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Abstract

The extracellular matrix provides macroscale structural support to tissues as well as microscale
mechanical cues, like stiffness, to the resident cells. As those cues modulate gene expression,
proliferation, differentiation, and motility, quantifying the stiffness that cells sense is crucial to
understanding cell behavior. Whereas the macroscopic modulus of a collagen network can be
measured in uniform extension or shear, quantifying the local stiffness sensed by a cell remains a
challenge due to the inhomogeneous and nonlinear nature of the fiber network at the scale of the
cell. To address this challenge, we designed an experimental method to measure the modulus of
a network of collagen fibers at this scale. We used spherical particles of an active hydrogel (poly
N-isopropylacrylamide) that contract when heated, thereby applying local forces to the collagen
matrix and mimicking the contractile forces of a cell. After measuring the particles’ bulk modulus
and contraction in networks of collagen fibers, we applied a nonlinear model for fibrous materials
to compute the modulus of the local region surrounding each particle. We found the modulus at
this length scale to be highly heterogeneous, with modulus varying by a factor of 3. In addition, at
different values of applied strain, we observed both strain stiffening and strain softening, indicating
nonlinearity of the collagen network. Thus, this experimental method quantifies local mechanical
properties in a fibrous network at the scale of a cell, while also accounting for inherent nonlinearity.

Introduction

Cells sense mechanical signals, the most familiar being the stiffness of the surrounding extracel-
lular matrix [1]. The ability of cells to sense the matrix stiffness regulates various cellular activities,
such as migration [2–6], differentiation [7], proliferation [5, 8] and gene expression [9]. Quantifying
stiffness sensed by a cell is therefore crucial for studies in mechanobiology. For a homogeneous
material, measuring stiffness is a straightforward procedure, but the extracellular environment of
real tissues is not a homogeneous continuum but rather a highly heterogeneous network of fibers.
As cells apply forces to the matrix at length scales of tens of microns, they sense the stiffness not
of the bulk material, but rather of local groups of fibers. Therefore, understanding how cells sense
stiffness of real biological tissue requires experimental methods that quantify the modulus of a
fibrous matrix at the scale of the cell.

On the scale of a cell, fibrous materials behave mechanically as a network of beams that stretch,
bend, and buckle. The resulting relationship between stress and strain is nonlinear, showing stiff-
ening in shear or extension and softening in compression [10–16]. To accurately quantify stiff-
ness sensed by a cell, an experiment would have to account for this nonlinearity. Several nonlin-
ear constitutive models exist for fibrous materials [17–20], but they have not yet been validated
for general loading conditions. Loadings applied to fibrous materials have generally been uni-
form extension/compression, simple shear, or combinations of extension/compression and shear
[10, 11, 14, 15, 21–27]. These experiments have provided critical insights into how the deformations
of the fibers bring about macroscopic phenomena like strain stiffening. Yet there remains a need
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to probe the matrix mechanics at length scales matching the cell size of tens of microns. Nanoin-
dentation with a spherical probe could measure the modulus at this scale, but nanoindentation
quantifies modulus only on the surface of a material—it cannot determine material properties in-
side the fiber network, as would be sensed by a cell. Moreover, nanoindentation typically assumes
the material to be linear. Some studies are beginning to consider nonlinear hyperelastic models in
analyzing nanoindentation data [28], but none has yet used a nonlinear model specifically designed
for fiber networks, which are strongly nonlinear and weaken under compression [15, 16, 26]. An
alternative to nanoindentation is active microrheology, such as by optical tweezers [29–32], which
offers the advantage of quantifying stiffness at local points within the fibrous network. A disadvan-
tage is that displacements achieved by optical tweezers are less than 0.5 mm, which is an order of
magnitude smaller than cell-induced displacements observed by some experiments [13, 33–36]. The
relatively small displacements produced by optical tweezers impede efforts to quantify the nonlinear
mechanics that may be produced by a contracting cell.

Further complicating all of these efforts is that fibrous materials exhibit a coupling between
volume changing and shape changing deformations [22]. As the coupling depends on fiber length,
alignment, and stiffness, it remains difficult to predict whether or how the coupling will affect
the response to general loading conditions [37]. Thus, it remains difficult to predict whether the
nonlinear mechanical response to one type of loading—such as uniform shear due to a rheometer or
a point-like force due to optical tweezers—matches the response to a different type of loading—such
as the distributed forces due to cell contraction. We therefore argue that the most reliable way to
quantify nonlinear mechanics sensed by a cell would be with loading conditions that closely mimic
the self-equilibrating forces of cell contraction.

Here we propose a new experimental method that quantifies the modulus of a fibrous matrix
using contractile forces at the scale of the cell. We mimic cell contraction by using spherical particles
made of an active hydrogel, poly(N-isopropylacrylamide) (PNIPAAm), that, when heated, undergo
a phase transition causing them to contract. After quantifying the modulus of the PNIPAAm
particles, we embed them in collagen networks and measure their contraction. We compute the
modulus of the fibrous network surrounding each particle by using a nonlinear model designed
for fibrous materials, which weaken in compression [19]. The results show a large amount of
heterogeneity in modulus at the length scale of a cell, with modulus varying by a factor of up to
3. We also observed strain stiffening occurring in short and medium fiber networks at contractile
strains of 0.1–0.2 and strain softening in networks having longer fibers at contractile strains of
0.2–0.3, indicating that our experimental method can reveal nonlinearity at this length scale.

