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Abstract

®

CrossMark

Explorations of the consequences of the Jahn—Teller (JT) effect remain active in solid-

state and chemical physics. In this topical review we revisit the class of JT models which
exhibit continuous vibronic symmetries. A treatment of these systems is given in terms of
their algebraic properties. In particular, the compact symmetric spaces corresponding to JT
models carrying a vibronic Lie group action are identified, and their invariants used to reduce
their adiabatic potential energy surfaces into orbit spaces of the corresponding Lie groups.
Additionally, a general decomposition of the molecular motion into pseudorotational and
radial components is given based on the behavior of the electronic adiabatic states under

the corresponding motions. We also provide a simple proof that the electronic spectrum for

the space of JT minimum-energy structures (trough) displays a universality predicted by the
epikernel principle. This result is in turn used to prove the topological equivalence between
bosonic (fermionic) JT troughs and real (quaternionic) projective spaces. The relevance of the
class of systems studied here for the more common case of JT systems with only discrete point
group symmetry, and for generic asymmetric molecular systems with conical intersections
involving more than two states is likewise explored. Finally, we show that JT models with
continuous symmetries present the simplest models of conical intersections among an arbitrary
number of electronic state crossings, and outline how this information may be utilized to
obtain additional insight into generic dynamics near conical intersections.

Keywords: Jahn—Teller, vibronic, symmetry

(Some figures may appear in colour only in the online journal)

1. Introduction

Jahn-Teller (JT) models [1, 2] explain a rich variety of phe-
nomena in condensed matter and chemical physics [3-6].
Modern studies have explored the role of JT distortions in
e.g. possible mechanisms for unconventional superconductiv-
ity [6], colossal magnetoresistance [7], multiferroics [8], and
single-molecule transport [9]. The unifying feature of these
phenomena is that they involve significant coupling of orbital
and vibrational degrees of freedom.

One of the simplest JT models is that consisting of a degen-
erate pair of electronic states coupled to a similarly degenerate

1361-648X/18/333001+20$33.00

vibrational mode [10], the so-called E ® e system [11] (we
employ the standard convention that the irreducible repre-
sentation (irrep) corresponding to the electronic multiplet is
labeled by an upper case letter, while that of the vibrations is
given by a lower case). This model has been employed, for
example, to describe the distortion of Cu'' and Mn' in an
octahedral environment [12] (figure 1), and properties of tria-
tomic systems near the equilateral configuration [13]. A well-
known characteristic of this system is that when only linear
vibronic couplings are included, it displays circular symmetry
[11] (figure 2). The reason is the linear £ ® e Hamiltonian is
invariant under simultaneous rotations of the electronic states

© 2018 IOP Publishing Ltd  Printed in the UK
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Figure 1. E, vibrational modes and electronic orbitals for a system
with Oy, symmetry.

and vibrational coordinates (see equation (7)). The space of
rotations of the plane [SO(2)] is topologically equivalent to
the one-dimensional circle S'. Therefore, the symmetry group
of linear E ® e is continuous (as opposed to the discrete point
groups). This has extreme implications, e.g. there exists a con-
tinuous family of minima (trough) in the ground-state adiaba-
tic potential energy surface (APES) (figure 2), the vibronic
ground-state is doubly degenerate, and the vibronic (pseudo)
angular momentum is quantized in odd half-integral units,
thus indicating a vibronic motion with spinorial character
[3, 11]. All of these are surprising, as none are generic proper-
ties of finite molecular systems irrespective of the existence of
point group symmetry. They are also intrinsically quantum-
mechanical (even though a semiclassical treatment leads to an
effective classical Hamiltonian which describes the properties
of the system when 7 — 0 [14]).

Continuous symmetries in JT systems have sometimes
been described as accidental or emergent, since the molecular
Hamiltonian is only constrained to be a molecular point (dou-
ble) group scalar. Deeper mathematical analysis has revealed
the continuous invariance properties of JT models follows
from the interplay between the representations of molecular
point (double) groups adopted by the electronic and nuclear
degrees of freedom [15—17]. In particular, Pooler laid out the
representation theory underlying linear JT problems with con-
tinuous symmetries [15, 16]. Roughly speaking, for the lat-
ter to occur, the JT distortions need to be isotropic, and the
space of electronic Hamiltonians must be equivalent to the
vibrational configuration space as irreducible representations
(irreps) of a Lie group G. In this way, the molecular Hilbert
space H = Hyip ® He carries a G-action.

Due to the constraints on the fundamental parameters of
continuously-symmetric JT models, these have been only
rarely employed to extract quantitative information about
physical systems (though some examples are given below).
Quadratic or non-degenerate linear vibronic couplings are
known to break continuous symmetries [3, 18]. For instance,
in the presence of quadratic couplings, the continuous set of
E ® e minimaimposed by SO(2) symmetry becomes a discrete
set separated by saddle points [3, 18, 19]. The APES associ-
ated to this model is said to be warped (figure 3). However, if
the distorted JT surfaces can be obtained by a gap-preserving
continuous deformation (homotopy) of the electronic ground-
state APES, then basic features of the continuously-symmetric
JT system will remain relevant (figure 3) [19]. These include
the vibronic ground-state degeneracy and symmetry, as well
as any other non-trivial effects originating from the existence

Figure 2. Ground and excited-state branches of the £ ® e APES.

of a Berry phase [19-21]. On the other hand, if the warp-
ing generates new electronic-state intersections (esis, which
include the ubiquitous conical intersections (cis) [22-24]) on
the electronic ground-state APES in regions accessible at low-
energies, then the warped JT system becomes topologically
different [19, 25]. In other words, the symmetry and degen-
eracy of the vibronic ground-state changes. While it is well-
known that warping necessarily generates additional esis on
the JT APES [19, 26, 27], these are brought from the vibra-
tional configuration space infinity (where they coalesce when
nonlinear vibronic couplings vanish) (see figure 3). Thus, if
the warping is weak enough, and the new esis are as a result
far away, then at low-energies the molecular system will be
confined to a region that excludes esis other than that which
defines the JT model; in this case, homotopic invariants of the
continuously-symmetric electronic ground-state APES will be
preserved [19, 20].

Alessknownexample of the robustness of the properties of JT
models with continuous symmetries was given by Markiewicz
[28]. To understand, recall that continuous-symmetry breaking
in the dynamical JT problem without quadratic or higher-order
vibronic couplings will happen under one of the following
three conditions: (a) different vibrational frequencies for the
JT active modes irreps, but equal JT stabilization energies,
(b) equal vibrational frequencies, but different JT stabiliza-
tion energies, and (c) different vibrational frequencies and JT
stabilization energies. In [28], the linear E ® (b; & b;) model
(which can be understood as arising from symmetry break-
ing of the vibrational modes of E ® e) was employed to study
case (a). This has a continuous set of ground-state minima,
but pseudoangular momentum is not conserved (the b; and
b, vibrations have different frequencies). However, the aver-
age wavepacket pseudoangular momentum was numerically
verified to be quantized for different values of vibrational fre-
quency anisotropy. While the dynamical continuous symmetry
was broken, it left clear signatures.

There have been also some experimental studies of
JT centers which benefited from an analysis based on an
ideal model admitting continuous symmetries. For exam-
ple, O’Brien [29] employed the SO(3)-invariant version of
T ® (e @ 1p) to investigate the spectra of F' centers (crystal
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Figure 3. Left: weakly warped APES for E ® e; right: strongly-warped APES for the same model.

vacancies occupied by holes) in CaO, and obtained quantita-
tively accurate absorption bandshapes. The same model also
provided accurate fits to the absorption spectrum of F-centers
(electron-occupied vacancies) in CsF. Another example is
Pooler’s and O’Brien’s [30] study of the P%/2 — P§/2 line-
shapes of Tl atoms in halides. Tl is a heavy-atom and its
energy levels are strongly influenced by spin—orbit coupling.
The JT problem for this model is I's ® (e & t,), where I's (also
denoted by Gsp) refers to the quartet double group representa-
tion of cubic systems [31]. With the assumption of degener-
ate vibronic couplings and harmonic frequencies, qualitative
agreement with experimental data was also obtained.

In summary, while strong constraints need to be satisfied
for a JT system to feature continuous symmetries, i.e. to carry
a Lie group action, their study adds valuable insight to the
generic problem of cis, as they are minimal models featuring
universal properties of systems that contains them. Moreover,
the high symmetry of such systems imply that they form
convenient starting points for the investigation of the com-
plex interplay between orbital, structural, and charge order in
extended systems with JT active sites.

The connection between JT models and Lie groups has
been explored before [15, 16, 18, 32-38]. In this work we
review and present some novel perspectives on this relation-
ship based on the theory of symmetric spaces [39—41]. The
general relevance of symmetric spaces to quantum mechanics
can be illustrated with the Threefold way classification of non-
relativistic Hamiltonian ensembles [42]. Dyson proved that,
in the absence of anticommuting symmetries, any quantum-
mechanical system belongs to either one of three symmetry
classes: real orthogonal, real symplectic and complex unitary.
The real orthogonal class contains all time-reversal invariant
(TRI) bosonic systems, while the TRI fermionic Hamiltonians
correspond to the real symplectic, and the complex unitary
ensemble contains models with broken time-reversal symme-
try. Dyson’s classification (and its generalization [43, 44]) is
the basis for the application of random matrix models in con-
densed matter, nuclear [45], and chemical physics [46, 47].
In fact, as we will see later, there exist several connections
between topological phenomena arising in JT models and
condensed matter physics (section 3.3).

Let us illustrate some of the previous remarks with the
simplest JT model with continuous symmetry, the linear
E ® e system. The molecular Hamiltonian can be written as
a sum of a purely vibrational part and a vibronic component,

H(Q,P) = Hyin(Q,P) + H1r(Q),Q € R?, (1

where Q = (Q1,Q»), and P = (Py, P,) are the displacements
from the JT center (the molecular shape with Q = 0, hosting
the electronically degenerate multiplet) and their canonically
conjugate momenta, respectively (figure 1). The vibrational
contribution is given by the 2D isotropic harmonic oscillator
Hamiltonian,

. P fpi% 5% 1 2002 2 (2)
Hv1b(Qs )* ) + ) +2w (Q1+Q2),

where w is the vibrational frequency for the e modes. The JT
Hamiltonian Hyr(Q) contains the interaction between nuclear
and electronic degrees of freedom. Given that £ ® e is a TRI
spinless model, the time-reversal symmetry operator 7 satis-
fies 72 = 1, and we can take the electronic Hilbert space He
to be a real vector space with basis functions invariant under
T. Thus, the vibronic £ ® e Hamiltonian can be written as:

Hyr(Q) = FQe™ % %o3e! 79, 3)
where F € R — {0} is the reduced vibronic coupling constant
(from the Wigner-Eckart theorem), 0 = /07 + 03 € R™,
tang = Q,/Q1, ¢ € S', and 0j,j = 1,2,3, are the Pauli matri-
ces acting on H,. A change of electronic frame (basis) that
preserves the reality of the electronic eigenvectors for all Q
can be parametrized by

M(6) =e 7% €50(2),0 € S @)

Let R(6) be the rotation of vibrational configuration space
defined by

R(0): (Q,¢) = (Q,¢+0). 5)

It is equivalent to mapping ¢ — ¢ + 6 in equation (3). Hence,
a change of electronic frame is equivalent to a rotation of the
vibrational configuration space,

M(0)Hyr (Q) M~ (0) = Hyr [R7'(0)Q] . (6)

As we now see, the JT Hamiltonian (and therefore, also the
molecular) is invariant under the simultaneous action of SO(2)
on the electronic and vibrational Hilbert spaces defined by

M(0)Hyr [R(O)Q] M~ (6) = Hyr(Q). ©)

The equation above explains the circular symmetry of
figure 2: the SO(2) action on the space of molecular (nuclear)
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Figure 4. Lhs: E ® e contours with equal adiabatic electronic spectrum; Rhs: reduced orbit space.
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Figure 5. Pseudorotational motion in vibrational and electronic configuration space (the orbital at the center is the adiabatic electronic

ground-state).

geometries maps a nuclear configuration into another with the
same Q, but that is equivalent to a change of (electronic) basis
of .. Therefore, all invariant properties of the electronic
Hamiltonian are preserved (e.g. its eigenvalues) under a vibra-
tional space rotation (pseudorotation). This explains the choice
of displacement coordinates for JT distortions (Q # 0): ¢ is
changed under SO(2) action on the vibrational configuration
space (pseudorotation), while variation of Q corresponds to
(radial) motion that modifies the adiabatic electronic spectrum.
Equation (7) demonstrates the invariance of the linear £ ® e
Hamiltonian with respect to the continuous SO(2) action on
electronic and nuclear degrees of freedom. It also implies a
conserved quantity by Noether’s theorem [48], the vibronic
pseudoangular momentum J (setting i = 1 hereafter),
.0 03
J=-i 99 +3 8)
where the first term is a linear operator on the vibrational
Hilbert space H.i», while the second acts on the electronic H,;
[11, 12] (see equation (3)). Equation (8) is a simple, but exotic
result: it implies fractionalization of the vibronic pseudoangu-
lar momentum.

