
SPECTRUM OF THE KOHN LAPLACIAN ON THE ROSSI SPHERE

TAWFIK ABBAS, MADELYNE M. BROWN, RAVIKUMAR RAMASAMI,
AND YUNUS E. ZEYTUNCU

Abstract. We study the spectrum of the Kohn Laplacian ⇤
t
b on the Rossi example (S3,Lt).

In particular we show that 0 is in the essential spectrum of ⇤t
b, which yields another proof

of the global non-embeddability of the Rossi example.

1. Introduction

1.1. General Setting. Let S
3 = {(z1, z2) 2 C

2 : |z1|
2 + |z2|

2 = 1} denote the 3-sphere in
C

2. S3 is a three real dimensional manifold and it can be viewed as an abstract CR manifold
when one chooses a specific complex vector field that determines the complex tangent vec-
tors. It is a general question whether an abstract CR manifold can be realized as a manifold
in C

N , for some N , where the complex tangent spaces coincides with the ones induced from
the ambient space. One way of addressing this question is studying a second order differen-
tial operator, so-called the Kohn Laplacian, that naturally arises on CR manifolds. Many
geometric properties of abstract CR manifolds can be studied by analyzing the properties of
this differential operator. In this note we address the embeddability question by studying
the spectrum of the Kohn Laplacian on a specific abstract CR manifold. In particular we
examine the essential spectrum of the Kohn Laplacian. The essential spectrum of a bounded
self-adjoint operator is the subset of the spectrum that contains eigenvalues of infinite mul-
tiplicity and the limit points. We refer the readers to [Bog91] and [CS01] for the general
theory of CR manifolds to Kohn Laplacian, and to [D95] for spectral theory.

1.2. Main Problem. Rossi showed that the CR-manifold (S3,Lt) is not CR-embeddable
[Ros65], where

Lt = z1
∂

∂z2
� z2

∂

∂z1
+ t

✓

z1
∂

∂z2
� z2

∂

∂z1

◆

,

and |t| < 1. In the case of strictly pseudoconvex CR-manifolds Boutet de Monvel proved
that if the real dimension of the manifold is at least 5, then it can always be globally
CR-embedded into C

N for some N [BdM75]. Later Burns approached this problem in the
∂ context and showed that if the tangential operator ∂b,t has closed range and the Szegö
projection is bounded, then the CR-manifold is CR-embeddable into C

N [Bur79]. Later
in 1986, Kohn showed that CR-embeddability is equivalent to showing that the tangential
Cauchy-Riemann operator ∂b,t has closed range [Koh85].
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In the setting of the Rossi example, as an application of the closed graph theorem, ∂b,t

has closed range if and only if the Kohn Laplacian

⇤
t
b = �Lt

1 + |t|2

(1� |t|2)2
Lt

has closed range, see [BE90, 0.5]. Furthermore, the closed range property is equivalent to the
positivity of the essential spectrum of ⇤t

b, see [Fu05] for similar discussion. In this note we
tackle the problem of embeddability, from the perspective of spectral analysis. In particular,
we show that 0 is in the essential spectrum of ⇤t

b, so the Rossi sphere is not globally CR-
embeddable into C

N . This provides a different approach to the results in [Bur79, Koh85].
We start our analysis with the spectrum of ⇤t

b. We utilize spherical harmonics to construct
finite dimensional subspaces of L2(S3) such that ⇤t

b has tridiagonal matrix representations
on these subspaces. We then use these matrices to compute eigenvalues of ⇤t

b. We also
present numerical results obtained by Mathematica that motivate most of our theoretical
results. We then present an upper bound for small eigenvalues and we exploit this bound to
find a sequence of eigenvalues that converge to 0.

In addition to particular results in this note, our approach can be adopted to study
possible other perturbations of the standard CR-structure on the 3-sphere, such as in [BE90].
Furthermore, our approach also leads some information on the growth rate of the eigenvalues
and possible connections to finite-type (in the sense of commutators) results similar to the
ones in [Fu08]. We plan to address these issues in future papers.