Theoretical Analysis

Here we give equations that relate contraction of the PNIPAAm particle to the modulus of
the surrounding matrix. We use the superscripts P and M to represent the particle and matrix,
respectively. We begin with linear analysis, and we then extend the analysis to the case of a
nonlinear matrix.

Linear Analysis

As the PNIPAAm particles are spherical inclusions undergoing a uniform volumetric strain, the
strain can be related to modulus using Eshelby’s solution for a linear elastic medium [38]. The key
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results from Eshelby are that the strains inside the particle are uniform, and the displacements in
the linear elastic matrix outside the particle decay as r−2. As the problem is spherically symmetric,
the only nonzero component of the displacement is the radial one, which we refer to as u. Radial
position is denoted by r, and the particle’s radius is a.

To relate contraction of the particle to modulus of the surrounding matrix, we use the boundary
conditions of matching radial displacement and traction at the interface between particle and
matrix,

uP (r = a) = uM (r = a) and σP (r = a) = σM (r = a), (1)

where σ is the radial component of the stress tensor. We begin by analyzing the particle. As shown
by Eshelby, strains and stresses in the particle are constant. As the particle is linearly elastic and
under a state of isotropic tensile stress, the radial stress in the particle is σP = 3KP εm, where εm

is the mechanical strain and KP is the bulk modulus of the particle. In addition to mechanical
strain, there is a thermal strain εT . By superposition, the total strain ε is equal to εm+ εT . Hence,
the radial stresses are

σP = 3KP
(
ε− εT

)
. (2)

For stresses and strains to be uniform inside the particle, the radial displacement uP must be of
the form uP = Cr, where C is a constant. The displacement at r = a is therefore given by the
product of particle’s radial strain ε and its initial radius a. Thus, C = ε and

uP = εr. (3)

In the matrix outside the inclusion, displacements scale as u ∼ r−2 and are therefore given by

uM = Ar−2. (4)

Radial and angular normal strains are thus εMr = −2Ar−3 and εMθ = Ar−3. Applying Hooke’s law
gives the normal radial stresses,

σM = −4AµMr−3, (5)

where µM is the shear modulus of the matrix. Applying the boundary conditions (Eq. 1) and
solving for µM gives

µM =
3KP

4

(
εT

ε
− 1

)
. (6)

It will be useful to write this in terms of Young’s modulus of the matrix EM and the function
f1(ν) = 2/(1 + ν), where ν is Poisson’s ratio of the matrix. The shear and Young’s moduli are
related by µM = EMf1(ν)/4, which gives:

EM =
3KP

f1(ν)

(
εT

ε
− 1

)
. (7)

Nonlinear Analysis

As fibrous materials such as collagen networks are nonlinear, the simple linear analysis is in-
sufficient to quantify the modulus. The most dramatic nonlinearity for these materials is that the
modulus is smaller in compression than in tension. This phenomenon, referred to as compression
weakening, has been observed directly in uniaxial tension/compression experiments on networks
of fibrin and collagen [15]. Other experiments have shown that displacements propagate over a
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longer range than predicted by linear elasticity, which can be explained by compression weakening
[13, 16, 37]. We therefore consider the nonlinear compression-weakening model of Rosakis et al.
[19], which gives the solution for a contracting spherical particle within a compression weakening
3D matrix. The model shows that displacements in the matrix scale as u ∼ r−n, with n less than
the linear elastic value of 2, in agreement with previous experiments [13, 16, 39] and models [13, 37],
which also observed n < 2.

The model presented by Rosakis et al. [19] begins with linear elasticity and makes one modi-
fication to account for compression weakening by including a factor ρ, which represents the ratio
of stiffness in compression to tension. For a linear material, ρ = 1, and for a material with no
stiffness in compression ρ = 0. Thus, the model has three constants, two elastic moduli and the
compression weakening factor ρ. We find it most useful to use Young’s modulus EM and Poisson’s
ratio ν for the elastic constants of the matrix; equations are presented here after converting the
elastic constants used by Rosakis et al. to EM and ν. Eq. 4.7 of Rosakis et al. gives the radial
normal stresses due to a contracting particle in a compression weakening material. For an infinite
matrix, the normal stress at the interface between the particle and matrix can be written as

σM (r = a) = EMεf(ν, ρ), (8)

where ε is the radial strain of the particle, EM is Young’s modulus of the matrix, and the dimen-
sionless function f(ν, ρ) is given by

f(ν, ρ) =
1

2

(νρ− 1)
√

9νρ−8ρ−1
νρ−1 + 5νρ− 1

2ν2ρ+ νρ− 1
. (9)

The particle is linear and elastic with radial stresses given by Eq. 2. Combining this with Eq.
8 gives

EM =
3KP

f(ν, ρ)

(
εT

ε
− 1

)
, (10)

which has the same form as the linear solution, Eq. 7.