We also find that every molecular geometry of E ® e lives
in an SO(2) orbit labeled by the radial coordinate (figure 4).
Formally, to each Q # 0 we assign the space of molecular
structures

0(Q) = {¢ € 0,.2m)[R(¢)(Q.0)" = (01.22)"}.  (9)

containing all Q = Q(cos ¢,sin¢) with equal electronic
energy spectrum. Therefore, the APES can be decomposed
into a one-dimensional space of SO(2) orbits, i.e.

Qe | o).

0'>0

(10)

Each point O(Q) of the orbit space, with the exception of
0(0), has an internal space corresponding to a circle S' of
molecular geometries which can be mapped into each other
by free pseudorotational motion (figure 5).

These simple considerations on the SO(2) invariance of
E ® e have allowed us to quickly understand a variety of its
non-trivial features. In particular, (i) the APES was simpli-
fied by decomposing it into a space of orbits of the 2D proper
rotation group SO(2), (ii) the existence and meaning of radial
and pseudoangular coordinates were explained, and (iii) the
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anomalous vibronic angular momentum conservation law of
E ® e was quickly obtained. In more complex JT systems
carrying a Lie group action, the above points are going to be
generalized. For instance, there will be more than one angu-
lar and one radial coordinate, so that orbits will require more
than a single number to be specified uniquely. There will also
be orbits of different types with qualitatively distinct internal
(pseudorotational) motion.

In the remainder of this topical review we will employ the
invariance properties of symmetric spaces to investigate sev-
eral aspects of the higher-dimensional generalizations of the
SO(2)-invariant E ® e model discussed above. In the process
we will present simple proofs of established facts about JT
systems, as well as obtain some new fundamental results on
the topological properties of JT APESs. The content is organ-
ized as follows: in section 2 we discuss the general relation-
ship between linear JT problems with continuous symmetries
and symmetric spaces. Section 3 applies the framework pre-
sented in the previous to characterize local and global proper-
ties of the JT APES. In section 4 we discuss the connection
between the investigated models and molecular systems with
accidental cis involving more than two APESs. A summary of
the presented material and a discussion of future directions is
given in section 5.

2. Symmetric spaces underlying JT models with
continuous symmetries

We start this section by revisiting the conditions satisfied by
JT systems admitting continuous symmetries. These are used
to determine the symmetric spaces corresponding to each ele-
ment of the set of JT models studied in this article. We also
discuss some general properties of symmetric spaces which
will be useful for establishing several universal properties of
JT systems carrying a Lie group action.

Consider a JT problem defined by the coupling between
electronic states belonging to the irrep I' of a point group S
(S is the symmetry group of the nuclear geometry at the JT
center Q = 0) spanned by the basis vectors {7i}i—i2,.. |r}s
and JT active vibrations transforming like the vectors of the
(generically) reducible representation A = @;A;, where A; is
a non-totally symmetric irrep of S with basis {\;, Ai,... A, | }-
The electronic multiplet is only defined to belong to a single
irrep, for none of the studied models contain reducible elec-
tronic representations (Wiseman showed how to generalize
the theory of [16] to the case of direct sum electronic Hilbert
spaces [37]). Generalizing equations (1)—(3), the molecular
Hamiltonian of the system including only linear vibronic cou-
plings is given by [3]

2

HQP) =Y oo

ZmA[

1
+y Smawi, Q4 + Hir(Q), (1)
A

i

Hyr(Q) = Z FarQa, - Var,

o (12)

where Qy, = (QA,-A,-I s QAN s QA"MA,-\) (with similar nota-
tion for P,), mp, and wy, are the mass and harmonic frequency
of the nuclear displacements A;, Fy, is the reduced vibronic
coupling constant associated with the same modes (from the
Wigner—Eckart theorem), and V- is a vector of Clebsch—

Gordan matrices, i.e. Vo,r = (VAi/\ilF’ VAT e VA,r)\,.‘MF)T,
with e.g.

Var,r = Y Tl A, Ty) [Ty (T

Y€l yer (13)

Pooler has given the formal theory underlying the
construction of molecular JT Hamiltonians with continuous
symmetries, i.e. invariant under the action of a Lie group
[15, 16]. First, it was shown that the space of electronic tensor
operators living in I' ® I" can be decomposed into even and
odd subspaces, which we will denote by M and P, respec-
tively. The operators in M belong to the symmetric part of
I'®@ ' —A; (where A; is the totally symmetric irrep) if the
system is spinless (we discuss the fermionic case later). The
odd live in the antisymmetric. Therefore, P is a Lie subal-
gebra of I' @ ' — A; (since the commutator of antisymmetric
matrices is antisymmetric). Conversely, the commutator of
even operators is an odd element, so the latter do not span a
Lie algebra. For example, in E ® eM is spanned by the Pauli
matrices o and o3, while o, is the generator of P.

P generates the |T'|-dimensional special orthogonal group,
SO(|T'}). If M is isomorphic to an irrep A of SO(|T'|), then
H(Q,P) is invariant under the action of the same group on
both electronic and nuclear degrees of freedom, if and only if
the vibrational configuration space can also be embedded in
(i.e. transforms like) the irrep A of SO(|T|) [16]. In E ® ¢, 0,
generates SO(2), as the elements of the latter can be written as
U(¢) = e 1%72/2, Conjugation of o and o3 with U(¢) shows
that M transforms in the vector irrep of SO(2), and so do
the JT coordinates Q; and O, (see equations (2)—(6)). Hence,
linear E & e shows vibronic SO(2) invariance.

In other words, sufficient conditions for invariance under
continuous transformations of electronic and vibrational
degrees of freedom in JT models are that: (a) only linear
vibronic couplings are non-vanishing, and (b) the space of
traceless electronic Hamiltonians and the vibrational configu-
ration space are isomorphic as irreps of a Lie group G.

The above conditions require that the electronic multiplet
I' is equally coupled to every JT active mode, while my, = m
and wy, = wp for all A; C A. Physically, they imply equal
JT stabilization energies for molecular distortions along each
A, and (pseudo)rotational symmetry in the purely vibrational
part of H(Q,P), respectively.

The embeddings of the vibrational and electronic point
group irreps A = @ \; and I into Lie group irreps will not be
subject of future discussion. The interested reader may consult
[15, 16, 49] for details. Henceforth, we take the conditions for
continuous invariance of JT Hamiltonians to be fulfilled and
study its consequences. For the sake of simplicity, we will not
make a distinction between the continuous and point group
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irreps anymore, so that from now on A and I correspond to
the appropriate continuous group irreps of SO(N) or USp(2N)
(in the fermionic case discussed below) depending on the total
spin of the considered electronic JT multiplet.

The relations satisfied by the . operators in P and M
can be summarized by

M, M] =P, [P,M] =M, [P,P] ="P. (14)

They imply that £ = M & P is a Lie algebra [41]. In other
words, £ corresponds to the tangent space of a Lie group L at
the (group) identity. The odd operators define a subalgebra P.
They generate the Lie subgroup P C L. Importantly, the elec-
tronic matrices in M define tangent vectors for the symmetric
space L/P [39—41]. In fact, the algebraic definition of symmetric
spaces is encapsulated by the relations shown in equation (14).
Some of their relevant properties will be discussed below.

Time-reversal symmetry implies the existence of a basis
where the electronic Hamiltonian matrix elements are real.
Thus, only the electronic tensor operators of £ C s/(|T'|,R)
(the space of traceless real matrices) which are in the symmet-
ric part of I' ® I' — A lead to allowed quantum Hamiltonians.
Hence, H;r(Q) belongs to M = L/P. Moreover, the
antisymmetric electronic tensor operators generate the special
orthogonal group SO(|T'|). Its generators define the Lie alge-
bra so(|T'|): the space of infinitesimal rotations of Hej. Thus,
so(|T']) acts on the electronic Hilbert space operator Hyr(Q)
by infinitesimal rotations. As we show below, while the
defined so(N) action occurs on H,, it is equivalent to infini-
tesimal rotation of the internal displacements Q — Q + 6Q in
JT models with continuous symmetries.

In the spinless case, M @ P spans either (a) s/(|T'|,R)
(see below for the 72 = —1 case), or (b) one of its proper
subsets [15]. Examples of class (a) are the Lie group invari-
ant formulations of E® e [11], T ® (e B 1) [50], T ® h [51],
G®(g®h)[35], H® (gD 2h)[36,49, 52]. These include JT
active distortions representing all independent ways to split the
electronic degeneracy at Q = 0. In these models, the continu-
ous symmetry is maximal, since the symmetry of the molecular
Hamiltonian cannot be increased without changing the number
of dimensions of #,. Conversely, class (b) contains H ® h
[36, 511, H ® (g & h) [36], etc [15]. Their vibronic coupling
matrices only span a proper subset of s/(N,R)/so(N,R), and
the molecular Hamiltonian symmetry can be increased by
including the remaining symmetry-allowed independent JT
active couplings. Thus, the latter models do not include one
or more of the possible JT active distortions. In this paper we
focus on the JT models with maximal continuous symmetries
(see table 1), for they share a variety of deeply related proper-
ties. Thus, from now on, anytime we mention JT models car-
rying a Lie group action, it should be understood that we are
referring to models in class (a), unless otherwise noted.

The electronic Hamiltonian can only be constructed with
the even tensor operators V,, € M. Therefore, the constraints
given above imply the most general JT Hamiltonian for a
I' ® A system with a continuous symmetry can be written as:

P

1 2
St kA QA +Fa Y QaVar  (15)

aeM

H(Q.P) =

Table 1. JT models with continuous symmetries investigated in
this paper. The last column gives examples of discrete symmetry
groups from which each model may be obtained by imposing the
appropriate constraints [55]. S* refers to the double group obtained
from a point group S.