2. Analysis of ⇤b on Hp,q(S
3)

2.1. Spherical Harmonics. We start with a quick overview of spherical harmonics, we
refer to [ABR01] for a detailed discussion. We will state the relevant theorems on C

2 and
S
3 ✓ C

2. A polynomial in C
2 can be written as

p(z, z) =
X

α,β

cα,βz
αzβ

where z 2 C
2, each cα,β 2 C, and α, β 2 N

2 are multi-indices. That is, α = (α1,α2), z
α =

zα1

1 zα2

2 , and |α| = α1 + α2.
We denote the space of all homogeneous polynomials on C

2 of degree m by Pm(C
2), and

we let Hm(C
2) denote the subspace of Pm(C

2) that consists of all harmonic homogeneous
polynomials on C

2 of degree m. We use Pm(S
3) and Hm(S

3) to denote the restriction of
Pm(C

2) and Hm(C
2) onto S

3. We denote the space of complex homogenous polynomials on
C

2 of bi-degree p, q by Pp,q(C
2), and those polynomials that are homogeneous and harmonic

by Hp,q(C
2). As before, we denote Pp,q(S

3) and Hp,q(S
3) as the polynomials of the previous

spaces, but restricted to S
3. We recall that on C

2, the Laplacian is defined as

∆ = 4(
∂2

∂z1∂z1
+

∂2

∂z2∂z2
).

As an example, the polynomial z1z2 � 2z2z1 2 P1,1(C
2), and z1z2

2 2 H1,2(C
2). We take our

first step by stating the following decomposition result.

Proposition 2.1. [ABR01, Theorem 5.12] L2(S3) =
L

∞

m=0
Hm(S

3).
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The spherical harmonics form an orthogonal basis on S
3 similar to the Fourier series on the

unit circle S1. They are also the eigenfunctions of the Laplacian on S
3. The summation above

is understood as the orthogonal direct sum of Hilbert spaces. This statement is essential to
the spectral analysis of⇤t

b on L2(S3) since it decomposes the infinite dimensional space L2(S3)
into finite dimensional pieces, which is necessary for obtaining the matrix representation of
⇤

t
b (a special case of the general spectral theory of compact operators). In order to get such

a matrix representation, we need a method for obtaining a basis for Hk(S
3). Proposition 2.3

presents a method to do so for Hm(C
2) and Proposition 2.5 presents a method for Hp,q(C

2).
The dimension of the matrix representation on a particular Hm(S

3) is the dimension of the
subspace Hm(S

3), which is given below and analogously given for Hp,q(C
2).

Proposition 2.2. [ABR01, Proposition 5.8] For k, p, q � 2,

dimPp,q(C
2) = (p+ 1)(q + 1),

dimHp,q(C
2) = p+ q + 1

dimHk(C
2) = (k + 1)2.

Now we present a method to obtain explicit bases of spaces of spherical harmonics. These
bases play an essential role in explicit calculations in the next section. Here, K denotes the
Kelvin transform,

K[g](z) = |z|−2g

✓

z

|z|2

◆

.

For multi-indices α, β 2 N
2, Dα and D

β
denote the differential operators

Dα =
∂|α|

(∂α1z1) (∂α2z2)
and D

β
=

∂|β|

(∂β1z1) (∂β2z2)
.

Proposition 2.3. [ABR01, Theorem 5.25] The set

{K[Dα|z|−2] : |α| = m and α1  1}

is a vector space basis of Hm(C
2), and the set

{Dα|z|−2 : |α| = m and α1  1}

is a vector space basis of Hm(S
3).

Homogenous polynomials of degree k can be written as the sum of polynomials of bi-degree
p, q such that p+ q = k.

Proposition 2.4. Pk(C
2) =

L

p+q=k Pp,q(C
2).

Analogous to the version in Proposition 2.3, we use the following method to construct
an orthogonal basis for Hp,q(C

2) and Hp,q(S
3). The proof pretty much follows the proof of

[ABR01, Theorem 5.25], with changes from single index to double index.

Proposition 2.5. The set
⇢

K[D
α
Dβ|z|−2]

�

�

�

�

|α| = p, |β| = q,α1 = 0 or β1 = 0

�
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is a basis for Hp,q(C
2), and the set
⇢

D
α
Dβ|z|−2

�

�

�

�

|α| = p, |β| = q,α1 = 0 or β1 = 0

�

is an orthogonal basis for Hp,q(S
3).

