SPECTRUM OF THE KOHN LAPLACIAN ON THE ROSSI SPHERE
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ABSTRACT. We study the spectrum of the Kohn Laplacian [} on the Rossi example (S3, £;).
In particular we show that 0 is in the essential spectrum of O}, which yields another proof
of the global non-embeddability of the Rossi example.

1. INTRODUCTION

1.1. General Setting. Let S* = {(21,22) € C? : |z1|? + |22/> = 1} denote the 3-sphere in
C2. S? is a three real dimensional manifold and it can be viewed as an abstract CR manifold
when one chooses a specific complex vector field that determines the complex tangent vec-
tors. It is a general question whether an abstract CR manifold can be realized as a manifold
in CV, for some N, where the complex tangent spaces coincides with the ones induced from
the ambient space. One way of addressing this question is studying a second order differen-
tial operator, so-called the Kohn Laplacian, that naturally arises on CR manifolds. Many
geometric properties of abstract CR manifolds can be studied by analyzing the properties of
this differential operator. In this note we address the embeddability question by studying
the spectrum of the Kohn Laplacian on a specific abstract CR manifold. In particular we
examine the essential spectrum of the Kohn Laplacian. The essential spectrum of a bounded
self-adjoint operator is the subset of the spectrum that contains eigenvalues of infinite mul-
tiplicity and the limit points. We refer the readers to [Bog91] and [CS01] for the general
theory of CR manifolds to Kohn Laplacian, and to [D95] for spectral theory.

1.2. Main Problem. Rossi showed that the CR-manifold (S?, £;) is not CR-embeddable

[Ros65], where
L Yo oz )

and |t| < 1. In the case of strictly pseudoconvex CR-manifolds Boutet de Monvel proved
that if the real dimension of the manifold is at least 5, then it can always be globally
CR-embedded into CV for some N [BAM75]. Later Burns approached this problem in the
0 context and showed that if the tangential operator 51)7,5 has closed range and the Szego
projection is bounded, then the CR-manifold is CR-embeddable into CV [Bur79]. Later
in 1986, Kohn showed that CR-embeddability is equivalent to showing that the tangential
Cauchy-Riemann operator Jy; has closed range [Koh85].
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In the setting of the Rossi example, as an application of the closed graph theorem, gb,t

has closed range if and only if the Kohn Laplacian

2
B L)
(1 —¢[?)?
has closed range, see [BE90, 0.5]. Furthermore, the closed range property is equivalent to the
positivity of the essential spectrum of U}, see [Fu05] for similar discussion. In this note we
tackle the problem of embeddability, from the perspective of spectral analysis. In particular,
we show that 0 is in the essential spectrum of [0}, so the Rossi sphere is not globally CR-
embeddable into CV. This provides a different approach to the results in [Bur79, Koh85].

We start our analysis with the spectrum of [} . We utilize spherical harmonics to construct
finite dimensional subspaces of L*(S®) such that [} has tridiagonal matrix representations
on these subspaces. We then use these matrices to compute eigenvalues of (. We also
present numerical results obtained by Mathematica that motivate most of our theoretical
results. We then present an upper bound for small eigenvalues and we exploit this bound to
find a sequence of eigenvalues that converge to 0.

In addition to particular results in this note, our approach can be adopted to study
possible other perturbations of the standard CR-structure on the 3-sphere, such as in [BE90].
Furthermore, our approach also leads some information on the growth rate of the eigenvalues
and possible connections to finite-type (in the sense of commutators) results similar to the
ones in [Fu08]. We plan to address these issues in future papers.

DZ - —Et

2. ANALYSIS OF U, ON H, ,(S?)

2.1. Spherical Harmonics. We start with a quick overview of spherical harmonics, we
refer to [ABRO1] for a detailed discussion. We will state the relevant theorems on C? and
S? C C2%. A polynomial in C? can be written as

p(z,2) = Z Cap?®Z’
a7ﬁ

where z € C?, each ¢, 3 € C, and «, f € N? are multi-indices. That is, @ = (a1, ag), 2% =

211257, and |o| = a1 + ao.