JT model T? Symmetric Space  Examples
E®elll] 1 SU(2)/SO(2) Csy, Oy
T® (e ®t)[50] 1 SUB)/SO@3) Td, 0y, 1,1,
G® (g h)[35] 1 SU@)/SO4) LI,

H® (g D 2h)[36] 1 SUG)/SO(5) Ll
[s(G3pn) @ (e 1) [30]  —1  SUM#)/USp4) Td*, 0, I
Lo(Is)2) ® (g B 2h)[38]  —1  SU(6)/USp(6) I I

where kj = mwjz\. Note the matrices V, C M and the
so(|I'|) generators are both real and traceless, so their direct
sum is the algebra si(|T'|,R), i.e. £ = sl(|T'|,R). As a con-
sequence, the underlying symmetric spaces for the spinless
class of JT Hamiltonians with continuous symmetries is
SL(|T|,R)YSO(|T']) (or SU(|T'|)/SO(|I']) if we take the skew-
hermitian 7 time-evolution generators iV, as the generators
of the symmetric space).

A fundamental property of symmetric spaces is their rank
[39, 41]: the number of anisotropic spatial directions on these
manifolds. Physically, the rank of a given JT model is equal
to the number of linearly independent JT active nuclear dist-
ortions unrelated by SO(I'|) (or USp(|T'|) in the fermionic
case) transformations on electronic or vibrational degrees
of freedom. In other words, motion along anisotropic direc-
tions induces changes in the eigenvalues of the electronic
Hamiltonian. For instance, in E & e only geometries with the
same radial coordinate Q are related by nuclear pseudorotation
(figure 4). Therefore, in the space of time-evolution operators
of E ® e, there exists a single direction which is anisotropic.
This conforms with the fact that the rank of SU(2)/SO(2) is
one [39, 41].

Another view on the rank of a symmetric space is that it
specifies the dimensionality of its maximal abelian (commu-
tative) subalgebra (also commonly denoted as Cartan subal-
gebra) C [39]. By a theorem of symmetric spaces theory, any
m € L/Pisrelated to an element m¢ of the Cartan subalgebra
C by conjugation with an element of the Lie group P (with
tangent space P at the identity of P) [39],

m=gmeg ',g€P,meceC. (16)

The rank of the symmetric space SL(|T'|,R)/SO(|T'|) (or
SU(|T|)/SO(|T')), is equal to || — 1 [41].

We can always take the Cartan subalgebra of
sI(ITI,R])/so(|T]) to be given by |I'| — 1 linearly independ-
ent traceless diagonal matrices of s/(|T'|,R) [41]. In this case,
equation (16) is the simple statement that any real traceless
symmetric matrix m can be diagonalized by an orthogonal
transformation. We note that conjugation preserves com-
mutation relations, so the choice of Cartan subalgebra is not
unique. Thus, a set of diagonal matrices may be the simplest,
but it is not the only.

It follows that the electronic part of the molecular
Hamiltonian (equation (15)) can be rewritten as
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Hyr(Q) =Fa Y QaVa

aeM

= U(Q) <FA > QaCVaC> U=HQ),

acEMc
U(Q) € SOo(|I')), (17)

where M C M is a choice of Cartan subalgebra for
M =si(|T'|,R)/so(|T'|). By the invariance of H(Q,P) under
simultaneous SO(|I'|) action on electronic and vibrational
degrees of freedom, there exists an embedding of SO(|T'|)
in SO(|A|) [since proper rotations (orthogonal transforma-
tions with determinant equal to one) of the vibrational con-
figuration space are described by the latter group]. Hence,
there is a continuous injective map, R : SO(|T'|) — SO(|A|)
satisfying

Z U(Q)Qac Vac U71 (Q) = Z[Ril (ﬂ)QC]a Va,
acEMc @
where [ denotes an SO(/A|) point, R(53) specifies the
SO(]A|) rotation satisfying R~!(3)Q¢ = Q, and Q is the
nuclear displacement with nonvanishing components only
along the directions which are dual to the Cartan subalgebra
matrices V.. Equation (18) is the mathematical represen-
tation of the statement that in JT models with continuous
symmetries, a rotation of the electronic frame is equivalent
to a rotation of the space of JT distorted structures. It is the
generalization of equation (6) for N-dimensional electronic
Hilbert spaces.

In cases where spin—orbit coupling is strong and time-rever-
sal symmetry is implemented by T satisfying 72 = —1, the JT
active modes live in the antisymmetric part of the ' ® I' — A,
space, where I' is now a spinorial double group irrep [2, 53].
The electronic Hilbert space for a fixed geometry can thus be
given the structure of a quaternionic vector space [54]. The
unitary transformations which preserve this structure form
the unitary symplectic group U(|T'|/2,H) = USp(|T|) [41].
In this case, the molecular Hamiltonian is invariant under the
simultaneous action of the symplectic group on the electronic
and nuclear degrees of freedom whenever the symmetric part
of I' ® I generates the usp(|T'|) algebra, the traceless antisym-
metric part lives in su*(|T'|) /usp(|T]) (su*(|T']) = si(|T'| /2, H)
is the space of traceless |T'| x |T'| complex matrices invariant
under conjugation by an antiunitary operator 7 satisfying
T? = —1, or simply the space of traceless|T'| /2 x |T'|/2 matri-
ces with quaternionic entries [41]), and the vibrational degrees
of freedom transform in the same irrep of USp(|T'|) as the
traceless antisymmetric electronic tensor operators [15, 16].
Therefore, in cases with strong spin—orbit coupling, the under-
lying symmetric spaces for JT models carrying a Lie group
action consist of SU*(|T'|)/USp(|T|) (or SU(|T'|)/USp(|T|), if
instead of taking the Hamiltonians as generators, we consider
the corresponding time-evolution generators iH). A list of all
JT models carrying a Lie group action encompassed by this
study is given in table 1, along with their corresponding sym-
metric spaces, and examples of point groups giving rise to
these models.

(18)

3. Local and global structure of JT orbits

We now take advantage of the framework introduced in the
previous section to quickly obtain insight into the APESs of
JT models carrying a Lie group action. As we show in sec-
tion 4, the results which we present here also have some
significance for the treatment of dynamics in the neighbor-
hood of electronic degeneracies of generic molecular systems
beyond JT models. Therefore, they display a degree of uni-
versality which is perhaps unanticipated in view of the non-
generic constraints satisfied by the continuous symmetries of
the investigated models.

3.1 Symmetry-adapted coordinates and orbit spaces

Consider first the problem of choosing coordinates for vibra-
tional motion, which are adapted to the invariance proper-
ties of the underlying symmetric space. These have various
advantages compared to cartesian coordinate systems, since
they reduce the complexity of molecular potential energy sur-
faces (e.g. figure 4). For instance, in E® e [10, 11]and T ® h
[56, 57], the identification of radial and angular coordinates
introduces significant simplification to treatments of the
dynamical JT problem. They are also useful in describing the
warped ground-state APES [18].

As we showed in section 1, coordinates adapted to the
circular symmetry of the SO(2) E ® e model can be trivially
obtained. However, this is not the case for higher-dimensional
models with SO(N),N > 2 or USp(2N) symmetries. The
situation is ameliorated if only the space of minima of the JT
APES is of interest, for the ground-state APES is homemor-
phic with the real (if 7> =1 [18]) or quaternionic (when
T? = —1) projective space (see sections 3.2.2 and 3.2.3). The
real projective space (RP"Y) can be obtained from the sphere
SN by identifying antipodal points of the latter [58]. Therefore,
hyperspherical coordinates are a natural choice for the study
of vibrational motion on the spinless ground-state trough
[35, 36] of the continuously-symmetric JT models. While
profitable in discerning properties of the space of minima
of the electronic ground-state APES, this approach gives no
insight into the motion which is normal to the extremal sub-
space of the APES, nor does it explain the spectral flow of the
Born—Oppenheimer JT Hamiltonian in non-stationary regions
of the molecular vibrational configuration space. Thus, hyper-
spherical coordinates do not take full advantage of the invari-
ance properties of the systems studied here to maximally
simplify the description of the molecular APES.

We will employ the isomorphism between traceless elec-
tronic Hamiltonian operators and vibrational displacements
as irreps of a Lie group G, to choose vibrational coordinates
adapted to the corresponding SO(N) (or USp(2N)) action.
Consider first the specific case of the cubic JT problem
T, ® (e @ 1y) [50], or equivalently the icosahedral T & h (the
generalization to more complex models will be made later)
[49]. The continuous symmetry of this system in the presence
of degenerate couplings was originally investigated by O’Brien
[50, 59]. The JT active displacements are characterized by
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Figure 6. D3;, Dy, epikernel and C; kernel structures for the T ® (e, @ f2,) JT model. The first two have the same spectrum (in the
presence of SO(3) symmetry) including a non-degenerate electronic ground-state and a doubly-degenerate excited state, while the latter
is a lower symmetry structure with the same r;(Q) as the first two, but different r,(Q), reflecting the presence of three non-degenerate

electronic states in its spectrum.

the vector Q = (Qp, Qc, Oxys O, Oyz) [3]. A global dia-
batic basis for H is defined by He = span{|x), [y), |z)}
(which may be thought of as p.,p, and p. atomic orbitals).
The traceless Hermitian electronic tensor operators are in the
symmetric part of 7} ® T — A, and will be labeled by V,,
a €160, ¢exy,z2x,yz},

o o ~¥3 0 0
Vo=10 5 0 |.Ve=| 0 £ o,
0 0 -1 0 0O 0
V3
(Vij)ab = — === (6ia0jp + 6jadiny) , (19)

2

where i,j € {x,y,z}, i # ], 0a = 1 if @ = b and 0 otherwise.
The JT active distortions and the space of electronic
Hamiltonians are isomorphic to the space of quadrupoles [54]
(the 2 irrep of SO(3)), which is also isomorphic to the tangent
space of SL(3,R)/SO(3) at the identity, i.e. s/(3,R)/s0(3).
Its Cartan subalgebra is two-dimensional. It may be taken to
be for example, span{V,, Vy} or alternatively span{Vp, Vyy}.
Importantly, this implies there exists two SO(3) invariants in
the universal enveloping algebra of s/(3,R)/so(3,R) [39].
From the SO(3)-equivalence between symmetric electronic
tensor operators (minus the identity) and vibrational displace-
ments, it follows that there exists also two functions r1(Q)
and r,(Q) of the nuclear degrees of freedom which are invari-
ant under the action of SO(3). They will be denoted radial
coordinates. Let r; denote the quadratic SO(3) invariant of
sl(3,R)/so(3), r1(Q) = |Q|*> = Q, and r(Q) be the cubic.
The latter may be obtained from the secular determinant of
Hyr(Q) [39], or as the totally symmetric SO(3) irrep 0 in the
decomposition of the tensor product 2 ® 2 ® 2, since the cubic
invariant is a homogeneous polynomial of third degree in the
vibrational coordinates (which transform like the 2 irrep of
SO(3)) [33]. We provide a simple derivation of r,(Q) below.
This simple analysis indicates that each molecular geom-
etry of T ® (e @ ;) belongs to a single SO(3) orbit charac-
terized by two radial coordinates, r; and r, (compare to the
E ® e case which has orbits described by a single real num-
ber (figure 4, equations (9) and (10))). We denote a specific
orbit of this model by O(ry,r). It only includes molecu-
lar geometries with the same electronic spectrum, since r;

and r, are SO(3) invariants (no electronic SO(3) rotation
will correspond to nuclear motion normal to O(ry,r,)). It
follows that given a representative Q € O(ry,r,), any ele-
ment Q' € O(ry,r;) may be obtained by an SO(3) action
on Q, this rotation in turn corresponding to the electronic
Hilbert space SO(3) transformation U(Q’,Q) satisfying

U(Q,Q)Hr(Q)U~YQ,Q’) = Hyr(Q'). Thus, the 5-dimen-
sional APES of T ® (e @ 1,) may be reduced into a 2-dimen-
sional orbit space.