2.2. ⇤b on Hp,q(S
3). Before we study the operator ⇤t

b, we first need some background on a
simpler operator we call ⇤b. It arises from the CR-manifold (S3,L), and is defined as

⇤b = �LL.

Here, L = L0 = z1
∂

∂z2
� z2

∂

∂z1
the standard (1, 0) vector field from the ambient space. We

note that this CR-structure is induced from C
2 and this manifold is naturally embedded.

By the machinery above we can compute the eigenvalues of ⇤b, see also [Fol72] for a more
general discussion.

Theorem 2.1. Suppose f 2 Hp,q(S
3). Then

⇤bf = (pq + q)f.

Proof. Expanding the definition, we get

⇤b =�
✓

z2
∂

∂z1
� z1

∂

∂z2

◆✓

z2
∂

∂z1
� z1

∂

∂z2

◆

=� z2
∂

∂z1

✓

z2
∂

∂z1
� z1

∂

∂z2

◆

+ z1
∂

∂z2

✓

z2
∂

∂z1
� z1

∂

∂z2

◆

=� z2z2
∂2

∂z1∂z1
+ z2

∂

∂z2
+ z1z2

∂2

∂z1∂z2

� z1z1
∂2

∂z2∂z2
+ z1

∂

∂z1
+ z2z1

∂2

∂z2∂z1

Now, let f 2 Hp,q(S
3). Since f is harmonic, we know that ∂2

∂z1∂z1
= � ∂2

∂z2∂z2
. Substituting,

we get

= z2z2
∂2

∂z2∂z2
+ z2

∂

∂z2
+ z1z2

∂2

∂z1∂z2

+ z1z1
∂2

∂z1∂z1
+ z1

∂

∂z1
+ z2z1

∂2

∂z2∂z1

Since f is a polynomial and ⇤b is linear, it suffices to show that if f = zαzβ = zα1

1 zα2

2 z1
β1z2

β2 ,
where α1 + α2 = p and β1 + β2 = q, then the claim holds. Using the expansion above, each
derivative simply becomes a multiple of f , and we have

⇤bf = (α2β2 + β2 + α1β2 + α1β1 + β1 + α2β1)f

= ((α1 + α2)(β1 + β2) + (β1 + β2))f

= (pq + q)f.

⇤
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In a similar manner, we can show that �LLf = (pq + p)f . For ⇤b, we actually have that
spec(⇤b) = {pq + q | p, q 2 N}, therefore 0 /2 essspec(⇤b) since it is not an accumulation
point of the set above.

3. Experimental Results in Mathematica

Using the symbolic computation environment provided by Mathematica, we are able to
write a program to streamline our calculations1. We implement the algorithm provided in
Proposition 2.5 to construct the vector space basis ofHk(S

3) for a specified k. As an example,
our code produces the following basis of H3(S

3):

{�6z2
3,�6z1z2

2,�6z1
2z2,�6z1

3, 4z1z1z2 � 2z2z2
2, 2z1z1

2 � 4z2z1z2,�6z2z1
2,�6z1z2

2,

4z1z2z1 � 2z22z2,�6z22z1, 2z
2

1z1 � 4z1z2z2,�6z21z2,�6z32 ,�6z1z
2

2 ,�6z21z2,�6z31}.

Now, with the basis for Hk(S
3), the matrix representation of ⇤t

b on Hk(S
3) can be computed

for each k. In particular, we use this program to construct the matrix representations for
1  k  12. For a specific k, the code applies ⇤t

b to each basis element of Hk(S
3) obtained

by the results in the previous sections. Then, using the inner product defined by,

hf, gi =
Z

S3

fg dσ,

where σ is the standard surface area measure, the software computes h⇤t
bfi, fji, where fi, fj

are basis vectors for Hk(S
3). With these results, Mathematica yields the matrix representa-

tion for the imputed value of k. For example, the program produces the matrix representation
for k = 3 seen in Figure 3.1. Since each entry has a common normalization factor,

h =
1 + |t|2

(1� |t|2)2
,

this constant has been factored out. With Mathematica’s Eigenvalue function, the eigenval-