Assuming limits on ν and ρ are 0 ≤ ν ≤ 0.5 and 0 ≤ ρ ≤ 1, function f ranges from 1 to 2,
as shown in Fig. 1. Note that when ρ = 1, the nonlinear f(ν, ρ) matches the linear f1(ν), i.e.,
f(ν, 1) = f1(ν). Thus, the nonlinear solution of Rosakis et al. converges to the linear Eshelby
solution in the linear limit of ρ = 1.

As f(ν, ρ) ranges from 1 to 2, Eq. 10 allows the Young’s modulus to be computed to within
a factor of 2 with no knowledge of ν or ρ. We can gain some information about ν and ρ from
further analysis of the displacement field. We have previously shown that in fibrous materials,
radial displacements fit to u = Ar−n with n less than the linear elastic solution of 2 [13, 16, 39].
The model of Rosakis et al. also predicts n < 2; see Eq. 4.4 of Rosakis et al. (Note that n in our
notation is equal to −ξ− in the notation of Rosakis et al.) According to Rosakis et al., the power
n ranges from 1 to 2 and depends only on ν and ρ; a plot is shown in Fig. 2.

In experiments with PNIPAAm particles in collagen, we have typically observed n ≈ 1 [16, 39].
This should give us information about possible values of ν and ρ. From Fig. 2, we see that
n < 2 implies ρ < 1, but n is relatively insensitive to ρ. For example, n ranges from 1 to 1.1
for ρ ranging from 0 to 0.8. Though no experiment has directly measured ρ, one experiment
measured the modulus of a collagen network in both compression and tension observing the modulus
in compression to be 0.004 times the modulus in tension, implying ρ = 0.004, and f(ν, 1) ≈
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Figure 1: Dimensionless function f(ν, ρ) defined in Eq. 9, where ν is Poisson’s ratio and ρ is the
dimensionless compression weakening factor. Contour lines show values of f = 1.1, 1.2, ... , 1.9.
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Figure 2: Plot of power n as a function of matrix Poisson’s ratio ν and compression weakening
factor ρ. Contour lines show n = 1.01 and 1.1.
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1, which applies for all values of ν (Fig. 1). Other experiments will need to be performed to
verify this measurement. More information could be gained from independent measurement of the
Poisson’s ratio of collagen. Unfortunately, experiments currently disagree as to the Poisson’s ratio—
experimental studies have reported Poisson’s ratio ranging from 0.1 to 0.3 for small deformation in
nominally isotropic networks [40, 41]. As the Poisson’s ratio is unknown and further experiments
are needed to confirm the value of the compression weakening factor ρ for collagen, we will report
our results as the product EMf(ν, ρ). As f(ν, ρ) ranges from 1 to 2, this may cause errors of up
to a factor of 2, but if we assume that ν and ρ are each constants, then relative comparisons of
EMf(ν, ρ) measured by different contracting particles will be exact.

Relationship between Particle Strain and Matrix Strain

Eqs. 6 and 10 use the total radial strain ε and thermal strain εT of each PNIPAAm particle.
We represent these using the engineering strain, i.e., by dividing the radial displacement by the
initial radius. As all particles contract, we will report the magnitude of strain, referring to it as
“contractile radial strain.”

The radial displacement and radius of the particle can be used to determine the strains within
the matrix surrounding the particle. As there is spherical symmetry, the normal radial and angular
strains in the matrix is given by εMr = du/dr and εMθ = u/r, where u is the radial displacement.
Thus, the maximum angular strains occur at r = a, are equal to the strain of the PNIPAAm particle
ε, and are contractile. The radial strain can be computed from the fact that radial displacements
scale as u ∼ r−n [13, 16, 39]. Letting the particle radius be a and the displacement at r = a
be −ua (with the negative sign indicating inwards), the radial displacements in the matrix are
u = −ua(r/a)−n. The radial strain is then εMr = (nua/a)(r/a)−n−1. Its maximum is at r = a,
giving a value of εMr (r = a) = nua/a. For collagen, we have previously observed n = 1 [16, 39],
indicating that the maximum radial strain in the matrix is ua/a, which is the same magnitude as
the maximum angular strains, but is expanding (tensile) rather than contractile. The maximum
magnitudes of strain within the surrounding matrix are therefore equal to the contractile radial
strain of each PNIPAAm particle.

Materials and Methods

To compute the local modulus of the collagen matrix, we applied Eq. 10, which required that
we first quantify εT , the particles’ thermal contraction in no matrix, and KP , the particles’ bulk
modulus, as shown in Fig. 3. Determining KP required separate calibration experiments, which
we performed in linear elastic polyacrylamide, allowing us to apply Eq. 6 using a known value of
the shear modulus of the polyacrylamide. Full details of our methods are described below.