The remaining three vibrational degrees of free-
dom are expected to parametrize the internal space
of the orbits O(ry,ry). Thus, SO(3)-adapted coor-
dinates for the molecular displacements are given
by Q=Q(r,r, B, a,0), Vri € R—{0},r, € [—1,1] (see
below), where (3, o, ¢) parametrize SO(3) rotations. They can

be understood as Euler angles in the space of JT active dis-
torted structures [33, 60]. We employ the zyz convention for

the parametrization of SO(3) elements,
UB,a,0) = g 1Pg il e —iB): (20)

where U(f, «, ¢) acts on the 1 (vector) irrep of SO(3), the J;
are its Hermitian generators, (J;)jx = i€, ¢, 5 € [0,2m), and
a € [0, 7).

In order to understand the internal space of each orbit,
note that the JT distortion-induced electronic multiplet split-
ting can only happen in two different ways: either Hyr(Q)
(with Q # 0) has three distinct eigenvalues or two degener-
ate and a single non-degenerate. The matrices representing the
vibronic coupling due to #, or e displacements demonstrate
this point (equation (19)). Hyr(Q) is related by an orthogo-
nal transformation to an element of the Cartan subalgebra
of sl(3,R)/so(3) (section 2). In particular, if we choose Vy
and V. to be a basis for the Cartan subalgebra, we find from
equation (17),

HJT(Q) - FVU(57 @, ¢) (Qf‘ve + Q?Vg) Uil(ﬂ’ «, ¢)7 (21)

Hyr(Q) = —F/[Q|U(S, o, ¢)

cos[y(Q.) — ZT’T} 0 0
X 0 cos[v(Q.) + Z] 0 U='(B,a,9),
0 0 cos[7(Qo)]
(22)
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where F, denotes the vibronic coupling constant,
Q.= (Qf, ©,0,0,0) defines an element of the Cartan sub-
algebra of sI(3,R)/so(3) specifying the eigenvalues of the JT
Hamiltonian for a given geometry Q = R~'Q.,R € SO(3),
and 7(Q) = tan~'(Q%/Q?). These considerations drasti-
cally simplify the task of finding the coordinate mapping
Q — ,(Q) (the cubic invariant of s/(3,R)/so(3)). It is pro-
portional to the O(\?) term of det[Hyr(Q) — I)\] [39], which
may now be easily calculated from equation (22),

r2(Q) = cos[37(Q.)]. (23)

For any Q, Hyr(Q) is related by an orthogonal transformation
to a unique Hyr(Q.) with v € [0, /3] [54], so r, € [—1,1].

According to the above, motion along the Qg and Q. direc-
tions provides all distinct possibilities for the splitting of the
electronic multiplet when Q # 0. This may also be seen by
checking that the eigenvalues of Vj; are equal to those of V.,
which in turn are different from those of V. The orbit obtained
by SO(3) action on Vj defines a 2D subspace of the vibrational
configuration space, since [J;, V] = 0. In more detail, suppose
Q = Qep = (0,0,0,0,0). Then, Q. = Q, and

U(0,0,9)QVaU~1(0,0,$) = QVj. (24)

2

electronically degenerate doublet iff v =0 or v = 7/3, i.e.
for r, = 1. For any other values of v € [0,7/3], the corre-
sponding electronic JT Hamiltonian belongs to a 3D orbit of
SO@3).

Our analysis also reveals the topology of each type
of orbit. The 2D orbits are parametrized by a 3D rota-
tion axis. Thus, each 2D orbit is isomorphic to RP?. The
3D orbits are copies of SO3)/V =RP3/V [58], where
Vv ={U(0,0,0),U(0,0,7),U(0,m,0) U(rw/2,m,7/2)}. The
latter follows from the fact that all elements of V are diagonal
matrices, and both V; and Vj are left invariant under conjuga-
tion by an element of the subgroup V. Therefore, electronic
Hilbert space transformations by elements of V correspond to
trivial action on the vibrational configuration space.

The qualitative analysis carried to this point indicates the
APES of the SO(3)-invariant T ® (e @ 1) can be decomposed
into a 2D orbit space. Only two topologically non-equivalent
types of orbits exist in agreement with the two linearly inde-
pendent ways of lifting the degeneracy of triply-degenerate
electronic states.

By applying equations (19)—(21) to (22), we obtain
the SO(3)-adapted parametrization of JT distortions [50],
Q = Q(Q5 Vs B’ a, ¢>,

0. =0 [\@ cos(7y) cos(2¢) sin® () + %sin('y)[[l + cos?(a)] cos(2¢) cos(2) — cos(a) sin(23) sin(2¢>)}]

1 V3

2 2

Q9 =0 l cos(7)(cos?(0) — 1) + —= sin(y) sin®(a) cos(23)

V3
2

2

This equation implies the space of molecular geometries
obtained by pseudorotation of the structure defined by
Q = Qey is specified by only two of the three SO(3) param-
eters. In fact, the elements of the orbits containing Qey
or —Qey, can be parametrized uniquely by a 3D rotation
axis n=n(¢,a) =n(r + ¢, —a) (see equation (20)).
Conversely, rotations of the non-degenerate Cartan sub-
algebra basis vector V. give a 3D subspace. If we take
r1(Q) = |QJ* = 1, the corresponding SO(3) orbit will be either
two or three-dimensional depending on the value of r,(Q). For
instance, while Q = ey lives in a 2D orbit, e. = (0, 1,0, 0,0)
belongs to a 3D. Note r(+ep) = £1, while »(e.) = 0. In
fact, the T ® (e @ 12) JT Hamiltonian contains an adiabatic

? cos(7y) sin(2«) sin(¢) + % sin(7)[— sin(a) sin(2¢) sin(23) — sin(2a) sin(¢) COS(Z/B)]‘| .

~= cos(y) sin®(a) sin(2¢) + % sin(y)[(1 + cos® a) sin(2¢) cos(23) + 2 cos(a) cos(2¢) sin(ZB)]]

ﬁ cos(7y) sin(2a) cos(¢) + % sin(y)[— sin(2a) cos(28) cos(¢) + sin(a) sin(2/) sin(¢)]]

(25)

This parametrization was first given (in the context of JT
models) by O’Brien [59]. It is also of paramount importance
for studies of the fullerene 7 ® h JT model [49, 56, 57]. The
derivation above gives a simple systematic method for its con-
struction, which can be applied to the other, more complex JT
systems with continuous symmetries (see below).

The coordinate transformations described by equation (25)
allow a quick visualization of some of the features of the two
types of orbits we discussed: when v = 0, it follows that for
a given |Q|, the geometry described by the displacement vec-
tor Q depends only on the pseudoangular variables o and
¢, which thus characterize each 2D orbit. Pseudorotational
motion in the 3D orbits (where 7 # 0 or 7/3) is specified by
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the Euler angles (3, o, ¢. The classification of the vibrational
configuration space given above is particularly useful when
investigating the possible Berry phases of fullerene derivatives
and other molecules which undergo JT distortion described by
the SO(3) multiplet. [56, 57].

The considerations in this subsection can be general-
ized to the other JT models carrying a Lie group action (see
table 1), including the fermionic cases with strong spin—orbit
coupling (in the following, simply make the replacements
sl(n,R) — sl(n,H) = su*(2n,C), and so(n) — usp(2n) and
all results will remain valid for the fermionic models). Given
that the maximal commuting subalgebra of sl/(n,R)/so(n) is
n — 1-dimensional [41] (section 2), there exists a setof n — 1
anisotropic directions (motion along which does not preserve
the energy of the electronic states) in the corresponding JT
APES. Thus, these displacements fully determine the elec-
tronic spectrum. In, particular, we can define n — 1 radial
coordinates {r;(Q)} which change the electronic energies in
an independent way. In the T ® (e @ ;) the adiabatic elec-
tronic energies are only function of the two radial coordinates
r1(Q) = Q and r,(Q) (equation (23)). Motion along the for-
mer direction simply introduces a multiplicative factor to the
spectrum (similarly to the radial coordinate of E @ e), while a
change in r,(Q) may take the system from a geometry where
the excited electronic states are doubly-degenerate to a JT
distortion which does not have electronic degeneracies The
values taken by the radial displacements 71, 2, ..., 'y—1 specify
SO(N) orbits labeled by O(r, ..., r,—1). Thus, the orbit space
of an SO(N)-invariant model contains n — 1 dimensions.
Each orbit in this space corresponds to one of a finite num-
ber of types. The possibilities are determined by the degen-
eracies of the electronic Hamiltonian. As shown explicitly
for the T ® (e @ t,) case, different orbits may have internal
spaces with varying number of degrees of freedom. While the
adiabatic electronic spectrum is completely specified by the
radial displacements, a complete description of the molecu-
lar geometry requires specification of angular coordinates
corresponding to the pseudorotational motion on each orbit.
These can be parametrized by SO(n) variables (e.g. we used
Euler angles in the SO(3) case). In the case of the icosahe-
dral G ® (g @ h) case (relevant to the investigation of fuller-
ene excited-states as well as silicon and boron ion clusters
[35, 49, 61, 62]), the symmetric space is SU(4)/SO(4). It has
3 radial and 6 angular coordinates which can be constructed
from the set of JT active vibrations g & h. SU(5)/SO(S5) arises
inthe H ® (g @ 2h) model, which includes four radial and ten
angular coordinates. In all cases, the radial degrees of free-
dom can be directly obtained by looking at the coefficients
of the invariant polynomials produced by the JT Hamiltonian
secular determinant, det[H;r(Q) —I)\]. Angular displace-
ments adapted to a simple description of pseudorotation can
be retrieved by a generalization of the procedure carried for
Ty ® (e®1,). For example, in the case of GR (g® h), a
molecular geometry with non-degenerate electronic spectrum
will be characterized by at most two sets of Euler angles, as
so(4) 2 s0(3) @ so(3) [41].

In summary, we explored the invariant properties of
JT models carrying a continuous group action to obtain

10

symmetry-adapted coordinates, which fully take advantage
of the high-symmetry of these systems. As we have shown,
these coordinates are directly related to the decomposition
of the JT active vibrational motion into pseudorotational
and radial. Pseudorotation preserves the adiabatic elec-
tronic spectrum, while radial motion nontrivially modifies
the latter. Therefore, the APES can be reduced into an orbit
space, where each point (orbit) corresponds to a set of JT
distortions with equal electronic spectrum. Motion on the
internal space of an orbit is generated by pseudoangular
momentum which is conserved for the models discussed
here. Nonetheless, weak symmetry-breaking effects (see
section 3.4) can be treated readily with perturbation theory.
Thus, this analysis provides significant simplification of
the dynamical JT problem, as the orbit space has a much
smaller number of degrees of freedom than the vibrational
configuration space.

