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ABSTRACT

Advances in vision processing have ignited a proliferation of mo-
bile vision applications, including augmented reality. However,
limited by the inability to rapidly reconfigure sensor operation for
performance-efficiency tradeoffs, high power consumption causes
vision applications to drain the device’s battery. To explore the po-
tential impact of enabling rapid reconfiguration, we use a case study
around marker-based pose estimation to understand the relation-
ship between image frame resolution, task accuracy, and energy
efficiency. Our case study motivates that to balance energy effi-
ciency and task accuracy, the application needs to dynamically and
frequently reconfigure sensor resolution.

To explore the latency bottlenecks to sensor resolution recon-
figuration, we define and profile the end-to-end reconfiguration
latency and frame-to-frame latency of changing capture resolution
on a Google LG Nexus 5X device. We identify three major sources
of sensor resolution reconfiguration latency in current Android
systems: (i) sequential configuration patterns, (ii) expensive system
calls, and (iii) imaging pipeline delay. Based on our intuitions, we
propose a redesign of the Android camera system to mitigate the
sources of latency. Enabling smooth transitions between sensor con-
figurations will unlock new classes of adaptive-resolution vision
applications.
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1 INTRODUCTION

The accuracy and performance of vision processing on mobile de-
vices promises a proliferation of vision-powered possibilities. For
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(a) At 1860x2480 resolution,
estimated pose has L2-norm
translation error 0.87 cm, ro-
tation error 0.82°.

(b) At 720x960 resolution, es-
timated pose has L2-norm
translation error 1.15 cm, ro-
tation error 8.51°.

Figure 1: Low resolution frames cause slight errors in cam-
era pose estimation, creating visible gaps in geometry.

example, real-time face recognition can identify faces to track in-
terpersonal interactions [2], object recognition can observe road
signs for navigation [4], and augmented reality (AR) can integrate
virtual objects with the physical world for immersive user expe-
riences. Combined with a wide adoption of strong computational
and sensing hardware on mobile devices, the trend of algorithmic
improvements for computer vision has led companies to issue broad
development support through computer vision frameworks, e.g.,
Google Mobile Vision, OpenCV and AR frameworks, e.g., Apple
ARKit, Google ARCore, PTC Vuforia.

However, the energy efficiency of vision applications is severely
limited by the inability to rapidly configure sensor operation. Pre-
vious research has focused on improving the energy-efficiency of
processing image data, such as bypassing traditional image signal
processing stages [3], pushing neural network processing into the
analog domain of the image sensor [11], and offloading sensor pro-
cessing to the cloud [15]. However, it is well understood that the
power consumption of capturing sensor data dominates system
power consumption (the SONY IMX377 image sensor draws over
39% of Nexus 5X system power consumption [5]) and can vary
significantly with spatiotemporal resolution [12].

Indeed, enabling an ability to tune a sensor’s spatial resolution to
downsample a field-of-view or focus on regions-of-interest would
allow a system to balance energy efficiency and image fidelity for
visual tasks [11]. For example, an application could briefly capture
high resolution image frames to locate distant objects with high
precision, while capturing low-resolution frames to display nearby
information to the user with high energy efficiency. Unfortunately,
the act of reconfiguring sensor operation for different resolutions
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is accompanied by long latency, dramatically dropping applica-
tion performance as the operating system and sensor hardware
coordinate to reconfigure sensor operation.

We define two types of sensor reconfiguration latency that de-
tract from vision application performance in distinct ways. End-
to-end reconfiguration latency is the time between an applica-
tion’s request to change configuration and the time the application
receives a full frame of the new configuration. An increase in end-
to-end latency creates an inflexibility to shift between modes of
operation. An average end-to-end latency of 400 ms will prevent
applications from smoothly transitioning the balance of energy
efficiency and image fidelity. However, after the application issues
a configuration request, frames of the prior configuration will con-
tinue to arrive at the application. Thus, we use frame-to-frame
latency to indicate the interval between two frames being provided
to the application (the latter frame being newly configured). An
increase in frame-to-frame latency creates a perception that the sys-
tem is "dropping frames". Compared to the typical frame-to-frame
latency of 33 ms at 30 frames per second (FPS), an average frame-
to-frame latency of 267 ms is equivalent to the system dropping 8
camera frames.