Generating PNIPAAm Particles

Particles of PNIPAAm were created by adapting a previously described oil/water emulsion
protocol [16]. Kerosene with 3.5% Span 80 (Tokyo Chemical Industries) was de-gassed for 1 hour
under vacuum and used as the solvent for the reaction. The solvent was maintained under nitrogen
for 10 minutes before stirring at 450 rpm on stir plate at 22◦C for an additional 5 minutes. An
aqueous solution was then prepared by combining 0.25 g N-isopropylacrylamide (Sigma 415324),
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Figure 3: Diagram of the experimental procedure.

1.6 ml of 2% bis-acrylamide (Bio-Rad), 0.05 g ammonium persulfate (Bio-Rad), 1.5 ml of 1× tris-
buffered saline, and enough deionized water to bring the final volume to 10 ml. These concentrations
of N-isopropylacrylamide and bis-acrylamide were far lower than previous studies [16], and they
yielded soft PNIPAAm particles having modulus similar to that of the collagen networks to be
studied. Stiffer or softer particles can be generated by increasing or decreasing the amounts of N-
isopropylacrylamide or bis-acrylamide. TEMED (Bio-Rad, 0.36% final concentration) was added
and mixed with the aqueous solution immediately before adding the aqueous solution to the solvent.
The emulsion was then stirred at 450 rpm at 22◦C, under a nitrogen environment for 1 hour or
until polymerized particles formed. The resulting particles were allowed to settle overnight and
washed twice with hexane. The particles were subsequently washed with isopropyl alcohol, ethanol,
deionized water, and finally 1× PBS. Between each wash the particles were allowed to settle for
at least 1 hour. The solution of particles was then filtered using a cell strainer to remove particles
with diameter less than 40 mm. The final solution was comprised of particles (average diameter
≈ 100 mm) and 1× PBS.

Collagen Matrix

The PNIPAAm particles were embedded into matrices of rat tail collagen I (Corning) as pre-
viously described [16, 42]. The collagen comes in solution in acetic acid; collagen fibers polymerize
upon neutralizing the pH which we do using HEPES buffer. The solution of acetic acid and HEPES
buffer affects the contraction of the PNIPAAm particles, which we address in the next section. Poly-
merization occurred at 22◦C for 85 minutes (which produced networks having long fibers), or 26◦C
or 30◦C for 50 minutes (which produced networks having medium and short fibers, respectively).
We measured the average fiber length for each type of collagen network from network pore area
by segmenting high resolution images of each networks as previously described in [39]. Networks
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Figure 4: Collagen networks (3 mg/ml) polymerized at 22◦C, 26◦C and 30◦C having long, medium,
and short fibers, respectively.

having long fibers had fiber lengths of 27.8 ± 5.7 mm (mean ± standard deviation), while medium
and short fibers were 16.9 ± 2.8 and 10.4 ± 1.2 mm, respectively.

Representative images of particles embedded in fiber networks are shown in Fig. 4. We found
that precise temperature control was necessary to give us control of the fiber length, so the temper-
ature was controlled using a thermoelectric hot plate (CP-061HT, TE Technology) with TC-720
temperature controller (TE Technology) having temperature resolution of approximately 0.1◦C.
Each collagen gel had a final collagen concentration of 3 mg/ml and a thickness of ≈ 150 mm.
After polymerization, 1 ml of PBS was added to each dish to prevent dehydration of the collagen
networks.

Thermal Contraction of PNIPAAm Particles

To quantify thermal contraction of PNIPAAm particles in no matrix, they were imaged at
different temperatures while in a salt solution. Specifically, 1 ml of particles solution was added
to a mixture of 1 ml 0.02 M acetic acid and 1 ml of 1× HEPES buffer. This salt solution was
made based on our observation that it affected the contraction of the PNIPAAm particles. As
this solution matches that of collagen matrices, it was used for all experiments to ensure that the
particles’ thermal strain εT would match that in collagen.

Polyacrylamide Matrix

PNIPAAm particles were polymerized within a polyacrylamide matrix to calibrate their mod-
uli. The polyacrylamide gel consisted of two layers. The bottom layer had a thickness of 170 mm
while the upper one was 300 mm. These layers were created following the same recipe, except that
PNIPAAm particles were included in only the upper layer. The two-layer polyacrylamide gels were
created after we noticed that the particles located close to the glass bottom of the dish contracted
less than the particles located at a greater distance from the glass bottom. In all of our experiments,
we observed multiple layers of polyacrylamide to adhere well to one another. The bottom poly-
acrylamide layer was comprised of 29 mg/ml acrylamide, 0.29 mg/ml bis-acrylamide, 0.57 mg/ml
APS (Bio-Rad), 0.5 mm red fluorescent particles (0.76 mg/ml final concentration, Life Technologies
F8812) and 1.9 ml/ml TEMED (Bio-Rad) all in deionized water. The bottom layer was added to a
glass-bottom dish (Cellvis) and allowed to polymerize for 45 minutes with a glass coverslip on top.
Once polymerized, the glass coverslip was removed and the upper layer was added onto the bottom.
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The upper polyacrylamide layer was made with the same volumes and concentrations except that
0.68 ml/ml of particle solution was also added. The upper layer was allowed to polymerize for 45
mins with a glass coverslip on top. After polymerization, the glass coverslip was removed. We
then added a salt solution to each dish to match that of collagen matrices, keeping the ratio (1:1:1)
of particles solution (already existing in the 2-layer polyacrylamide gel), 0.02 M acetic acid and
HEPES buffer constant.