h

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

3 0 0 0 0 0 0 0 0 0 0 �6t 0 0 0 0
0 3 0 0 0 0 0 0 0 0 6t 0 0 0 0 0
0 0 3 0 0 0 0 0 �6t 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 �6t 0 0 0 0 0 0
0 0 0 0 4 + 3|t|2 0 0 0 0 0 0 0 0 0 �2t 0
0 0 0 0 0 4 + 3|t|2 0 0 0 0 0 0 0 2t 0 0
0 0 0 0 0 0 4 + 3|t|2 0 0 0 0 0 �2t 0 0 0
0 0 0 0 0 0 0 4 + 3|t|2 0 0 0 0 0 0 0 �2t
0 0 �2t 0 0 0 0 0 3 + 4|t|2 0 0 0 0 0 0 0
0 0 0 �2t 0 0 0 0 0 3 + 4|t|2 0 0 0 0 0 0
0 2t 0 0 0 0 0 0 0 0 3 + 4|t|2 0 0 0 0 0

�2t 0 0 0 0 0 0 0 0 0 0 3 + 4|t|2 0 0 0 0
0 0 0 0 0 0 �6t 0 0 0 0 0 3|t|2 0 0 0
0 0 0 0 0 6t 0 0 0 0 0 0 0 3|t|2 0 0
0 0 0 0 �6t 0 0 0 0 0 0 0 0 0 3|t|2 0
0 0 0 0 0 0 0 �6t 0 0 0 0 0 0 0 3|t|2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Figure 3.1. Matrix Representation of ⇤t
b on H3(S

3)

ues are then calculated for these matrix representations. Our numerical results suggest that
the smallest non-zero eigenvalue of ⇤t

b on H2k−1(S
3) decreases as k increases. Conversely,

1Our code for this and the other symbolic computations described below is available on our website at
https://sites.google.com/a/umich.edu/zeytuncu/home/publ
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However2 since Lσ−1fj 2 Hσ−1,2k−1−σ+1(S
3), we know that ⇤bL

σ−1fj = (σ)(2k�σ�2)Lσ−1fj.
Therefore,

hLσ−1fi,�⇤bL
σ−1fji = hLσ−1fi,�(σ)(2k � σ � 2)Lσ−1fji

= �(σ)(2k � σ � 2)hLσ−1fi,L
σ−1fji

= 0,

by our induction hypothesis as desired. ⇤

With this, we first note that if {f0, . . . , f2k−1} is an orthogonal basis for H0,2k−1(S
3), then

{Lσf0, . . . ,L
σf2k−1} is an orthogonal basis for Hσ,2k−1−σ(S

3). Now, we define the following
subspaces of H2k−1(S

3).

Definition 4.1. Suppose {f0, . . . , f2k−1} is an orthogonal basis for H0,2k−1(S
3). Then we

define

Vi = span{fi,L
2fi, . . . ,L

2j−2fi, . . . ,L
2k−2fi},

Wi = span{Lfi,L
3fi, . . . ,L

2j−1fi, . . . ,L
2k−1fi}.

Denote the basis elements of Vi by vi,1, . . . , vi,k and for Wi by wi,1, . . . , wi,k. We first note
that since each bidegree space Hp,q(S

3) ✓ H2k−1(S
3) has 2k elements, we have 2k Vi spaces

and 2k Wi spaces. We now note the following fact.

Theorem 4.1.

2k−1
M

i=0

Vi �Wi = H2k−1(S
3).

Proof. We first note that by Proposition 2.4,

H2k−1(S
3) =

2k−1
M

i=0

Hi,2k−1−i(S
3)

but by Lemma 4.1, we see that this is really just

=
2k−1
M

i=0

Lif0 � · · ·� Lif2k−1.

Manipulating this, we have

=
2k−1
M

i=0

fi � Lfi · · ·� L2k−1fi

=
2k−1
M

i=0

fi � L2fi � · · ·� L2k−2fi � Lfi � L3fi � · · ·� L2k−1fi

=
2k−1
M

i=0

Vi �Wi,

which is our goal. ⇤

The advantage of constructing these spaces in the first place is due to the following fact.