In this paper, we explore sources of sensor resolution reconfigu-
ration latency in the Android system, comprehensively profiling
a Google LG Nexus 5X. Our measurements indicate an average
end-to-end reconfiguration latency of 400 ms and an average frame-
to-frame latency of 267 ms. We identify OS bottlenecks in the soft-
ware stack and sensor pipeline bottlenecks in the hardware system
architecture. We observe three major sources of frame-to-frame
latency in the Android system: (i) sequential configuration patterns,
(ii) expensive system calls, and (iii) imaging pipeline delay.

Built on our understanding, we propose mechanisms to redesign
mobile camera systems. Invoking principles of reusing allocated re-
sources, parallelizing independent operations, and timely control of
channel management, these mechanisms aim to provide responsive
reconfigurability through minimizing end-to-end reconfiguration
latency and high-quality user experience during reconfiguration
by minimizing frame-to-frame latency.

Thus, in this paper, we contribute the following:

« We use an augmented reality case study to discuss the need for
dynamic resolution reconfiguration.

« We profile sources of sensor reconfiguration latency to identify
software and hardware bottlenecks.

+ We propose mechanisms to redesign low-level operating systems
to minimize sensor reconfiguration latency.

2 BACKGROUND

Reconfiguration in the operating system Camera resolution
reconfiguration involves all layers of the Android system stack,
including the application, the camera framework, the camera Hard-
ware Abstraction Layer (HAL), and the kernel camera device dri-
vers.

The procedure is as follows:

(1) The application sends a resolution request and creates a new
camera capture session.

(2) The framework waits for the prior session to stop and calls
the HAL to configure streams.
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(3) The HAL deletes previous channels and streams.

(4) The framework issues a capture request to the HAL.

(5) The HAL initializes channels and streams, configuring sensor
hardware with the capture settings of the output buffer.

(6) The HAL sends captured frames through pipeline stages
for image signal processing. The HAL sends fully-processed
frames to the framework.

(7) The framework delivers the frame to the application surface
and calls a developer-defined callback function.

Reconfiguration in sensor hardware To better understand the
reconfiguration from a sensor hardware perspective, we study
datasheets provided by image sensor manufacturers [13][14]. In
all cases, we find that at the sensor hardware level, the end-to-end
hardware reconfiguration latency is one to two frame times after
the register reconfiguration request is issued. For a frame time of
33 ms, corresponding to a frame rate of 30 FPS, this can be up to
66 ms. The sensor uses the following sequence of operations to
reconfigure:

(1) When the sensor receives a request, the sensor waits for the
current frame to capture. Depending on when the request
arrives, this can be immediate, or take up to one frame time.

(2) While frame A is being read out, the sensor captures a new
frame with the new configuration. This takes one frame time.

(3) The sensor reads out frame B while the next frame is being
captured. This takes one frame time to complete.

3 CASE STUDY: ADAPTIVE RESOLUTION
FOR POSE ESTIMATION

To examine the potential effectiveness of resolution reconfiguration,
we present a case study around marker-based pose estimation to
understand the relationship between frame resolution, task accu-
racy, and energy efficiency. Marker-based pose estimation visually
locates a physical marker to geometrically register a physical envi-
ronment with a virtual camera, allowing insertion of virtual objects
alongside real environments for AR. User experience is sensitive to
the precision of pose estimation; as shown in Fig. 1b, slight errors
cause visible gaps in geometry, breaking user immersion. When
streaming frames, errors become especially obvious, as the irregular
variations cause a feeling of jitter.