Temperature Control

To control the temperature during imaging, all experiments used an H301 incubator (Okolab)
mounted on the microscope stage and controlled with a UNO controller (Okolab). The tempera-
ture was measured separately with a digital thermometer (Fisherbrand Traceable) having a probe
that was placed inside a dish of water within the incubator. The thermometer had accuracy of
0.1◦C, which was greater than that of the incubator. As the thermometer’s probe was in the same
conditions as the PNIPAAm particles, it gave a more accurate measurement of temperature of
the PNIPAAm particles, which was necessary for these experiments. In all experiments, an initial
image was collected at a reference temperature of 26◦C; subsequent images were captured at 30,
32, 34, 35, 36, and 38◦C. After each temperature change, particles contracted within a few minutes,
though the thermal incubator required 30–45 minutes to equilibrate. We showed previously that
the particles recover to their initial size upon decreasing the temperature back to the reference
temperature [16].

Microscopy and Image Analysis

Images of PNIPAAm particles in no matrix were collected using a Nikon Ti-E microscope and
a 20× 0.75 numerical aperture (NA) air objective in phase contrast mode. Images of PNIPAAm
particles in polyacrylamide and collagen matrices were collected using an Andor Spinning Disk
confocal microscope (Yokogawa CSU-X1) with a Nikon Ti-E base and a 20× 0.75 NA air objective.
For each location, a z-stack was obtained with increments of 0.5 mm. Images were analyzed by
using ImageJ to measure the radius of each particle at each temperature.

Shear Modulus of Polyacrylamide

Calibration of the moduli of the PNIPAAm particles occured by observing their contraction
in homogeneous polyacrylamide gels and applying Eq. 6. This required measuring the modu-
lus of the polyacrylamide, which we did using a rheometer (Kinexus ultra+, Malvern Panalyti-
cal). To allow the rheometer to grip the gels, we polymerized polyacrylamide (using the recipe
described previously) between two glass coverslips treated with 0.2% acetic acid and 0.3% 3-
(Trimethoxysilyl)propyl methacrylate. Cyanoacrylate glue was used to adhere the coverslips to
the rheometer. All gels were disks with a diameter of 18 mm, and a height between 2.25 mm
and 2.55 mm. The rheometer’s 20-mm diameter flat plate geometry was used. Shear strains were
induced by twisting each sample about its axis. The maximum shear strain applied to each gel
was less than or equal to 40%, which stayed within the linear range. The angular velocity was
kept below 0.0114 rad/s (corresponding to a maximum strain rate of 4% per second) to ensure the
loading was quasi-static. The angular acceleration was kept below 0.0038 rad/s2 to ensure that
inertial loads would be negligible. Shear modulus was calculated by fitting a line to the data of
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Figure 5: Shear modulus of polyacrylamide. (A) Torque plotted versus angle of twist for one
polyacrylamide specimen. From the linear fit and the specimen’s dimensions, the shear modulus
was computed. (B) Shear modulus measured for 24 different polyacrylamide gels.

torque versus angle (Fig. 5) and applying the standard equation for torsion of a uniform cylinder.
The mean value of shear modulus was found to be 9.6 Pa, in agreement with a previous report [43].

Statistical Analysis

Applying Eq. 10 to measure the local modulus of collagen required that we measure (i) the par-
ticles’ contraction in no matrix and (ii) the particles’ bulk modulus. To measure the bulk modulus,
we performed separate calibration experiments with the particles in linear elastic polyacrylamide.
The calibration experiments used Eq. 6 and required that we measure (iii) the modulus of the poly-
acrylamide and (iv) the particles’ contraction in the polyacrylamide. Experimental uncertainties
resulted from variability in the data acquired from each of these four measurements. We quantified
the uncertainties by computing 95% confidence intervals using bootstrap analysis. To compute
confidence intervals on the bulk modulus of the PNIPAAm particles, we used data sets i, iii, and
iv with Eq. 6; for confidence intervals on the modulus of collagen, we use data sets i and ii with
Eq. 10.

To perform the bootstrap, we began by sampling the data randomly with replacement N times.
For a typical bootstrap analysis, N is the number of measured data points, but here each of our
measurements (i–iv) have a different number of data points. Therefore, we set N to be the average
of the smallest and largest number of data points. We applied Eq. 6 (for the particles’ bulk
modulus) or Eq. 10 (for the modulus of collagen), which gave N different values of modulus. We
then computed the mean over N , giving one bootstrap estimate for the mean of the modulus.
This procedure was repeated 104 times, giving 104 estimates of the modulus. The 95% confidence
interval was computed by taking the 2.5 and 97.5 percentiles of those 104 data points. Additionally,
a mean over those 104 data points was computed to estimate the mean modulus.
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Figure 6: Contractile radial strain of PNIPAAm particles measured in no matrix (magenta) or
polyacrylamide matrix (green). Contraction of PNIPAAm particles in no matrix gives the thermal
contraction εT . Each line represents the contraction of a different PNIPAAm particle. The reference
temperature used to calculate contractile radial strain is 26◦C. The labels on the horizontal axis
represent the temperatures tested in the experiments.