We denote the space of all homogeneous polynomials on C? of degree m by P,,(C?), and
we let H,,(C?) denote the subspace of P,,(C?) that consists of all harmonic homogeneous
polynomials on C? of degree m. We use P,,(S*) and H,,,(S?) to denote the restriction of
P,n(C?) and H,,(C?) onto S®. We denote the space of complex homogenous polynomials on
C? of bi-degree p, q by P, ,(C?), and those polynomials that are homogeneous and harmonic
by H,,(C?). As before, we denote P, ,(S?) and H, ,(S?) as the polynomials of the previous

spaces, but restricted to S3. We recall that on C2, the Laplacian is defined as
0? 0?
— + — ).
821821 822822

As an example, the polynomial 21Z5 — 22921 € P11(C?), and 2125 € Hy2(C?). We take our
first step by stating the following decomposition result.

A = 4(

Proposition 2.1. [ABRO1, Theorem 5.12] L*(S?) = @ _, Hm(S?).
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The spherical harmonics form an orthogonal basis on S? similar to the Fourier series on the
unit circle S'. They are also the eigenfunctions of the Laplacian on S®. The summation above
is understood as the orthogonal direct sum of Hilbert spaces. This statement is essential to
the spectral analysis of (I} on L?(S?) since it decomposes the infinite dimensional space L*(S?)
into finite dimensional pieces, which is necessary for obtaining the matrix representation of
[0¢ (a special case of the general spectral theory of compact operators). In order to get such
a matrix representation, we need a method for obtaining a basis for H(S*). Proposition 2.3
presents a method to do so for H,,(C?) and Proposition 2.5 presents a method for H,, ,(C?).
The dimension of the matrix representation on a particular H,,(S?) is the dimension of the
subspace H,,,(S?), which is given below and analogously given for H, ,(C?).

Proposition 2.2. [ABRO1, Proposition 5.8] For k,p,q > 2,
dim Pp,q((cg) =@+ 1+1),

dimH, ,(C*) =p+q+1
dim H,(C?) = (k + 1)
Now we present a method to obtain explicit bases of spaces of spherical harmonics. These

bases play an essential role in explicit calculations in the next section. Here, K denotes the
Kelvin transform,

Kal() = % ().
For multi-indices o, 3 € N2, D and D’ denote the differential operators
|| 18
> = Gy 0
Proposition 2.3. [ABRO1, Theorem 5.25] The set
{K[D¥z|™?] : |a| =m and oy < 1}

is a vector space basis of H,,(C?), and the set
{D*z|72: |a| =m and a; < 1}
is a vector space basis of H,(S?).

Homogenous polynomials of degree k can be written as the sum of polynomials of bi-degree
p,q such that p 4+ q = k.

Proposition 2.4. Pi(C*) = @, ;. Pp(C?).

Analogous to the version in Proposition 2.3, we use the following method to construct
an orthogonal basis for H,,(C?) and H, ,(S?). The proof pretty much follows the proof of
[ABRO1, Theorem 5.25], with changes from single index to double index.

Proposition 2.5. The set

{K[ﬁaDEMQ]

la|=p,|Bl=q¢,01 =0 orﬁlzo}



is a basis for H,4(C?), and the set

{E‘*D%H ol = p, |8l = g = 0 or 1 = o}

is an orthogonal basis for H, ,(S?).

2.2. O, on H,,(S?). Before we study the operator [}, we first need some background on a
simpler operator we call [J,. It arises from the CR-manifold (S?, £), and is defined as

O, = —LL.

Here, £L = Ly = 8(22 52’1

note that this CR-structure is induced from C? and this manifold is naturally embedded.
By the machinery above we can compute the eigenvalues of [J,, see also [Fol72] for a more
general discussion.

— Zz— the standard (1,0) vector field from the ambient space. We

Theorem 2.1. Suppose [ € H,,(S*). Then
O f = (pg+q)f.

Proof. Expanding the definition, we get

0-_ (=9 =9\(.,9 90
b 2021 'Oz om lom

9 (.9 90N, =9( 9 9
T 20, \Pon T Mon ) T Mon \PPon T Tlon

0? 0 0?
IR 821821 t A 822 tany 62182’_2
— 22— o + 21 == 0 + 2927 82
8228_ 8_ 822(9_
Now, let f € H,,(S?). Since f is harmonic, we know that dz r 82 r Substituting,
we get
0? 0 _ 0
TRy s Con |  P0n05
+ 2121 —— > + 21— 0 + 2927 >
821821 821 82282_1

Since f is a polynomial and [J, is linear, it suffices to show that if f = 292° = 2{ 29?771 7,P2,
where ay + ay = p and 1 + 2 = ¢, then the claim holds. Using the expansion above, each
derivative simply becomes a multiple of f, and we have

Oy f = (q2f2 + B2 + a1 B + a1 By + 1 + a231) f
= ((c1 + a2)(Bi + B2) + (B1 + B2)) f
= (pg+a)f.