Fortunately, by operating on frames with sufficiently high resolu-
tion, pose estimation can minimize errors. Unfortunately, capturing
at high resolution draws substantial power, reducing the battery
life of mobile devices. Indeed, per-frame system energy consump-
tion scales with resolution, as charted in Fig. 2c. Appropriate frame
resolutions will strike a balance between pose estimation accuracy
and energy efficiency.

To study this tradeoff, we implement OpenCV’s marker-based
pose estimation tutorial [17], which extracts visual features from
a frame, matches them with marker features using Flann-based
matching, and estimates camera pose through a Perspective-n-Point
algorithm?. This reports the rotation and translation vectors of the
camera against a physical marker.

!We use SIFT features to optimize for accuracy. Access code and results at
https://github.com/hujinhan12/MeteorStudioReconfigurationLatencyHotMobile
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(a) At fixed marker distance of 2m, re-
ducing pixels per frame and increasing
viewing angle (VA) will increase L2-norm
translation/rotation error.
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(b) For error below threshold, reducing
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larger percentage of FOV.
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(c) Reducing pixels per frame will reduce
system energy consumption for capturing
and processing each frame.

Figure 2: Relationship between frame resolution, viewing angle, accuracy, minimum marker pixels, and energy efficiency

Our case study uses a Google Nexus 5X to capture 12 Mp images
at different angles and distances from a 7.5 in. by 10 in. marker.
We use bilinear downsampling to simulate low-resolution captures
from the same pose. This allows us to quantify estimation precision
by comparing the estimated rotation and translation vectors of
downsampled images against "ground truth" vectors processed
from high resolution images.

3.1 Number of marker pixels influences
pose estimation accuracy

We find that pose estimation accuracy is dependent upon the per-
centage of field-of-view (FOV) occupied by marker pixels. As shown
in Fig. 2a, at a fixed distance of 2 m, with the camera pointed at the
marker, where the marker occupies approximately 1.3% of the field-
of-view, the L2-norm estimation error sharply increases as frame
resolution is lowered to 480x640, after which the marker cannot
be located. This worsens when the camera views the marker at an
angle; at a 48° viewing angle, the estimation error sharply increases
as resolution is lowered at and below 810x1080. The marker cannot
be located in a frame below 600x800 resolution.

Thus, to keep pose estimation error below a threshold, the frame
resolution must be large enough that the marker occupies enough
pixels for the algorithm to extract features. For small and/or dis-
tant markers, high resolution is required, whereas for larger and/or
closer markers, lower resolution may suffice. Fig. 2b charts nec-
essary marker coverage as a percentage of the field-of-view for
different image resolutions and different viewing angles. As a conse-
quence, depending on (i) the physical distance between the camera
and the marker, (ii) the viewing angle between the camera and the
marker, and (iii) the size of the marker, the system needs a sufficient
frame resolution to precisely locate markers.

3.2 Frame resolution should
flexibly adapt to user movement

While energy efficiency motivates the use of minimal resolutions,
the implications of Section 3.1 denote a lower limit of acceptable res-
olution for estimation, given the distance and angle from a marker.
This limit of acceptable resolution will change — users will con-
tinuously move, changing the camera position with respect to the
marker. Moreover, without knowing the location of markers in an
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environment, the pose estimation application will need to occa-
sionally obtain high resolution frames to locate markers in a scene
before using lower resolution captures that suffice to continually
estimate the pose of the camera with respect to visible markers.

Thus, to balance energy efficiency and task accuracy, marker-
based pose estimation applications need the ability to dynamically
reconfigure sensor operation. Of course, marker-based pose estima-
tion is just one class of many that would benefit from dynamic
sensor reconfiguration; markerless augmented reality, object recog-
nition, and face recognition could all use resolution-based tradeoffs
between efficiency and accuracy.

Unfortunately, dynamic reconfiguration is not currently possible
without a drop in performance — changing resolution results in
hundreds of milliseconds of latency, during which no new frames
are provided to the application. In this paper, our goal is to char-
acterize sources of this latency in order to propose mechanisms to
overcome the latency.