Results

To determine the matrix modulus using Eq. 10, we first measured the particles’ thermal con-
traction εT and bulk modulus KP . Thermal contraction was measured in no matrix as described
in the methods. To determine the bulk modulus KP we measured the contraction of particles
embedded in a linear elastic polyacrylamide matrix and applied Eq. 6. Accurate measurement of
the bulk modulus KP using this equation requires the shear modulus of the surrounding polyacry-
lamide matrix µM to be of the same order of magnitude as KP , both of which must have modulus
on the same order of magnitude as the collagen networks to be tested later. This requires the
quantity 3(εT /ε − 1)/4 to be of order 1. We therefore calibrated the polyacrylamide to have a
modulus similar to the collagen, and then calibrated the particles to have a modulus of a similar
order of magnitude. After several iterations, we produced a recipe for PNIPAAm that generated
particles which contracted approximately half as much in polyacrylamide as compared to their
thermal contraction (Fig. 6). Thus, the ratio εT /ε is approximately 2, which implies that the PNI-
PAAm particles and polyacrylamide matrix have elastic moduli on the same order of magnitude.
As shown in Fig. 6, heterogeneity in contraction from one particle to the next is modest, indicating
that errors due particle heterogeneity are likely to be small.

Applying Eq. 6 then gives the particles’ bulk modulus at different temperatures. Fig. 7
shows the mean bulk modulus and the 95% confidence interval computed by bootstrap analysis for
each temperature. We designed our PNIPAAm particles to be extremely compliant, with a bulk
modulus on the order of 10 Pa. The bulk modulus takes a minimum value at ≈ 34◦C, which is
near to the phase transition temperature for PNIPAAm. The reduction in bulk modulus near the
phase transition temperature is consistent with other studies [44, 45], which observed the minimal
value of bulk modulus to occur at temperatures of 31–32◦C, and provided an explanation based on
a theoretical model [45]. Additionally, the shape of the curve in Fig. 7 matches previous studies:
the bulk modulus declines by a factor of ≈ 1.8 as temperature is increased to the phase transition
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Figure 7: Mean bulk modulus of PNIPAAm particles plotted against temperature. Vertical lines
show 95% confidence intervals of the means.

temperature and then increases by a factor of ≈ 2.7 as temperature is further increased. These
relative changes in bulk modulus closely match those reported previously [45? ]. Therefore, the
measurement of bulk modulus shown in Fig. 7 is robust.

With data on the particles’ thermal contraction εT and bulk modulus KP , it is now possible
to apply Eq. 10 to measure the modulus of the nonlinear networks of collagen. For this we
measured the contraction of PNIPAAm particles in three different collagen networks, polymerized
at 22◦C, 26◦C, or 30◦C. These different polymerization temperatures produced collagen networks
having long, medium, and short fibers (Fig. 4). Contractile strains for particles in the networks of
different fiber length are shown in Fig. 8. From this data, we calculated the product of Young’s
modulus E and function f(ν, ρ) at different contractile radial strains (different temperatures). The
results showed heterogeneity in the values of Ef(ν, ρ) across the particles for each of the three types
of collagen matrices (Fig. 9). In particular, networks made of long fibers had values of modulus
Ef(ν, ρ) that varied by a factor of 3 from one location to the next. Additionally, networks having
long fibers had a greater modulus Ef(ν, ρ) than those made of short fibers, even though the total
concentration of collagen (3 mg/ml) was no different. While perhaps surprising, this trend has
been observed previously in experiments [46, 47] that applied torsion to macroscopic specimens,
indicating that this trend occurs on both the macroscale and the microscale. Results also showed
a decrease in the values of modulus Ef(ν, ρ) at contractile strains of up to 0.1, followed by an
increase for contractile strains in the range of 0.1 to 0.2 for the majority of the curves, indicating
initial strain softening [12, 27] followed by strain stiffening [10, 14, 15, 21, 22, 24, 26]. At larger
strains of 0.2–0.3, the modulus then decreased for most collagen networks, possibly due to plastic
deformation.

