. In par-
ticular, if |ψ0(Q)〉 (with Q ∈ O) denotes the non-degenerate 
electronic ground-state, and U|ψ0(Q)〉 = ±|ψ0(Q)〉, then 
U ∈ Z2 × O(N − 1) ⊂ O(N), and UHJT(Q)U−1 = HJT(Q). 
The last equation implies that the rotation of the vibrational 
configuration space which corresponds to U is the identity 
(see section 2 and equations (17) and (18)).

We again follow the convention that the Hilbert space 
vectors corresponding to the adiabatic electronic ground-
state at Q �= 0 are written as real linear combinations of (the 
diabatic) electronic basis functions defined at the JT center, 
{|ψ1〉, |ψ2〉, ...|ψN〉}. Thus, a normalized electronic ground-
state wave function at Q0 ∈ O can be expressed as

|ψ0(Q0)〉 =
N∑

i=1

ci0(Q0)|ψi〉, ci0(Q0) ∈ R,

N∑
i=1

c2
i0(Q0) = 1.

 

(41)

Thus, there exists a mapping of the ground-state trough to the 
N  −  1-dimensional sphere, Q0 �→ c0(Q0) ∈ SN−1. However, 
the  electronic ground-state wave function at Q0 ∈ O is only 
defined modulo a sign. In particular, if |ψ0(Q0)〉 denotes a 
normalized eigenfunction of HJT(Q0) with lowest eigen-
value, then so is −|ψ0(Q0)〉. Thus, the mapping O → SN−1 
is only well-defined locally (alternatively, it may be said to 
be double-valued). However, the electronic ground-state at 
Q0  can be defined unambiguously as a rank-one projection 
operator |ψ0(Q0)〉〈ψ0(Q0)| ∈ RPN−1. Hence, there exists a 
well-defined continuous function mapping the ground-state 
trough to the real projective space, Φ : O → RPN−1, such 
that

Φ(Q0) = |ψ0(Q0)〉〈ψ0(Q0)|. (42)

Suppose Q = T−1Q0, T ∈ SO(N), and let U(T) denote a 
representative unitary transformation (e.g. U(T) may be the 
orthogonal transformation with det[U(T)] = 1) carrying the 
adiabatic ground-state at Q0 to that at Q �= Q0,

U(T)|ψ0(Q0)〉 = |ψ0(T−1Q0)〉. (43)

The map Φ satisfies the following equivariance condition

Φ(T−1Q0) = U(T)Φ(Q0)U−1(T). (44)

Thus, Φ is a continuous equivariant map of the electronic 
ground-state trough to RPN−1. Φ is also bijective. To show 
that it is injective, we assume Φ(Q0) = Φ(Q1), Q0, Q1 ∈ O, 
and note that there exists T ∈ SO(N), such that Q1 = T−1Q0, 
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since Q0 and Q1 belong to the ground-state trough (and thus 
must be related by an SO(N) transformation). It follows that

Φ(Q0) = Φ(T−1Q0), (45)

|ψ0(Q0)〉〈ψ0(Q0)| = U(T) (|ψ0(Q0)〉〈ψ0(Q0)|)U−1(T).
 

(46)

The last equation  is only satisfied if U(T)|ψ0(Q0〉) =  
±|ψ0(Q0)〉, so U(T) acts non-trivially only on the degener-
ate orthogonal subspace to the line spanned by |ψ0(Q0)〉. In 
this case, it follows from the discussion below equation (40)
that U(T)HJT(Q0)U−1(T) = HJT(T−1Q0) = HJT(Q0). Thus, 
T−1 acts as the identity matrix on the vibrational configura-
tion space and Q1 = Q0. For the proof that Φ is surjective, let 
p ∈ RPN−1. There exists a neighborhood of p, Up ⊂ RPN−1, 
on which a continuous section φ : Up → Up × SN−1 may be 
defined by

φ( p) = |p〉+ =

N∑
i=1

ci( p)|ψi〉. (47)

Let Q0 be the configuration in the electronic ground-state 
trough for which HJT  is diagonal (i.e. Q0 only has a non-
vanishing component in the direction along which HJT(Q0) 
is diagonal (in the diabatic basis)). Then, there exists a lift 
of Φ(Q0), denoted by |ψ0(Q0)〉, and an SO(N) transformation 
U(Tp) such that

|p〉+ = U(Tp)|ψ0(Q0)〉 = |ψ0(T−1
p Q0)〉, (48)

where Tp is the SO(N) rotation of the vibrational configura-
tion space corresponding to U(T). This follows from the con-
tinuous symmetry conditions, as is verified by

HJT(T−1
p Q0)|p〉+ = HJT(T−1

p Q0)U(Tp)|ψ0(Q0)〉
=

[
U(Tp)H(Q0)U−1(Tp)

]
U(Tp)|ψ0(Q0)〉

= E0(Q0)|p〉+,
 

(49)

where we used equation  (17). Hence, Φ is shown to be a 
bijective continuous map between compact manifolds (i.e. 
between the electronic real projective space and the vibra-
tional configuration space trough). Therefore, it is a homeo-
morphism [68].