4 CHARACTERIZE RECONFIGURATION
LATENCY IN THE OPERATING SYSTEM

To better understand the sensor resolution reconfiguration latency,
we perform an in-depth characterization of the camera library,
HAL, and service of the Android OS. In this section, we measure
the influence of various configuration functions upon end-to-end
and frame-to-frame latency.

Measurement methodology We profile reconfiguration latency
on a Google LG Nexus 5X, with a rear-facing 12Mp Sony IMX377
image sensor, loaded with Android Open Source Project, v. 7.1.2. On
this device, we instrument an Android test application to request a
frame resolution configuration when an on-screen button is clicked.
The application cycles through a set of resolutions from 3024x4032
to 120x160.

We inject timing code into Android’s camera library framework
layer and the camera HAL. Our code prints system timestamps
at the beginning and end of each library function and HAL func-
tion. These timestamps track the resolution configuration workflow
across the Android system stack.
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4 Image ready: onImageAvailable()

(D Prepare for streams: configureStreams ()

@3 Process first request: processCaptureRequest( )
@B Process subsequent capture requests

B3 Process first capture result

End-to-end reconfiguration latency = 400ms

End-to-end reconfiguration latency = 400ms

Process subsequent capture results

Set Resolution Set Resolution

Time

Figure 3: Current sequential configuration patterns incur significant end-to-end and frame-to-frame latency. Shortly after a
configuration request, the application continues to receive frames of the previous configuration.
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Figure 4: Our proposed alternative introduces parallelizing configuration procedures, reusing configurations, and timely HAL
control of channel management, that will reduce the end-to-end and frame-to-frame latency.

Function Layer  Latency E-t-E F-t-F
waitUntilIdle() Library 130 ms 33% 0%
configureStreams() Library 60 ms 15% 22%
processCaptureRequest() Library 84 ms 21% 31%
process_capture_result() HAL 102 ms 26% 38%

Table 1: Latency breakdown, including proportion of
end-to-end (E-t-E) and frame-to-frame (F-t-F) latency

4.1 Measuring reconfiguration latency

The operating system implements sensor reconfiguration through
interactions between the application camera library, service, and
HAL layers. To instrument interactions, we breakdown reconfigu-
ration into critical functional stages, as shown in Table 1. In doing
so, we find latency culprits: waitUntilIdle(), configureStreams(),
processCaptureRequest(), and process_capture_result().

4.1.1  waitUntilldle(). After preparing buffers for the new config-
uration, waitUntilIdle forces the process to wait until the system
clears the pending request queue from the previous configuration.
This waitUntilIdle latency forces the HAL to process one stream at
a time, only configuring new streams after completing and deleting
previous streams.

waitUntilIdle latency varies, depending on the number of pend-
ing requests in the queue. According to our measurements, end-
to-end waitUntilIdle latency averages around 130 ms, which con-
tributes almost 33% of the end-to-end reconfiguration latency, as
shown in Table 1. Though this end-to-end latency is large, it will
not affect frame-to-frame performance since the system still returns
frames to the application during idle time, as shown in Fig. 3.

4.1.2  configureStreams(). After clearing the pending request
queue for the previous configuration, the framework library invokes
configureStreams to create the new capture session for the new
configuration. Upon invocation, the HAL will stop and release
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previous channels, streams, and buffers. Subsequently, the HAL
will reallocate buffers, reconfigure new streams, and add them to
new channels. This sequence involves several system calls. When
turning off streams, the HAL invokes 3 VIDIOC_STREAMOFF ioctl
calls to disable hardware. These ioctl calls consume around 20 ms.
Adding to the latency, using 18 IPC sockets to release buffers uses
10 ms.