2For f 2 Hi,j(S
3) by counting degrees we notice Lf 2 Hi−1,j+1(S

3).
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Theorem 4.2. For 0  i  2k � 1, the subspaces Vi and Wi are invariant under ⇤
t
b.

Proof. By equation (1), we have that

⇤
t
b = �h(LL+ |t|2LL+ tL2 + tL2)

Since the fraction in front is a constant, we can ignore it and only consider the expression in
the parentheses. Let f 2 H0,2k−1(S

3), and define vσ = Lσf to be a basis element of either Vi

or Wi, since they have the same form. We first note that vσ 2 Hσ,2k−1−σ(S
3). Then by our

expansion we have that

⇤
t
bvσ = �h(LLvσ + |t|2LLvσ + tL2vσ + tL2vσ)

We already know LLvσ and LLvσ will simply be a multiple of vσ, so we consider L2vσ and
L2vσ.

L2vσ = L2Lσf

= L
⇥

LL
⇥

Lσ−1f
⇤⇤

= �(σ)(2k � σ)LL
⇥

Lσ−2f
⇤

= (σ)(σ � 1)(2k + 1� σ)(2k � σ)Lσ−2f

= (σ)(σ � 1)(2k + 1� σ)(2k � σ)vσ−2 (2a)

L2vσ = L2
⇥

Lσf
⇤

= Lσ+2f

= vσ+2 (2b)

so we get multiples of vσ−2 and vσ+2. Relating this back to Vi andWi, we see that if σ = 2j�2,
then L2vi,j is a multiple of vi,j−1, and L2vi,j is a multiple of vi,j+1. If σ = 2j � 1, we get a
similar result for wi,j. So we indeed have that both subspaces Vi and Wi are invariant under
⇤

t
b, and we are done. ⇤

In light of this fact, we can consider ⇤t
b not on the whole space L2(S3) or H2k−1(S

3), but
rather on these Vi and Wi spaces. In fact, we actually have a representation of ⇤t

b on these
spaces with respect to the orthogonal bases for Vi and Wi as in Definition 4.1.

Theorem 4.3. The matrix representation of ⇤t
b, m(⇤t

b), on Vi and Wi is tridiagonal, where

m(⇤t
b) on Vi is

m(⇤t
b) = h

0

B

B

B

B

B

B

B

@

d1 u1

�t d2 u2

�t d3
. . .

. . .
. . . uk−1

�t dk

1

C

C

C

C

C

C

C

A
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where uj = �t · (2j)(2j � 1)(2k � 2j)(2k � 1 � 2j) and dj = (2j � 1)(2k + 1 � 2j) + |t|2 ·
(2j � 2)(2k + 2� 2j). For Wi, we get something similar:

m(⇤t
b) = h

0

B

B

B

B

B

B

B

@

d1 u1

�t d2 u2

�t d3
. . .

. . .
. . . uk−1

�t dk

1

C

C

C

C

C

C

C

A

where uj = �t · (2j+1)(2j)(2k�2j)(2k�1�2j) and dj = (2j)(2k�2j)+ |t|2 · (2j�1)(2k+
1� 2j).

We note that the above definitions don’t depend on i; in other words, each of these matrices
are the same on Vi and Wi, regardless of the choice of i.

Proof. Using equations (2a) and (2b), along with Theorem 2.1, we can entirely describe the
action of each piece of ⇤t

b on a basis element vi,j or wi,j:

�LLvi,j = (2j � 1)(2k + 1� 2j)vi,j �LLwi,j = (2j)(2k � 2j)wi,j

�LLvi,j = (2j � 2)(2k + 2� 2j)vi,j �LLwi,j = (2j � 1)(2k + 1� 2j)wi,j

�L2vi,j = �(2j � 2)(2j � 3)

(2k + 3� 2j)(2k + 2� 2j)vi,j−1

�L2wi,j = �(2j � 1)(2j � 2)

(2k + 2� 2j)(2k + 1� 2j)wi,j−1

�L2vi,j = �vi,j+1 �L2wi,j = �wi,j+1.

