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LEFT-INVARIANT GEOMETRIES ON SU(2) ARE UNIFORMLY
DOUBLING

Nathaniel Eldredge, Maria Gordina, and Laurent Saloff-Coste

Abstract. A classical aspect of Riemannian geometry is the study of estimates that
hold uniformly over some class of metrics. The best known examples are eigenvalue
bounds under curvature assumptions. In this paper, we study the family of all left-
invariant geometries on SU(2). We show that left-invariant geometries on SU(2) are
uniformly doubling and give a detailed estimate of the volume of balls that is valid
for any of these geometries and any radius. We discuss a number of consequences
concerning the spectrum of the associated Laplacians and the corresponding heat
kernels.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322
1.1 A conjecture and the main result. . . . . . . . . . . . . . . . . . . . . . . . . 1322
1.2 Curvature, or not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1325

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1326
2.1 The group K = SU(2) and left-invariant metrics on K. . . . . . . . . . . . . 1326
2.2 Standard Milnor bases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1326
2.3 Left-invariant Riemannian metrics on SU(2). . . . . . . . . . . . . . . . . . 1328
2.4 Exponential identities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1329
2.5 The volume function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1332

3 Euclidean Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1333
4 Heisenberg Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335
5 After Heisenberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1341
6 Combining the Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1345

Nathaniel Eldredge: Research was supported by a Grant from the Simons Foundation (#355659,
Nathaniel Eldredge).

Maria Gordina: Research was supported in part by NSF Grant DMS-1007496 and the Simons
Fellowship.

Laurent Saloff-Coste: Research was supported in part by NSF Grant DMS-1404435 and NSF
Grant DMS-1707589.

Keywords and phrases: Volume doubling, compact Lie group, Special unitary group, Heat kernel,
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1 Introduction

1.1 A conjecture and the main result. This work is devoted to the uniform
analysis of the family of all left-invariant Riemannian metrics on the Lie group SU(2).
This is the simplest case of a natural problem we now describe.

Let K be a connected real compact Lie group, and let L(K) denote the family of
all left-invariant Riemannian metrics g on K. We conjecture that for each group K,
many aspects of spectral analysis of the corresponding Laplace–Beltrami operator Δg

with g ∈ L(K), as well as the analysis of the associated heat equation ∂t−Δg = 0, can
be controlled uniformly over L(K). Recall that the operator −Δg has non-negative
discrete spectrum with finite multiplicity, and so we can consider the lowest non-zero
eigenvalue denoted by λg.

It was shown in [Li80a] (see also [JL17]) that on any compact homogeneous
manifold, one has the lower bound

λg � π2

4 diam2
g

. (1.1)

We conjecture that a matching upper bound holds uniformly over g ∈ L(K), so that

λg � CK

diam2
g

(1.2)

where the constant CK may depend on K but not on g.
In terms of the heat equation, we conjecture that there are constants ci = ci(K) ∈

(0, ∞), i = 1, . . . , 4 such that the fundamental solution (heat kernel) (t, x, y) �→
pg

t (x, y) of the heat equation on (K, g) satisfies
c1

Vg(
√

t)
exp(−c2dg(x, y)2/t) � pg

t (x, y) � c3

Vg(
√

t)
exp(−c4dg(x, y)2/t). (1.3)

Here Vg(r) denotes the volume of the ball of radius r with respect to the Riemannian
volume measure μg; dg(x, y) denotes the Riemannian distance between x and y; and
diamg denotes the diameter of K with respect to dg.

Author's personal copy
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One reason to believe that this conjecture might be true is that it can be reduced
to a simpler question. Let (X, d, μ) be a metric measure space, that is, (X, d) is a
metric space and μ is a Borel measure on X. By Br (x) we denote the ball centered
at x ∈ X of radius r > 0 with respect to the distance d. The metric measure space
(X, d, μ) is volume doubling if

D (M, d, μ) := sup
x∈X,r>0

μ(B (x, 2r))
μ(B (x, r))

< ∞. (1.4)

The focus of this paper is the particular case where (X, d, μ) = (K, dg, μg) with the
volume doubling constant denoted by Dg := D(K, dg, μg).

Then, in the context of compact connected Lie groups, the two-sided spectral and
heat kernel bounds in (1.2) and (1.3) would follow from the following conjecture.

Conjecture 1.1. Let K be a connected real compact Lie group. There is a constant
D(K) such that

Dg � D(K) for all g ∈ L(K), (1.5)

that is, K is uniformly doubling with constant D(K).

As an illustration of the significance of this conjecture, the volume doubling
constant also appears as the constant in the Poincaré inequality (see Section 8.1):∫

Bg(x,r)
|f − fx,r|2dμg � 2r2Dg

∫
Bg(x,2r)

|∇gf |2gdμg for all f ∈ C∞(Bg (x, 2r)), (1.6)

where fx,r :=
∫
Bg(x,r) fdμg denotes the mean of f over Bg (x, r). Hence, the validity

of (1.5) implies that the constant in the Poincaré inequality (1.6) is uniform over all
metrics in L(K). Together with known heat kernel estimates due to [Gri91,Sal92b,
Sal02] this shows that the validity of Conjecture 1.1 implies that of the two-sided
heat kernel bound (1.3). A simple test function argument shows that (1.5) also
implies the spectral gap estimate in terms of the diameter as given in (1.2).

In this article, we prove that Conjecture 1.1 is valid for K = SU(2). Our main
result is as follows.

Theorem 1.2. There exists a constant D such that, for any left-invariant Rieman-
nian metric g on SU(2), we have Dg � D.

Since the underlying manifold of SU(2) is the 3-sphere S3, this theorem provides
uniform volume doubling for a large family of Riemannian metrics on S3. This holds
despite the fact that the geometries g ∈ L(SU(2)) are not uniformly bounded in
other senses; for instance, even after rescaling to constant diameter, there is no
universal lower bound for the Ricci curvatures of metrics g ∈ L(SU(2)) as we discuss
in Section 7.

The proof of Theorem 1.2 is based on the following explicit description of the
behavior of the volume growth function Vg. Each g ∈ L(SU(2)) can be identified

Author's personal copy



1324 N. ELDREDGE ET AL. GAFA

with an inner product on su(2); let 0 < a1 � a2 � a3 < ∞ denote the square roots
of its three eigenvalues, with respect to the standard Euclidean structure on su(2)
induced by the negative of the Killing form. We stress that these parameters depend
on the metric g.

Theorem 1.3. There are constants b1, b2 ∈ (0, ∞) such that for all g ∈ L(SU(2)),
the function Vg satisfies

b1 � Vg (r)
Vg (r)

� b2, where

Vg (r) =

⎧⎪⎪⎨
⎪⎪⎩

r3 if 0 < r � a1a2/a3,
(a3/a1a2) r4 if a1a2/a3 < r � a1,
(a1a3/a2) r2 if a1 < r � a2,
a1a2a3 if a2 < r < ∞.

We note that a1 can be characterized as the length of the shortest closed geodesic
for g, while a2 can be replaced in the theorem above by the diameter diamg(SU(2))
because the two are uniformly comparable (this is not entirely obvious, but will
be proved in Section 7), and that a3 is then uniformly comparable to the quantity
μg(SU(2))/a1 diamg.

As far as we know, the only other case when Conjecture 1.1 is known to hold is
for K = T

n, the n-dimensional torus, for any fixed n. This can be seen via lifting
to the covering group, Rn, on which all Euclidean metrics are isomorphic with the
same doubling constant 2n. But doubling passes to quotients. The key argument is
given in [Gui73a, Lemma 1.1]; see also [DS94, (5.5), p.20]. Alternatively, this can be
seen using curvature as explained in Section 1.2, since every left-invariant metric on
a torus is flat and has zero Ricci curvature.

It is important to note that Theorem 1.2 implicitly includes two limit cases. In
one case, the metric tends to infinity in one direction, and the manifold approaches
a sub-Riemannian manifold, which itself is doubling. If the metric tends to zero
in one direction, the 3-dimensional manifold SU(2) collapses to a 2-dimensional
quotient, which is also doubling. Then in some sense, the question becomes whether
the doubling constant varies continuously with respect to these limits. One of the
difficulties is that both cases must be considered simultaneously.

Our approach for SU(2) is rather explicit and makes use of its specific structure,
with the important benefit of providing a detailed estimate of the volume function as
stated in Theorem 1.3. We show that the volume function exhibits different behavior
at different scales: Euclidean behavior at very small scales, sub-Riemannian behavior
at intermediate scales and “quotient geometry” behavior at relatively large scales,
and this is done uniformly over all metrics in L(K). This allows us to approximate
the volume growth function of the metric g by the simple explicit function Vg which
essentially “pieces together” the growth functions of those three spaces. We hope
that the study of this special case will open the door to similar results for other
compact groups.

Author's personal copy
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1.2 Curvature, or not. In geometric analysis, ever since the pioneering work
of S.-T. Yau in the 1970s, Ricci curvature has been the tool of choice to prove
spectral bounds and other analytic estimates such as various forms of Harnack in-
equalities and heat kernel estimates, especially if one is interested in statements
that are uniform over large families of Riemannian manifolds. In particular, the cel-
ebrated Bishop–Gromov volume comparison theorem implies that for any complete
Riemannian manifold (M, g) of dimension at most n with a non-negative Ricci cur-
vature, the doubling constant D(M, dg, μg) is bounded by 2n, the doubling constant
of Euclidean space R

n. If the curvature condition is relaxed to a Ricci curvature
lower bound, say, Ricg � −κg, while keeping the restriction that the dimension is at
most n, one still has a uniform bound on the doubling constant D(M, dg, μg) as long
as one imposes a fixed upper bound on the diameter diamg (M). In these contexts,
the Poincaré inequality (1.6) is not a direct consequence of the doubling property,
but it follows from the dimension and curvature assumptions (and an upper bound
on the diameter in the case of Ricg � −κg). In fact, fix an ε > 0 and the dimen-
sion n. For Riemannian manifolds of that fixed dimension, the curvature-diameter
assumption

Ricg � −ε diam−2
g g

implies that (M, g) is doubling and satisfies the Poincaré inequality (1.6) with con-
stant depending only on n and ε. Note, however, that this curvature-diameter as-
sumption is not invariant under multiplication of the metric by a positive scalar. See
the Bishop–Gromov comparison theorem and the result of P. Buser in [Bus82] and
also [Sal02, Section 5.6.3].

In this spirit, Conjecture 1.1 is very much modeled on the non-negative Ricci
curvature result described above. Even so, except in the commutative case of the
flat tori, it is well known that no uniform Ricci lower bound can hold over the
entire family L(K) of left-invariant metric on a group K. In fact, the very nature of
Conjecture 1.1 implies that it not only covers left-invariant Riemannian geometries
but also left-invariant sub-Riemannian geometries which can be described, in some
rather obvious ways, as limits of left-invariant Riemannian geometries. This is made
explicit for SU(2) in Section 9.

Recently there have been interesting attempts to extend curvature techniques in
the context of sub-Riemannian geometries e.g. [And17,BG17,BTV16,CC16,Hla12].
However, even in the case of left-invariant geometries on SU(2), it seems that these
curvature techniques (old and new) do not yield a proof of Theorem 1.2.

Other works have obtained geometric inequalities, including volume doubling
and the stronger measure contraction property MCP (k, n) introduced by [Oht07a],
that hold uniformly over a one-parameter family of Riemannian geometries approx-
imating a sub-Riemannian geometry [AL14,BGKT17,Jui09,Lee16a,LLZ16,Rif13].
However, these works use very different techniques, and all known results appear to
rely on assumptions of horizontal curvature bounds or additional symmetry, such
as Sasakian structure. To the best of our knowledge, these assumptions are not
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1326 N. ELDREDGE ET AL. GAFA

satisfied uniformly over all left-invariant sub-Riemannian geometries on SU(2), and
thus those results likewise do not imply Theorem 1.2.

2 Preliminaries

2.1 The group K = SU(2) and left-invariant metrics on K. The compact
Lie group SU(2) is the group of 2 × 2 complex matrices which are unitary and
have determinant 1. The group identity of SU(2) is the identity matrix I, which we
shall also denote by e when emphasizing the group structure. The corresponding
Lie algebra su(2), identified with the tangent space Te SU(2), is the space of 2 × 2
complex matrices which are skew-Hermitian and have trace 0. We note that a left-
invariant metric g on SU(2) is uniquely defined by its action on su(2), the tangent
space at the identity.

Since SU(2) is compact, the Killing form B(v, w) = 1
2 tr(adv adw) is negative

definite, and so − B is an inner product on su(2) which is invariant. It induces
a bi-invariant Riemannian metric on SU(2), which we will call the canonical bi-
invariant metric; it is unique up to scaling because SU(2) is simple [Mil76, Lemma
7.6]. In this canonical metric, SU(2) is isometric to a round sphere.

As SU(2) is compact, by [Mil76, Lemma 7.2] a left-invariant metric g on SU(2) is
bi-invariant if and only if adx is skew-adjoint with respect to g for every x ∈ su(2).
More detail (based mostly on [Mil76]) can be found in [CK04, Chapter 1.4].

2.2 Standard Milnor bases. A key property of SU(2) is that any left-invariant
metric g can be diagonalized by a basis for su(2) for which the structure constants
have a very simple form. Such bases were studied by Milnor in [Mil76].

Throughout this section, {i, j, k} will be taken to range over all cyclic permuta-
tions of the indices {1, 2, 3}.

Definition 2.1. We shall say that an ordered basis {e1, e2, e3} for su(2) is a stan-
dard Milnor basis if it satisfies the relations

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2,

or for short

[ei, ej ] = ek.