Fermionic troughs. In fermionic systems, Kramers degen-
eracy implies the JT distorted electronic ground-state is a dou-
blet |Ψ0(Q0)〉 ≡ {|ψ0(Q0)〉, T|ψ0(Q0)〉} [2]. Each normalized 
Kramers pair is only defined modulo multiplication by a unit 
quaternion ||q|| = 1 (or equivalently, an SU(2) action) from 
the right (by convention) [53, 69]. Given a definition of N 
degenerate Kramers pairs |Ψi〉 at the JT center, the ground-
state doublet at Q �= 0 may be written as

|Ψ0(Q)〉 =
N∑

m=1

|Ψm〉 · q0m(Q), q0m(Q) ∈ H, (50)

where q0m(Q) =
∑3

j=1 q0mj(−iσj) + q0m4σ0  is a quaternion 
(with imaginary units −iσi  and 2 × 2 identity matrix σ0  rep-
resenting the real generator) [54, 69]. If we require |Ψ0(Q)〉 to 
be normalized, then

〈Ψ0(Q)|Ψ0(Q)〉 =
N∑

m=1

||q0m(Q)||2 = 1, (51)

where ||q||2 = det(q†q) = q2
0 + q2

1 + q2
2 + q2

3 is the quater-
nion norm. It follows that each normalized |Ψ0(Q)〉 may also 
be viewed as a point on the sphere S4N−1.

Let Q0 belong to the ground-state trough O. Corresponding 
to it there is an infinite number of equivalent ground-state 
Kramers pairs related by unit quaternion multiplication, 
{|Ψ0(Q0)〉 · q}. The space of equivalence classes (lines)

{[Ψ] ∼ [Ψ′] if Ψ′ = Ψ · q|Ψ,Ψ′ ∈ H
N , q ∈ H

∗ ≡ H− 0}
 (52)
of H

N defines the quaternionic projective space 
HPN−1 ∼= H

N/H∗ [69]. A non-degenerate ground-state (in the 
quaternionic sense) for all Q ∈ O, implies that there exists 
a well-defined map Φ between the adiabatic trough O and 
HPN−1. It may be explicitly given as

Φ : O → HPN−1,
Φ(Q0) = |Ψ0(Q0)〉〈Ψ0(Q0)|.

 (53)

This map is well-defined, since the projection operator 
is invariant under a redefinition of the basis, i.e. a gauge 
transformation, |Ψ〉 �→ |Ψ〉 · q, with q ∈ H, ||q||2 = 1,  
as |Ψ〉〈Ψ| → (|Ψ〉 · q)

(
q† · 〈Ψ|) = |Ψ〉||q||2〈Ψ| = |Ψ〉〈Ψ|.  

Moreover, the assumed continuous invariance under USp(2N) 
implies Φ satisfies an equivariance condition analogous to that 
discussed in the bosonic case,

Φ(T−1Q0) = U(T)Φ(Q0)U†(T), (54)

except now U(T) belongs to USp(2N). Φ can be shown to 
be bijective as in subsection (a). By compactness of O and 
HPN−1,Φ is a homeomorphism; this implies topological 
equivalence between the Kramers ground-state trough and 
HPN−1.

We conclude this subsection by noting that the proved 
equivalence between projective spaces and the space of 
minima of JT systems with continuous symmetries implies a 
non-trivial topological phase for the electronic ground-state of 
these models (see section 3.3 and [70]). The Berry phase of JT 
models is robust with respect to moderate  symmetry-breaking 
perturbations, and has observable consequences (see e.g. 
[13]). Thus, the Lie group condition invariance is not strictly 
required for the low-energy electronic APES to have the pro-
jective character proved above.

3.2.3. Generic orbits. The prior subsections provided a 
detailed description of the electronic ground-state equilib-
rium orbit of JT models carrying a maximal Lie group action. 
Here we will utilize the continuous symmetry property of the 
studied models to obtain qualitative properties of their higher-
energy orbits.

Let us consider first the spinless TRI case. The equivalence 
between rotations of the vibrational configuration space and 
special orthogonal transformations of the electronic basis 
implies the dimensionality of the space of JT distorted struc-
tures with a given adiabatic electronic spectrum is equal to or 
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smaller than the dimensionality of SO(N), N = |Γ|. It may be 
smaller because there may be matrices in SO(N) which com-
mute with HJT(Q), in which case their action on the electronic 
Hamiltonian is equivalent to the identity matrix action on the 
vibrational configuration space, whence it follows that the 
nuclear configuration of the system remains invariant (equa-
tion (17)).

The subspace of so(N) containing all matrices commuting 
with HJT(Q) is called the centralizer of HJT(Q). We denote it 
by N (Q),

N (Q) = {M ∈ so(N)|[M, HJT(Q)] = 0} . (55)

It can be checked that N (Q) is a Lie subalgebra of so(N) by 
applying the Jacobi identity,

[HJT, [N1, N2]] = −[N2, [HJT, N1]]− [N1, [N2, HJT]] = 0,
∀ N1, N2 ∈ N .