3.2. APES troughs and higher-energy orbits

In this subsection, we explore further properties of JT models
to classify their troughs and higher-energy orbits according to
the qualitatively distinct splittings of the corresponding adia-
batic electronic multiplets. In section 3.2.1, we show that the
orbit corresponding to the space of electronic ground-state
minima of all JT models with maximal continuous symme-
tries satisfy a simple condition, where the electronic ground-
state is non-degenerate, but all other excited-states have equal
energy. This result is utilized in section 3.2.2, where we prove
that the ground-state trough of each spinless (fermionic) JT
model with continuous symmetries is topologically equiva-
lent to a real (quaternionic) projective space. Such equiva-
lence is fundamental for the discussion of the Berry phase in
section 3.3. We also provide comments on the properties of
higher-energy orbits in section 3.2.3.

3.2.1. Ground-state trough for JT models with maximal
continuous symmetries. Here we generalize an argument
of O’Brien [50] to show that for spinless JT models with
maximal continuous symmetries, the equilibrium molecular
geometries live in the SO(N) orbit O with adiabatic electronic
spectrum given by

spec | Hir(Q)| = {+(Q).x(Q). ..~ (N — 1)x(Q)}.
Q< 0,x(Q) >0.

where N is the dimensionality of the
Hilbert space.

Suppose the vibrational states live in the A irrep of a point
group S, and let the adiabatic electronic ground-state and its
corresponding JT APES be denoted by |1/(Q)) and V() (Q),

respectively. The latter has contributions from the JT stabi-

(26)

system’s electronic

lization energy E}g) (Q) and the harmonic potential energy
kyQ?/2,i.e.

v Q) = EY(Q) + %kAQz, @7



J. Phys.: Condens. Matter 30 (2018) 333001

Topical Review

= inf Hyr(Q). Equilibrium molecular geom-

where Ej(g) Q)
etries Q satisfy

(Vo) (o =0,

> 50800x (Vou Vo, V) (Q0) >0, 28)
ij
where §Qx; = (Q — Qo) ;- Using equation (27), the first con-
dition can be restated as
8E(O)
i )’ = kA (Qo)ax, YA € {12 A} (29)
90

Q=Qo

By the continuous symmetry assumption there is a continu-
ous set of solutions to the above when Q # 0, all of which
are related by rotation of the vibrational displacements via an
SO(N) action on R4,

Let a basis for linearly independent traceless symmetric
electronic tensor operators be denoted by M . Then, ﬁJT(Q)
can be expressed by

[A]

=Fy ZMA,\QAA~

A=1

Hi1(Q) (30)

The presence of SO(N) symmetry implies the existence of a
choice of electronic states and vibrational coordinates such
that, N — 1 of the matrices M) are diagonal (which may be
taken as the Cartan subalgebra discussed in sections 2 and 3),
while the rest are symmetric with only two non-vanishing (off-
diagonal) elements [63]. A general element of the former and
latter sets will be called D) and O, respectively. The diagonal
matrices can be parametrized in the following manner [63]:

D, ={1,-1,

0,...0},D, = ,—2,0,..0}, ...

1
%{1,1

2
{1.1, ..

Dy_1 = N

,—N+1}, 31

N-—-1)
where each set contains the entries of the corresponding
diagonal matrix. We take the entries of the O, to be equal
to —1. For instance, the matrices of equation (19) can be put
in exactly this form by the mapping Vj — (2/v/3)Vs. We
expect Dy_; to dictate the splitting of the JT degeneracy at
the electronic ground-state minima, since a molecular dist-
ortion along the direction corresponding to Dy_; maximally
stabilizes the electronic ground-state at the expense of desta-
bilization of all higher-energy states. In fact, this insight
agrees with Liehr’s minimax conjecture [64, 65], which
was later generalized and denoted epikernel principle by
Ceulemans [18, 66, 67]. This states that the extrema of the
JT ground-state APES are likely to be encountered in regions
of the vibrational configuration space which preserve a large
subgroup of the symmetry group at Q = 0. The maximal
subgroup of SO(N) is SO(N — 1). The latter is indeed pre-
served under a molecular distortion along the displacement
Qn—1 corresponding to the JT splitting defined by Dy_;.
To see this, note that Dy_; has N — | degenerate eigenval-
ues. Hence, it is invariant with respect to SO(N — 1) ® 1

1

transformations acting non-trivially only on the degenerate
electronic subspace.

Let May_; = Dy_;, and consider the ground-state JT
APES at Q = Qy_; = 0(0,0,..., 1),

2(N—1)
N
The condition for Qy_ to be an extremum of V(? is satisfied

by

VOQy_)) = —Fa 0+ %kAQZ. (32)

_Fa [2(N—-1)
0= T N
FAN-—1
(QN 1) kA N
‘ F2N+1
VO(Qy_y) = —Ai,i e{1,2,..N—1}, (33)
kn N

where V() (Qy—1) is the generalization of equation (27)
to the degenerate set of excited-states at Qn—1. We will use
second-order perturbation theory to study the behavior of the
JT ground-state APES in a neighborhood of Qy—_; with radius
|6Q| = € — 07 [50]. The Oth-order distorted APES is defined
by

HoQu-1 +0Q) = Hrr(Qu 1) + 5ka (Qu-1 +6Q)°, (34)

while the vibronic perturbation due to infinitesimal motion
6Q can be written as:

H/(5Q) ZFAZ(SQA)\MA)\. (35)
A
Thus, to second-order in perturbation theory the electronic

ground-state APES is given by:

V(O)(QNfl) +kaQn-1-0Q
[A|
ka(6Q)* + Fa > [MaxInndQax
A=l
FA [MAALN
VO(Qu—_1) — VO(Qn_1)

V(O)(QNfl +4Q) =

[A] N—1

22

A=1 i=1

507
(36)
The above can be simplified by using equation (33) to obtain

the relation V©(Qy_;)— V@D (Qy_,) = —2F% /ks, and
equation (31) for [Max]|nn, whence

1
VO (Qu-1) = ka Q00 a + EkA(
N—1

1) 3 s [MAALN
————007] kAZZ N S0RN (3T)
py

1i=

6Q)?
L 2(N
1

where JV(O) (QN—]) = V(O) (QN—I —+ 5Q) — 0) (QN—I)- AS
expected, the first and third terms cancel so that the ground-
state JT APES is given by
n JA N-1
A 2
ll - Z [MAAL'N] 5Q3\,\~
i=1

VOQy-) =75 (38)

>

A=1
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Among the |A| independent JT distortions, only those with
electronic coupling matrix Mu ) containing off-diagonal ele-
ments [M];y = —1 contribute to the second sum of the above
equation. There exists N — 1 such symmetric matrices. Their
contributions to 6V (Qy_;) will be cancelled by the first
term of equation (38). Let M,, denote a matrix in the sub-
set of the symmetric electronic tensor operators M, which
includes all diagonal matrices D, (equation (31)) and the sym-
metric matrices Op with vanishing iN entry. Then, it follows
that

VOQu-1) = 3 5kad0h, (39)
Hence, we find that the SO(N) orbit O (equation (26)) defines
a continuous set of absolute minima for the ground-state JT
APES. This derivation corroborates the intuition that the dis-
placement Qu_; provides maximal stabilization of the elec-
tronic ground-state, while simultaneously giving a proof of
the epikernel principle for vibronic models with continuous

symmetries. Additional discussion of the latter is given in sec-
tions 3.2.3 and 3.4.

3.2.2. Topological equivalence between ground-state troughs
and projective spaces. In this section, we utilize the result
obtained in the previous to demonstrate the topological equiva-
lence (homeomorphism) between the space of minima of the
ground-state APES of JT models with continuous symmetries
and the space of rays (lines) of real (for a spinless JT model)
or quaternionic (in cases where spin—orbit coupling is strong)
finite Hilbert spaces. The equivalence in the bosonic case has
been previously pointed by Ceulemans [18]. In any case, we
provide a derivation for both bosonic and fermionic cases, as
the latter result is a simple generalization of the former. Basi-
cally, we will show that the there exists a bijective relation-
ship between the set of physically inequivalent electronic wave
functions (Kramers doublets), i.e. unrelated by multiplication
by a phase (Kramers pair rotation) in the spinless (fermionic)
case, and the space of molecular geometries which are minima
of the electronic JT APES. Topological equivalence follows
from the bijection and continuity of the maps between the
electronic states (doublets) and the minimal-energy molecular
geometries.

To emphasize the remarkable physical content of the state-
ment we are about to prove, we shall paraphrase the claim. It
ascertains that an arbitrary electronic wave function (Kramers
pair) is guaranteed to be the electronic (Kramers) ground
state at a specific molecular geometry in the minimum energy
trough. Conversely, any molecular geometry in this trough is
associated with a unique ground-state electronic wave function
(Kramers doublet), up to a phase (SU(2) rotation). Notably,
even when all possible electronic wave functions are sam-
pled along the trough, they correspond to the same electronic
energy.

Bosonic troughs. In accordance with the JT theorem, the
adiabatic electronic ground-state of a molecular JT model is
non-degenerate. As explained in the last sections, a continu-
ous set O of global minima of the APES is guaranteed to exist
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in the presence of SO(N) symmetry. In particular, if Qy € O,
then for any Q in O, there exists 7(Q, Qp) € SO(N), such that

Q = T(Q., Qo)Qo. (40)

In what follows, it will be important that at the space of
ground-state minima O, the electronic spectrum is assumed
to be of the form derived in the previous section. The most
obvious implication of this spectrum is that the electronic
Hamiltonian is invariant under unitary transformations of
the electronic Hilbert space that act non-trivially only on the
subspace spanned by the degenerate excited states. In par-
ticular, if |¢0(Q)) (with Q € O) denotes the non-degenerate
electronic ground-state, and U|¢(Q)) = £|¢0(Q)), then
U€ZyxO(N —1)CO(N), and UH;(Q)U™! = Hyr(Q).
The last equation implies that the rotation of the vibrational
configuration space which corresponds to U is the identity
(see section 2 and equations (17) and (18)).

We again follow the convention that the Hilbert space
vectors corresponding to the adiabatic electronic ground-
state at Q # O are written as real linear combinations of (the
diabatic) electronic basis functions defined at the JT center,
{|%1), |2), ...|n) }. Thus, a normalized electronic ground-
state wave function at Qp € O can be expressed as

[0(Qo)) = _ cio(Qo)[¢hi) cio(Qo) € R,

P
N

> cn(Qo) = 1.
i=1

Thus, there exists a mapping of the ground-state trough to the
N — 1-dimensional sphere, Qo — c0(Qo) € SN However,
the electronic ground-state wave function at Qg € O is only
defined modulo a sign. In particular, if |19(Qy)) denotes a
normalized eigenfunction of Hr(Qp) with lowest eigen-
value, then so is —|1p(Qp)). Thus, the mapping O — S¥~!
is only well-defined locally (alternatively, it may be said to
be double-valued). However, the electronic ground-state at
Qo can be defined unambiguously as a rank-one projection
operator [1(Qo)){10(Qo)| € RPY~!. Hence, there exists a
well-defined continuous function mapping the ground-state
trough to the real projective space, ® : O — RPV~! such
that

(41)

©(Qo) = 10(Q0)) (0 (Qo)|- (42)

Suppose Q =T7'Qy,T € SO(N), and let U(T) denote a
representative unitary transformation (e.g. U(7T) may be the
orthogonal transformation with det[U(T)] = 1) carrying the
adiabatic ground-state at Qg to that at Q # Qo,

U(T)[40(Qo)) = [¢o(T~'Qo)).

The map P satisfies the following equivariance condition

®(T7'Qo) = U(T)®(Qo)U~(T).