Example 2.2. The Pauli matrices

ê1 =
1
2

(
0 −i
−i 0

)
, ê2 =

1
2

(
0 −1
1 0

)
, ê3 =

1
2

(−i 0
0 i

)
(2.1)

are a standard Milnor basis.

Example 2.3. If {e1, e2, e3} is a standard Milnor basis, then so are

(1) the cyclic permutations {e2, e3, e1} and {e3, e1, e2};

Author's personal copy
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(2) the ordered basis {− e1, e3, e2}. As such, any permutation of a standard Milnor
basis may itself be made into a standard Milnor basis by possibly negating one
element;

(3) the basis

{cos(θ)e1 + sin(θ)e2, − sin(θ)e1 + cos(θ)e2, e3} , θ ∈ R. (2.2)

Remark 2.4. Definition 2.1 is slightly different from a more common notion of Mil-
nor frames, in which one begins with a metric g, and in addition to the commutation
relations one assumes that {e1, e2, e3} are orthogonal with respect to g.

The next lemma is a consequence of the fact that all Lie algebra automorphisms of
su(2) are inner, and therefore the set of all standard Milnor bases for su(2) coincides
with the orbit of Ad starting at any standard Milnor basis. Note that this is not
so for SU (n) , n � 3. As always for a matrix Lie group G we use the fact that
Adg X = gXg−1 for g ∈ G and X ∈ g, the Lie algebra of G, where on the right we
have the products of matrices.

Lemma 2.5. Suppose {e1, e2, e3} is a standard Milnor basis. Then {e′
1, e

′
2, e

′
3} ⊆

su(2) is a standard Milnor basis if and only if there exists y ∈ SU(2) such that
Ady ei = yeiy

−1 = e′
i for i = 1, 2, 3.

Proof. For any y ∈ SU(2), the map v �→ yvy−1 is a Lie algebra automorphism of
su(2), so it is clear that e′

i = yeiy
−1 produces a standard Milnor basis. Conversely,

suppose {e′
1, e

′
2, e

′
3} is a standard Milnor basis. Since {e1, e2, e3} and {e′

1, e
′
2, e

′
3}

are both bases, there is a unique linear automorphism T of the vector space su(2)
satisfying Tei = e′

i, i = 1, 2, 3. Then if (i, j, k) is any cyclic permutation of the indices
(1, 2, 3), we have

[Tei, T ej ] = [e′
i, e

′
j ] = e′

k = Tek = T [ei, ej ].

It follows that [Tu, Tv] = T [u, v] for any u, v ∈ {e1, e2, e3}, and by linearity the
same holds for any u, v ∈ su(2). So T is a Lie algebra automorphism of su(2). It
is well-known that every Lie algebra automorphism of su(2) is inner (i.e. the outer
automorphism group is trivial) as pointed out in [Woo89a, Proposition 5.1]. Thus
T = Ady for some y ∈ SU(2). 	

Lemma 2.6. Suppose {e1, e2, e3} is a basis for su(2) satisfying [ei, ej ] = λkek where
λi, λj , λk ∈ {± 1}. Then λ1 = λ2 = λ3. In particular, either {e1, e2, e3} or {− e1, e2, e3}
is a standard Milnor basis.

Proof. Let B(v, w) = 1
2 tr(adv adw) be the Killing form of su(2), which is negative

definite since SU(2) is compact. Then a simple computation shows B(ei, ei) = −λjλk.
Since this must be negative for each i, it follows that λ1, λ2, λ3 are all + 1 or all − 1.
In the former case, {e1, e2, e3} is already a standard Milnor basis, and in the latter
case, it is easy to check that {− e1, e2, e3} is. 	
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1328 N. ELDREDGE ET AL. GAFA

Lemma 2.7. For any standard Milnor basis {e1, e2, e3}, we have the following iden-
tities in the matrix algebra M2×2(C)

e2
i = −1

4
I, eiej =

1
2
ek, eiej + ejei = 0, (2.3)

where (i, j, k) is, as before, any cyclic permutation of the indices (1, 2, 3) and i �= j.

Proof. Note that by Lemma 2.5, it is enough to verify identities (2.3) for one standard
Milnor basis since Adh I = I and Adh 0 = 0 for all h ∈ SU(2). A simple calculation
proves the first two identities for Pauli matrices, while the last identity can be shown
by appealing to Definition 2.1 and the second identity as follows

eiej + ejei = 2eiej − ek = ek − ek = 0. 	

2.3 Left-invariant Riemannian metrics on SU(2).

Lemma 2.8. Let g be any left-invariant metric on SU(2). There exists a standard
Milnor basis {e1, e2, e3} which is orthogonal in the metric g and satisfies g(e1, e1) �
g(e2, e2) � g(e3, e3).

Proof. Following [Mil76], we define a cross product × on the 3-dimensional inner
product space (su(2), g), unique up to a choice of orientation. To see it another
way, one can identify (su(2), g) with (R3, ·), uniquely up to a choice of orientation,
and pull back the cross product from R

3. As shown in [Mil76, Lemma 4.1], there
is a unique linear map L on su(2) satisfying L(u × v) = [u, v], and it is self-adjoint
with respect to g. Let {w1, w2, w3} be a g-orthonormal basis of eigenvectors for L,
with eigenvalues λ1, λ2, λ3. Reordering this basis if necessary, we can assume it is
positively oriented, so that wi × wj = wk. Then

[wi, wj ] = L(wi × wj) = L(wk) = λkwk.

Setting ei = |λjλk|−1/2wi, we can verify that [ei, ej ] = ±ek for some choice of
signs, and that {e1, e2, e3} is still g-orthogonal. Finally we can re-index this basis as
needed so that g(e1, e1) � g(e2, e2) � g(e3, e3). By Lemma 2.6, either {e1, e2, e3} or
{− e1, e2, e3} is the desired standard Milnor basis. 	

Notation 2.9. For any left-invariant Riemannian metric g on SU(2) let a1 � a2 �
a3 be the (ordered) square roots of the eigenvalues of the metric g with respect to
the canonical Euclidean form defined by the negative of the Killing form B(v, w) =
1
2 tr(adv adw). We call a1, a2, a3 the parameters associated to the metric g.
For any 0 < a1 � a2 � a3 < ∞, let g(a1,a2,a3) denote the unique left-invariant
Riemannian metric on SU(2) for which

g(a1,a2,a3)(êi, êj) = a2
i δij , i = 1, 2, 3,

where êi are the Pauli matrices defined in Example 2.2. Since B(ei, ej) = −δij for any
standard Milnor basis, the parameters associated to g(a1,a2,a3) are indeed a1, a2, a3.
Note that g(1,1,1) is the canonical bi-invariant metric.
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Corollary 2.10. Let g be any left-invariant metric on SU(2), and let a1, a2, a3

be its parameters. Then (SU(2), g) is isometrically isomorphic to (SU(2), g(a1,a2,a3)),
where g(a1,a2,a3) is as defined in Notation 2.9.

Proof. Choose a standard Milnor basis {e1, e2, e3} which diagonalizes g as in Lemma
2.8. Since {e1, e2, e3} is orthonormal with respect to −B, we have g(ei, ei) = a2

i . The
linear map ϕ : su(2) → su(2) defined by ϕ(ei) = êi is a Lie algebra automorphism,
since both bases have the same structure constants. Since SU(2) is simply connected,
ϕ induces a Lie group automorphism of SU(2) whose differential at the identity is ϕ,
which by construction is an isometry of the left-invariant metrics g and g(a1,a2,a3). 	

Remark 2.11. By Corollary 2.10, for each left-invariant Riemannian metric with
parameters (a1, a2, a3), there is a group isomorphism providing an isometry between
g(a1,a2,a3) and that metric. Hence it suffices to consider g(a1,a2,a3). In what follows,
we abuse notation and use {e1, e2, e3} to denote either a general Milnor basis or the
particular Milnor basis formed by the Pauli matrices.

2.4 Exponential identities. Recall that we use I for the identity matrix when
we treat it as an element of the matrix space M2×2 (C). Whenever we want to
emphasize the role of I as the identity in the group SU(2) we use e.

Lemma 2.12. For any A ∈ su(2), we have

A2 = − det(A)I.

Proof. One can verify this by observing that a general matrix A ∈ su(2) is of the
form A =

(
ai b+ci

−b+ci −ai

)
, a, b, c ∈ R and computing directly. 	


Lemma 2.13. For A ∈ su(2), we have

exp(A) = (cos ρ)I +
sin ρ

ρ
A, (2.4)

where ρ2 = det A.

Remark 2.14. First observe that this identity can be used also for ρ = 0, since
then A = 0 and exp(A) = I. This can be seen by using any standard Milnor basis
and writing A = ae1 + be2 + ce3, a, b, c ∈ R. Then ρ2 = 1

4

(
a2 + b2 + c2

)
= det A. In

particular, if ρ = 0, then a = b = c = 0.

Proof. Consider the expansion expA =
∑∞

n=0
An

n! . Grouping even and odd terms we
can write expA =

∑∞
k=0

A2k

(2k)! +
∑∞

k=0
A2k+1

(2k+1)! . By Lemma 2.12

A2k = (−ρ2I)k = (−1)kρ2kI,

A2k+1 = (−1)kρ2kA =
(−1)kρ2k+1

ρ
A,

so the first sum equals (cos ρ)I and the second equals sin ρ
ρ A. 	
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Lemma 2.15. For any x ∈ SU(2) \ {−I}, we have x = exp(A), where

A =
ρ

sin ρ
(x − (cos ρ)I)

and

ρ = arccos
(

tr x

2

)
.

Remark 2.16. Similarly to Remark 2.14, if ρ = 0, so that x = I, we take A = 0
which is consistent with this identity. For ρ = π we have x = −I and can take
A = 2πe1, for instance.

Proof. Let A, ρ be as given. Since cos ρ = tr x
2 , it is apparent that trA = 0. To see that

A is skew-Hermitian, note that since x is unitary with detx = 1, Cayley–Hamilton
gives

x∗ = x−1 = −x + (trx)I = −x + (2 cos ρ)I.

As such,

A + A∗ =
ρ

sin ρ
(x + x∗ − (2 cos ρ)I) = 0.

Hence A ∈ su(2).
We now verify that detA = ρ2; then the result follows immediately from Lemma

2.13. Using Lemma 2.12 and the fact that A∗ = −A we have

det(A)I = A∗A =
ρ2

sin2 ρ
((1 + cos2 ρ)I − (cos ρ(x + x∗)))

since xx∗ = I. Taking traces and noting that trx = trx∗ = 2 cos ρ, we have

2 det(A) =
ρ2

sin2 ρ
(2 + 2 cos2 ρ − 4 cos2 ρ) = 2ρ2

as desired. 	


Lemma 2.17. Suppose {e1, e2, e3} is a standard Milnor basis for su(2). Then

ese1ete2e−se1 = exp (t (cos s) e2 + t (sin s) e3) , s, t ∈ R.

Remark 2.18. The proof given below does not use su(2) specifically, only the com-
mutation relations for the Milnor basis. For su(2) this result can also be shown
directly by using Lemma 2.13 on both sides.
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Proof. Let

f (s) := ese1e2e
−se1 ,

g (s) := (cos s) e2 + (sin s) e3.

Then we see that

f ′ (s) = ese1 [e1, e2]e−se1 ,

f ′′ (s) = ese1 [e1, [e1, e2]]e−se1 = −ese1e2e
−se1 = −f (s) ;

f (0) = e2, f
′ (0) = [e1, e2] = e3;

g′ (s) = − (sin s) e2 + (cos s) e3,

g′′ (s) = − (cos s) e2 − (sin s) e3 = −g (s) ;
g (0) = e2, g

′ (0) = e3,

so by uniqueness of the initial value problem for ODEs these two functions coincide,
that is,

ese1e2e
−se1 = (cos s) e2 + (sin s) e3. (2.5)

Finally,

ese1ete2e−se1 =
∞∑

n=0

tn

n!
ese1en

2e−se1

=
∞∑

n=0

tn

n!
(
ese1e2e

−se1
)n =

∞∑
n=0

tn

n!
((cos s) e2 + (sin s) e3)

n

= exp (t ((cos s) e2 + (sin s) e3)) . 	

Remark 2.19. By applying Lemma 2.17 to the standard Milnor basis

{e1, cos(θ)e2 + sin(θ)e3, − sin(θ)e2 + cos(θ)e3}
for θ ∈ R, as in (2.2), we obtain the more general identity

exp(se1) exp(t(cos(θ)e1 + sin(θ)e2)) exp(−se1)
= exp(t(cos(θ + s)e2 + sin(θ + s)e3)).

(2.6)

Corollary 2.20. Let {e1, e2, e3} be a standard Milnor basis, and A = (t cos s) e2 +
(t sin s) e3. Letting ρ2 = det A as in Lemma 2.13, for such A we have

ρ =
t

2
as noted in Remark 2.14. Then by Lemma 2.13

ese1ete2e−se1 = expA = cos ρI +
sin ρ

ρ
A (2.7)

=
(

cos
t

2

)
I + 2

(
sin

t

2
cos s

)
e2 + 2

(
sin

t

2
sin s

)
e3.
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2.5 The volume function. In what follows we take 0 < a1 � a2 � a3 < ∞.
Recall that by Corollary 2.10 it is enough to consider the left-invariant Riemannian
metric g(a1,a2,a3) on SU(2) defined in Notation 2.9.

Notation 2.21. For the metric g(a1,a2,a3) we denote by d(a1,a2,a3) the corresponding
Riemannian distance; by B(a1,a2,a3)(x, r) we denote the open ball in the distance
d(a1,a2,a3) centered at x of radius r; by μ(a1,a2,a3) we denote the Riemannian volume
measure corresponding to g(a1,a2,a3).