 (56)

Let |N (Q)| denote the dimensionality of N (Q). Then, the 
number of linearly independent JT distortions with the same 
adiabatic electronic spectrum {E(Q)}, which we denote by 
|E(Q)|, is given by

|E(Q)| = |so(N)| − |N (Q)|. (57)

Thus, the dimensionality of the space of molecular configura-
tions with a given set of electronic energies depends on the 
number of degenerate eigenstates in the JT Hamiltonian when 
Q �= 0. This happens because a basis of so(N) can always be 
constructed from antisymmetric matrices with only two non-
vanishing entries [41], so that a diagonal matrix commutes 
with a basis vector of so(N) iff the diagonal matrix elements 
which multiply the non-vanishing elements of the antisym-
metric so(N) matrices are equal.

As a simple example, we now apply equation (57) to obtain 
the number of dimensions of the ground-state troughs of JT 
models with continuous symmetries. It is instructive to red-
erive this result, for the same method can be easily adapted 
to infer the properties of higher-energy orbits. But, first, we 
need the dimensionality of the centralizer of Q at the trough, 
i.e. |N (Q)|. It may be quickly obtained by making an assump-
tion on the electronic spectrum at extremal regions of the JT 
APES, based on the epikernel principle [18, 66]. According to 
this, the stationary points of the ground-state APES are likely 
to be encountered in configuration space regions where the 
symmetry breaking of the molecular geometry is minimal. In 
the presence of the Lie group action discussed in this paper, 
this principle can be understood by considering the follow-
ing. Q = 0 corresponds to a maximally symmetric molecular 
structure. All corresponding electronic eigenvalues are equal. 
For any Q �= 0, the non-totally symmetric character of JT dist-
ortions implies the sum of the electronic eigenvalues λi(Q) 
remains zero, i.e.

N∑
i=1

λi(Q) = 0. (58)

A variety of possibilities exist for the splitting of the eigen-
values when Q �= 0, i.e. for the number of distinct degener-
ate multiplets which persist when the molecule undergoing 
JT effect is distorted along a given direction. We say that 

the molecular symmetry at Q = 0 is minimally broken 
at Q1 if λi(Q) = x, ∀ i ∈ {1, 2, ..., N − 1}, x > 0 and 
λN(Q) = −(N − 1)x. This case is typical for the stationary 
points of JT systems with continuous symmetries [30, 35,  
49, 50]. It implies maximal stabilization of the adiabatic elec-
tronic ground-state, since all excited-states have their energy 
increased relative to the degenerate multiplet energy at Q = 0 
(we proved in see section 3.2.1 that the global minima of the 
JT models discussed here indeed satisfy this condition).

Based on the prior discussion, we now assume that for a 
minimal energy configuration Q0 of the JT system with con-
tinuous symmetry, only the lowest electronic energy eigen-
value is non-degenerate. The remaining N  −  1 are degenerate 
electronic excited states. Hence, a basis for N (Q0) consists of 
all matrices in so(N) which mix the N  −  1 degenerate excited 
states at Q among themselves, but leave the electronic ground-
state invariant. This corresponds to the number of ways of 
arranging (N − 1) distinct indices i ∈ {1, 2..., N − 1} into 
pairs ij with i �= j, i.e. (N − 1)(N − 2)/2. Hence, the dimen-
sionality of the SO(N)-invariant adiabatic electronic ground-
state trough is equal to

|E(Q0)| = N(N − 1)
2

− (N − 1)(N − 2)
2

= N − 1, (59)

which, of course, agrees with the arguments of section 3.2.1. 
To make a connection with the topological equivalence 
between electronic ground state troughs and real projective 
space proved in section 3.2.2, note that this result may be writ-
ten equivalently as:

|E(Q0)| = |SO(N)/SO(N − 1)| = |SN−1| = |RPN−1|. (60)

The properties of higher-energy orbits can also be obtained 
with relative ease. The T ⊗ (e ⊕ t2) model with SO(3) invari-
ance provides again a transparent example. Recall that this 
system has a two-dimensional orbit space, with each point 
labeled by O(r1, r2) (section 3.1), where O(r1, r2) is a con-
tinuous subspace of the t2 ⊕ e vibrational configuration space 
where the ground and excited-state JT APESs are flat. For 
a given r1(Q) = |Q|2 �= 0 the epikernel principle favors the 
minimal energy trough to be the 2D orbit O(Q, 1) by the fol-
lowing argument: the adiabatic electronic spectra for geom-
etries in O(Q, 1) is given by

spec[H(O(Q, 1))] = {x, x,−2x},
x = x(Q) > 0, Q ∈ O(Q, 1)

 
(61)

while in O(Q, r2 �= ±1) the JT Hamiltonian eigenvalues are

spec[H(O(Q, r2))] = {x′, y′,−x′ − y′},
x′ = x′(Q, r2) > 0, x′ > y′ = y′(Q, r2), r2 �= ±1.