By looking at it this way, we notice the tridiagonal structure. So with these observations,
we can state that

⇤
t
bvi,j = h

�

� t · (2j � 2)(2j � 3)(2k + 3� 2j)(2k + 2� 2j)vi,j−1

+
�

(2j � 1)(2k + 1� 2j) + |t|2 · (2j � 2)(2k + 2� 2j)
�

vi,j

� t · vi,j+1

�

⇤
t
bwi,j = h

�

� t · (2j � 1)(2j � 2)(2k + 2� 2j)(2k + 1� 2j)wi,j−1

+
�

(2j)(2k � 2j) + |t|2 · (2j � 1)(2k � 1� 2j)
�

wi,j

� t · wi,j+1

�

.

Now that we have this formula, we can find m(⇤t
b) on Vi and Wi by computing their effect

on the basis vectors vi,j and wi,j: when we do this for Vi, we get

dj = (2j � 1)(2k + 1� 2j) + |t|2 · (2j � 2)(2k + 2� 2j),

uj−1 = �t · (2j � 2)(2j � 3)(2k + 3� 2j)(2k + 2� 2j),

hence uj = �t · (2j)(2j � 1)(2k � 2j)(2k � 1� 2j)

9



and for Wi, we get

dj = (2j)(2k � 2j) + |t|2 · (2j � 1)(2k � 1� 2j),

uj−1 = �t · (2j � 1)(2j � 2)(2k + 2� 2j)(2k + 1� 2j),

hence uj = �t · (2j + 1)(2j)(2k � 2j)(2k � 1� 2j).

Finally, by factoring out h and simply substituting each portion in we obtain the matrix
representations above. ⇤

An immediate consequence of this is that each Vi subspace contributes the same set of
eigenvalues to the spectrum of ⇤t

b, and similarly for each Wi. Furthermore, we note that the
matrices are rank k (by the tridiagonal structure it is at least rank k� 1 and by Proposition
5.2 the determinant is non-zero, hence rank k). Since the choice of i does not change m(⇤t

b)
on these spaces, we will fix an arbitrary i and call the spaces V and W instead.

5. Bottom of the Spectrum of ⇤
t
b

Now that we have a matrix representation for ⇤
t
b on these V and W spaces inside

H2k−1(S
3), we can begin to analyze their eigenvalues as k varies. First, we go over some

facts about tridiagonal matrices.

Proposition 5.1. Suppose A is a tridiagonal matrix,

A =

0

B

B

B

B

B

B

B

@

d1 u1

l1 d2 u2

l2 d3
. . .

. . .
. . . uk−1

lk−1 dk

1

C

C

C

C

C

C

C

A

and the products uili > 0 for 1  i < k, then A is similar to a symmetric tridiagonal matrix.

Proof. One can verify that if

S =

0

B

B

B

B

B

B

B

B

B

@

1
q

u1

l1
q

u1u2

l1l2

. . .
q

u1···uk−1

l1···lk−1

1

C

C

C

C

C

C

C

C

C

A

then A = S−1BS, where

B =

0

B

B

B

B

B

B

B

@

d1
p
u1l1p

u1l1 d2
p
u2l2p

u2l2 d3
. . .

. . . . . .
p

uk−1lk−1
p

uk−1lk−1 dk

1

C

C

C

C

C

C

C

A

.
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Therefore, A is similar to a symmetric tridiagonal matrix. ⇤

Another special property of tridiagonal matrices is the continuant.

Definition 5.1. Let A be a tridiagonal matrix, like the above. Then we define the continuant
of A to be a recursive sequence: f1 = d1, and fi = difi−1 � ui−1li−1fi−2, where f0 = 1.

The reason we define this is because det(A) = fk. In addition, if we denote Ai to mean
the square sub-matrix of A formed by the first i rows and i columns, then det(Ai) = fi.
With this background, we will now start analyzing ⇤

t
b on W .

To get bounds on the eigenvalues, we will invoke the Cauchy interlacing theorem, see
[Hwa04].

Theorem 5.1 (Cauchy Interlacing Theorem). Suppose E is an n⇥ n Hermitian matrix of

rank n, and F is an n�1⇥n�1 matrix minor of E. If the eigenvalues of E are λ1  · · ·  λn

and the eigenvalues of F are ν1  · · ·  νn−1, then the eigenvalues of E and F interlace:

0 < λ1  ν1  λ2  ν2  · · ·  λn−1  νn−1  λn

Now, we can get an intermediate bound on the smallest eigenvalue.