Notation 2.22. By μ0 we denote the bi-invariant Haar probability measure on
SU(2).

Then the Riemannian volume measure μ(a1,a2,a3) is a constant multiple of μ0. Specif-
ically, we have μ(a1,a2,a3) = (16π2a1a2a3)μ0. The constant can be found by observing
that in the bi-invariant metric g(1,1,1), the group SU(2) is a round sphere whose
circumference is 4π as follows, for instance, from Lemma 2.13.

Notation 2.23. Let V(a1,a2,a3)(r) = μ0(B(a1,a2,a3)(e, r)) be the volume with respect
to the measure μ0 of the ball in the metric g(a1,a2,a3).

Note that this is different from our previous notation Vg used in Section 1.1,
since we are using the probability measure μ0 instead of the Riemannian volume
measure μ(a1,a2,a3). But this only makes a difference of a factor of (16π2a1a2a3)−1,
which for the purposes of studying volume doubling is irrelevant; and it is slightly
more convenient for our purposes.

Remark 2.24. For any c > 0, we have the scaling

d(ca1,ca2,ca3)(x, y) = cd(a1,a2,a3)(x, y),

and so B(ca1,ca2,ca3)(x, r) = B(a1,a2,a3)(x, r/c). As such, g(a1,a2,a3) and g(ca1,ca2,ca3) have
the same volume doubling constant. So for our purposes, we can suppose without
loss of generality that a2 = 1. We show in Proposition 7.1 that a2 is comparable to
the diameter of g(a1,a2,a3), so the effect of this is rescaling of the metric to a roughly
constant diameter. The results in the remainder of the paper are written for general
a2, but in the proofs we generally work only with the case a2 = 1.

Notation 2.25. Let Φ, Ψ : R3 → SU(2) be, respectively, the coordinates of the first
and second kind (used in [NSW85]), defined by

Φ(x1, x2, x3) = exp (x1e1 + x2e2 + x3e3) ,

Ψ(y1, y2, y3) = exp(y1e1) exp(y2e2) exp(y3e3).

We note that Φ, Ψ are both smooth maps, and that their differentials are isomor-
phisms at (0, 0, 0).
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Notation 2.26. Suppose U ⊂ R
3 is open and F : U → SU(2) is a diffeomorphism

onto its image. When we speak of the Jacobian J : U → (0, ∞) of F , we mean the
normalization such that μ0(F (K)) =

∫
K J dm for measurable K ⊂ U . Here m is the

Lebesgue measure on R
3.

Remark 2.27. Let Φ, Ψ : R3 → SU(2) be coordinates of the first and second kind
introduced in Notation 2.25. Since both dΦ(0, 0, 0) and dΨ(0, 0, 0) are nonsingular,
then by the inverse function theorem, on some small box (− η, η)3, both Φ and Ψ
are diffeomorphisms onto their images. In particular, taking η smaller if needed,
their Jacobian determinants (with the normalization defined in Notation 2.26) are
bounded away from 0 on [− η, η]3. Therefore there is some universal constant c such
that for any measurable K ⊂ (− η, η)3 we have

μ0(Φ(K)) � cm(K), μ0(Ψ(K)) � cm(K), (2.8)

where m is the Lebesgue measure on R
3 as before.

3 Euclidean Regime

At sufficiently small scales, the Riemannian manifold (SU(2), g(a1,a2,a3)) (with 0 <
a1 � a2 � a3 < ∞) looks like Euclidean space, so we expect the volume of a ball of
radius r to scale like r3. We need to determine, in terms of a1, a2, a3, how small the
scale has to be to ensure this happens with a uniform constant.

Proposition 3.1. There are constants c, C such that, uniformly in a1 � a2 � a3,
we have

c(a1a2a3)−1r3 � V(a1,a2,a3)(r) � C(a1a2a3)−1r3 for 0 � r � a1a2/a3. (3.1)

An upper bound can be obtained from the form of the Bishop–Gromov compar-
ison theorem, and a direct computation of the Ricci curvature of g(a1,a2,a3).

Lemma 3.2. Let (M, g) be a 3-dimensional complete Riemannian manifold with
Ricg � −κg. Then for any 0 < s � r < ∞ we have

Vg(r)
Vg(s)

�
(r

s

)3
e
√

2κr.

Proof. By the Bishop–Gromov comparison theorem (see [Esc94, Corollary 5.6] or
[Pet06, Lemma 36]), we have

Vg(r)
Vg(s)

� Vκ(r)
Vκ(s)

, (3.2)

where Vκ(r) is the volume of a ball of radius r in the 3-dimensional hyperbolic space
of constant sectional curvature −κ/2 (which has constant Ricci curvature − κ). The
volume Vκ(r) is given by [Wie81]

Vκ(r) = π(κ/2)−3/2
(
sinh(

√
2κr) −

√
2κr
)
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and the desired result follows by observing that

x3

6
� sinh(x) − x � x3ex

6
, x � 0

which can be seen, for instance, by inspecting the Taylor series. 	

Proof of Proposition 3.1. It is enough to bound the Ricci tensor of the metric
g(a1,a2,a3). In the basis {e1, e2, e3}, Ric is diagonal, and we find

Ric(ei, ei) =

(
a4

i − (a2
j − a2

k)
2
)

2(ajak)2
,

where (i, j, k) is any permutation of (1, 2, 3) (note that the expression is symmetric
in aj and ak, so it is not necessary to restrict to positive permutations). Now we
need to find the smallest of the ratios

Ric(ei, ei)
g(ei, ei)

=

(
a4

i − (a2
j − a2

k)
2
)

2(aiajak)2
.

Recall that a1 � a2 � a3, and therefore |a2
j−a2

k| � a2
3, and so we have a4

i −(a2
j−a2

k)
2 �

−a4
3. This yields the bound

Ric(ei, ei)
g(ei, ei)

� − a4
3

2(aiajak)2
= −1

2

(
a3

a1a2

)2

(3.3)

which is sharp when i = 3 and a1 = a2. Let us denote by κ := 1
2

(
a3

a1a2

)2
the quantity

on the right side of (3.3). If r � a1a2
a3

, then we have
√

2κr � 1, and Lemma 3.2 gives

Vg(r) � er3s−3Vg(s), 0 < s � r � a1a2

a3
. (3.4)

Letting s → 0, we have Vg(s) ∼ 4
3πs3 (since a Riemannian manifold is locally

Euclidean), so that (3.4) reads Vg � Cr3 where C = 4
3πe. Rewriting this in terms of

V(a1,a2,a3) using Notation 2.23, we have the upper bound

V(a1,a2,a3)(r) � C(a1a2a3)−1r3, 0 � r � a1a2

a3

absorbing 1/16π2 into the constant C.
Now we turn to the lower bound. Let Ψ : R

3 → SU(2) be coordinates of the
second kind introduced in Notation 2.25. By Remark 2.27, there exist η > 0 and a
constant c such that for any measurable K ⊂ (− η, η)3 we have μ0(Ψ(K)) � cm(K),
where m is the Lebesgue measure on R

3. Suppose that t � ηa1 and consider the box

Kt =

[
− t

a1
,

t

a1

]
×
[
− t

a2
,

t

a2

]
×
[
− t

a3
,

t

a3

]
⊂ [− η, η]3.
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On the one hand, we have μ0(Ψ(Kt)) � cm(Kt) = 8c(a1a2a3)−1t3. On the other
hand, for any (x, y, z) ∈ Kt, we have

d(a1,a2,a3)(e, Ψ(x, y, z)) � a1|x| + a2|y| + a3|z| � 3t.

That is, Ψ(Kt) ⊂ B(a1,a2,a3)(3t), so we have

V(a1,a2,a3)(3t) = μ0(B(a1,a2,a3)(3t)) � μ0(Ψ(Kt)) � 8c(a1a2a3)−1t3

or, letting r = 3t,

V(a1,a2,a3)(r) � c′(a1a2a3)−1r3, 0 � r � η

3
a1, (3.5)

where c′ = 8
27c. To complete the proof for all 0 � r � a1, note that for any η

3a1 �
r � a1 we have by the monotonicity of V that

V(a1,a2,a3)(r) � V(a1,a2,a3)

(η

3
a1

)
� c′ η3

27
a2

1

a2a3
� c′ η3

27
(a1a2a3)−1r3

so taking c′′ = min{1, η3

27}c′ we have the desired

V(a1,a2,a3)(r) � c′′(a1a2a3)−1r3, 0 � r � a1 (3.6)

and in particular for 0 � r � a1a2
a3

, since a2 � a3. 	


4 Heisenberg Regime

For r � a1a2/a3, the Euclidean behavior breaks down. The growth of a ball in the e3

direction is now affected by the relation [e1, e2] = e3; paths can make more efficient
progress in the e3 direction by making a loop in the e1 and e2 directions. This is
well approximated by the sub-Riemannian geometry of the 3-dimensional Heisenberg
group, in which one cannot move tangent to the vertical direction e3 at all. The sub-
Riemannian Heisenberg group has Hausdorff dimension 4, which accounts for the r4

volume scaling that appears in this regime.

Lemma 4.1. Define H : R2 → SU(2) by

H(u, v) = exp(−ue1) exp(−ve2) exp(ue1) exp(ve2). (4.1)

Then in some neighborhood U of (0, 0) in R
2 we can write

H(u, v) = exp(uvh(u, v)) (4.2)

where h : R2 → su(2) is C∞ and h(0, 0) = e3.
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Proof. We give two different arguments. Applying the Campbell–Baker–Dynkin–
Hausdorff formula gives a power series for log H(u, v), convergent in a neighborhood
U of (0, 0). The first-order terms in u, v cancel out, while the second-order term is
uve3. Each higher-order term consists of a combinatorial coefficient multiplied by
some iterated Lie bracket of the vectors ue1 and ve2. In any term that does not
vanish, the innermost bracket must be of the form ± [ue1, ve2] = ± uve3; so such an
iterated bracket must equal ± uavbei with a, b � 1. Thus we can factor out uv from
every term of this power series, writing log H(u, v) = uvh(u, v) where h is given by
a convergent power series and thus is real analytic in U .

Alternatively, one can give a more direct proof by using (2.7), (2.4), (2.3) and
the double angle formula to write

H (u, v) =
1
2

((1 + cos u) + cos v (1 − cos u)) I − ((1 − cos v) sinu) e1

+ sin v (1 − cos u) e2 + (sin v sinu) e3.
(4.3)

Then by using Lemma 2.15, one obtains a formula for log(H(u, v)). It can then be
seen by inspection that h(u, v) = log(H(u, v))/(uv) has a removable singularity at
(0, 0), where the limit equals e3. 	

Lemma 4.2. Define F : R4 → SU(2) by

F (s1, s2, s3, δ) = exp(s1e1) exp(s2e2)H
(
sgn(s3)

√
|s3|, δ

√
|s3|
)

.

Then there is a neighborhood V of (0, 0, 0) ∈ R
3 such that on V × [0, 1], the partial

derivatives of F with respect to s1, s2, s3 exist and are jointly continuous, and we
have

∂s1F (0, 0, 0, δ) = e1, ∂s2F (0, 0, 0, δ) = e2, ∂s3F (0, 0, 0, δ) = δe3.

Moreover, there is a jointly continuous f : V × [0, 1] → T SU(2) such that

∂s3F (s1, s2, s3, δ) = δf(s1, s2, s3, δ)

and f(0, 0, 0, δ) = e3.

Proof. Observe that s �→ sgn(s)
√|s| is continuous on R, and H is smooth, with

H(0, 0) = I. Thus the desired statements about ∂s1F , ∂s2F are clear.
For convenience, let G(s, δ) = H

(
sgn(s)

√|s|, δ√|s|
)
, so that F (s1, s2, s3, δ) =

exp(s1e1) exp(s2e2)G(s3, δ). Let us write H(u, v) = exp(uv h(u, v)) as in the previous
lemma. Then for s in some interval (− ε, ε) we can write

G(s, δ) = exp(δk(s, δ))

where

k(s, δ) = s · h
(
sgn(s)

√
|s|, δ

√
|s|
)

.
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For s �= 0, we compute

∂sk(s, δ) = h
(
sgn(s)

√
|s|, δ

√
|s|
)

+
1
2

sgn(s)
√

|s| ∂uh
(
sgn(s)

√
|s|, δ

√
|s|
)

+
δ

2

√
|s| ∂vh

(
sgn(s)

√
|s|, δ

√
|s|
)

.

As s → 0, the right side approaches h(0, 0) = e3, uniformly in δ ∈ [0, 1]. Since k
is continuous, it follows (by L’Hôpital’s rule) that ∂sk(0, δ) exists and equals e3;
moreover, ∂sk is jointly continuous on (− ε, ε) × [0, 1].

Now from the chain rule, since exp is smooth, we conclude that ∂sG(s, δ) exists
on (−ε, ε) × [0, 1] and is given by

∂sG(s, δ) = d expδk(s,δ) [∂s[δk(s, δ)]] = δ · d expδk(s,δ) [∂sk(s, δ)]

where d expδk(s,δ) [∂sk(s, δ)] is a jointly continuous function of s and δ. It is also clear
from this that ∂sG(0, δ) = δe3. The desired statements about ∂s3F follow. 	


Lemma 4.3. For δ ∈ [0, 1], consider F δ = F (·, ·, ·, δ) as a map from R
3 to SU(2). Let

Jδ be its Jacobian determinant as in Notation 2.26. Then there is a neighborhood
W of (0, 0, 0) ∈ R

3 and a constant c > 0, independent of δ, such that Jδ � cδ on W .
In particular, for any measurable K ⊂ W , we have μ0(F δ(K)) � cδm(K).