 
(62)

Because y′ is intermediate between the lowest and maximal 
eigenvalues, its stabilization relative to the highest-energy 
eigenvalue of the spectrum at O(Q, 1) comes at the cost 
of an increased electronic ground-state energy (see equa-
tion (22)). Hence, the ground-state trough is O(Q0,1), where 
Q0 = Q0(ω, Fv) minimizes the ground-state energy [3, 50]. In 
section 3.1 we showed that |O(Q0,1)|  =  2 in accordance with 
application of equation  (59). Note that because permutation 
of the eigenvalues can be effected by an SO(3) rotation, the 
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assumptions made regarding the order of the eigenvalues do 
not imply loss of generality.

For any other model and type of degeneracy splitting 
of HJT(Q), we can apply the same methods and obtain the 
dimensionality and topology of the subspaces of the JT dis-
torted structures with equal adiabatic electronic spectrum. 
For instance, while from previous arguments the orbit of the 
SO(5)-invariant model of H ⊗ (g ⊕ 2h) with lowest ground-
state energy is clearly 4D, different types of orbits (with 
higher electronic ground-state energies) exist with distinct 
dimensionalities in other parts of the configuration space, e.g. 
molecular geometries with a non-degenerate ground-state and 
two degenerate doublets [36] live in 8D orbits according to

|E(Q)| =
∣∣∣∣ SO(5)
SO(2)× SO(2)

∣∣∣∣ = 10 − (1 + 1) = 8, (63)

where we have used the fact that SO(2) is one-dimensional, 
and that each degenerate doublet defines an invariant elec-
tronic SO(2) subgroup of SO(5), which in turn corresponds 
to pseudorotational motion in a 2D plane of the vibrational 
configuration space as explained in sections 2 and 3. Note that 
it follows from equation (57) that the maximal dimension of 
an orbit is equal to the dimensionality of SO(N). This happens 
when |N (Q)| = 0, i.e. in those orbits where all eigenvalues 
of HJT(Q) are non-degenerate (see section 3.1 for the explicit 
verification in the case of the SO(3)-invariant T ⊗ (e ⊕ t2) 
model).

The above approach can be quickly adapted to models with 
strong spin–orbit coupling. The main difference is that the 
corresponding molecular Hamiltonians are globally invariant 
under the action of the unitary symplectic group USp(2N) on 
spinorial and vibrational degrees of freedom. Further, inde-
pendent USp(2)  ≅  SU(2) actions on each Kramers pair com-
mute with the Hamiltonian (since they amount to a change of 
basis in a Kramers pair subspace). It follows that the number 
of dimensions of the ground-state trough of each spinorial JT 
model is given by:

|E(Q0)| =
∣∣∣∣ USp(2N)

USp(2N − 2)× USp(2)

∣∣∣∣
|E(Q0)| = N(2N + 1)− (N − 1)(2N − 1)− 3 = 4(N − 1),

 (64)
where we used that USp(2N) is N(2N + 1)-dimensional [41]. 
As expected, this result is in agreement with previous literature 
on the Γ8 ⊗ (e ⊕ t2) (N  =  2) [30] and Γ9 ⊗ (g ⊕ 2h) (N  =  3) 
[71] JT problems. The dimensionality of fermionic ground-
state troughs bears a simple relationship to the spinless cases 
(see equation  (59)). It is a consequence of the quaternionic 
structure of the former. As seen in section  3.2.2, while the 
spinless trough is topologically equivalent to a real projective 
space [18], fermionic time-reversal symmetry implies topo-
logical equivalence of the Kramer’s trough to the quaterni-
onic projective space HPN−1 [69], the space of lines of HN.

In the case of the icosahedral Γ9 ⊗ (g ⊕ 2h), another pos-
sibility for the JT splitting is given by choosing Q such that 
all three Kramers’ pairs are non-degenerate. Then, the orbit 
space of the USp(6) action is 12-dimensional since it can be 

parametrized by USp(6)/USp(2)× USp(2)× USp(2). Here 
we find an interesting parallel between Γ9 ⊗ (g ⊕ 2h) and 
T ⊗ (e ⊕ t2): in both cases the orbit space is two-dimensional. 
The ground-state trough belongs to a 2D orbit in T ⊗ (e ⊕ t2), 
while it lives on an 8D orbit in the case of Γ9 ⊗ (g ⊕ 2h) (sec-
tion 3.2). Except for a set of measure zero, higher-energy 
orbits of T ⊗ (e ⊕ t2) and Γ9 ⊗ (g ⊕ 2h) are 3D and 12D, 
respectively. Thus, the number of dimensions of the orbits 
of Γ9 ⊗ (g ⊕ 2h) is always a factor of 4 larger than those of 
T ⊗ (e ⊕ t2), which generalizes equation (64).

3.3. Geometric phase and ground-state degeneracy

The occurrence of the geometric phase [72] in JT and related 
models has a long history [3, 11, 19, 20, 50, 52, 56, 73–77]. 
It is highly relevant in the strong vibronic coupling limit, 
where F2

Λ/(2kΛ) � 1 and the adiabatic limit for the electronic 
ground-state nuclear dynamics is a very good approximation. 
In particular, it provides an unambiguous explanation for the 
non-generic feature (in finite physical systems) of vibronic 
ground-state degeneracy in some JT models [3, 49]. In this 
section, we discuss the Berry phases of JT models carrying a 
Lie group action.