Theorem 5.2. Suppose A is the Hermitian matrix of rank k, like the above, and λ1  · · · 
λk are its eigenvalues. Then

λ1 
det(A)

det(Ak−1)

where Ak−1 is A without the last row and column.

Proof. Since Ak−1 is a k� 1⇥ k� 1 matrix minor of A, we can apply the Cauchy interlacing
theorem. If the eigenvalues of Ak−1 are ν1  · · ·  νk−1, then

λ1  ν1  λ2  ν2  · · ·  λn−1  νn−1  λn

Now, we claim that

λ1 det(Ak−1)  det(A)

To see why this is true, first observe that the determinant of a matrix is simply the product
of all its eigenvalues. In particular,

λ1 det(Ak−1) = λ1ν1 · · · νk−1

But we can simply apply the Cauchy interlacing theorem: since ν1  λ2, ν2  λ3, and so on,
we get

λ1ν1 · · · νk−1  λ1λ2 · · ·λk

= det(A).

Now, dividing both sides by detAk−1,

λ1 
det(A)

det(Ak−1)

as desired. ⇤
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Since m(⇤t
b) on W satisfies the conditions of Proposition 5.1, we find it is similar to this

Hermitian tridiagonal matrix:

A =

0

B

B

B

B

B

B

B

@

a1 + b1|t|
2 c1|t|

c1|t| a2 + b2|t|
2 c2|t|

c2|t| a3 + b3|t|
2 . . .

. . . . . . ck−1|t|

ck−1|t| ak + bk|t|
2

1

C

C

C

C

C

C

C

A

where ai = (2i)(2k�2i), bi = (2i�1)(2k+1�2i), and ci =
p

(2i+ 1)(2i)(2k � 2i)(2k � 1� 2i).
Note that we are ignoring the constant h for now, which we will add back later. If we can
find det(Ai), then by Theorem 5.2 we can get a closed form for the bound on the smallest
eigenvalue. With the following lemma, this is possible:

Lemma 5.1. aibi+1 = c2i

Proof. This is easily verified using the formulas for ai, bi+1 and ci. Recall ai = (2i)(2k � 2i),
bi+1 = (2i + 1)(2k � 1 � 2i), and c2i = (2i + 1)(2i)(2k � 2i)(2k � 1 � 2i), so the products
match up. ⇤

Proposition 5.2. The determinant of Ai is

det(Ai) = a1a2 · · · ai−1ai

+ b1a2 · · · ai−1ai|t|
2

+ · · ·

+ b1b2 · · · bi−1ai|t|
2i−2

+ b1b2 · · · bi−1bi|t|
2i

In each row, we replace a particular aj with bj, and multiply by |t|2. Note that if i = k,
then ak = 0 and all terms but the last term are 0.

Proof. We will prove this using strong induction on i. We start with the base case is i = 1,
where det(A1) = a1 + b1|t|

2, which does indeed match up with our formula. Next we go over
the case i = 2, and det(A2) = (a1 + b1|t|

2)(a2 + b2|t|
2)� c21|t|

2. By Lemma 5.1 we obtain the
desired formula.

Now, assume the formula works for Ai−1 and Ai. We need to show that the formula works
for Ai+1. Using the formula for the continuant, we get

det(Ai+1) = (ai+1 + bi+1|t|
2) det(Ai)� c2i |t|

2 det(Ai−1)

Now, use Lemma 5.1:

= (ai+1 + bi+1|t|
2) det(Ai)� aibi+1|t|

2 det(Ai−1)

12



Now, we use our induction hypothesis:

= (ai+1 + bi+1|t|
2)(a1a2 · · · ai + b1a2 · · · ai|t|

2 + · · ·+ b1b2 · · · bi|t|
2i)

� aibi+1|t|
2(a1a2 · · · ai−1 + b1a2 · · · ai−1|t|

2 + · · ·+ b1b2 · · · bi−1|t|
2i−2)