In a similar manner, we can show that —LLf = (pq + p)f. For Oy, we actually have that
spec(ly) = {pq + q | p,q € N}, therefore 0 ¢ essspec(0,) since it is not an accumulation
point of the set above.

3. EXPERIMENTAL RESULTS IN MATHEMATICA

Using the symbolic computation environment provided by Mathematica, we are able to
write a program to streamline our calculations'. We implement the algorithm provided in
Proposition 2.5 to construct the vector space basis of Hy,(S?) for a specified k. As an example,
our code produces the following basis of H3(S?):

{—6%3", —67123°, =671 22, —0721", 4n1 717 — 222727, 22171 — A7z, —620710, —621 %7,
42129721 — 225,2_2, —6252_1, 22%2_1 — 4212925, —6zfz_2, —6z§’, —621z22, —6,2%,22, —62?}.
Now, with the basis for Hj,(S?), the matrix representation of (I} on H(S?) can be computed
for each k. In particular, we use this program to construct the matrix representations for

1 < k < 12. For a specific k, the code applies (I} to each basis element of H;,(S?) obtained
by the results in the previous sections. Then, using the inner product defined by,

(f.o= [ fado

where o is the standard surface area measure, the software computes (O} f;, f;), where f;, f;
are basis vectors for H;(S*). With these results, Mathematica yields the matrix representa-
tion for the imputed value of k. For example, the program produces the matrix representation
for k = 3 seen in Figure 3.1. Since each entry has a common normalization factor,

" 1+ |t)?
(1 —1]2[?)*
this constant has been factored out. With Mathematica’s Eigenvalue function, the eigenval-
3.0 0 0 0 0 0 0 0 0 0 6 0 0 0 0
0 3 0 0 0 0 0 0 0 0 6t 0 0 0 0 0
0 0 3 0 0 0 0 0 —61 0 0 0 0 0 0 0
0o 0 0 3 0 0 0 0 0 —61 0 0 0 0 0 0
0 0 0 0 443> 0 0 0 0 0 0 0 0 0 -2 0
0 0 0 0 0 443> 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 4432 0 0 0 0 0 =2 0 0 0
Wl oo 0o 0 0 0 443> 0 0 0 0 0o 0 0 -2
0 0 =2t 0 0 0 0 0 3+4/> 0 0 0 0 0 0 0
0 0 0 -2 0 0 0 0 0 3+4> 0 0 0 0 0 0
0 20 0 0 0 0 0 0 0 0 3+4ft2 0 0 0 0 0
2t 0 0 0 0 0 0 0 0 0 0  3+4f¢2 0 0 0 0
0 0 0 0 0 0 —6t 0 0 0 0 0 3¢ 0o 0 0
0 0 0 0 0 6t 0 0 0 0 0 0 0 32 o0 0
0 0 0 0  —6t 0 0 0 0 0 0 0 0 0 3 o
0 0 0 0 0 0 0 —6t 0 0 0 0 0 0 0 3

FIGURE 3.1. Matrix Representation of [} on H3(S?)

ues are then calculated for these matrix representations. Our numerical results suggest that
the smallest non-zero eigenvalue of [J} on Har_1(S?) decreases as k increases. Conversely,

1Our code for this and the other symbolic computations described below is available on our website at
https://sites.google.com/a/umich.edu/zeytuncu/home/publ
5



the smallest non-zero eigenvalue of O} on Hgy(S?) increases with k. The smallest eigenvalue
of Hor_1(S?) is plotted for 1 < k < 5 and 0 < [¢{| < 1 in Figure 3.2. It is apparent that
Aming < Aming < Amins < Amin7 < Aming Where Apin i denotes the smallest non-zero eigen-
value of O} on H(S?). These initial numerical results suggest that limy ., Amin,2k—1 = 0 for
0 < |t| < 1, which agrees with our final result.