The abelian Berry phase [72] characterizes the twisting 
of a family of 1D complex vector spaces parametrized by 
a configuration space C, i.e. a line bundle. It can be com-
puted in a variety of ways [72, 74, 78]. The most significant 
aspect to our discussion is that for time-reversal invariant 
bosonic systems, the adiabatic geometric phase belongs to 
O(1) = Z/2Z = {+1,−1}. This is a consequence of the 
existence of a real structure in the complex Hilbert line bundle 
when T2  =  1. In other words, a real locally continuous choice 
of eigenstates of a parameter-dependent Hamiltonian may be 
constructed for each point of the parameter space, so only ±1 
Berry phases are allowed.

In the case of fermionic systems Kramers’ degeneracy 
implies the existence of pairs of degenerate states. A nor-
malized pair is only defined modulo an SU(2) transformation, 
or equivalently, quaternion multiplication [54, 69]. As a result, 
the geometric phase of the ground-state of a gapped fermionic 
system is a (non-abelian) unit quaternion (or SU(2) matrix in 
the complex representation) [54, 69, 79].

JT models carrying a Lie group action are particularly sus-
ceptible to having relevant Berry phase effects. This happens 
because, as described in the previous subsections, the vibra-
tional configuration space can be decomposed into topologi-
cally non-trivial orbits OG of a Lie group G, which may admit 
twisted families of electronic Hilbert spaces, due to the exist-
ence of level crossing at the JT center.

3.3.1. Bosonic models. For spinless systems, the electronic 
ground-state of ĤJT(Q), with Q �= 0, is non-degenerate in 
the minimal-energy JT trough. It is homeomorphic to the 
space of lines in the N-dimensional real vector space, the real 
projective space RPN−1 (see section 3.2.2). The sphere SN−1 
is a double cover of RPN−1, i.e. RPN−1 ∼= SN−1/Z2. There-
fore, if N  >  2, RPN−1 has two equivalence classes of loops, 
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as π1(RPN−1) = Z2 (RP1 is isomorphic to S1, which has its 
loop classes distinguished by an integer, the winding num-
ber, so π1(S1) = Z) [58]. The identity is given by the class 
of closed curves on SN−1 (as it is simply-connected when 
N  >  2). Conversely, the non-trivial element of π1(RPN−1) 
can be represented by an open continuous curve on SN−1 con-
necting antipodal points (these correspond to the same ele-
ment in RPN−1). The product of two non-trivial (odd) loops 
(defined by performing each loop after the other [68]) gives a 
trivial one, but a trivial (even) path followed by a non-trivial 
is equivalent to the latter. Loops in the even class do not give 
a Berry phase for any quantum state since they can be con-
tinuously deformed into the identity path, which obviously, 
has no Berry phase. Conversely, the odd loops of RPN−1 may 
give rise to a nontrivial geometric phase for a non-degenerate 
adiabatic electronic state. In particular, this will happen if the 
line bundle associated to the non-degenerate electronic state 
is twisted, i.e. if a continuous global family of real adiabatic 
electronic wave functions Q �→ ψ0(Q) does not exist. In the 
case of RP1, we may group all loops with even winding num-
ber in the trivial class, since they give rise to no geometric 
phase. Odd loops correspond to those with odd winding num-
ber. They give rise to a Berry phase in the case of the E ⊗ e 
model, as illustrated by figure 5.

If a Berry phase exists for a given real adiabatic electronic 
state, the vibrational wave functions are required to satisfy 
antiperiodic boundary conditions for the molecular wave 
function to be single-valued. These cannot be satisfied by 
vibrational wave functions transforming in the totally sym-
metric irrep of SO(N), for they are nodeless, i.e. even under 
inversion [80] (e.g. in SO(3) the totally symmetric irrep trans-
forms like the s orbital). All other irreps of SO(N) are degen-
erate. Therefore, the vibronic ground-state will be degenerate 
whenever the adiabatic electronic ground-state admits a Berry 
phase. In particular, it will belong to the (fundamental) vec-
tor irrep of SO(N) when N � 2 [49, 50, 52, 56, 75]. This is 
the case, for the Schrodinger equation describing the pseudo-
rotational motion in the adiabatic electronic ground-state 
trough has the same form as that for particle motion on an 
N  −  1-dimensional sphere (with the equivalence of antipodal 
points under the mapping to the real projective space enforced 
by a boundary condition), for which the set of lowest-energy 
eigenstates that are odd under inversion about Q = 0 belongs 
to the vector irrep of SO(N) [49, 50, 52, 75].