Proof. Let ω be the Riemannian volume form on SU(2) associated to the bi-invariant
metric g(1,1,1). Then we have

Jδ =
1

16π2
ω(∂s1F

δ, ∂s2F
δ, ∂s3F

δ).

If we set

j(s1, s2, s3, δ) = ω(∂s1F
δ(s1, s2, s3), ∂s2F

δ(s1, s2, s3), f(s1, s2, s3, δ))

where f is as in Lemma 4.2, then Jδ = δ
16π2 j. Moreover, j is jointly continuous on

V × [0, 1], and we have j(0, 0, 0, δ) = ω(e1, e2, e3) = 1 for all δ. As such, by continuity
and the compactness of [0, 1], there is a neighborhood W ⊂ V of (0, 0, 0) ∈ R

3 such
that j � 1

2 on W × [0, 1], which implies J � 1
32π2 δ. 	


Proposition 4.4 (Heisenberg type lower bound). There is a constant c such that,
uniformly in a1 � a2 � a3,

V(a1,a2,a3)(r) � c(a1a2)−2r4 for 0 � r � a1.

Note that for r � a1a2/a3 this lower bound matches the result provided by
Proposition 3.1.
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Proof. Since the right side is consistent with the scaling described in Remark 2.24,
we suppose without loss of generality that a2 = 1.

Let F δ be as in Lemma 4.2 and W as in Lemma 4.3. Choose η > 0 so small that
[− η, η]3 ⊂ W . We note that

d(a1,1,a3)(e, F
δ(s1, s2, s3)) � s1a1 + s2 + 2a1

√
|s3| + 2δ

√
|s3|.

Now let us take δ = a1 ∈ [0, 1], so that this becomes

d(a1,1,a3)(e, F
δ(s1, s2, s3)) � s1a1 + s2 + 4a1

√
|s3|.

Suppose r � a1η � η and let

Kr =

[
− r

a1
,

r

a1

]
×
[
−r, r

]
×
[
−r2

a2
1

,
r2

a2
1

]

so that Kr ⊂ [− η, η]3 ⊂ W . We then have m(Kr) = 8a−3
1 r4 and F a1(Kr) ⊂

B(a1,1,a3)(6r). By Lemma 4.3, we have

V(a1,1,a3)(6r) = μ0(B(a1,1,a3)(6r)) � μ0(F a1(Kr)) � ca1m(Kr) = 8ca−2
1 r4.

or

V(a1,1,a3)(r) � c′a−2
1 r4, 0 � r � 6ηa1

where c′ = 8c/64. If it happens that 6η � 1 then we are finished; if not, we can drop
the 6η in the upper limit on r as in the proof of Proposition 3.1, replacing c′ by
(6η)4c′. 	


Proposition 4.5 (Heisenberg type upper bound). There exists η ∈ (0, 1) and a
constant C < ∞ such that, uniformly in a1 � a2 � a3,

V(a1,a2,a3)(r) � C
(
(a1a2a3)−1r3 + (a1a2)−2r4

)
for 0 � r � ηa1.

In particular, we have

V(a1,a2,a3)(r) � 2C(a1a2)−2r4 for a1a2/a3 � r � ηa1.

Proof. Again, we assume a2 = 1. Suppose r � ηa1, where η is to be chosen later, and
let g ∈ B(a1,1,a3)(r). This means that there is a smooth path γ : [0, 1] → SU(2) with
γ(0) = e, γ(1) = g, and length �(a1,1,a3)[γ] < r. Reparametrizing γ by constant speed
(with respect to g(a1,1,a3)), we can write γ̇(t) =

∑3
i=1 λi(t)ẽi(γ(t)), where ẽi is the

left-invariant vector field which equals ei at the identity, and
∑3

i=1 |aiλi(t)|2 � r2

for all t ∈ [0, 1]. In particular, |λi(t)| � r/ai.
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We now invoke a result of R. Strichartz [Str87a] which extends the Baker–
Campbell–Hausdorff–Dynkin formula by giving an exact expression for the expo-
nential coordinates of g in terms of λi. The Strichartz (or Chen–Strichartz) formula
says that g = exp z, where

z =
∞∑

n=1

∑
I∈{1,2,3}n

(∑
σ∈Sn

(
(−1)e(σ)

n2
(
n−1
e(σ)

)
)∫

Δn

n∏
m=1

λim
(sσ(m))ds

)
eI ∈ su(2). (4.4)

Here I = (i1, . . . , in), and eI is the n-fold iterated bracket

eI = [[. . . [ei1 , ei2 ], . . .], ein
].

Note that since {ei} is a standard Milnor basis, each eI equals either 0 or some
± ek. Sn is the set of permutations of {1, . . . , n}, and following Strichartz’s notation,
e(σ) = |{m < n : σ(m + 1) < σ(m)}| denotes the number of “errors” (also called
“descents”) of the permutation σ; for our purposes, we need only note that e(σ)
is an integer between 0 and n − 1. Finally, Δn ⊂ [0, 1]n is the standard n-simplex
{0 � s1 � . . . � sn � 1}, whose volume is 1/n!.

Let us write z =
∑3

i=1 ziei. We shall bound each of the |zi|, which will show that
g is contained in the image under the coordinates Φ (see Notation 2.25) of some
box in R

3 of bounded size. This fact, combined with Remark 2.27 on the Jacobian
determinant of Φ, will give us an upper volume estimate for B(a1,1,a3)(r).

We begin with z1; the analysis of z2, z3 will be similar. Let ζi,n be the coefficient
of ei in the n term of the sum in (4.4), so that z1 =

∑∞
n=1 ζ1,n. We must consider

which values of I give eI = ±e1. For n = 1 we have only I = (1), and for n = 2 we
have I = (2, 3) and I = (3, 2). So we have

ζ1,1 =
∫ 1

0
λ1(s) ds,

ζ1,2 =
1
4

∫
0�s1�s2�1

(λ2(s1)λ3(s2) − λ3(s1)λ2(s2)) ds1 ds2.

This trivially gives

|ζ1,1| � r

a1
, |ζ1,2| � 1

4
r2

a3
. (4.5)

For n � 3, in order to have eI = ±e1 we note that i1, i2 cannot both equal 1
(else eI = 0), and in cannot equal 1 either (since [ek, e1] �= ±e1 for any k = 1, 2, 3).
So at least two of the im are different from 1, meaning that the corresponding λim

are bounded by r. Since |λi| � r/ai and a1 � a2 = 1 � a3, the remaining λim
are

bounded by r/a1, and we conclude that
∣∣∏n

m=1 λim
(sσ(m))

∣∣ � rn/an−2
1 .

Now to estimate the value of the parenthesized sum over σ ∈ Sn in (4.4), we note
that Δn has a volume of 1/n!, that |Sn| = n!, and that the combinatorial coefficient
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is at most 1. So this sum is bounded by rn/an−2
1 as well. Finally, the total number of

I ∈ {1, 2, 3}n is 3n, even though most of these do not yield eI = ±e1. So we conclude

|ζ1,n| � 3n rn

an−2
1

= 9r2

(
3

r

a1

)n−2

, n � 3. (4.6)

By taking, say, η < 1
6 , so that 3 r

a1
< 1

2 , we can conclude

∞∑
n=3

|ζ1,n| < 9r2
∞∑

n=3

(
1
2

)n−2

= 9r2. (4.7)

Combining (4.5) and (4.7), we see that r
a1

dominates, and we have

|z1| �
∞∑

n=1

|ζ1,n| � c
r

a1
(4.8)

for some universal constant c (c = 11 would do).
By similar arguments, we can obtain

|ζ2,1| � r, |ζ2,2| � 1
4

r2

a1a3
. (4.9)

Since r
a1

� η � 1 and a3 � 1, both terms are dominated by r. To estimate ζ2,n for
n � 3, we use the cruder fact that in order to get eI �= 0, we must have either i1 or
i2 different from 1. This leads to the estimate

|ζ2,n| � 3n rn

an−1
1

= 9
r2

a1

(
3

r

a1

)n−2

and thus, stil with η < 1
6 ,

∞∑
n=3

|ζ2,n| < 9
r2

a1

which again is dominated by r. So we have shown

|z2| � cr (4.10)

increasing the value of the universal constant c as needed.
For z3, we obtain

|ζ3,1| � r

a3
, |ζ3,2| � 1

4
r2

a1

and as before
∞∑

n=3

|ζ3,n| < 9
r2

a1
.
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We conclude

|z3| � c

(
r

a3
+

r2

a1

)
, (4.11)

where the first term dominates when r � a1/a3.
As such, if we let

Kr =

[
−c

r

a1
, c

r

a1

]
×
[
−cr, cr

]
×
[
−c

(
r

a3
+

r2

a1

)
, c

(
r

a3
+

r2

a1

)]

so that in particular we have Kr ⊂ [−cη, cη]3, we have that B(a1,1,a3) ⊂ Φ(Kr).
Letting M be the maximum of the Jacobian determinant of Φ over [−cη, cη]3, we
have

V(a1,1,a3)(r) � Mm(Kr) = 8Mc3

(
r3

a1a3
+

r4

a2
1

)

which is the desired bound. 	


5 After Heisenberg

When r exceeds a1, the global geometry of SU(2) becomes important. Our “budget”
r is now large enough to let us travel all the way around the sphere SU(2) ∼= S3

in the “cheap” e1 direction, and nothing is gained by traveling around the sphere
more than once. So travel in the e1 direction has negligible cost, and the volume
growth is comparable to what happens if we actually set a1 = 0. The group SU(2)
would collapse to a coset space mod the subgroup S = {exp(se1) : s ∈ R} which is
homeomorphic to the 2-dimensional sphere S2. For this reason, the volume in this
regime grows as r2.

Proposition 5.1. There is a constant c such that, uniformly in a1 � a2 � a3,

V(a1,a2,a3)(r) � ca−2
2 r2 for a1 � r � a2.

Proof. As usual, it suffices to take a2 = 1 (see Remark 2.24). We proceed along the
lines similar to the proof of Proposition 4.4. For η ∈ [0, 1], let F η : R3 → SU(2) be
defined by

F η(s1, s2, s3) = exp(s1e1) exp(s2e2)H(η, s3),

where H is as in (4.1). Let Jη be the Jacobian determinant of F η, normalized as in
Notation 2.26. Then by the same arguments as in Lemmas 4.2 and 4.3, there is a
neighborhood U of (0, 0, 0) ∈ R

3 and a jointly continuous j : U × [0, 1] → R such
that

Jη(s1, s2, s3) = ηj(s1, s2, s3, η), (s1, s2, s3) ∈ U, η ∈ [0, 1]. (5.1)
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We can also directly compute

∂s1F
η(0, 0, 0) = e1 and ∂s2F

η(0, 0, 0) = e2.

For the partial derivative with respect to s3, we can use either Lemma 2.17 or (4.3)
to compute

∂s3F
η(0, 0, 0) = ∂vH(η, 0) = (1 − cos η)e2 + (sin η)e3.

Thus, letting ω be the Riemannian volume form of the bi-invariant metric g(1,1,1),
we have

Jη(0, 0, 0) =
1

16π2
ω(e1, e2, (1 − cos η)e2 + (sin η)e3) =

1
16π2

sin η.

In particular, from (5.1), we have j(0, 0, 0, η) = 1
16π2

sin η
η > 0 for all η ∈ [0, 1]. We

can thus find a neighborhood W ⊂ U of (0, 0, 0) such that j is bounded away from
0 on W × [0, 1], which implies Jη � cη for some constant c.

Now choose η > 0 sufficiently small so that [− η, η]3 ⊂ W . Suppose ηa1 � r � η
and set

K =

[
−η, η

]
×
[
−r, r

]
×
[
−r, r

]
.

Note that K ⊂ [− η, η]3 ⊂ W . Hence, we have μ0(F η(K)) � cη · m(K) = 8cη2r2.
Also, we have

d(a1,1,a3)(e, F
η(s1, s2, s3)) � a1s1 + s2 + 2a1η + 2s3

� a1η + r + 2a1η + 2r

� 6r

recalling that r � a1η. So F η(K) ⊂ B(a1,1,a3)(6r). We have thus shown

V(a1,1,a3)(6r) � 8cη2r2, a1η � r � η.

Repeating this argument with r, η replaced by r/6, η/6 (which is valid since we still
have [− η/6, η/6]3 ⊂ W ), we have

V(a1,1,a3)(r) � cη2r2, a1η � r � η

where a factor of 8/64 has been absorbed into the constant c. This is the desired
result for a1 � r � η. For η � r � 1, simply note that

V(a1,1,a3)(r) � V(a1,1,a3)(η) � cη4 � cη4r2

and so we have the desired result for all a1 � r � 1. 	

For the corresponding upper bound, we show that the ball B(a1,1,a3)(r) is con-

tained in a tubular neighborhood of the circle S = {exp(se1) : s ∈ R}.
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Lemma 5.2. Let 0 < a1 � 1 � a3 < ∞. For any x ∈ SU(2), we may write
x = exp(se1)y where d(1,1,1)(e, y) � d(a1,1,a3)(e, x). In particular, d(1,1,1)(S, x) �
d(a1,1,a3)(e, x).

Proof. Note first that without loss of generality we can assume a3 = 1, since
d(a1,1,1)(e, x) � d(a1,1,a3)(e, x).

Fix ε > 0. Consider the smooth map Θ : R3 → SU(2) defined by

Θ(z1, z2, z3) = exp(z1e1/a1) exp(z2e2 + z3e3).