Our measurements could potentially be affected by the finite thickness of the collagen gels
and the presence of glass boundaries at the top and bottom of each gel. The stiff boundaries
would produce an environment stiffer than the collagen network, thereby reducing the particles’
contraction. To check whether the finite sample thickness affected our measurements, we plotted the
product Ef(ν, ρ) measured by particles in collagen networks against each particle’s initial radius.
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Figure 8: Contractile radial strain of PNIPAAm particles measured in no matrix (magenta) or col-
lagen networks having short (red), medium (blue), or long (black) fibers. Contraction of PNIPAAm
particles in no matrix gives the thermal contraction εT . Each line represents the contraction of a
different PNIPAAm particle. The reference temperature used to calculate contractile radial strain
is 26◦C. The labels on the horizontal axis represent the temperatures tested in the experiments.
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Figure 9: Product of Young’s modulus E and function f(ν, ρ) measured by particles in collagen
networks having short (red), medium (blue), or long (black) fibers. Each line represents a mea-
surement by a different PNIPAAm particle. The horizontal axis gives contractile strain of each
particle, which is equal to the magnitudes of normal strains within the collagen network at each
particle–network interface.
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Figure 10: Product of Young’s modulus E and function f(ν, ρ) measured by particles in collagen
networks having short, medium, or long fibers (all shown in black) at the lowest level of contraction
(30◦C), corresponding to contractile radial strain of ≈ 0.1. The horizontal axis gives initial radius
of each particle.

As the largest particles would be most affected by the boundaries, a positive correlation between
Ef(ν, ρ) and particle radius would indicate a boundary effect. Fig. 10 shows results for contractile
radial strain of ≈ 0.1. The plot shows significant scatter in the data with no discernible trend. A
statistical test for correlation between Ef(ρ, ν) and particle radius gives p = 0.61, and the coefficient
of determination (R2) for a linear fit to the data is 0.0068, indicating no correlation between
measured modulus Ef(ν, ρ) and initial particle radius. The values of p and R2 are similar for
contractile strains up to 0.4. For strains greater than this, a small correlation (R2 ≈ 0.2, p ≈ 0.01)
appears, indicating a potential effect of the boundaries. If contractile strains of this magnitude
were required for future experiments, smaller particles or a thicker collagen network could be used
to avoid this issue. Nevertheless, for contractile radial strains up to 0.4, our measurements are
unaffected by the finite collagen gel thickness.

The experiments have numerous sources of uncertainty (e.g., see items i–iv in the section
labeled “Statistical Analysis”), all of which combine together to produce variability in the experi-
mental data. To quantify how these experimental uncertainties affect the measurement of modulus
Ef(ν, ρ), we computed 95% confidence intervals of Ef(ν, ρ) for each particle using bootstrap anal-
ysis as described in the Statistical Analysis section. Fig. 11 shows the confidence intervals for
each particle at the lowest tested temperature, which corresponds to a contractile strain of approx-
imately 0.1. Confidence intervals for other levels of contractile strain (i.e., measured at different
temperatures) appear similar to those in Fig. 11. For each type of collagen network (i.e., hav-
ing short, medium, or long fibers) there exist confidence intervals that do not overlap, indicating
the moduli measured at different locations are statistically different. Additionally, there are non-
overlapping confidence intervals between the different types of collagen networks, indicating the
moduli of the different collagen networks are also statistically different. These observations give
statistical significance to the trends observed in Fig. 9.

Perhaps the clearest trend revealed by these experiments is the heterogeneity in modulus mea-
sured by the contracting particles. To quantify the heterogeneity, we calculated the 10th and 90th
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Figure 11: Product of Young’s modulus E and function f(ν, ρ) measured by particles in collagen
networks having short (red), medium (blue), or long (black) fibers at the lowest level of contraction
(30◦C), corresponding to contractile radial strain of ≈ 0.1 Each cross represents a different PNI-
PAAm particle. Horizontal lines show means; vertical lines show 95% confidence intervals of the
means.

percentiles of measured modulus Ef(ρ, ν) and took their ratio. This ratio gives the factor by which
the modulus varies within the same fiber network. At a contractile strain of approximately 0.1,
the ratio was 1.47 with a 95% confidence interval (CI) of (1.45, 1.50) for the networks with short
fibers, 2.43 with 95% CI (2.37, 2.50) for medium fibers, and 2.88 with 95% CI (2.84, 2.92) for long
fibers. The local modulus therefore varies by a factor of up to 3 for different positions within the
same fiber network.

Discussion

We have developed an experimental method to measure the modulus of a collagen network
at the scale of a cell. Our method uses particles (∼100 mm diameter) of PNIPAAm, an active
gel that contracts when heated. We first measured the particles’ contraction in no matrix and
polyarylamide matrix at different temperatures, which enabled us to compute their bulk modulus
at these temperatures. We then measured the particles’ contraction in fibrous networks of collagen,
and, using a nonlinear hyperelastic model [19], we computed the modulus of the collagen network in
the local region surrounding each particle. This provided independent measurements of the modulus
at different positions within each collagen network. Results showed that modulus at the scale of
these particles is highly heterogeneous, varying by a factor of up to 3. This experimental method
quantifies local mechanical properties at the scale of a cell, while also accounting for nonlinearity
of the fibrous collagen network.