A
20
15 — Anin,1
Amin,3
10 Amin,5
- Amin,?
5 — Amin,9

[
0.2 0.4 0.6 0.8 1.0

FI1GURE 3.2. Smallest Non-Zero Eigenvalues for £ = 1,3,5,7,9.

4. INVARIANT SUBSPACES OF Hg;,_1(S?) UNDER [J}
In this section we fix & > 1 and work on Hay_1(S*). As we have seen, (I} can be expanded
in the following way:
14 [t)?
(1 = [¢?)?
= —h(LL + |t|*LL 4 tL> +TL7). (1)

O, = —(L + L) (L+tL)

This is because of the linearity of £ and £. Now, we need the following property.

Lemma 4.1. If (fi, f;) = 0 and fi, f; € Hoou_1(S?), then (L°fi,L7f;) = 0 for 0 < o <
2k — 1.

Proof. Choose f; and f; in Hook—1(S?) and (f;, f;) = 0. We show that for0 <o < 2k-1, L7 f;
and L7 f; are orthogonal. To do this we use induction on . Suppose (L7 f;, L771f;) = 0,
and we show that (£°f;, £°f;) = 0. Note that, the adjoint of £ is —£ and

(LOfi, LOf;) = (L7 fi, —LL f;)
(L7 fi, = (LL)LT )
= (LY i, —O, L)),

6



However? since £L771f; € Ho 1.951-0+1(S?), we know that L7 f; = (0)(2k—0—2) L1 f;.
Therefore,
(L7 i, =D Lo ) = (L7 fi, —(0) (2k — 0 = 2) L7 f)
=—(0)(2k —o = 2)(L7 i, L7V f;)
= 07
by our induction hypothesis as desired. 0
With this, we first note that if {fo,..., fox_1} is an orthogonal basis for Hgox_1(S?), then

{L°fo,..., L7 fap_1} is an orthogonal basis for H, o, 1_,(S*). Now, we define the following
subspaces of Hap_1(S?).

Definition 4.1. Suppose {fo,..., for—1} is an orthogonal basis for Hgar—1(S*). Then we
define

V; = Span{fi>z2fi7 cee 7sz_2fi7 ce vZQk_in}a
VVZ’ = Span{zfi723fi> s aZjSlfiv s 722]@,71][‘1’}'
Denote the basis elements of V; by v; 1,..., v and for W; by w; 1, ..., w; . We first note

that since each bidegree space M, (S?) C Haor—1(S?) has 2k elements, we have 2k V; spaces
and 2k W; spaces. We now note the following fact.

2%—1
Theorem 4.1. @ Vi @ W = Ho1(S?).
i=0
Proof. We first note that by Proposition 2.4,
2%—1

Hor—1(S?) = @ Hion1-i(S?)
1=0

but by Lemma 4.1, we see that this is really just
2k—1

= @Zifo @B L for1.
=0

Manipulating this, we have
2%k—1

= EB fi®Lfi--@ L%
=0

2k—1
- @fi@Zin@“'@Z%_Zfi@Zfz-@z?’fi@---ééz%_lfi
i=0

2%k—1
=Pview,
=0
which is our goal. 0

The advantage of constructing these spaces in the first place is due to the following fact.

2For f € M, ;(S?) by counting degrees we notice Lf € H;_1 j11(S?).
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Theorem 4.2. For 0 <i < 2k — 1, the subspaces V; and W; are invariant under DZ.

Proof. By equation (1), we have that
Op = —h(LL + [t|PLL +tL* + L)

Since the fraction in front is a constant, we can ignore it and only consider the expression in
the parentheses. Let f € Hoor_1(S?), and define v, = L f to be a basis element of either V;
or W;, since they have the same form. We first note that v, € Hg,gk_l_g(Sz)’). Then by our
expansion we have that

Obve = —h(LLv, + [t*LLV, + tLv, + TL,)
We already know L£Lv, and LLv, will simply be a multiple of v,, so we consider £?v, and
L20,.
L?v, = L2LOf
=L[LL[Lf]]
= —(0)(2k — o)LL [L7*f]
=(0)(c—1)2k+1—0)(2k —0)L72f

=(0)(c—1)2k+1—0)(2k — 0)vy—2 (2a)
T, = 2 (L]

ey

= Vo+2 (Qb)

so we get multiples of v,_s and v, 2. Relating this back to V; and W;, we see that if 0 = 25 —2,
then Ezvm is a multiple of v; ;_1, and szz}j is a multiple of v; j11. If 0 = 25 — 1, we get a
similar result for w; ;. So we indeed have that both subspaces V; and W; are invariant under
[0, and we are done. O

In light of this fact, we can consider (0! not on the whole space L*(S?) or Hax_1(S?), but
rather on these V; and W; spaces. In fact, we actually have a representation of [} on these
spaces with respect to the orthogonal bases for V; and W; as in Definition 4.1.