The above picture has been shown to break down in the 
presence of warping of the ground-state JT APES. In a variety 
of examples [19, 49, 81, 82], it was found that the inclusion 
of sufficiently strong anisotropy in the ground-state APES 
resulted in the formation of a set of esis which are circulated 
by low-energy vibrational tunneling paths on the electronic 
ground-state APES. This, in turn, changes the Berry phase of 
the adiabatic electronic states, and modifies the symmetry of 
the vibronic ground-state. Thus, a rearrangement of vibronic 
energy levels (ground-state crossover) is seen as a function 
of quadratic vibronic coupling, or of difference in JT stabi-
lization energies for vibrational modes in different irreps of 
the molecular point group at Q = 0. Given the change in the 

symmetry and Berry phase of the electronic ground-state, 
this phenomenon is akin to the topological phase transitions 
undergone by topological insulators under variation of mat-
erial properties [83, 84].

For JT systems with maximal continuous invariance under 
the action of a Lie group, no such ground-state crossover can 
happen. This has been verified for each individual case with 
T2  =  1 of table 1 [11, 49, 50, 52, 75], and it has been tradition-
ally understood in the following way: for any Q in the adi-
abatic electronic ground-state trough there exists a basis for 
which the N-dimensional electronic JT Hamiltonian is diago-
nal with eigenvalues {x, x, ..., x,−(N − 1)x}, where x  >  0.  
A closed path on the ground-state trough can be parametrized 
by SO(N) loops on the vibrational configuration space. By 
explicit computation of the phase acquired by the adiabatic 
ground-state upon a non-trivial loop of RPN−1,it has been 
shown that it necessarily changes sign [11, 49, 50, 52, 75]. 
Because the existence and properties of the trough are inde-
pendent of the reduced vibronic coupling constant and vibra-
tional frequency, the Berry phase in the spinless models of 
table 1 is robust with respect to both changes in the fundamen-
tal parameters of these models which preserve their funda-
mental symmetry, and perturbations that break the symmetry, 
but do not induce new ground-state esis in low-energy regions 
of the JT APES. More recently, we employed the theory 
described here to show that the Berry phase and the associ-
ated vibronic ground-state degeneracy of the JT models here 
discussed follow straightforwardly from the results of sec-
tions 3.2.1 and 3.2.2 without any lengthy computation [70]. 
Briefly, the argument relies on the fact that the trough spec-
trum (equation (26)) implies that the electronic ground-state 
at any geometry in this subspace can be mapped onto the nor-
mal vector of a sphere. This sphere provides a double-valued 
representation of the vibrational configuration space (which is 
topologically equivalent to RPN  as proved in section 3.2.2), 
such that its antipodal points correspond to the same trough 
geometry. Parallel transport of a normal vector at a point to its 
antipodal on the sphere reverses its direction, hence implying 
a  −1 Berry phase for the electronic ground-state [70].

3.3.2. Fermionic models. In models with strong spin–orbit 
coupling, HJT(Q) remains degenerate even when Q �= 0, but 
this ceases to be true in the quaternionic representation of the 
corresponding complex Hilbert space (where a quantum state 
and its time-reversal partner define a single vector) [2, 54]. As 
derived in section 3.2.3, in spinorial models with continuous 
symmetries, the ground-state trough is homeomorphic to the 
quaternionic projective space HPN−1 ≡ H

N/H− {0}. The 
normalized ground-state Kramers’ doublet is only defined 
modulo a local su(2) ∼= usp(2) ∼= H transformation. The 
impossibility of assigning a global continuous parametriza-
tion of the ground-state Kramers’ doublet for all Q ∈ HPN−1 
implies the existence of a non-abelian (or, in this case, a qua-
ternionic) Berry phase [79, 85], as it is transported according 
to the adiabatic theorem.

To each ground-state Kramers pair, there corresponds 
a quaternionic line bundle (a family of quaternion vector 

J. Phys.: Condens. Matter  ( ) 333001



Topical Review

17

spaces) over the vibrational configuration space, which com-
pletely characterizes the corresponding allowed nonabelian 
Berry phases. While the classification of quaternionic line 
bundles over HPN for general N is unknown, solutions exist 
for the JT models of interest to our study, (a) Γ8 ⊗ (e ⊕ t2) 
(N  =  1) [30] and (b) Γ9 ⊗ (g ⊕ 2h) (N  =  2) [71]. In case (a) 
the spinorial irreps can be embedded into the J  =  3/2 irrep of 
SU(2), and the active JT modes are quadrupolar (they form a 
basis for the J  =  2 irrep of SU(2), see section 3.1) [55]. The 
corresponding spinor JT Hamiltonian is equivalent to that 
thoroughly investigated by Avron et al [54]. They showed that 
only two topologically distinct quaternionic line bundles exist 
for this model, with second Chern number [58] equal to  ±1 
[85]. The non-abelian Berry phase corresponds to an SU(2) 
transformation, as mentioned. This implies a much richer set 
of behaviors for Kramers’ partners undergoing cyclic adiaba-
tic evolution as the nuclear geometry pseudorotates, includ-
ing e.g. the possibility of electronic state population control  
[34, 54, 79].