Then dΘ is an isomorphism at (0, 0, 0), so that Θ is a diffeomorphism near (0, 0, 0).
If we equip R

3 with the standard Euclidean metric and SU(2) with the g(a1,1,1)

metric, then dΘ−1
e : Te SU(2) → T(0,0,0)R

3 is an isometry; in particular the operator
norm is ‖dΘ−1

e ‖(a1,1,1) = 1. Hence we may find some neighborhood V of e ∈ SU(2)
such that ‖dΘ−1

x ‖(a1,1,1) � 1 + ε for all x ∈ V . Taking V smaller if necessary, we
may also assume that V is a g(a1,1,1)-normal neighborhood of e; that is, for any
x ∈ V there is a g(a1,1,1)-minimizing geodesic from e to x contained in V . Then
Θ−1 is a (1 + ε)-Lipschitz map from (V, d(a1,1,1)) into R

3. So for x ∈ V , if we write
(z1, z2, z3) = Θ−1(x), we have

x = Θ(z1, z2, z3) = exp(z1e1/a1) exp(z2e2 + z3e3)
= exp(se1) exp(t(cos(θ)e2 + sin(θ)e3))

where we let s = z1/a1, z2 = t cos θ, z3 = t sin θ. Moreover,

|t| =
√

z2
2 + z2

3 � |(z1, z2, z3)| � (1 + ε)d(a1,1,1)(e, x).

Now let x ∈ SU(2) be arbitrary. Let γ : [0, 1] → SU(2) be a g(a1,1,1)-minimizing
geodesic from e to x, parametrized by arc length. For an integer N to be chosen
later, let τi = i/N and xi = γ(τi−1)−1γ(τi), i = 0, . . . , N , so that x =

∏N
i=1 xi. Note

that by the left invariance of the metric,

d(a1,1,1)(e, xi) = d(a1,1,1)(γ(τi−1), γ(τi)) =
1
N

d(a1,1,1)(e, x)

since γ was parametrized by arc length. We may now choose N so large that xi ∈ V
for every i. Then, as above, each xi may be written as

xi = exp(sie1) exp(ti(cos(θi)e2 + sin(θi)e3))

where

|ti| � (1 + ε)d(a1,1,1)(e, xi) =
1 + ε

N
d(a1,1,1)(e, x).
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By repeated application of (2.6), we may now write

x =
N∏

i=1

exp(sie1) exp(ti(cos(θi)e2 + sin(θi)e3))

= exp(se1)
N∏

i=1

exp(ti(cos(φi)e2 + sin(φi)e3))

where

s = s1 + · · · + sN , φi = θi − si+1 − · · · − sN .

Setting y =
∏N

i=1 exp(ti(cos(φi)e2 + sin(φi)e3)), we have by left-invariance of d(1,1,1)

that

d(1,1,1)(e, y) �
N∑

i=1

d(1,1,1)(e, exp(ti(cos(φi)e2 + sin(φi)e3)))

�
N∑

i=1

|ti|

� (1 + ε)d(a1,1,1)(e, x).

To remove the ε, we note that for each n, we can write x = exp(sne1)yn where,
without loss of generality, sn ∈ [−2π, 2π], and yn ∈ SU(2) with
d(1,1,1)(e, yn) � (1 + 1

n)d(a1,1,1)(e, x). Since [−2π, 2π] and SU(2) are compact, we
can pass to a subsequence so that sn → s and yn → y for some s, y, which will then
be as desired. 	


Proposition 5.3. There is a constant C such that, uniformly in a1 � a2 � a3,

V(a1,a2,a3)(r) � Ca−2
2 r2 for 0 � r � a2.

Proof. As usual we assume a2 = 1. Let K = B(1,1,1)(S, r), so that by the previous
lemma B(a1,1,a3)(r) ⊂ K. It only remains to estimate the volume of K. Let N = �4π

r �,
so that 4π

r � N � 4π
r + 1 � (4π + 1)1

r . Set xi = exp(4πie1/N) for 0 � i � N , so
that x0 = xN = e and d(1,1,1)(xi, xi+1) � 4π

N � r. As such, the balls B(1,1,1)(xi, 2r),
1 � i � N , cover K. Since (SU(2), g(1,1,1)) is a compact 3-dimensional Riemannian
manifold and μ0 is (up to a constant) its volume measure, there is a constant C such
that μ0(B(1,1,1)(x, R)) � CR3 for any R. So we conclude

μ0(B(a1,1,a3)(r)) � μ0(K) � CN(2r)3 � 23(4π + 1)Cr2. 	


Author's personal copy



GAFA LEFT-INVARIANT GEOMETRIES ON SU(2) ARE UNIFORMLY DOUBLING 1345

6 Combining the Cases

Combining the foregoing bounds yields the estimates on Vg(r) of Theorem 1.3.

Proof of Theorem 1.3. Similarly to the V(a1,a2,a3) notation, set

V (a1,a2,a3)(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a1a2a3)−1r3, 0 � r � a1a2/a3

(a1a2)−2r4, a1a2/a3 � r � a1

a−2
2 r2, a1 � r � a2

1, r � a2.

(6.1)

We need to show that b1V (a1,a2,a3)(r) � V(a1,a2,a3)(r) � b2V (a1,a2,a3)(r) for some
constants b1, b2 not depending on a1, a2, a3. This will establish Theorem 1.3 for
metrics of the form g = g(a1,a2,a3), recalling from Notation 2.23 that Vg(r) differs
from V(a1,a2,a3)(r) by a factor of (16π2a1a2a3)−1. The general case follows since, as
noted in Corollary 2.10, every g ∈ L(SU(2)) is isometric to some g(a1,a2,a3).

The upper and lower bounds in the case 0 � r � a1a2/a3 are covered by Propo-
sition 3.1.

For a1a2/a3 � r � a1, the lower bound is shown by Proposition 4.4. The upper
bound is shown by Proposition 4.5 for a1a2/a3 � r � ηa1, where η is a certain small
constant, so it remains to handle the case ηa1 � r � a1. In this case we can apply
Proposition 5.3 to obtain

V(a1,a2,a3)(r) � Ca−2
2 r2 � Cη−2(a1a2)−2r4.

For a1 � r � a2, the desired bounds are given by Propositions 5.1 and 5.3.
For r � a2, the lower bound follows simply by noting

V(a1,a2,a3)(r) � V(a1,a2,a3)(a2) � c

from the bound in Proposition 5.1. The upper bound V(a1,a2,a3)(r) � 1 is trivial
because V(a1,a2,a3)(r) is the volume with respect to the probability measure μ0. 	


To prove Theorem 1.2, it now suffices to show that the function Vg, or equivalently
V (a1,a2,a3) as in (6.1), satisfies a uniform volume doubling condition. This is an
elementary calculation which we insert here for convenience.

Lemma 6.1. For any a1 � a2 � a3, any r � 0 and k � 1, we have

V (a1,a2,a3)(kr) � k4 V (a1,a2,a3)(r).

Proof. We have ten cases depending on which of the four regions defined in (6.1) are
occupied by r and kr.

If r, kr occupy the same region, then the result is immediate. For instance, when
0 � r � kr � a1a2/a3, then we have V (kr)/V (r) = k3 (we suppress the subscripts).
In the other similar cases, we get k4, k2 or 1; all are bounded by k4.

The next cases are when they occupy consecutive regions.
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• If 0 � r � a1a2/a3 � kr � a1, then V (kr)/V (r) = k4(a1a2/a3)−1r � k4

because r � a1a2/a3.
• If a1a2/a3 � r � a1 � kr � a2, then V (kr)/V (r) = k2a2

1r
−2 � k4, using

a1 � kr.
• If a1 � r � a2 � kr, then V (kr)/V (r) = a2

2r
−2 � k2 � k4, using a2 � kr.

The remaining cases follow by combining those already shown. For instance, if
0 � r � a1a2/a3 � a1 � kr � a2, choose 1 � k′ � k so that a1a2/a3 � k′r � a1.
Then by the previous cases we have

V (kr) �
(

k

k′

)4

V (k′r) � k4V (r).

The last two cases are similar. 	

Combining Theorem 1.3 and Lemma 6.1 (with k = 2) establishes Theorem 1.2,

with D = 16b2/b1.

7 Diameter Bounds

In this brief section, we prove the remark following Theorem 1.3: for any metric
g ∈ L(SU(2)), the diameter diamg(SU(2)) is uniformly comparable to a2, the square
root of the middle eigenvalue.

An interesting consequence is that, by inspection of (3.3), there is no uniform
lower bound on the Ricci curvatures of the metrics g ∈ L(SU(2)), even after rescaling
to constant diameter; the metrics g(1,1,a3), as a3 → ∞, have comparable diameters,
but their Ricci curvatures in the e3 direction tend to −∞. As such, the uniform
volume doubling bound of Theorem 1.2 cannot be obtained solely by Ricci curvature
considerations as in Section 3.

Proposition 7.1. For a left-invariant Riemannian metric g ∈ L(SU(2)), let a2 be
the square root of the middle eigenvalue of the matrix Ag, as in Theorem 1.3. There
are universal constants 0 < D0 � D∞ < +∞ such that

D0a2 � diamg(SU(2)) � D∞a2.

Proof. By Corollary 2.10, we can assume without loss of generality that g = g(a1,a2,a3)

for some a1 � a2 � a3, and by scaling, we can assume a2 = 1.
For an upper bound, we consider a sub-Riemannian metric on SU(2). Let H ⊂

T SU(2) be the two-dimensional sub-bundle spanned at each point by the left trans-
lates of ê1, ê2, and let g(1,1,∞) be the left-invariant sub-Riemannian metric on H
making ê1, ê2 orthonormal. Then (SU(2), H, g(1,1,∞)) is a sub-Riemannian mani-
fold. The sub-bundle H satisfies Hörmander’s bracket-generating condition, since
[ê1, ê2] = ê3, and so by the Chow–Rashevskii theorem [Mon02, p. 43], the sub-
Riemannian (or Carnot–Carathéodory) distance d(1,1,∞) is finite and induces the
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original manifold topology. Since SU(2) is compact, it has finite diameter under
d(1,1,∞). Let D∞ be this diameter. It is clear that for any v ∈ T SU(2), we have
g(a1,1,a3)(v, v) � g(1,1,∞)(v, v) (where for v /∈ H we can take g(1,1,∞)(v, v) = ∞), so
the same inequality holds for their distances, and we have shown that the diameter
under g(a1,1,a3) is bounded above by D∞.

For the lower bound, consider the pseudo-metric g(0,1,1) for which g(0,1,1)(ê1, ê1) =
0 and ê2, ê3 are orthonormal. Then the pseudo-distance d(0,1,1) is symmetric and sat-
isfies the triangle inequality, but is not positive definite. For instance,
d(0,1,1)(e, exp(sê1)) = 0 for any s. However, we claim d(0,1,1) is not identically zero,
so that SU(2) has nonzero diameter under d(0,1,1). As above, d(0,1,1) is a lower bound
for any d(a1,1,a3), so we may take D0 to be the d(0,1,1)-diameter of SU(2).

Indeed, let S = {exp(sê1) : s ∈ R} be the subgroup generated by ê1. Suppose
d(0,1,1)(e, x) = 0; we claim that x ∈ S. For any ε > 0, we can choose a so small that
d(a,1,1)(e, x) < ε. By Lemma 5.2, we can write x = exp(se1)y where d(1,1,1)(e, y) < ε.
Thus d(1,1,1)(S, x) < ε. Since ε was arbitrary and S is closed, we conclude that x ∈ S.
So for any x ∈ SU(2) \ S, we have d(0,1,1)(e, x) > 0. 	


Remark 7.2. In effect, the pseudo-metric space (SU(2), d(0,1,1)) is the two-dimen-
sional left coset space SU(2)/S, which is homeomorphic to S2. This statement is
not so obvious as it might appear. For instance, suppose we instead consider the
Heisenberg group H

3 with the standard basis {X, Y, Z} for its Lie algebra h3 sat-
isfying [X, Y ] = Z, [X, Z] = [Y, Z] = 0, and a left-invariant pseudo-metric g with
g(X, X) = 0 and Y, Z orthonormal. Then the resulting pseudo-metric space is only
one-dimensional, and in particular it does not equal the quotient of H3 by {exp(tX) :
t ∈ R}. Indeed, by writing exp(s2Z) = exp(sε−1X) exp(sεY ) exp(−sε−1X) exp(−sεY )
where ε → 0, we see that we can reach the z-axis by paths of arbitrarily small length
with respect to this metric, by making a rectangle that is very large in the X di-
rection and very small in Y . However, compactness prevents this phenomenon in
SU(2).

Remark 7.3. In a recent article [Pod18], A. V. Podobryaev has computed the diam-
eter of the metrics g(a1,a2,a3) in the case where two of the three parameters a1, a2, a3

are equal. This leads to the explicit values D0 = π, D∞ = 2π. The value D∞ = 2π
also follows from a sub-Riemannian distance formula proved in [BR08a].

8 Consequences of Volume Doubling

Let (M, g) be a Riemannian manifold, and Δg the (positive) Laplace–Beltrami op-
erator associated with the metric g. The gradient ∇g is determined by the metric g
and we let

|∇gf |2g := g (∇gf,∇gf) .
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The connection between the Laplace–Beltrami operator and the gradient is given
by ∫

M
fΔgfdμg =

∫
M

|∇gf |2dμg,

where as before μg is the Riemannian volume measure. Finally the heat kernel is the
fundamental solution to the heat equation with the Laplace–Beltrami operator Δg,
which equivalently can be described as the kernel for the heat semigroup

Ptf (x) = e−tΔgf (x) =
∫

M
f (y) pg

t (x, y) dμg (y) .