Theorem 4.3. The matriz representation of OF, m(C), on Vi and W; is tridiagonal, where
m(OE) on'V; is

di U
—t dy usy
m(0,) = h 7 ds
Uk—1
—t  dy



where u; = —t - (25)(25 — 1)(2k — 25)(2k — 1 — 2j) and d; = (25 — 1)(2k + 1 — 2j) + [¢|* -
(27 — 2)(2k + 2 — 2j). For W;, we get something similar:

di  u
—t dy uy
m(0,) = h —T dy
Uk—1
—t  dy

where u; = —t- (25 +1)(25)(2k — 25)(2k — 1 —2j) and d; = (25)(2k —25) + [t[>- (25 — 1) (2k +
1—2j).

We note that the above definitions don’t depend on 7; in other words, each of these matrices
are the same on V; and Wj;, regardless of the choice of i.

Proof. Using equations (2a) and (2b), along with Theorem 2.1, we can entirely describe the
action of each piece of O} on a basis element v; ; or w; ;:

—LLv; ;= (27 — 1)(2k + 1 — 2j)v; —LLw; j = (27)(2k — 2j)w;
—LLv; ;= (25 —2)(2k + 2 — 2j)v; —LLw;; = (27 —1)(2k + 1 — 2j)w; ;
—Llv; = —(2] —2)(2j — 3) —Llwiy = —(2j — 1)(2) — 2)
(2k + 3 — 25)(2k + 2 — 2j)v; ;1 (2k +2 — 25)(2k + 1 — 25)w; j_y
_ZQUi,j = “Vij+1 —Zzwi,j = ~Wij+1-

By looking at it this way, we notice the tridiagonal structure. So with these observations,
we can state that

Ohvi; =h(—t- (25 —2)(25 — 3)(2k + 3 — 25)(2k + 2 — 2j)v; j1
+ (27 — D)2k + 1= 25) + [t - (25 — 2)(2k + 2 — 2) )vi
—f'vmﬂrl)
Ohwi; =h(—t- (25 — 1)(25 — 2)(2k + 2 — 25)(2k + 1 — 2j)w; ;1
+ ((20)(2k = 27) + [t - (2 = 1)(2k = 1 = 25))wy,
_E'wi,j—i-l)-
Now that we have this formula, we can find m(0}) on V; and W; by computing their effect
on the basis vectors v; ; and w; ;: when we do this for V;, we get
dj = (25 — 1)(2k +1—2j) + [t|* - (2 — 2)(2k + 2 — 2j),
i =—t-(25 —2)(2j —3)(2k + 3 — 25)(2k + 2 — 2j),
hence u; = —t - (25)(25 — 1)(2k — 25)(2k — 1 — 2j)



and for W;, we get
d; = (2))(2k — 2)) + |12+ (2 — 1)(2k — 1 - 2),
wj—g =—t-(2j —1)(2j —2)(2k + 2 — 25)(2k + 1 — 2j),
hence u; = —t - (25 + 1)(25)(2k — 25)(2k — 1 — 2j).

Finally, by factoring out h and simply substituting each portion in we obtain the matrix
representations above. O

An immediate consequence of this is that each V; subspace contributes the same set of
eigenvalues to the spectrum of [}, and similarly for each ;. Furthermore, we note that the
matrices are rank k (by the tridiagonal structure it is at least rank £ — 1 and by Proposition
5.2 the determinant is non-zero, hence rank k). Since the choice of i does not change m(CJ})
on these spaces, we will fix an arbitrary ¢ and call the spaces V' and W instead.

5. BOTTOM OF THE SPECTRUM OF [}

Now that we have a matrix representation for [} on these V and W spaces inside
Hor_1(S?), we can begin to analyze their eigenvalues as k varies. First, we go over some
facts about tridiagonal matrices.