The spinorial Hamiltonian of Γ9 ⊗ (g ⊕ 2h) has only 
recently been constructed [38]. The electronic states form 
a basis for the J  =  5/2 irrep of SU(2), while the JT modes 
g ⊕ h can be embedded into the hexadecapolar (J = 4) irrep 
of SU(2), and the remaining h vibrations are quadrupolar 
(J  =  2). The extrema of the ground-state APES generate an 
8D trough homeomorphic to the quaternionic projective 
plane HP2. Unfortunately, while the isomorphism HP1 ∼= S4 
allows for a simplified analytical treatment of Γ8 ⊗ (e ⊕ t2), 
the properties of HP2 are much more complex (though the 
classification of its quaternionic line bundles has also been 
accomplished [86]). For instance, the second Chern class [85] 
may be utilized to classify its 4D submanifolds, but it is not 
sufficient to uniquely identify the quaternionic line bundles 
over HP2 (in contrast with the HP1 case, for which all qua-
ternionic line bundles are completely characterized by the 
second Chern class) [85]. A simpler situation arises if the 
hexadecapolar distortions are disallowed. Then, the spinor JT 
Hamiltonian is given by Γ9 ⊗ h, which is isomorphic to that 
of a J  =  5/2 spin coupled to an external quadrupole field . The 
topological classification of the quaternionic line bundles over 
the space of Hamiltonians of this class was given in [54].

3.4. Symmetry breaking

In this subsection we provide brief comments on the signif-
icance of the properties of JT models carrying a Lie group 
action when their continuous symmetry is broken.

We have already noted that the APESs become warped in 
the presence of higher-order vibronic couplings and/or aniso-
tropic JT stabilization energies/vibrational frequencies in the 
multimode problem. By the epikernel principle [18, 67], while 
a non-degenerate ground-state results from the static JT sym-
metry breaking, a subset of the remaining APESs are likely to 
be degenerate at equilibrium positions of the distorted system. 
The possible epikernels represent different ways to break the 
adiabatic electronic state degeneracy at the JT center, while 
preserving some non-trivial subgroup of the point group 

defining the JT model. This was explored in previous subsec-
tions. We also showed that radial and angular coordinates can 
be employed to characterize the splitting of the Lie group-
invariant JT APES. In particular, each set of radial displace-
ments specifies an orbit, the internal space of which includes 
molecular structures with the same electronic spectrum, that 
can interconvert via pseudorotation. There exists as many 
distinct radial coordinates as linearly independent ways to 
split the degenerate multiplet. For example, in T ⊗ (e ⊕ t2), 
the radial coordinates specify whether a given nuclear geom-
etry has a degenerate electronic subspace (see figure 6). The 
highest-rank epikernel corresponds to molecular deforma-
tions along coordinates which remove the degeneracy at the 
JT center minimally (e.g. by letting N  −  1 of the branches of 
the JT PES to remain degenerate). On the other hand, pseudo-
rotational motion provides distortions which continuously 
map a given epikernel distortion into another that is equiva-
lent. However, in a warped APES, pseudorotation is hindered, 
due to the formation of energetic barriers between the discrete 
set of minima. Yet, as shown by Ceulemans [18], coordinates 
adapted to a continuous group action provide a simple descrip-
tion of the set of extrema of the warped APES. Thus, radial 
and pseudoangular variables are also useful when the Lie 
group actions discussed here cease to leave the Hamiltonian 
invariant. In particular, under weak symmetry-breaking per-
turbations, pseudorotational motion will remain nearly free, 
while non-trivial JT motion will be to a good approximation 
limited to the radial motion.

4. JT models with continuous symmetries  

and generic conical intersections

In this section we demonstrate a common feature of molecu-
lar accidental cis [23, 87, 88] and JT systems with maximal 
continuous symmetries. The latter satisfy the following con-
dition: the number of JT active displacements is equal to the 
minimal required for the intersection of a given number of 
APESs to happen at isolated points of the configuration space 
(without any assumed symmetry). We show below there exists 
a correspondence between accidental cis and the aforemen-
tioned JT systems with electronic multiplets consisting of 2–5 
intersecting states (the SO(2), SO(3), SO(4), and SO(5) mod-
els) when spin–orbit coupling is irrelevant, and 4 and 6 states 
(the USp(4) and USp(6) models) when spin–orbit coupling is 
strong. While in this section we rederive a well-known result 
on the codimension of parameter spaces admitting accidental 
cis [89], this is done in a way that emphasizes the similarity 
between JT models with Lie group invariance and the behav-
ior of a molecular system in the neighborhood of accidental 
cis. The significance of this result is outlined below.

Let us start with the case where T2  =  1: suppose N 
states are degenerate at a point Q = 0, Q ∈ R

PN , where PN 
is equal to the minimum number of parameters which need 
to be tuned to generate an N-state conical intersection. Let 
E1(0) = E2(0) = ... = EN(0) = 0. Then, in a small neighbor-
hood around the conical intersection,
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H(Q) =

PN∑
i=1

QiMi, (65)

where we assume the Mi are traceless symmetric matrices. 
This implies iMi belongs to the su(N) Lie algebra, which has 
dimensionality |su(N)|  =  N2  −  1 [63].