Thus, ® is a continuous equivariant map of the electronic
ground-state trough to RPY~!. ® is also bijective. To show
that it is injective, we assume ®(Qp) = ©(Q1),Q,Q; € O,
and note that there exists 7 € SO(N), such that Q; = 7~'Qy,

(43)

(44)
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since Qq and Q; belong to the ground-state trough (and thus
must be related by an SO(N) transformation). It follows that

®(Qo) = (7' Qo) (45)
1%0(Q0)) (%0(Qo)| = U(T) (|t0(Q0)) (10(Q0o)|) U (T).
(46)

The last equation is only satisfied if U(T)|v0(Qo)) =
+[10(Qp)), so U(T) acts non-trivially only on the degener-
ate orthogonal subspace to the line spanned by [10(Qp)). In
this case, it follows from the discussion below equation (40)
that U(T)HJT(Q())U_] (T) = H]T(T_]QQ) = H]T(QO). Thus,
T-! acts as the identity matrix on the vibrational configura-
tion space and Q; = Q. For the proof that ¢ is surjective, let
p € RPN~ There exists a neighborhood of p, U, C RP¥~!,
on which a continuous section ¢ : U, — U, x S¥~! may be
defined by

N

S el p) -

i=1

¢(p) (47)

P)+
Let Qo be the configuration in the electronic ground-state
trough for which Hjr is diagonal (i.e. Qp only has a non-
vanishing component in the direction along which Hyr(Qo)
is diagonal (in the diabatic basis)). Then, there exists a lift
of ®(Qy), denoted by |1)9(Qp)), and an SO(N) transformation
U(T,) such that

U(T})[0(Qo)) = [t(T, ' Qo))

where 7), is the SO(N) rotation of the vibrational configura-
tion space corresponding to U(T). This follows from the con-
tinuous symmetry conditions, as is verified by

Hyr(T, ' Qo)lp)+ = Hyr(T, ' Qo) U(T,) |40 (Q

[U(T,)H(Qo)U™(T,)]
= Eo(Qo)[p)+

p)+ = (48)

0)
U(

)
Tp)|10(Qo))
(49)

where we used equation (17). Hence, ¢ is shown to be a
bijective continuous map between compact manifolds (i.e.
between the electronic real projective space and the vibra-
tional configuration space trough). Therefore, it is a homeo-
morphism [68].

Fermionic troughs. In fermionic systems, Kramers degen-
eracy implies the JT distorted electronic ground-state is a dou-
blet|¥0(Qo)) = {]%0(Q0)), T|%0(Qo))} [2]. Each normalized
Kramers pair is only defined modulo multiplication by a unit
quaternion ||¢|| = 1 (or equivalently, an SU(2) action) from
the right (by convention) [53, 69]. Given a definition of N
degenerate Kramers pairs |U;) at the JT center, the ground-
state doublet at Q # 0 may be written as

Ik

where ¢o,,(Q) = ijl Gomi(—10}) + qomaop is a quaternion
(with imaginary units —io; and 2 x 2 identity matrix o rep-
resenting the real generator) [54, 69]. If we require | ¥((Q)) to
be normalized, then

|\IIO q()m qOm(Q) S H’ (50)
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1’

(¥

0(Q)[¥o(Q

Z llg0m(Q
where ||¢||> = det(qTq) = @2 + ¢* + ¢ + ¢ is the quater-
nion norm. It follows that each normalized |¥((Q)) may also
be viewed as a point on the sphere S*V~!.

Let Qg belong to the ground-state trough O. Corresponding
to it there is an infinite number of equivalent ground-state
Kramers pairs related by unit quaternion multiplication,
{|¥0(Qo)) - g} The space of equivalence classes (lines)

(S

{[¥] ~ [¥)if U =T - g|¥, ¥V c HY, g € H* = H - 0}
(52)
of MM defines the quaternionic projective space

HPN-! = HY /H* [69]. A non-degenerate ground-state (in the
quaternionic sense) for all Q € O, implies that there exists
a well-defined map ® between the adiabatic trough O and
HPY—1. It may be explicitly given as

®: O— HP,
©(Qo) = [¥0(Q0))(¥o(Qo)|-

This map is well-defined, since the projection operator
is invariant under a redefinition of the basis, i.e. a gauge
transformation, |W¥) ~ [¥)-q, with g€ H,||q|[*>=1,
as [ W)(¥] = (V) - q) (¢ - (U]) = |9)][q|P(¥] = | @) (L.
Moreover, the assumed continuous invariance under USp(2N)
implies ® satisfies an equivariance condition analogous to that
discussed in the bosonic case,

(T7'Qo) = U(T)®(Qu)U(T),

except now U(T) belongs to USp(2N). ¢ can be shown to
be bijective as in subsection (a). By compactness of O and
HPY=!,® is a homeomorphism; this implies topological
equivalence between the Kramers ground-state trough and
HPV .

We conclude this subsection by noting that the proved
equivalence between projective spaces and the space of
minima of JT systems with continuous symmetries implies a
non-trivial topological phase for the electronic ground-state of
these models (see section 3.3 and [70]). The Berry phase of JT
models is robust with respect to moderate symmetry-breaking
perturbations, and has observable consequences (see e.g.
[13]). Thus, the Lie group condition invariance is not strictly
required for the low-energy electronic APES to have the pro-
jective character proved above.

(53)

(54)

3.2.3. Generic orbits. The prior subsections provided a
detailed description of the electronic ground-state equilib-
rium orbit of JT models carrying a maximal Lie group action.
Here we will utilize the continuous symmetry property of the
studied models to obtain qualitative properties of their higher-
energy orbits.

Let us consider first the spinless TRI case. The equivalence
between rotations of the vibrational configuration space and
special orthogonal transformations of the electronic basis
implies the dimensionality of the space of JT distorted struc-
tures with a given adiabatic electronic spectrum is equal to or
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smaller than the dimensionality of SO(N), N = |T'|. It may be
smaller because there may be matrices in SO(N) which com-
mute with Hyr(Q), in which case their action on the electronic
Hamiltonian is equivalent to the identity matrix action on the
vibrational configuration space, whence it follows that the
nuclear configuration of the system remains invariant (equa-
tion (17)).

The subspace of so(N) containing all matrices commuting
with Hyr(Q) is called the centralizer of Hyr(Q). We denote it

by N(Q),
N(Q) = {M € so(N)|[M.Hir(Q)] =0}.  (55)

It can be checked that A(Q) is a Lie subalgebra of so(N) by
applying the Jacobi identity,

[Hyr, [N1,No]] = —[Na, [Hyr, Ni]| — [Ny, [N2, Hyr]] = 0,
VNI,N, € N.

Let [N (Q)| denote the dimensionality of N(Q). Then, the
number of linearly independent JT distortions with the same
adiabatic electronic spectrum {E(Q)}, which we denote by

|E(Q)], is given by
[E(Q)] = lso(N)| = IN(Q)]. (57)

Thus, the dimensionality of the space of molecular configura-
tions with a given set of electronic energies depends on the
number of degenerate eigenstates in the JT Hamiltonian when
Q # 0. This happens because a basis of so(N) can always be
constructed from antisymmetric matrices with only two non-
vanishing entries [41], so that a diagonal matrix commutes
with a basis vector of so(N) iff the diagonal matrix elements
which multiply the non-vanishing elements of the antisym-
metric so(N) matrices are equal.

As a simple example, we now apply equation (57) to obtain
the number of dimensions of the ground-state troughs of JT
models with continuous symmetries. It is instructive to red-
erive this result, for the same method can be easily adapted
to infer the properties of higher-energy orbits. But, first, we
need the dimensionality of the centralizer of Q at the trough,
i.e.|AV(Q)]. It may be quickly obtained by making an assump-
tion on the electronic spectrum at extremal regions of the JT
APES, based on the epikernel principle [18, 66]. According to
this, the stationary points of the ground-state APES are likely
to be encountered in configuration space regions where the
symmetry breaking of the molecular geometry is minimal. In
the presence of the Lie group action discussed in this paper,
this principle can be understood by considering the follow-
ing. Q = 0 corresponds to a maximally symmetric molecular
structure. All corresponding electronic eigenvalues are equal.
For any Q # 0, the non-totally symmetric character of JT dist-
ortions implies the sum of the electronic eigenvalues A;(Q)
remains zero, i.e.

(56)

(58)

A variety of possibilities exist for the splitting of the eigen-
values when Q # 0, i.e. for the number of distinct degener-
ate multiplets which persist when the molecule undergoing
JT effect is distorted along a given direction. We say that
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the molecular symmetry at Q =0 is minimally broken
at Qp if NQ)=ux, Vi €{1,2,..,N—1},x>0 and
Av(Q) = —(N — 1)x. This case is typical for the stationary
points of JT systems with continuous symmetries [30, 35,
49, 50]. It implies maximal stabilization of the adiabatic elec-
tronic ground-state, since all excited-states have their energy
increased relative to the degenerate multiplet energy at Q = 0
(we proved in see section 3.2.1 that the global minima of the
JT models discussed here indeed satisfy this condition).

Based on the prior discussion, we now assume that for a
minimal energy configuration Qg of the JT system with con-
tinuous symmetry, only the lowest electronic energy eigen-
value is non-degenerate. The remaining N — 1 are degenerate
electronic excited states. Hence, a basis for N (Qy) consists of
all matrices in so(N) which mix the N — 1 degenerate excited
states at Q among themselves, but leave the electronic ground-
state invariant. This corresponds to the number of ways of
arranging (N — 1) distinct indices i € {1,2...N — 1} into
pairs ij with i # j, i.e. (N — 1)(N — 2)/2. Hence, the dimen-
sionality of the SO(N)-invariant adiabatic electronic ground-
state trough is equal to

E(Q0)] = N(N; ) (N 1)2(1\172)

which, of course, agrees with the arguments of section 3.2.1.
To make a connection with the topological equivalence
between electronic ground state troughs and real projective
space proved in section 3.2.2, note that this result may be writ-
ten equivalently as:

=N-—

1, (59)

[E(Qo)| = [SO(N)/SO(N — 1)] = s~ = [RP"™'[. (60)

The properties of higher-energy orbits can also be obtained
with relative ease. The T ® (e @ f,) model with SO(3) invari-
ance provides again a transparent example. Recall that this
system has a two-dimensional orbit space, with each point
labeled by O(ry, ra) (section 3.1), where O(ry,r;) is a con-
tinuous subspace of the #, & e vibrational configuration space
where the ground and excited-state JT APESs are flat. For
a given r1(Q) = |Q|* # 0 the epikernel principle favors the
minimal energy trough to be the 2D orbit O(Q, 1) by the fol-
lowing argument: the adiabatic electronic spectra for geom-
etries in O(Q, 1) is given by

spec[H(0(Q, 1))] = {x,x, —2x},
x=x(Q0) >0,0 €0(0,1) ©61)
while in O(Q, r, # +1) the JT Hamiltonian eigenvalues are

spec[H(0(Q, 1)) = {x'.y', —x" —y'},
X =x(0.r2) >0, x>y =y(0.n).rn# £l (g

Because y’ is intermediate between the lowest and maximal
eigenvalues, its stabilization relative to the highest-energy
eigenvalue of the spectrum at O(Q,1) comes at the cost
of an increased electronic ground-state energy (see equa-
tion (22)). Hence, the ground-state trough is O(Qy,1), where
Qo = Qo(w, F,) minimizes the ground-state energy [3, 50]. In
section 3.1 we showed that |10(Qy,1)l = 2 in accordance with
application of equation (59). Note that because permutation
of the eigenvalues can be effected by an SO(3) rotation, the
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assumptions made regarding the order of the eigenvalues do
not imply loss of generality.