We concentrate on the case when M is a compact Lie group. Namely, let K
be a connected compact group equipped with a left-invariant Riemannian metric
g ∈ L(K). In this case, the heat kernel pg

t (x, y) is a symmetric function of (x, y) and
is invariant under left multiplication, that is, pg

t (x, y) = pg
t (e, x

−1y) = pg
t (e, y

−1x).
Abusing notation, we write pg

t (z) := pg
t (e, z). In addition, the heat kernel satisfies

the Chapman–Kolmogorov equations

pg
s+t (x) =

∫
K

pg
s

(
y−1x

)
pg

t (y) dμg(y), s, t > 0, (8.1)

which implies (using symmetry and multiplication invariance) that

pg
s+t (e) =

∫
K

pg
s (y) pg

t (y) dμg(y). (8.2)

As mentioned before, the volume doubling constant is quantitatively related to many
analytic properties of the Laplace–Beltrami operator Δg. Given a Riemannian metric
g on a compact manifold M , let

0 = λg,0 < λg = λg,1 � · · · � λg,i � · · · (8.3)

be the eigenvalues of Δg, repeated according to multiplicity. In the case when M is
a compact Lie group, we will use repeatedly the following connection between the
heat kernel pg

t and the eigenvalues

μg(K)pg
t (e) = μg(K)pg

t (x, x) =
∞∑
i=o

e−tλg,i . (8.4)

We discuss some of the properties of Δg and the volume doubling constant here,
including a spectral gap, Weyl eigenvalue counting function, parabolic Harnack in-
equalities, and heat kernel bounds.

Definition 8.1. Let K be a connected real Lie group. We say that K is uniformly
doubling with constant at most D if there is a constant D such that

Dg � D

for all left-invariant metrics Riemannian metrics g ∈ L(K).
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Observe that by Lemma 6.1 we see that on SU(2)

Vg (r)
Vg (s)

� D
(r

s

)4
for any 0 < s � r.

This can be compared with a more general statement as follows. Suppose (X, d, μ)
is a metric measure space, then one can ask if there are constants D′ > 0 and δ > 0
such that for any 0 < s � r and x ∈ X

V (x, r)
V (x, s)

� D′
(r

s

)δ
, (8.5)

where V (x, r) := μ (B (x, r)). If the metric measure space (X, d, μ) is doubling with
constant at most D, then by [CS08, Section 4.2] and [Sal02, Lemma 5.2.4] we see
that (8.5) holds with D′ = D and δ = ln D

ln 2 . Indeed, if �·� denotes the integer part of
a real number (floor function), we see that

V (x, r) � V

(
x, 2� ln( r

s )
ln 2

	+1s

)
� D1+

ln( r
s )

ln 2 V (x, s) = D
(r

s

) ln D

ln 2
V (x, s) .

Below we state several interesting properties which would follow from Conjecture
1.1. First and foremost, we note that it implies a uniform version of the Poincaré
inequality for metric balls stated in Corollary 8.3. This is the key to a host of other
consequences. In particular, by Theorem 1.2 these properties hold on SU(2). In some
instances, Theorem 1.3 provides a particularly explicit form of these statements.

8.1 The Poincaré inequality on compact Lie groups. The following the-
orem is proved in [Sal02, Section 5.6.1]. The first instance of this type of inequality
appeared in [Var87a]; a discrete version of this inequality is one of the key elements
of B. Kleiner’s proof of Gromov’s theorem on groups of polynomial growth [Kle10].

Theorem 8.2. Let K be a compact Lie group equipped with a left-invariant Rie-
mannian metric g. On any ball Bg(x, r), we have the Poincaré inequality

∫
Bg(x,r)

|f − fx,r|2dμg � 2r2Dg

∫
Bg(x,2r)

|∇gf |2gdμg for all f ∈ C∞(Bg (x, 2r)), (8.6)

where fx,r :=
∫
Bg(x,r) fdμg denotes the mean of f over Bg (x, r), and Dg is the

volume doubling constant of (K, g).

Corollary 8.3. If K is uniformly volume doubling with constant at most D, then
the Poincaré inequality (8.6) holds with the same constant D for every g ∈ L(K).
In particular, by Theorem 1.2 this is true for K = SU(2).

The proof given in [Sal02] also establishes, by a straightforward modification, the
following Lp Poincaré inequality:
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Theorem 8.4. In the same notation as Theorem 8.2, for any 1 � p < ∞, we have
∫

Bg(x,r)
|f − fx,r|pdμg � (2r)pDg

∫
Bg(x,2r)

|∇gf |pgdμg for all f ∈ C∞(Bg (x, 2r)). (8.7)

(In the special case p = 2, one can improve the constant by a factor of 1
2 to recover

(8.6).)
Note that the weak Poincaré inequality (8.6) and volume doubling imply that the

strong Poincaré inequality holds, that is, (8.6) with the same ball Bg (x, r) on both
sides (and the same for the Lp Poincaré inequality (8.7)). This is shown by a covering
argument; see [Jer86a] and [Sal02, Section 5.3.2]. In particular, this implies that on
a uniformly doubling group K the lowest eigenvalue λN,g,r of the Laplacian Δg with
Neumann boundary condition on the ball Bg(x, r) satisfies cr−2 � λN,g,r � Cr−2

uniformly over all g ∈ L(K) and r ∈ (0, diamg].

8.2 Spectral gap. Let λg be the lowest non-zero eigenvalue for the Laplace–
Beltrami operator Δg. We show that when K is uniformly doubling, we obtain
the uniform upper bound (1.2) for λg, matching the lower bound (1.1) obtained in
[Li80a], up to a constant depending on the doubling constant.

Theorem 8.5. Assume that the compact connected Lie group K is uniformly dou-
bling with constant at most D. For any metric g ∈ L(K), the lowest non-zero
eigenvalue λg of the Laplacian Δg satisfies

π2

4 diam2
g

� λg � 16D2

diam2
g

.

Proof. As mentioned earlier, the lower bound was proved in [Li80a]. (An improved
lower bound was recently obtained in [JL17].) To obtain an upper bound, we note
that

λg = min
{∫ |∇gf |2dμg

‖f‖2
2

: f �= 0,

∫
K

fdμg = 0, f ∈ Lip(K)
}

, (8.8)

We construct an appropriate test function to use in (8.8). Let y be a point which
realizes the diameter of K under g, i.e., dg(e, y) = diamg. Let R = diamg /2. For any
z ∈ K, let fz,r(x) = (r−dg(z, x))+ be the tent function over the ball Bg(z, r); observe
that this is a Lipschitz function with gradient |∇gfz,r| � 1 (almost everywhere). As
a test function, take fR = fe,R − fy,R. By group invariance,

∫
K fRdμg = 0 and∫

K |∇gfR|2dμg � μg(K) = Vg(2R). To estimate the L2-norm of fR from below,
observe that |fR| is at least R/2 on two disjoint balls of radius R/2. Hence we have
‖fR‖2

2 � (R/2)2Vg(R/2). Plugging this in the variational formula (8.8) for λg yields

λg � 4Vg(2R)
R2Vg(R/2)

� 16D2

diam2
g

. 	
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In the special case when K = SU(2), we have from Proposition 7.1 that the
diameter diamg(SU(2)) is uniformly comparable to the parameter a2 of g (as defined
in Notation 2.9), and hence we have the following statement.

Corollary 8.6. There are positive constants 0 < c � C < ∞ such that for all
g ∈ L(SU(2)) with parameters 0 < a1 � a2 � a3 as in Notation 2.9, we have

c

a2
2

� λg � C

a2
2

. (8.9)

Remark 8.7. In a very recent preprint [Lau18], E. A. Lauret has given an exact
expression for the smallest eigenvalue λg of SU(2) in terms of the parameters of the
metric, which in our notation reads as follows:

λg = min
{

1
4

(
1
a2

1

+
1
a2

2

+
1
a2

3

)
,

1
a2

2

+
1
a2

3

}
. (8.10)

Indeed, (8.10) is consistent with (8.9).
In earlier work, as part of a more general construction, H. Urakawa [Ura79]

computed λg for a particular one-parameter family of metrics g(t) on SU(2), which
in our notation is

g(t) =

{
g(t/

√
2, 1/

√
2t, 1/

√
2t), 0 < t � 1

g(1/
√

2t, 1/
√

2t, t/
√

2), 1 � t < ∞.

See [Ura79, Theorem 5]. This family has the property that the volume μg(t)(SU(2))
is the same for all t, while λg(t) ∼ t.

Urakawa’s example answered, in the negative, a previous question of M. Berger
[Ber73a]: whether we have λg � C(M)μg(M)−2/n on any n-dimensional compact
connected manifold M , with a constant C(M) depending on M but not on the
metric g. It is interesting to compare this with Theorem 8.5, which implies that,
when M is a uniformly doubling group K and the metrics are left-invariant, the
quantity μg(K)1/n in Berger’s statement ought to be replaced with diamg.

8.3 Heat kernel estimates. In the section we would like to comment on the
heat kernel estimates (1.3) for uniformly doubling compact Lie groups. Given a
complete Riemannian manifold that satisfies the volume doubling property and the
Poincaré inequality (8.6), there are several ways to obtain heat kernel upper bounds.
One of the most direct and efficient is based on the notion of a Faber–Krahn in-
equality as developed in [Gri94a,Car96a] or the equivalent notion of local Sobolev
inequality (see [Sal02, Section 5.2]).

Assuming that doubling and the Poincaré inequality hold, these methods provide
the heat kernel upper bound in terms of the volume

pt(x, y) � C1(ε)√
V (x,

√
t)V (y,

√
t)

exp
(

− d(x, y)2

4(1 + ε)t

)
(8.11)
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with a constant C1(ε) [Sal02, Equation(5.2.17)] and [Sal92a] that depends only on
ε ∈ (0, 1) and the constants involved in the doubling property and the Poincaré
inequality. Here V (x, r) denotes the volume of the ball of radius r > 0 around the
point x.

In fact, these arguments provide the more precise bound of the type

pt(x, y) � C1(1 + d(x, y)2/4t)κ√
V (x,

√
t)V (y,

√
t)

exp
(

−d(x, y)2

4t

)

for some κ > 0. The best value of κ that can be obtained from these arguments is
κ = δ/2, where δ is as in (8.5), e.g. [Sal02, Section 5.2.3], [Stu96a, Corollary 4.2] and
variations on the arguments in [CS08]. Further, one also obtains the time derivative
estimates such as in [Stu95a, Corollary 2.7])

|∂k
t pt(x, y)| � Ck(1 + d(x, y)2/4t)k+δ/2

tk
√

V (x,
√

t)V (y,
√

t)
exp
(

−d(x, y)2

4t

)
.

In addition, [CS08] provides assorted estimates for the heat kernel in complex time
and pointers to further references.

The proofs of these estimates simplify, and a greater variety of arguments can be
employed, when the volume of balls is independent of the center, which is the case
for left-invariant metrics on Lie groups.

Theorem 8.8. Let K be a compact Lie group. If K is uniformly volume doubling
with constant at most D, then for each integer k = 0, 1, . . . there exists a constant
Ck depending only on D and k such that for any g ∈ L(K), and for all x, y ∈ K and
t > 0

|∂k
t pg

t (x, y)| � Ck(1 + dg(x, y)2/4t)k+δ/2

tkVg(
√

t)
exp
(

−dg(x, y)2

4t

)
,

where δ is as in (8.5).

Regarding a lower bound, the only directly applicable results are proved by a simple
chaining argument using the parabolic Harnack inequality discussed in Section 8.4.
Assuming that doubling and the Poincaré inequality hold, this line of reasoning
provides the following heat kernel lower bound

pg
t (x, y) � c2

V (x,
√

t)
exp
(

−C2
d(x, y)2

t

)
,

where 0 < c2, C2 depend only on the constants involved in the doubling property
and the Poincaré inequality. See, for instance, [Sal02, Section 5.4.6] and [Stu96a,
Corollary 4.10].
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Theorem 8.9. Let K be a compact Lie group. If K is uniformly volume doubling
with constant at most D then there exist positive constants c and A depending only
on D such that, for any g ∈ L(K), for all x, y ∈ K and t > 0

pg
t (x, y) � c

Vg(
√

t)
exp
(

−A
dg(x, y)2

t

)
.

For SU(2), Lemma 6.1 shows that we can take δ = 4 (uniformly over L(SU(2))) in
Theorem 8.8, and this gives the following result.

Theorem 8.10. There exist constants 0 < c, A and for each k = 0, 1, . . . , a constant
Ck, such that, for all g ∈ L(SU(2)) and all x, y ∈ SU(2), t > 0, we have

|∂k
t pg

t (x, y)| � Ck(1 + dg(x, y)2/4t)k+2

tkVg(
√

t)
exp
(

−dg(x, y)2

4t

)

and

pg
t (x, y) � c

Vg(
√

t)
exp
(

−A
dg(x, y)2

t

)
.

Remark 8.11. The results in [Var89a] imply that for each metric g ∈ L(K) (in
particular for SU(2)) and ε ∈ (0, 1) there is a constant cε(g) > 0 such that, for all
x, y, t

pg
t (x, y) �

cε(g)

Vg(
√

t)
exp
(

− dg(x, y)2

4(1 − ε)t

)
.

However, it is not clear that the arguments in [Var89a] are sufficient to yield a
constant cε that is uniform in g, even if one assumes that the group K is uniformly
doubling. This remains an open question, although we conjecture that this inequality
holds uniformly.