The hyperelastic model used here begins with linear elasticity and adds one constant factor,
ρ, which accounts for compression weakening. In addition to weakening under compression, fibers
also align under tension. As a result, fibrous networks stiffen with increasing tensile strain, a
phenomenon not accounted for in the hyperelastic model used here. Other hyperelastic models
have been designed to simulate fiber alignment in fibrous materials [18, 20, 48], and, in principle,
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they could be applied to our data. However, we recently showed using a theoretical model that
fiber reorientation and alignment due to a contracting inclusion are modest [37]. Additionally, we
showed in experiments that displacements due to a contracting sphere propagate over a longer
range than predicted by linear elasticity, even in directions perpendicular to fiber alignment [16].
Together, these observations imply that compression weakening—rather than fiber alignment—
is the dominant nonlinear mechanism for the loading applied here. Therefore, our choice of a
hyperelastic model that simulates compression weakening is appropriate.

As we designed the experiment to control the contraction of the PNIPAAm particles, we were
able to measure the local modulus at different levels of contractile radial strain (Fig. 9). Single
contracting cells contract at strains of approximately 0.2-0.3 [49], a range which is tested in our
experiments. It is important to note that in our method strain decays over distance from the
contracting particle, so the contractile radial strain represents a maximum value. Many curves of
modulus vs. strain initially decreased, indicating strain softening at contractile strains of up to 0.1.
This initial strain softening has been reported in other studies as well [12, 27]. (Note that these
studies and others applied uniform extension or simple shear, which produces a nominally constant
strain throughout the fiber network.) For contractile strains in the range of 0.1 to 0.2, the curves
then increased, indicating strain stiffening which is consistent with other studies applying shear or
uniform extension, which also observed strain stiffening in this range [10, 14, 15, 21, 22, 24, 26].

Collagen networks having longer fibers, and some with short, exhibited a second regime of
strain softening at a contractile radial strain of 0.2–0.3. Though the cause of strain softening is
unclear, it is likely related to damage under these high strains. Consistent with this, other studies
have observed permanent deformation [25, 39, 50], possibly associated with breaking of connections
between fibers, which becomes more likely as the force supported by each fiber increases [51]. Data
collected here show that the networks having the longest fibers have the greatest modulus, implying
that they also support the greatest stress. Networks having longer fibers are also likely to have
fewer connections between fibers. Therefore, networks having longer fibers likely have greater force
supported by each fiber-to-fiber connection, which in turn may cause those connections to break
more frequently at high strains, thereby producing the strain softening observed.

For all collagen networks, the measured modulus was heterogeneous over space. For collagen
networks of 3 mg/ml, the local modulus varied by a factor of up to 3. Other studies using mi-
crorheology have reported an even larger range with values of stiffness varying by a factor of 10
[32, 52, 53]. The difference in heterogeneity between our results and those obtained by microrhe-
ology probably arises from the different length scales of the experimental methods. In our method
we use particles having size of tens of microns, whereas microrheology uses much smaller particles,
having size of ∼ 1 mm. Such small particles would connect to only a few fibers. Slight variations
in the number of fibers near to each particle would therefore produce large differences in the local
stiffness detected by that particle. By contrast, the larger PNIPAAm particles used in this study
attach to many fibers and therefore smooth out some heterogeneity due to randomness of the net-
work. How a cell senses this heterogeneity may depend on the mechanism by which a cell senses
the surrounding matrix. A single adhesion complex at the tip of a cell protrusion may interact
with the matrix at scales < 1 mm, but mechanotransduction mechanisms are not restricted to the
length scale of a focal adhesion. Studies on cytoskeletal signaling proteins have shown that inte-
grin clustering and talin unfolding, which are dependent on the local stiffness at the site of the
focal adhesion [54], also result in actin stress fibers that can propagate forces along the length of
a cell’s protrusion and even to the nucleus [55]. Multiple mechanotransduction mechanisms result.
Tension of actin stress fibers in the cytosekeleton allows for binding of numerous mechanosensitive
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proteins [54], and tensile forces applied by the cytoskeleton to the nucleus are a known mechanism
for mechanotransduction [56, 57]. Therefore, it is reasonable to conclude that an important length
scale for mechanotransduction is the distance connecting the adhesion complexes at the end of a
cell’s protrusions to the nucleus, typically tens of mm. As our experimental method matches this
length scale, it gives a relevant measure of modulus for mechanotransduction by the cytoskeleton
and nucleus. At this scale, our data show that heterogeneity in the modulus is lower than measured
by microrheology, but it is nevertheless significant.

The large heterogeneity in the modulus of fibrous materials implies that cell response to matrix
mechanics is likely to be highly heterogeneous. This complicates our understanding of cell sensing
of matrix properties, but the experimental method presented here could be a starting point for
sorting out these complications. Experiments could be designed to test cell response to a distribu-
tion of moduli that matches the data collected here, for example by varying modulus by a factor
of 3. By characterizing cell response to different distributions of moduli, it may be possible to
relate specific cell behaviors to a range of moduli rather than to a single value. In addition, our
experimental method could provide data needed to calibrate theoretical models for matrix mechan-
ics. Those models, after validation by our experimental method, could then quantify mechanical
properties (and their heterogeneity) in systems that are difficult to test experimentally, such as the
microenvironment of a tumor.
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