This procedure for deleting old configurations and issuing new
configurations occurs when creating any new capture session.
The average amount of end-to-end latency for configureStreams is
around 60 ms, which contributes to 15% of the end-to-end reconfig-
uration latency. As this operation takes place after previous frames
have stopped streaming to the application, configureStreams also
contributes 22% to frame-to-frame latency.

4.1.3  processCaptureRequest(). After the HAL creates the cap-
ture session, the framework layer sends repeated capture requests
to the HAL, using processCaptureRequest to form each request. As
discussed in the background, the HAL must read capture settings
and buffer addresses and activate all channels and streams. This
invokes several system calls, including IPC socket communication
that consumes 14 ms in total, one SensorService JNI library call for
sensor hardware configuration that takes 25 ms, and one updating
stream information call that consumes 10 ms.

Altogether, the latency of processCaptureRequest is around 84 ms,
contributing 31% to frame-to-frame latency and 21% to end-to-end
reconfiguration latency. Notably, after the first capture request for a
given configuration setting, calls to processCaptureRequest do not
need to initialize channels and streams, and only use 2 ms latency.

4.1.4  process_capture_result(). As the HAL directs frame cap-
ture and processing, it uses process_capture_result to communi-
cate capture progress to the library framework. A captured frame
undergoes several transformation stages in a processing pipeline
that can include per-channel white balancing, Bayer pattern de-
mosaicing, and RGB transformations [8]. process_capture_result
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indicates the remaining pipeline stages for a frame. After a frame
leaves the pipeline, the HAL returns the result to the framework.
In steady state, the pipeline returns results every 33 ms. However,
the initial time it takes to fill the pipeline creates latency between the
capture request and the first result returned. This latency amounts
to around 102 ms, which contributes 38% to the frame-to-frame
latency and the 26% to the end-to-end reconfiguration latency.

Along with other miscellaneous reconfiguration latencies, amount-
ing to 24 ms, these reconfiguration stages incur 400 ms of end-to-
end latency and 267 ms of frame-to-frame latency.

5 IDENTIFY SOURCES OF LATENCY IN THE
OPERATING SYSTEM

A deeper look into our characterization exposes three critical sources
of latency: (i) sequential configuration patterns, (ii) expensive sys-
tem calls, and (iii) imaging pipeline delay. Here, we discuss these
sources of latency and propose mechanisms to mitigate their influ-
ence.

5.1 Sequential configuration patterns

The current Android camera system executes configuration through
a step-by-step sequence, outlined in Section 4.1. The execution of
one function blocks the next function, which contributes to recon-
figuration latency. As an example, the current framework returns
pending request frames to the application before deleting channels,
streams, and buffers, using waitUntilIdle as a synchronization
barrier, preserving previous resources while they are being used.
As channel deletion and creation are grouped into the subsequent
call to configureStreams, the HAL cannot create channels until
after the HAL fully deletes previous channels. Thus, sequential con-
figuration prevents new capture requests until completing previous
pending requests.

5.1.1 Proposed alternative: Parallelize configuration procedures.
Towards reducing the sequential bottleneck of reconfiguration, we
propose to parallelize the deletion and creation of channels, streams,
and buffers. While deletion must happen after pending requests
return, channel creation does not need to wait for channel deletion
or for the return of pending requests. Thus, we can parallelize the
channel creation with the handling of previous requests, including
the deletion of previous channels. This will allow channel creation
and configuration to continue during waitUntilIdle.

5.2 Expensive system calls

The Android camera HAL invokes system calls to request kernel
services, especially to delete, create, and initiate streams. Previous
research shows that system calls are time consuming, due to context
switches and I/O wait time [16][7]. Across the reconfiguration
sequence, 79 ms is consumed by system calls, which contributes
29% to the frame-to-frame latency.

5.2.1 Proposed alternative: Reuse prior configurations to avoid
system calls. We propose to give the HAL the controllability to hold
and reuse prior channel configurations, especially for scenarios
that repeatedly reuse configurations, e.g., toggling between low
and high resolutions. This will avoid repeated use of system calls
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to delete and create channels. The proposed mechanism requires
a rearchitecture of the HAL to maintain multiple configuration
resources to swap them in as needed. We will study the memory
implications of holding buffers and plan to devise low memory
strategies, e.g., releasing unused buffers under memory pressure.