Remark 8.12. Detailed asymptotics originally developed by S. Molchanov in [Mol75]
show that for the heat kernel on the n-sphere equipped with its canonical round met-
ric and with x and y being antipodal points (e.g., the south and north poles)

pt(x, y) ∼ cnt−n/2

(
d(x, y)2

t

)(n−1)/2

exp(−d(x, y)2/4t)

as t tends to 0. This shows that one cannot dispense entirely with the factor (1 +
dg(x, y)2/t)κ in heat kernel upper bounds, even on SU(2). For more on this, see
[Nee07].
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8.4 Harnack inequality. Let the parabolic Harnack constant H(M, g) be the
infimum of all real H such that for any x ∈ M , r > 0 and any positive solution u of
the heat equation on (M, g) in (s, s + 4r2) × B(x, 2r), it holds that

sup
Q−

{u} � H inf
Q+

{u}, (8.12)

where Q− = (s + r2, s + 2r2) × B(x, r) and Q+ = (s + 3r2, s + 4r2) × B(x, r). In
particular, for any connected compact real Lie group K equipped with g ∈ L(K),
we denote by H(K, g) the best constant in the parabolic Harnack inequality (8.12).
Then one can ask if the parabolic Harnack inequality is satisfied uniformly over all
g ∈ L(K).

Proposition 8.13 (See [Gri91,Sal92b]). Let K be a connected compact Lie group.
Assume that K is uniformly doubling with constant at most D; then there is a H (D)
such that

H(K, g) � H (D)

for all g ∈ L(K).

In particular, Theorem 1.2 implies the following.

Corollary 8.14 (Uniform Harnack inequality for SU(2)). The parabolic Harnack
inequality is satisfied uniformly over all g ∈ L(SU(2)).

8.5 Gradient inequalities. In addition to the Harnack inequality (8.12) sev-
eral related useful inequalities involve gradient estimates. For instance, one can con-
sider the property that for any x ∈ M , r > 0 and any positive solution u of the heat
equation on (M, g) in (s, s + 4r2) × B(x, 2r), it holds that

sup
Q−

{|∇gu|g} � H1t
−1/2 inf

Q+

{u} (8.13)

with Q−, Q+ defined as above. Or one may prefer the Li-Yau parabolic inequality
for global positive solutions u (t, x) of the heat equation on (M, g) in (0, T ) × M ,

|∇g log u|2g − ∂t log u � H ′
1

t
. (8.14)

In this direction, we can only prove the following weaker result for the heat kernel
pg

t (x).

Theorem 8.15. Assume that K is uniformly doubling with constant at most D.
Then there is a constant C (D) such that

|∇gp
g
t (x) |g � C (D)√

tVg

(√
t
)
(

1 +
d2

g(e, x)
4t

)3δ+1

exp

(
−d2

g(e, x)
4t

)
, (8.15)

‖∇gp
g
t ‖L1 =

∫
K

|∇gp
g
t (x) |gdμg(x) � C (D) t−1/2 (8.16)

where δ = δ (D) is as in (8.5).
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Proof. By spectral theory, we may bound the operator norm of ΔgP
g
t on L2(K, μg)

by

‖ΔgP
g
t ‖L2→L2 = ‖∂tP

g
t ‖L2→L2 = sup

λ>0

{
λe−tλ

}
� (et)−1 � t−1, (8.17)

where the supremum is taken over all nonzero eigenvalues λ of Δg. Now observe that
by (8.1)

∇gp
g
t (x) =

∫
K

∇gp
g
t/2(y

−1x)pg
t/2(y)dμg(y).

Hence

|∇gp
g
t (x)|2g �

(∫
K

|∇gp
g
t/2(y

−1x)|gpg
t/2(y)dμg(y)

)2

�
∫

K
|∇gp

g
t/2(y)|2gdμg(y)

∫
K

|pg
t/2(y)|2dμg(y).

By (8.2) we have ‖pg
t/2‖2

2 =
∫
K |pg

t/2(y)|2dμg(y) = pg
t (e) and

∫
K

|∇gp
g
t/2(y)|2gdμg(y) =

∫
−Δgp

g
t/2(y)pg

t/2(y)dμg(y)

� ‖ΔgP
g
t/4p

g
t/4‖2‖pg

t/2‖2 � 4
t
‖pg

t/4‖2‖pg
t/2‖2.

Recall that by (1.3) if K is uniformly doubling with constant at most D, there is a
constant C(D) such that

pg
t (e) � C (D)

Vg(
√

t)
. (8.18)

Moreover, by (8.5), for any 0 < a < 1

pg
at(e) � C (D)

Daδ/2Vg(
√

t)
.

This yields

|∇gp
g
t (x)|g � 2√

t
(pg

t (e))3/4
(
pg

t/2 (e)
)1/4

� C1(D)
t1/2Vg(

√
t)

.

From [Sal10b] or, more directly, [CS08, Theorem 4.11] (see also [ACDH04]) Equation
8.15 follows.

Inequality (8.16) follows by integration. See, e.g., [Sal02, Lemma 5.2.13]. 	
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Remark 8.16. We do not know if it is possible to prove statements (8.13) and (8.14)
with a uniform constant (H1 or H ′

1) over all g ∈ L(K) in the case when M = K is a
compact Lie group, solely from the validity of Conjecture 1.1. In particular, we do
not know if these statements hold uniformly for all left-invariant metrics on SU(2).
There seems to be no reason why they should not hold but the known techniques to
attack these problems usually involve curvature.

In this direction we note that the heat kernel lower bound in Theorem 8.9 and
(8.15) imply that there exist C > 0 and b > 1 such that for all x, t

|∇gpt(x)|g � Ct−1/2pbt(x). (8.19)

This is (8.13) for the heat kernel pg
t (x). Note that given (1.3) Equation (8.19) is

equivalent to

|∇gpt(x)| � C√
tVg(

√
t)

exp(−b′|x|2g/t).

All the constants depend only on D as follows from the proofs in [ACDH04].

Finally, Theorem 8.15 by [ACDH04] gives the following corollary regarding the Riesz
transforms.

Corollary 8.17 (Uniform boundness of Riesz transforms). Assume K is uniformly
doubling with constant at most D. Then for all 1 < p < ∞ there are cp (D) , Cp (D)
such that

cp (D) ‖Δ−1/2
g f‖p � ‖|∇gf |g‖p � Cp (D) ‖Δ−1/2

g f‖p.

8.6 Weyl counting function. For a compact Riemannian manifold (M, g),
consider the Weyl spectral counting function

WM,g(s) := #{i : λg,i < s},

where 0 = λg,0 < λg � · · · � λg,i � · · · are the eigenvalues of Δg as defined in (8.3).
The asymptotic behavior of this function is described classically by Weyl’s law (see
[Cha84, p. 155]) as follows:

WM,g(s) ∼ ωn

(2π)n
μg(M)sn/2, (8.20)

where ωn is the volume of the Euclidean n-ball. However, even when M = K is
a compact connected Lie group, these asymptotics do not hold uniformly over all
left-invariant metrics g—not even when K = T

n is a torus.
When (M, g) is a compact homogeneous space, Judge and Lyons in [JL17] have

recently obtained the following uniform upper bound.

WM,g(s) � C
μg(M)

Vg(s−1/2)
, (8.21)

where C is a universal constant. If M = K is a compact connected Lie group which
is uniformly doubling, we obtain a matching lower bound, uniformly over all left-
invariant metrics.
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Proposition 8.18. Let K be a connected compact real Lie group which is uniformly
doubling with constant at most D. Then there is a constant c(D) > 0, depending
only on D, such that for all g ∈ L(K) we have

WK,g(s) � c(D)
μg(K)

Vg(s−1/2)
. (8.22)

For a proof, see [MS95, Théorème 7.1]; an explicit statement is also given in
[Sal95a, Theorem 4.2]. The proof is based on the min-max characterization of eigen-
values and a covering argument. A matching upper bound is also proved in [MS95],
but with a constant depending on D. Such a bound can be obtained another way
using the trace of the heat kernel, via (8.4) and the heat kernel estimates of Section
8.3. In [FP83, Theorem 2] a similar statement is proved for individual sub-elliptic
operators in R

n, but without explicit control of the constants involved in terms of
doubling.

The bound (8.22) is informative for t � c diam−2
g as discussed in Section 8.2.

Indeed, the spectral gap estimate in Theorem 8.5 implies that the step function
WK,g(t) equals 1 on [0, c diam−2

g ) for some c = c(D), uniformly over all left-invariant
metrics in L(K).

When K = SU(2), Theorem 1.3 and Proposition 7.1 yield detailed explicit esti-
mates for WSU(2),g(s) as follows.

Corollary 8.19 (Weyl counting function for SU(2)). There are constants
0 < C0(D) � C∞ < ∞, with C0(D) depending only on D and C∞ universal, such
that for all g =∈ L (SU(2)) we have

C0(D)fa1,a2,a3 (t) � WSU(2),g(t) � C∞fa1,a2,a3 (t) , (8.23)

where

fa1,a2,a3 (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if 0 < t < 1/a2
2

a2
2t, if 1/a2

2 � t < 1/a2
1

a2
1a

2
2t

2, if 1/a2
1 � t < a2

3/a2
1a

2
2

a1a2a3t
3/2, if a2

3/a2
1a

2
2 � t < ∞.

Here a1, a2, a3 are the parameters of g as in Notation 2.9.

8.7 Heat kernel estimates: ergodicity. Let Vg be the total Riemannian
volume of the given group K under a Riemannian metric g ∈ L(K), that is, Vg =
μg(K). It is well-known that the heat semigroup associated to any given g ∈ L(K)
is ergodic and that pg

t (x) −→ V−1
g as t tends to infinity. As before let λg by the

lowest non-zero eigenvalue of the Laplacian Δg on K. We would like to describe
this convergence to equilibrium in terms of the eigenvalue λg in the case when K
is a uniformly doubling compact Lie group. For relevant results we refer to [Sal94a,
Sal10b]. In what follows we set ‖f‖1 = ‖f‖L1(K,μg) and ‖f‖2 = ‖f‖L2(K,μg).

Author's personal copy



1358 N. ELDREDGE ET AL. GAFA

Theorem 8.20. Let K be a compact Lie group which is uniformly doubling with
constant at most D. For any ε > 0 there is a constant Cε(K) ∈ (0, ∞) such that for
any metric g ∈ L(K) we have

Vg‖pg
t − V−1

g ‖1 � e−tλg for all t > 0,

and

Vg‖pg
t − V−1

g ‖2
2 � Cε(K)e−2sλg for t � ε diam2

g +s.

Moreover, there are constants c1, c2 ∈ (0, ∞) such that for any metric g ∈ L(K) we
have

c1

Vg(
√

t)
e−2λgt � ‖pg

t − V−1
g ‖2

2 � c2

Vg(
√

t)
e−2λgt for all t > 0.

Remark 8.21. As we described in Section 8.2, under the hypothesis of this The-
orem, λg is of order diam−2

g , uniformly over L(K). Note also that, by definition,
Vg = Vg(diamg /2). Further, for any function f ∈ L2(K, μg), ‖f‖2

1 � Vg‖f‖2
2.

Proof. Let ϕ be an eigenfunction of Δg associated with the lowest non-zero eigen-
value λg and normalized by maxx |ϕ(x)| = ϕ(e) = 1 (such a normalization is always
possible by translation in K and multiplication by a constant). Then the lower L1-
bound follows from

‖pg
t − V−1

g ‖1 �
∫ (

pg
t (x) − V−1

g

)
ϕ(x)dμg(x) = e−λgt,

where we used the fact that ϕ ⊥ 1 and∫
K

pg
t (x)ϕ(x)dμg(x) = (Ptϕ) (e) = e−λgtϕ(e).

For the two-sided L2-estimate, first observe that for any constant C > by (8.1)
we have ∫

K
|pg

t (x) − C|2dμg (x) = pg
2t(e) − 2C + C2Vg,

and so by (8.4)

Vg‖pg
t − V−1

g ‖2
2 = Vgp

g
2t(e) − 1 =

∞∑
i=1

e−2tλg,i ,

where λg,i are eigenvalues of Δg as defined in (8.3). For the lower bound, noting that
e−2tλg � 1 we have

Vgp
g
2t(e) − 1 = e−2tλg +

∞∑
i=2

e−2tλg,i � 1
2
e−2tλg

(
1 + e−2tλg

)
+

∞∑
i=2

e−2tλg,i

� 1
2
e−2tλg

(
1 + e−2tλg

)
+

1
2
e−2tλg

∞∑
i=2

e−2tλg,i

=
1
2
e−2tλgVgp

g
2t(e).
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By Theorem 8.9, this gives the desired lower bound.
For the upper bound, write

Vgp
g
2t(e) − 1 =

∞∑
i=1

e−2tλg,i =
∑

λg,i≤2λg

e−2tλg,i +
∑

λg,i>2λg

e−2tλg,i

� e−2tλg

⎛
⎝Wg(2λg) +

∑
λg,i>2λg

e−tλg,i

⎞
⎠

� e−2tλg (Wg(2λg) + Vgp
g
t (e)) .

The upper bound in (8.22) and the upper bound λg � C1(D) diam−2
g in Theorem

8.5 yield Wg(2λg) � C2(D). This, together with (8.11), gives

Vgp
g
2t(e) − 1 � C3(D)Vg

Vg(
√

t)
e−2tλg

as desired. 	

8.8 Infinite products. Let {Ki}∞

i=1 be a sequence of compact connected Lie
groups, each equipped with the Haar probability measure μi. Consider the compact
group

K∞ :=
∞∏
i=1

Ki.

Note that this includes the case when Ki = K for all i. Suppose each Ki is
equipped with a Riemannian metric gi ∈ L(Ki); from now on by Ki we denote
(Ki, gi), and by g we denote the sequence of metrics {gi}∞

i=1. Note that the Rieman-
nian volume measure μgi

is just a rescaling of μi, so D(Ki, dgi
, μgi

) = D(Ki, dgi
, μi).