Proposition 5.1. Suppose A is a tridiagonal matrix,

dy u
li do usy
A= Iy ds
' Up—1
ly—r  dy

and the products u;l; > 0 for 1 < i < k, then A is similar to a symmetric tridiagonal matriz.

Proof. One can verify that if

then A = S~!BS, where

& vl
Val d
b= Vusly — ds

10



Therefore, A is similar to a symmetric tridiagonal matrix. O
Another special property of tridiagonal matrices is the continuant.

Definition 5.1. Let A be a tridiagonal matrix, like the above. Then we define the continuant
of A to be a recursive sequence: f; = dy, and f; = d; fi_1 — u;_1l;_1 fi_o2, where fo = 1.

The reason we define this is because det(A) = fi. In addition, if we denote A; to mean
the square sub-matrix of A formed by the first i rows and i columns, then det(A4;) = f;.
With this background, we will now start analyzing (I} on .

To get bounds on the eigenvalues, we will invoke the Cauchy interlacing theorem, see
[Hwa04].

Theorem 5.1 (Cauchy Interlacing Theorem). Suppose E is an n x n Hermitian matriz of
rank n, and F' is an n—1xn—1 matrix minor of E. If the eigenvalues of E are \y < --- < \,
and the eigenvalues of F' are v; < --- < v,_1, then the eigenvalues of E and F' interlace:

O<MSsnmSoSmS <A 1<y 1<\,
Now, we can get an intermediate bound on the smallest eigenvalue.

Theorem 5.2. Suppose A is the Hermitian matriz of rank k, like the above, and Ay < --- <
Ae are its eigenvalues. Then

A < det(A)
det(Ak_l)
where Ap_q is A without the last row and column.

Proof. Since Ap_1 is a k— 1 x kK — 1 matrix minor of A, we can apply the Cauchy interlacing
theorem. If the eigenvalues of A,_; are 1y < --- < vg_q, then

A1§V1§A2§V2§"'S)\n—léyn—lg)\n

Now, we claim that
)\1 det(Ak_l) S det(A)

To see why this is true, first observe that the determinant of a matrix is simply the product
of all its eigenvalues. In particular,

)\1 det(Ak_l) = )\11/1 R % |

But we can simply apply the Cauchy interlacing theorem: since vy < Ay, 5 < A3, and so on,
we get

At Vo S A A A

= det(A).
Now, dividing both sides by det A;_1,
A < det(A)
det(Ak_l)
as desired. 0

11



Since m([0}) on W satisfies the conditions of Proposition 5.1, we find it is similar to this
Hermitian tridiagonal matrix:

ai + by|t|? 1t
1|t as + bot|? ot
A= cltl ag+ byt
R cr—1|t]

ce_1|t]  ag + bilt]?

where a; = (2i)(2k—2i), b; = (2i—1)(2k+1-2i), and ¢; = /(2 + 1)(20)(2k — 2i)(2k — 1 — 2i).
Note that we are ignoring the constant A for now, which we will add back later. If we can
find det(4;), then by Theorem 5.2 we can get a closed form for the bound on the smallest
eigenvalue. With the following lemma, this is possible:

_ 2
Lemma 5.1. a;b;1; = c;

Proof. This is easily verified using the formulas for a;, b;11 and ¢;. Recall a; = (2i)(2k — 2i),
bivi = (20 +1)(2k — 1 — 24), and ¢ = (20 + 1)(2i)(2k — 2i)(2k — 1 — 2i), so the products
match up. O

Proposition 5.2. The determinant of A; is

det(A4;) = ajay -+ a;_1q;
+brag - - - a;i_ya;|t]
4.
+ biby - - - bi_ya;|t[* 2
+ byby - b1 byt

In each row, we replace a particular a; with b;, and multiply by |¢|*>. Note that if i = £,
then a;, = 0 and all terms but the last term are 0.

Proof. We will prove this using strong induction on 7. We start with the base case is ¢ = 1,
where det(A;) = a; + b;|¢|?, which does indeed match up with our formula. Next we go over
the case i = 2, and det(Ay) = (a1 + b1]t]?)(ag + ba|t]*) — ¢}|t|?. By Lemma 5.1 we obtain the
desired formula.