For any other model and type of degeneracy splitting
of Hyr(Q), we can apply the same methods and obtain the
dimensionality and topology of the subspaces of the JT dis-
torted structures with equal adiabatic electronic spectrum.
For instance, while from previous arguments the orbit of the
SO(5)-invariant model of H ® (g @ 2h) with lowest ground-
state energy is clearly 4D, different types of orbits (with
higher electronic ground-state energies) exist with distinct
dimensionalities in other parts of the configuration space, e.g.
molecular geometries with a non-degenerate ground-state and
two degenerate doublets [36] live in 8D orbits according to

SO(5)
SO(2) x SO(2)

[E(Q)

‘:10—(1—1—1):8, (63)

where we have used the fact that SO(2) is one-dimensional,
and that each degenerate doublet defines an invariant elec-
tronic SO(2) subgroup of SO(5), which in turn corresponds
to pseudorotational motion in a 2D plane of the vibrational
configuration space as explained in sections 2 and 3. Note that
it follows from equation (57) that the maximal dimension of
an orbit is equal to the dimensionality of SO(N). This happens
when |[N(Q)| = 0, i.e. in those orbits where all eigenvalues
of Hyr(Q) are non-degenerate (see section 3.1 for the explicit
verification in the case of the SO(3)-invariant T ® (e @ 1,)
model).

The above approach can be quickly adapted to models with
strong spin—orbit coupling. The main difference is that the
corresponding molecular Hamiltonians are globally invariant
under the action of the unitary symplectic group USp(2N) on
spinorial and vibrational degrees of freedom. Further, inde-
pendent USp(2) =~ SU(2) actions on each Kramers pair com-
mute with the Hamiltonian (since they amount to a change of
basis in a Kramers pair subspace). It follows that the number
of dimensions of the ground-state trough of each spinorial JT
model is given by:

BQu)| = | g )
p(2N —2) x USp(2)
[E(Qo)] =N(2N+1)—=(N—-1)2N —1) =3 =4(N - 1),
(64)
where we used that USp(2N) is N(2N + 1)-dimensional [41].
As expected, this result is in agreement with previous literature
onthe I's ® (e @ 1) (N=2)[30] and 'y ® (g ® 2h) (N = 3)
[71] JT problems. The dimensionality of fermionic ground-
state troughs bears a simple relationship to the spinless cases
(see equation (59)). It is a consequence of the quaternionic
structure of the former. As seen in section 3.2.2, while the
spinless trough is topologically equivalent to a real projective
space [18], fermionic time-reversal symmetry implies topo-
logical equivalence of the Kramer’s trough to the quaterni-
onic projective space HPY~! [69], the space of lines of HY.
In the case of the icosahedral T'g ® (g @ 2h), another pos-
sibility for the JT splitting is given by choosing Q such that
all three Kramers’ pairs are non-degenerate. Then, the orbit
space of the USp(6) action is 12-dimensional since it can be
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parametrized by USp(6)/USp(2) x USp(2) x USp(2). Here
we find an interesting parallel between I'g ® (g @ 2h) and
T ® (e @ 1,): in both cases the orbit space is two-dimensional.
The ground-state trough belongs to a 2D orbitin T ® (e ® 1),
while it lives on an 8D orbit in the case of I'g ® (g & 2h) (sec-
tion 3.2). Except for a set of measure zero, higher-energy
orbits of T® (e ® 1) and T'9 ® (g ® 2h) are 3D and 12D,
respectively. Thus, the number of dimensions of the orbits
of I'y ® (g @ 2h) is always a factor of 4 larger than those of
T ® (e @ 1), which generalizes equation (64).

3.3. Geometric phase and ground-state degeneracy

The occurrence of the geometric phase [72] in JT and related
models has a long history [3, 11, 19, 20, 50, 52, 56, 73-77].
It is highly relevant in the strong vibronic coupling limit,
where F3 /(2ka) > 1and the adiabatic limit for the electronic
ground-state nuclear dynamics is a very good approximation.
In particular, it provides an unambiguous explanation for the
non-generic feature (in finite physical systems) of vibronic
ground-state degeneracy in some JT models [3, 49]. In this
section, we discuss the Berry phases of JT models carrying a
Lie group action.

The abelian Berry phase [72] characterizes the twisting
of a family of 1D complex vector spaces parametrized by
a configuration space C, i.e. a line bundle. It can be com-
puted in a variety of ways [72, 74, 78]. The most significant
aspect to our discussion is that for time-reversal invariant
bosonic systems, the adiabatic geometric phase belongs to
O(1) =7Z/27Z = {+1,—1}. This is a consequence of the
existence of a real structure in the complex Hilbert line bundle
when T2 = 1. In other words, a real locally continuous choice
of eigenstates of a parameter-dependent Hamiltonian may be
constructed for each point of the parameter space, so only £1
Berry phases are allowed.

In the case of fermionic systems Kramers’ degeneracy
implies the existence of pairs of degenerate states. A nor-
malized pair is only defined modulo an SU(2) transformation,
or equivalently, quaternion multiplication [54, 69]. As a result,
the geometric phase of the ground-state of a gapped fermionic
system is a (non-abelian) unit quaternion (or SU(2) matrix in
the complex representation) [54, 69, 79].

JT models carrying a Lie group action are particularly sus-
ceptible to having relevant Berry phase effects. This happens
because, as described in the previous subsections, the vibra-
tional configuration space can be decomposed into topologi-
cally non-trivial orbits Og of a Lie group G, which may admit
twisted families of electronic Hilbert spaces, due to the exist-
ence of level crossing at the JT center.

3.3.1. Bosonic models. For spinless systems, the electronic
ground-state of I:I_]T(Q), with Q # 0, is non-degenerate in
the minimal-energy JT trough. It is homeomorphic to the
space of lines in the N-dimensional real vector space, the real
projective space RPV~! (see section 3.2.2). The sphere SV~
is a double cover of RPN~!, i.e. RPN~! =2 SV~1/7Z,. There-
fore, if N > 2, RPVN—! has two equivalence classes of loops,
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as m (RPV~!) = Z, (RP' is isomorphic to S', which has its
loop classes distinguished by an integer, the winding num-
ber, so m(S!) = Z) [58]. The identity is given by the class
of closed curves on S¥! (as it is simply-connected when
N > 2). Conversely, the non-trivial element of 7 (RP¥~!)
can be represented by an open continuous curve on SV~! con-
necting antipodal points (these correspond to the same ele-
ment in RPV—1). The product of two non-trivial (odd) loops
(defined by performing each loop after the other [68]) gives a
trivial one, but a trivial (even) path followed by a non-trivial
is equivalent to the latter. Loops in the even class do not give
a Berry phase for any quantum state since they can be con-
tinuously deformed into the identity path, which obviously,
has no Berry phase. Conversely, the odd loops of RPN ! may
give rise to a nontrivial geometric phase for a non-degenerate
adiabatic electronic state. In particular, this will happen if the
line bundle associated to the non-degenerate electronic state
is twisted, i.e. if a continuous global family of real adiabatic
electronic wave functions Q +— 1)(Q) does not exist. In the
case of RP!, we may group all loops with even winding num-
ber in the trivial class, since they give rise to no geometric
phase. Odd loops correspond to those with odd winding num-
ber. They give rise to a Berry phase in the case of the £ ® e
model, as illustrated by figure 5.

If a Berry phase exists for a given real adiabatic electronic
state, the vibrational wave functions are required to satisfy
antiperiodic boundary conditions for the molecular wave
function to be single-valued. These cannot be satisfied by
vibrational wave functions transforming in the totally sym-
metric irrep of SO(N), for they are nodeless, i.e. even under
inversion [80] (e.g. in SO(3) the totally symmetric irrep trans-
forms like the s orbital). All other irreps of SO(N) are degen-
erate. Therefore, the vibronic ground-state will be degenerate
whenever the adiabatic electronic ground-state admits a Berry
phase. In particular, it will belong to the (fundamental) vec-
tor irrep of SO(N) when N > 2 [49, 50, 52, 56, 75]. This is
the case, for the Schrodinger equation describing the pseudo-
rotational motion in the adiabatic electronic ground-state
trough has the same form as that for particle motion on an
N — 1-dimensional sphere (with the equivalence of antipodal
points under the mapping to the real projective space enforced
by a boundary condition), for which the set of lowest-energy
eigenstates that are odd under inversion about Q = 0 belongs
to the vector irrep of SO(N) [49, 50, 52, 75].

The above picture has been shown to break down in the
presence of warping of the ground-state JT APES. In a variety
of examples [19, 49, 81, 82], it was found that the inclusion
of sufficiently strong anisotropy in the ground-state APES
resulted in the formation of a set of esis which are circulated
by low-energy vibrational tunneling paths on the electronic
ground-state APES. This, in turn, changes the Berry phase of
the adiabatic electronic states, and modifies the symmetry of
the vibronic ground-state. Thus, a rearrangement of vibronic
energy levels (ground-state crossover) is seen as a function
of quadratic vibronic coupling, or of difference in JT stabi-
lization energies for vibrational modes in different irreps of
the molecular point group at Q = 0. Given the change in the
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symmetry and Berry phase of the electronic ground-state,
this phenomenon is akin to the topological phase transitions
undergone by topological insulators under variation of mat-
erial properties [83, 84].

For JT systems with maximal continuous invariance under
the action of a Lie group, no such ground-state crossover can
happen. This has been verified for each individual case with
T2 = 1 of table 1 [11, 49, 50, 52, 75], and it has been tradition-
ally understood in the following way: for any Q in the adi-
abatic electronic ground-state trough there exists a basis for
which the N-dimensional electronic JT Hamiltonian is diago-
nal with eigenvalues {x,x,...,x,—(N — 1)x}, where x > 0.
A closed path on the ground-state trough can be parametrized
by SO(N) loops on the vibrational configuration space. By
explicit computation of the phase acquired by the adiabatic
ground-state upon a non-trivial loop of RPY~Lit has been
shown that it necessarily changes sign [11, 49, 50, 52, 75].
Because the existence and properties of the trough are inde-
pendent of the reduced vibronic coupling constant and vibra-
tional frequency, the Berry phase in the spinless models of
table 1 is robust with respect to both changes in the fundamen-
tal parameters of these models which preserve their funda-
mental symmetry, and perturbations that break the symmetry,
but do not induce new ground-state esis in low-energy regions
of the JT APES. More recently, we employed the theory
described here to show that the Berry phase and the associ-
ated vibronic ground-state degeneracy of the JT models here
discussed follow straightforwardly from the results of sec-
tions 3.2.1 and 3.2.2 without any lengthy computation [70].
Briefly, the argument relies on the fact that the trough spec-
trum (equation (26)) implies that the electronic ground-state
at any geometry in this subspace can be mapped onto the nor-
mal vector of a sphere. This sphere provides a double-valued
representation of the vibrational configuration space (which is
topologically equivalent to RPY as proved in section 3.2.2),
such that its antipodal points correspond to the same trough
geometry. Parallel transport of a normal vector at a point to its
antipodal on the sphere reverses its direction, hence implying
a —1 Berry phase for the electronic ground-state [70].