5.3 Imaging pipeline delay

The camera system uses a pipeline to capture and process image
frames. This parallelizes several operations, including frame read-
out, white balancing, demosaicing, and RGB transformation. As
these operations occur simultaneously, the pipeline exports frames
at high frame rates.

However, there is substantial latency from capture request to
frame return. For a 4-stage pipeline, this amounts to 132 ms of end-
to-end latency. Moreover, as discussed in Section 5.1, sequential
operation forbids requests from loading into the pipeline until the
previous pipeline has been cleared. Thus, pipeline latency also
contributes to frame-to-frame latency.

5.3.1 Proposed alternative: Timely HAL control of channel man-
agement. To keep the pipeline fully occupied, the previous session
should continue capturing and processing frames until the camera
hardware and processing stages have been configured for the new
session. To provision for this, we propose to give the HAL precise
timing control to issue system calls, rather than having the library
dictate the scheduling. Enabled by our proposed parallel channel
management (Section 5.1), the HAL can allow the previous session
to continue while preparing new channel resources. After the HAL
prepares the new channel, the HAL will trigger sensor drivers to
capture at the new resolution, while simultaneously releasing the
previous request channel. This will fully remove any influence of
reconfiguration on frame-to-frame latency.

Potential impact of proposed mechanisms Our mechanisms
will involve a redesign of the camera HAL and the camera frame-
work library. However, as shown in Fig. 4, successful implementa-
tion will reduce end-to-end reconfiguration latency from 400 ms to
166 ms, allowing applications to flexibly adapt capture resolution
to balance energy efficiency and task accuracy. More importantly,
because our system preserves frame-to-frame latency, e.g., 33 ms
for 30 FPS, applications will be able to reconfigure resolution with-
out dropping frames. This ability will advance new classes of vision
algorithms that use resolution-based tradeoffs to improve perfor-
mance and efficiency in a variety of visual tasks.

6 RELATED WORK

Optimizing sensor hardware efficiency Sensor hardware effi-
ciency limits vision applications. Jayasuriya et al. have presented a
configurable hardware imaging signal processing pipeline [3]. Red-
Eye proposes to push neural network processing to the sensor [11].
[9] has presented a novel framework to monitor and reduce sen-
sors’ contexts. Our work can interoperate with such optimizations,
hiding the configuration delay of using these systems.

Operating systems optimization Prior work, such as RTDroid [18],
has explored the deficiency of the Android system for providing
real-time services. Others have proposed an energy optimization
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framework enabling energy manager to utilize information pro-
vided by the application [10] . Inspired by them, we examine and
characterize the capability of current systems for providing respon-
sive and continuous service to sensor reconfiguration requests.

Exposing camera control Previous researchers have recognized
the significance of programmability for camera operation, such
as through Frankencamera [1] and OpenKCam [6]. Our proposed
system integrates the idea of exposing low-level camera control to
applications for providing a fine-grained camera control. We focus
on reducing the latency for providing such configuration services.

7 CONCLUSION

To balance the energy efficiency of vision applications, the system
should continuously reconfigure sensor operation. However, we
observe that sensor resolution reconfiguration takes substantial
latency during which no frame is returned to the application. We
define and profile end-to-end and frame-to-frame latency caused
by reconfiguring resolution. We identify three sources of latency:
sequential configuration patterns, expensive system calls, and imag-
ing pipeline delay. Built on these understandings, we propose a
redesign of the camera system which will overcome the latency
barrier caused by reconfiguring sensor resolution. We envision that
our work will enable a future of adaptive vision on mobile devices.
Acknowledgement This material is based upon work supported
by the National Science Foundation under Grant No. 1657602.
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