We can always choose a basis for su(N) where 
N(N + 1)/2 − 1 basis vectors are real-symmetric matrices 
while the remaining N(N − 1)/2 are real-antisymmetric [63]. 
The latter provide an embedding of so(N) into su(N). The 
Mi do not belong to so(N). Therefore, the number of inde-
pendent matrices which can be employed in the lineariza-
tion of H(Q) around the conical intersection point is equal to 
N(N + 1)/2 − 1, i.e.

PN =
N2 + N − 2

2
. (66)

Note P1 = 0, P2 = 2, P3 = 5, P4 = 9, P5 = 14. These are the 
number of free parameters which are required to vanish in 
order to have isolated degeneracies of 1, 2, 3, 4 and 5 states 
in generic (asymmetric) systems. They agree with the num-
ber of JT active vibrational modes in each of the models of 
table 1.

The case where T2  =  −1 requires the electronic Hilbert 
space to be even-dimensional. Thus, the possible iH(Q) 
form a subspace of the su(2N) Lie algebra. The latter has 
4N2  −  1 generators. However, the matrices in the subspace 
usp(2N) ⊂ su(2N) may not be used as building blocks of 
iH(Q), since H(Q) is required to be hermitian. Hence, the 
dimensionality of the space of fermionic TRI Hamiltonians 
is given by

PN = |su(2N)| − |usp(2N)| = N(2N − 1)− 1. (67)

For N  =  2 and 3 we obtain the number of coordi-
nates involved in the JT distortions of Γ8 ⊗ (e ⊕ t2) and 
Γ9 ⊗ (g ⊕ 2h), respectively.

Just like E ⊗ e is a paradigmatic model for cis of two states 
in the presence of time-reversal symmetry and no spin–orbit 
coupling [11, 87, 90], we can see that the remaining JT models 
with continuous symmetries could also be deemed as canoni-
cal models of generic behavior near cis in cases where more 
than two branches of an APES intersect. They are indeed the 
simplest models where these appear.

The perspectives introduced by this view have at least two 
reasons for being relevant to the treatment of dynamics near 
generic cis: (i) from a practical perspective the APES near 
a level crossing shows the same simplifying features as the 
JT models carrying a Lie group action, e.g. pseudorotational 
directions along which the electronic spectrum is invariant; 
(ii) from a conceptual point of view, molecular distortions 
which lift the degeneracy at cis can be assigned a qualita-
tive meaning based on the correspondence with a JT model, 
e.g. motions near a triplet conical intersection can be classi-
fied in terms of quadrupoles, according to their effects on the 
electronic spectrum and the analogy with the SO(3)-invariant 
T ⊗ (e ⊕ t2) model.

5. Epilogue

We have reviewed the theory of JT models with continu-
ous symmetries. In particular, (1) we have introduced an 
alternative classification of these systems by showing that 
the space of electronic Hamiltonians of certain JT models 
invariant under a Lie group action on electronic and vibra-
tional degrees of freedom can be identified with symmet-
ric spaces in the orthogonal SU(N)/SO(N) and symplectic 
classes SU(2N)/USp(2N) in the spinless and fermionic cases, 
respectively; (ii) employed the invariance properties of the 
symmetric spaces to substantially reduce the  complexity of 
the adiabatic electronic spectra of these high-dimensional 
models, by showing they can be decomposed into orbit 
spaces of SO(N) or USp(2N) (in the spinless and fermionic 
models, respectively), and identified motion within each 
orbit with molecular pseudorotation; (iii) explained the rela-
tionship between these constructions and the abelian and 
non-abelian Berry phases of these models; (iv) discussed the 
qualitative significance of the studied systems when the con-
tinuous symmetry is broken, i.e. for more realistic systems, 
and (v) demonstrated that a common characteristic of the 
investigated systems is that they include the minimal number 
of parameters required to induce accidental cis involving up 
to 5 states of spinless models, and 6 states when spin–orbit 
coupling is strong. Thus, their generic features are expected 
to be present in systems exhibiting cis involving many states, 
but no molecular symmetry. We have also provided novel der-
ivations of the topological equivalence between the ground-
state trough of JT models with continuous symmetries and 
the real and quaternionic projective spaces in the spinless 
and fermionic models, respectively, and proved that the elec-
tronic adiabatic spectrum of the continuous set of minima of 
all JT models with maximal continuous symmetries desta-
bilizes all states, except for the lowest which is maximally 
stabilized. Several questions remain to be explored, e.g. we 
have avoided any discussion related to non-adiabatic dynam-
ics [91, 92], even though the corresponding couplings can be 
determined straightforwardly for the systems studied with 
the techniques discussed here. Additionally, this review pro-
vides a starting point for the investigation of the effects of 
the various sources of anisotropy and anharmonicity on the 
ideal JT problems here investigated. From the point of view 
of condensed matter physics, models with vibronic continu-
ous symmetries undoubtedly provide the simplest platform 
for studies of systems with coupling between charge, orbital 
and phonon order. Importantly, while we focused on the 
case of isolated JT centers of relevance to solid-state and 
molecular physics, the vibronic JT Hamiltonians discussed 
here may also find realization in the fields of cold atoms and 
photonics.
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