3.3.2. Fermionic models. In models with strong spin—orbit
coupling, Hyr(Q) remains degenerate even when Q # 0, but
this ceases to be true in the quaternionic representation of the
corresponding complex Hilbert space (where a quantum state
and its time-reversal partner define a single vector) [2, 54]. As
derived in section 3.2.3, in spinorial models with continuous
symmetries, the ground-state trough is homeomorphic to the
quaternionic projective space HPY~! = HM/H — {0}. The
normalized ground-state Kramers’ doublet is only defined
modulo a local su(2) = usp(2) =2 H transformation. The
impossibility of assigning a global continuous parametriza-
tion of the ground-state Kramers’ doublet for all Q € HPY~!
implies the existence of a non-abelian (or, in this case, a qua-
ternionic) Berry phase [79, 85], as it is transported according
to the adiabatic theorem.

To each ground-state Kramers pair, there corresponds
a quaternionic line bundle (a family of quaternion vector
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spaces) over the vibrational configuration space, which com-
pletely characterizes the corresponding allowed nonabelian
Berry phases. While the classification of quaternionic line
bundles over HP" for general N is unknown, solutions exist
for the JT models of interest to our study, (a) I's ® (e @ 1,)
(N=1) [30] and (b) [’y ® (g ® 2h) (N =2) [71]. In case (a)
the spinorial irreps can be embedded into the J = 3/2 irrep of
SU(2), and the active JT modes are quadrupolar (they form a
basis for the J = 2 irrep of SU(2), see section 3.1) [55]. The
corresponding spinor JT Hamiltonian is equivalent to that
thoroughly investigated by Avron et al [54]. They showed that
only two topologically distinct quaternionic line bundles exist
for this model, with second Chern number [58] equal to £1
[85]. The non-abelian Berry phase corresponds to an SU(2)
transformation, as mentioned. This implies a much richer set
of behaviors for Kramers’ partners undergoing cyclic adiaba-
tic evolution as the nuclear geometry pseudorotates, includ-
ing e.g. the possibility of electronic state population control
[34, 54, 79].

The spinorial Hamiltonian of T'g ® (g @ 2h) has only
recently been constructed [38]. The electronic states form
a basis for the J = 5/2 irrep of SU(2), while the JT modes
g @ h can be embedded into the hexadecapolar (J = 4) irrep
of SU(2), and the remaining / vibrations are quadrupolar
(J = 2). The extrema of the ground-state APES generate an
8D trough homeomorphic to the quaternionic projective
plane HP?. Unfortunately, while the isomorphism HP' = §*
allows for a simplified analytical treatment of I's ® (e @ 1),
the properties of HP? are much more complex (though the
classification of its quaternionic line bundles has also been
accomplished [86]). For instance, the second Chern class [85]
may be utilized to classify its 4D submanifolds, but it is not
sufficient to uniquely identify the quaternionic line bundles
over HP? (in contrast with the HP' case, for which all qua-
ternionic line bundles are completely characterized by the
second Chern class) [85]. A simpler situation arises if the
hexadecapolar distortions are disallowed. Then, the spinor JT
Hamiltonian is given by I'g ® A, which is isomorphic to that
of aJ = 5/2 spin coupled to an external quadrupole field . The
topological classification of the quaternionic line bundles over
the space of Hamiltonians of this class was given in [54].

3.4. Symmetry breaking

In this subsection we provide brief comments on the signif-
icance of the properties of JT models carrying a Lie group
action when their continuous symmetry is broken.

We have already noted that the APESs become warped in
the presence of higher-order vibronic couplings and/or aniso-
tropic JT stabilization energies/vibrational frequencies in the
multimode problem. By the epikernel principle [18, 67], while
a non-degenerate ground-state results from the static JT sym-
metry breaking, a subset of the remaining APESs are likely to
be degenerate at equilibrium positions of the distorted system.
The possible epikernels represent different ways to break the
adiabatic electronic state degeneracy at the JT center, while
preserving some non-trivial subgroup of the point group
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defining the JT model. This was explored in previous subsec-
tions. We also showed that radial and angular coordinates can
be employed to characterize the splitting of the Lie group-
invariant JT APES. In particular, each set of radial displace-
ments specifies an orbit, the internal space of which includes
molecular structures with the same electronic spectrum, that
can interconvert via pseudorotation. There exists as many
distinct radial coordinates as linearly independent ways to
split the degenerate multiplet. For example, in T ® (e @ 1),
the radial coordinates specify whether a given nuclear geom-
etry has a degenerate electronic subspace (see figure 6). The
highest-rank epikernel corresponds to molecular deforma-
tions along coordinates which remove the degeneracy at the
JT center minimally (e.g. by letting N — 1 of the branches of
the JT PES to remain degenerate). On the other hand, pseudo-
rotational motion provides distortions which continuously
map a given epikernel distortion into another that is equiva-
lent. However, in a warped APES, pseudorotation is hindered,
due to the formation of energetic barriers between the discrete
set of minima. Yet, as shown by Ceulemans [18], coordinates
adapted to a continuous group action provide a simple descrip-
tion of the set of extrema of the warped APES. Thus, radial
and pseudoangular variables are also useful when the Lie
group actions discussed here cease to leave the Hamiltonian
invariant. In particular, under weak symmetry-breaking per-
turbations, pseudorotational motion will remain nearly free,
while non-trivial JT motion will be to a good approximation
limited to the radial motion.

4. JT models with continuous symmetries
and generic conical intersections

In this section we demonstrate a common feature of molecu-
lar accidental cis [23, 87, 88] and JT systems with maximal
continuous symmetries. The latter satisfy the following con-
dition: the number of JT active displacements is equal to the
minimal required for the intersection of a given number of
APESs to happen at isolated points of the configuration space
(without any assumed symmetry). We show below there exists
a correspondence between accidental cis and the aforemen-
tioned JT systems with electronic multiplets consisting of 2-5
intersecting states (the SO(2), SO(3), SO(4), and SO(5) mod-
els) when spin—orbit coupling is irrelevant, and 4 and 6 states
(the USp(4) and USp(6) models) when spin—orbit coupling is
strong. While in this section we rederive a well-known result
on the codimension of parameter spaces admitting accidental
cis [89], this is done in a way that emphasizes the similarity
between JT models with Lie group invariance and the behav-
ior of a molecular system in the neighborhood of accidental
cis. The significance of this result is outlined below.

Let us start with the case where T?> = 1: suppose N
states are degenerate at a point Q = 0, Q € RP¥, where Py
is equal to the minimum number of parameters which need
to be tuned to generate an N-state conical intersection. Let
E (0) = E»(0) = ... = Ex(0) = 0. Then, in a small neighbor-
hood around the conical intersection,
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Py
H(Q) =) oM, (65)
i=I
where we assume the M; are traceless symmetric matrices.
This implies iM; belongs to the su(N) Lie algebra, which has
dimensionality lsu(N)l = N*> — 1 [63].

We can always choose a basis for su(N) where
N(N +1)/2 — 1 basis vectors are real-symmetric matrices
while the remaining N(N — 1)/2 are real-antisymmetric [63].
The latter provide an embedding of so(N) into su(N). The
M; do not belong to so(N). Therefore, the number of inde-
pendent matrices which can be employed in the lineariza-
tion of H(Q) around the conical intersection point is equal to
NN +1)/2 - 1,ie.

N?+N -2
N = ) .
Note Py =0,P, =2,P3; =5,P4 =9, P5s = 14. These are the
number of free parameters which are required to vanish in
order to have isolated degeneracies of 1,2,3,4 and 5 states
in generic (asymmetric) systems. They agree with the num-
ber of JT active vibrational modes in each of the models of
table 1.

The case where 72> = —1 requires the electronic Hilbert
space to be even-dimensional. Thus, the possible iH(Q)
form a subspace of the su(2N) Lie algebra. The latter has
4N? — 1 generators. However, the matrices in the subspace
usp(2N) C su(2N) may not be used as building blocks of
iH(Q), since H(Q) is required to be hermitian. Hence, the
dimensionality of the space of fermionic TRI Hamiltonians
is given by

Py = |su(2N)| — Jusp(2N)| = N(2N — 1) — 1.

(66)

(67)

For N=2 and 3 we obtain the number of coordi-
nates involved in the JT distortions of I's ® (e ® ;) and
Iy ® (g @ 2h), respectively.

Just like E ® e is a paradigmatic model for cis of two states
in the presence of time-reversal symmetry and no spin—orbit
coupling [11, 87, 90], we can see that the remaining JT models
with continuous symmetries could also be deemed as canoni-
cal models of generic behavior near cis in cases where more
than two branches of an APES intersect. They are indeed the
simplest models where these appear.

The perspectives introduced by this view have at least two
reasons for being relevant to the treatment of dynamics near
generic cis: (i) from a practical perspective the APES near
a level crossing shows the same simplifying features as the
JT models carrying a Lie group action, e.g. pseudorotational
directions along which the electronic spectrum is invariant;
(ii) from a conceptual point of view, molecular distortions
which lift the degeneracy at cis can be assigned a qualita-
tive meaning based on the correspondence with a JT model,
e.g. motions near a triplet conical intersection can be classi-
fied in terms of quadrupoles, according to their effects on the
electronic spectrum and the analogy with the SO(3)-invariant
T ® (e ® ;) model.
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5. Epilogue

We have reviewed the theory of JT models with continu-
ous symmetries. In particular, (1) we have introduced an
alternative classification of these systems by showing that
the space of electronic Hamiltonians of certain JT models
invariant under a Lie group action on electronic and vibra-
tional degrees of freedom can be identified with symmet-
ric spaces in the orthogonal SU(N)/SO(N) and symplectic
classes SU(2N)/USp(2N) in the spinless and fermionic cases,
respectively; (ii) employed the invariance properties of the
symmetric spaces to substantially reduce the complexity of
the adiabatic electronic spectra of these high-dimensional
models, by showing they can be decomposed into orbit
spaces of SO(N) or USp(2N) (in the spinless and fermionic
models, respectively), and identified motion within each
orbit with molecular pseudorotation; (iii) explained the rela-
tionship between these constructions and the abelian and
non-abelian Berry phases of these models; (iv) discussed the
qualitative significance of the studied systems when the con-
tinuous symmetry is broken, i.e. for more realistic systems,
and (v) demonstrated that a common characteristic of the
investigated systems is that they include the minimal number
of parameters required to induce accidental cis involving up
to 5 states of spinless models, and 6 states when spin—orbit
coupling is strong. Thus, their generic features are expected
to be present in systems exhibiting cis involving many states,
but no molecular symmetry. We have also provided novel der-
ivations of the topological equivalence between the ground-
state trough of JT models with continuous symmetries and
the real and quaternionic projective spaces in the spinless
and fermionic models, respectively, and proved that the elec-
tronic adiabatic spectrum of the continuous set of minima of
all JT models with maximal continuous symmetries desta-
bilizes all states, except for the lowest which is maximally
stabilized. Several questions remain to be explored, e.g. we
have avoided any discussion related to non-adiabatic dynam-
ics [91, 92], even though the corresponding couplings can be
determined straightforwardly for the systems studied with
the techniques discussed here. Additionally, this review pro-
vides a starting point for the investigation of the effects of
the various sources of anisotropy and anharmonicity on the
ideal JT problems here investigated. From the point of view
of condensed matter physics, models with vibronic continu-
ous symmetries undoubtedly provide the simplest platform
for studies of systems with coupling between charge, orbital
and phonon order. Importantly, while we focused on the
case of isolated JT centers of relevance to solid-state and
molecular physics, the vibronic JT Hamiltonians discussed
here may also find realization in the fields of cold atoms and
photonics.
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