= a1a2 · · · ai+1 + b1a2 · · · ai+1|t|
2 + · · ·+ b1b2 · · · biai+1|t|

2i

+ a1a2 · · · aibi+1|t|
2 + b1a2 · · · aibi+1|t|

4 + · · ·+ b1b2 · · · bi−1aibi+1|t|
2i+2 + b1b2 · · · bi+1|t|

2i+2

� a1a2 · · · aibi+1|t|
2 � b1a2 · · · aibi+1|t|

4 � · · ·� b1b2 · · · bi−1aibi+1|t|
2i+2

= a1a2 · · · ai+1 + b1a2 · · · ai+1|t|
2 + · · ·+ b1b2 · · · biai+1|t|

2i + b1b2 · · · bi+1|t|
2i+2

which is the formula for Ai+1, and we are done. ⇤

With this knowledge, we are finally able to prove our main result.

Theorem 5.3. 0 2 essspec(⇤t
b).

Proof. By Proposition 5.1, we have that on W in H2k−1(S
3), m(⇤t

b) is similar to

A = h

0

B

B

B

B

B

B

B

@

a1 + b1|t|
2 c1|t|

c1|t| a2 + b2|t|
2 c2|t|

c2|t| a3 + b3|t|
2 . . .

. . . . . . ck−1|t|

ck−1|t| ak + bk|t|
2

1

C

C

C

C

C

C

C

A

,

where aj = (2j)(2k�2j), bj = (2j�1)(2k+1�2j), and cj =
p

(2j + 1)(2j)(2k � 2j)(2k � 1� 2j).
Now, by Theorem 5.2 we know that

λmin  det(A)

det(Ak−1)
.

Recall that Ak−1 denotes the submatrix formed by deleting the last row and column of the
k⇥k matrix A. To show that 0 2 essspec(⇤t

b), we want to show that det(A)/ det(Ak−1) ! 0
as k ! 1. For this purpose we find an upper bound for det(A)/ det(Ak−1) and show that
this converges to 0. Notice that Proposition 5.2 implies that,

det(A)

det(Ak−1)
= h

b1b2 . . . bk−1bk|t|
2k

a1a2 . . . ak−1 + b1a2 . . . ak−1|t|2 + b1b2 . . . ak−1|t|4 + . . . b1b2 . . . bk−1|t|2k−2

 h
b1b2 . . . bk−1bk|t|

2k

a1a2 . . . ak−1

. (3)

since, aj, bj, and |t| > 0. Now using the formulas for aj and bj, notice that (3) can be written
as

h(2k � 1)|t|2k
k−1
Y

j=1

(2j + 1)(2k � 2j � 1)

(2j)(2k � 2j)
.

However, we know that for all k and 1  j  k � 1,

(2k � 2j � 1)

(2k � 2j)
< 1,
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and so,

h(2k�1)|t|2k
k−1
Y

j=1

(2j + 1)(2k � 2j � 1)

(2j)(2k � 2j)
 h(2k�1)|t|2k

k−1
Y

j=1

(2j + 1)

(2j)
= h(2k�1)|t|2k

k−1
Y

j=1

1+
1

2j
.

Furthermore, we have

h(2k � 1)|t|2k
k−1
Y

j=1

1 +
1

2j
 h(2k � 1)|t|2k exp

 

k−1
X

j=1

1

2j

!

.

Note that
k−1
X

j=1

1

2j
 1

2
ln k + 1

so our expression becomes

det(A)

det(Ak−1)
 h(2k � 1)|t|2k exp

✓

1 +
1

2
ln k

◆

= eh(2k � 1)
p
k |t|2k

and our problem reduces to showing that lim
k→∞

eh(2k � 1)
p
k|t|2k = 0. We note that h is a

constant and |t| < 1; therefore, by L’Hospital’s rule the last expression indeed goes to 0.
Finally, we have,

0  lim
k→∞

λmin  lim
k→∞

det(A)

det(Ak−1)
 lim

k→∞

eh(2k � 1)
p
k |t|2k = 0,

and so λmin ! 0. Hence 0 2 essspec(⇤t
b). ⇤

We note that by the discussion in the introduction, this means that the CR-manifold
(Lt, S

3) is not embeddable into any C
N .
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