We endow K∞ with its Haar probability measure μ which is the product of the Haar
measures μi. For background on this setting see [Hey77,BS01a].

The space of cylinder functions, i.e. smooth functions depending on only finitely
many coordinates, is dense in L2(K∞, μ). For a cylinder function f , set

Eg(f, f) :=
∫

K∞

∞∑
i=1

gi(∇gi
f,∇gi

f)dμ.

The quadratic form Eg is closable and its closure is a strictly local regular Dirichlet
form associated to a self-adjoint Markov semigroup Hg

t . It is a convolution semigroup
on K∞ associated with a convolution semigroup of symmetric measures νg

t , i.e.

Hg
t f(x) =

∫
f(xy)dνg

t (y), t > 0.

For each metric gi, we let γi := λi,1 be the second smallest eigenvalue of the positive
Laplace–Beltrami operator Δi on Ki.
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Denote by tA to be the infimum of all times t > 0 at which the measure νg
t is

absolutely continuous with respect to the Haar measure μ. Note that if this property
holds at time t, it also holds at all later times.

The following are special cases of more general open problems considered in
[Sal10b, Section 2]. Is is true that νg

t is singular with respect to the Haar measure
μ for all time t < tA? Is it true that for all t > tA, the density fg

t of the measure νg
t

with respect to μ is in L2 (K∞, μ)? Is it true that if tA = 0, then fg
t has a continuous

representative?

Proposition 8.22. Assume there exists a constant D such that for any i = 1, 2, ....
and any gi ∈ L (Ki) we have D (Ki, dgi

, μi) � D. Denote

t∗ := inf{t :
∞∑
i=1

e−2tγi < ∞}.

Then the following properties hold:

• The measure νg
t is absolutely continuous with respect to the Haar measure μ

for t > t∗ whereas νg
t has no absolutely continuous part with respect to μ for

0 < t < t∗.
• Furthermore, for all t > t∗, the density dνg

t

dμ is in L2(K∞, μ). It is unbounded
for t∗ < t < 2t∗, and it is bounded and continuous for t > 2t∗.

• In particular, if t∗ = 0, the semigroup Hg
t admits a continuous convolution

kernel for all times t > 0.

Proof. This follows from (1.2), (1.3) Proposition 8.13 and [BS97a, Theorems 3.1,
4.1, 4.2]. 	

In particular, by Theorem 1.2 and the similar result for tori, these properties hold
when Ki ∈ {SU(2),T,T2, . . . ,Tn

}
.

9 Connections to Sub-Riemannian Geometry

We have focused this paper on Riemannian geometry, but in fact our results carry
over to sub-Riemannian geometry as well. In this section, we make those connections
explicit. We briefly review the relevant definitions as they apply to Lie groups; we
refer to [Mon02] for a discussion of sub-Riemannian geometry in a general context.

On a connected Lie group K, a left-invariant sub-Riemannian geometry is deter-
mined by a choice of a linear subspace H ⊂ k of the Lie algebra, and a Euclidean
inner product g on H. Let Lsub(K) denote the set of all such pairs (H, g); by abuse
of notation, we will refer to such a pair simply by g. It is also common to view g as
an extended quadratic form on k, where g(v, w) = ∞ unless v, w ∈ H.

By left translation, H extends to a left-invariant distribution H ⊂ TK with
He = H, and g extends to a left-invariant sub-Riemannian metric, still called g, on
H (or an extended quadratic form on TK).
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The geometry (H, g) satisfies the Hörmander bracket generating condition iff H
generates the Lie algebra k; let L∗

sub(K) ⊂ Lsub(K) denote the set of such geometries.
Note that for K = SU(2), this happens iff dimH � 2, since the Lie algebra su(2)
is generated by any two linearly independent elements. When H = k we recover the
left-invariant Riemannian geometries L(K).

To any g ∈ Lsub(K) is associated a length structure giving finite length to con-
tinuous piecewise smooth curves that stay tangent to H (these are called horizontal
curves). The left-invariant Carnot–Carathéorody (pseudo)-distance dg(x, y) is de-
fined as the infimum of the lengths of horizontal curves joining x to y in K, where
dg(x, y) = ∞ if no such curve exists. By the Chow–Rashevskii theorem [Mon02, The-
orems 2.1.2 and 2.1.3], if g ∈ L∗

sub(K) then dg(x, y) is finite for any pair x, y ∈ K,
so that dg is a genuine distance, and moreover the topology induced by dg coincides
with the manifold topology of K.

Each sub-Riemannian geometry (H, g) ∈ Lsub(K) is also associated with a canon-
ical left-invariant sub-Laplacian Δg, which may be defined by

Δg = −
k∑

i=1

ũi
2 (9.1)

where k = dimH, {ui : 1 � i � k} is a g-orthonormal basis for H, and {ũi} are the
corresponding left-invariant vector fields. This definition is independent of the basis
chosen. The operator Δg is hypoelliptic iff g ∈ L∗

sub(K), and when g is Riemannian
(H = k) we recover the Laplace–Beltrami operator.

Likewise, for f ∈ C∞(K), we have the left-invariant sub-gradient ∇gf which is
a smooth section of H defined by

∇gf =
k∑

i=1

(ũif)ũi. (9.2)

In particular, we have

|∇gf |2 := g(∇gf,∇gf) =
k∑

i=1

|ũif |2. (9.3)

When g is Riemannian this is the usual Riemannian gradient.
In the case K = SU(2), a sub-Riemannian metric g ∈ Lsub(SU(2)) can be diago-

nalized by a standard Milnor basis, in the same way as in Lemma 2.8 for Riemannian
metrics.

Proposition 9.1. Let (H, g) ∈ Lsub(SU(2)), with dim H = k. There exists a stan-
dard Milnor basis {e1, e2, e3} and an ordered triplet of extended non-negative reals
0 < a1 � a2 � a3 � ∞ such that H = span{ei : 1 � i � k} and g(ei, ej) = a2

i δij for
1 � i, j � k. We take ai = ∞ for i > k.
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Proof. The case k = 0 is trivial (any standard Milnor basis will do), and k = 3 is
Lemma 2.8.

For k = 2, let {v1, v2} be a g-orthonormal basis for H, and set v3 = [v1, v2].
Observe that v3 /∈ H; indeed, under the invariant inner product given by the negative
Killing form, v3 is orthogonal to both v1, v2. Let g′ be the Euclidean inner product
on su(2) which makes v1, v2, v3 orthonormal, and define ×, L with respect to g′ as
in the proof of Lemma 2.8, choosing × so that v1 × v2 = v3. Note that v3 is an
eigenvector of L (with eigenvalue 1), since L(v3) = L(v1 × v2) = [v1, v2] = v3. So if
{w1, w2, w3} is a g′-orthonormal basis of eigenvectors for L, where we let w3 = v3,
then necessarily w1, w2 ∈ H and they are g-orthonormal. Proceeding as in Lemma
2.8, there is a standard Milnor basis {e1, e2, e3} where ei is a scalar multiple of wi,
and in particular e1, e2 ∈ H and they are g-orthogonal.

For k = 1, let v1 span H, choose v2 /∈ H arbitrarily, and proceed as in the
previous case. We obtain a standard Milnor basis {e1, e2, e3} where span{e1, e2} =
span{v1, v2}. In particular there is some θ ∈ R such that v1 is a scalar multiple of
cos(θ)e1 + sin(θ)e2, and then

{cos(θ)e1 + sin(θ)e2, sin(θ)e1 − cos(θ)e2, e3}

is the desired standard Milnor basis, as in Example 2.3. 	

Thus, as in Corollary 2.10, the left-invariant sub-Riemannian geometries g ∈

Lsub(SU(2)) are given, up to isometry, by the geometries g(a1,a2,a3), where the ai

are allowed to take the value ∞. In fact, these geometries arise as the limits of
the Riemannian geometries g(a1,a2,a3) where the ai are finite. The “standard” sub-
Riemannian metric commonly encountered in the literature (e.g. [BB09,BG17]) cor-
responds to g(1,1,∞), but we stress that this is just one element of the infinite family
L∗

sub(SU(2)).

Lemma 9.2. Given g = g(a1,a2,a3) ∈ Lsub(SU(2)), where 0 < a1 � a2 � a3 � ∞, and
ε > 0, let aε,i = min(ai, ε

−1), and set gε = g(aε,1,aε,2,aε,3) ∈ L(SU(2)). Then for any
x, y ∈ SU(2) we have dg(x, y) = limε→0 dgε

(x, y).

Proof. By left invariance, it suffices to consider dg(e, x) where x �= e.
If dg(e, x) < ∞, the result follows by the argument in [JS87, Proposition 3.1] for

the distance αL. In particular, this covers all cases when a2 < ∞ (so that dimH is
2 or 3).

In the trivial case of g(∞,∞,∞), where dim H = 0, we have dg(e, x) = ∞ for all
x �= e, and we simply note that dgε

(e, x) = d(ε−1,ε−1,ε−1)(e, x) = ε−1d(1,1,1)(e, x) → ∞
as ε → 0.

The remaining case is where g = g(a1,∞,∞), with a1 < ∞ (so that dimH = 1) and
dg(e, x) = ∞. Let S = {exp(sê1) : s ∈ R} be the circle subgroup defined in the proof
of Proposition 7.1. If x ∈ S, so that x = exp(T ê1) for some T , then γ(t) = exp(tê1),
0 � t � T is a finite-length horizontal curve joining e to x, and thus dg(e, x) < ∞. So
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suppose x /∈ S. As shown in the proof of Proposition 7.1, we have d(0,1,1)(e, x) > 0.
Hence for all ε � min(a−1

1 , 1) we have

0 < d(0,1,1)(e, x) � d(εa1,1,1)(e, x) = εdgε
(e, x)

which implies that dgε
(e, x) → ∞. 	


Corollary 9.3. The family of metric measure spaces

{(SU(2), dg, μ0) : g ∈ L∗
sub

(SU(2))}
is uniformly volume doubling with the same constant D as in Theorem 1.2.

Proof. By the previous lemma, the closed ball B̄g(r) equals the decreasing intersec-
tion

⋂
n Bg1/n

(r). The sub-Riemannian spheres have measure zero [RT05, Proposition
4.3], so we have μ0(Bg(r)) = μ0(B̄g(r)) = limε→0 μ0(Bgε

(r)), and by Theorem 1.2
each gε is volume doubling with constant at most D, so the result follows. 	

Corollary 9.4. For all g(a1,a2,a3) ∈ L∗

sub
(SU(2)), where we allow a3 = ∞, the vol-

ume V(a1,a2,a3)(r) is comparable to V (a1,a2,a3)(r) as defined in (6.1), uniformly in
a1, a2, a3, r.

Note that for a3 = ∞, the “Euclidean” regime, where volume scales as r3, be-
comes empty, and for very small r, the volume scales as r4 instead. This matches
the Heisenberg behavior and corresponds to the fact that such a sub-Riemannian
geometry has Hausdorff dimension 4.

Remark 9.5. The preceding corollaries may also be proved directly, instead of by
approximating sub-Riemannian geometries by Riemannian geometries. Indeed, the
proofs in Sections 3–6 go through without change if a3 = ∞. (Note that Section 3,
the Euclidean regime, becomes vacuous in that case.)

The results in Section 8 concerning the spectral gap λg, the heat kernel pg
t , the

eigenvalues λg,i and the Weyl counting function Wg all extend uniformly to sub-
Riemannian geometries g ∈ L∗

sub(SU(2)), with Δg, |∇gf |2 redefined as above. It is
only necessary to adjust the statements to replace all instances of μg by μ0, since sub-
Riemannian geometries do not admit a Riemannian volume, and scale appropriately.
In particular, in this context the heat kernel pg

t should be viewed as an integral
kernel with respect to μ0. The proofs need not be carried out by passing to the limit
in the Riemannian statement; instead, the results follow because they are general
consequences of uniform doubling and the uniform Poincaré inequality, for which
the proof cited in Section 8.1 goes through without change in the sub-Riemannian
setting.

Remark 9.6. One may also study the degenerate sub-Riemannian geometries, though
this is more complicated because their topologies are not well behaved. For in-
stance, with g = g(a1,∞,∞), the ∞-metric space (SU(2), dg) has uncountably many
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connected components, which are the left cosets of the one-dimensional subgroup
S = {exp(se1) : s ∈ R}, all isometric to S1 and at pairwise distance infinity from
one another. In particular, every ball of this metric has Haar measure zero, so state-
ments about volume growth are not sensible. However, if we fix a sufficiently large
R, then for all small ε the ball Bgε

(R) is comparable to Bgε
(S, R); by arguments

similar to Proposition 5.3, one may see that μ0(Bgε
(R)) ≈ ε2R2. On the other hand,

(6.1) gives

μ0(Bgε
(r)) ≈

⎧⎪⎨
⎪⎩

a−1
1 ε2r3, 0 � r � a1

ε2r2, a1 � r � ε−1

1, r � ε−1.

As ε → 0, the ball Bgε
(R) collapses to S, and we have

μ0(Bgε
(r))

μ0(Bgε
(R))

≈
{

r
a1

, r � a1

1, r � a1.
(9.4)

If we consider the circle S1 as a Lie group equipped with its own normalized Haar
measure μS1 and the metric g = ga1 which is the a1-scaling of the unique left-
invariant Riemannian metric on S1, we can observe that (9.4) is comparable to the
volume μS1(Bg(r)) of a ball in S1. In particular, we recover the (trivial) fact that
left-invariant Riemannian geometries on S1 are uniformly volume doubling. This is
perhaps not so interesting in our present context, but the idea of considering de-
generate sub-Riemannian geometries may yield more useful insights when replacing
SU(2) with other compact connected Lie groups K.
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