Now, assume the formula works for A;_; and A;. We need to show that the formula works
for A;;1. Using the formula for the continuant, we get

det(AHl) = (ai+1 + bi+1|t|2) det(AZ) — C?’t|2 det(Ai_l)
Now, use Lemma 5.1:

= (a,-+1 + bi+1|t|2) det(A,) — aibi+1|t|2 det(Ai_l)

12



Now, we use our induction hypothesis:
= (aip1 + b [t*) (@102 - i + brag -+ @it + -+ biby - bift]*)
- @ibz’+1|t|2(alaz Qi1+ brag - ai—1|t|2 +o oy bz’flwmd)
= a0z Qg1 + brag - agq [t + -+ biby - biag [t
+aras - @b [t 4 brag - - - agbigr [t + - A biby - b1 [P A bibo - by [EF
— @14z - aibi+1‘t|2 —biag - aibi+1‘t|4 — o= biby- - biflaibi+1|t|2i+2
=ayay - Qg1+ brag @i [t A A biby - by [H A biby - - b [t
which is the formula for A;,;, and we are done. O
With this knowledge, we are finally able to prove our main result.
Theorem 5.3. 0 € essspec(C]}).

Proof. By Proposition 5.1, we have that on W in Hay,_1(S?), m(0}) is similar to

ar + by|t]? clt]

1t ag + bot|? Colt|
A=h oolt] az + bs|t|* . )
’ Ch—1]|t]

Ck_1|t| ap + bk|t‘2

where a; = (25)(2k—2j), b; = (2j—1)(2k+1—27), and ¢; = /(25 + 1)(25)(2k — 25)(2k — 1 — 2j).
Now, by Theorem 5.2 we know that
o det(A) '
- det(Ak_l)
Recall that Aj_; denotes the submatrix formed by deleting the last row and column of the
k x k matrix A. To show that 0 € essspec([J}), we want to show that det(A)/det(Az_1) — 0
as k — oo. For this purpose we find an upper bound for det(A)/ det(Ag_1) and show that
this converges to 0. Notice that Proposition 5.2 implies that,
det(A) — 5 blbg c. bk_lbk|t‘2k
det(Ak_l) N aias . ..ap—1 + blCLQ N Clk_1|t|2 + blbg N CLk_1|t|4 + ... b1b2 PN bk_1|t|2k72
2k

aiag . ..ap—1

A

since, a;, b;, and |t| > 0. Now using the formulas for a; and b;, notice that (3) can be written
as
(2 2]{: —27—-1
|t|2k H J + ] )
- 2j)

However, we know that for all k£ and 1 § 1<k-—1,

(2k — 25 — 1)
— <1
(@k—2j)
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and so,

k—1

2g+1 (2k —2j — 1) 2+ 1) 1
h(2k—1)[t|* < hk=D|tP* | == = hk—D|t* [ | 1+—.
)t H Sk 2 S keI H oy~ k=Dl H o

Furthermore, we have

k—1 1 k:11
M2k — DIt T1+ = < h(2k — 1)[t]** — 1.
( >||H+2j_< Dieesp 3o

Note that

k‘

1

1
< -Ink+1
27 = 2

1

J
SO our expression becomes

det(A)
det(Ak_1>

and our problem reduces to showing that klim eh(2k — 1)VE[t|** = 0. We note that h is a
—00

1
< h(2k — 1)|t]** exp (1 +31n k;) = eh(2k — D)V [t|*

constant and |t| < 1; therefore, by L’Hospital’s rule the last expression indeed goes to 0.
Finally, we have,

0 < lim Ay < lim det(4) < lim eh(2k — D)VE|[t[* =
k—o0 k—oo det(Ak 1) k—o0
and 8o Apin — 0. Hence 0 € essspec(C]}). d

We note that by the discussion in the introduction, this means that the CR-manifold
(L, S?) is not embeddable into any CV.

ACKNOWLEDGEMENTS

This research was conducted at the NSF REU Site (DMS-1659203) in Mathematical Anal-
ysis and Applications at the University of Michigan-Dearborn. We would like to thank the
National Science Foundation, the College of Arts, Sciences, and Letters, the Department of
Mathematics and Statistics at the University of Michigan-Dearborn, and Al Turfe for their
support. We would also like to thank John Clifford, Hyejin Kim, and the other participants
of the REU program for fruitful conversations on this topic. We also thank the anonymous
referees for constructive comments.

REFERENCES

[ABRO1] Sheldon Axler, Paul Bourdon, and Wade Ramey. Harmonic function theory, volume 137 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, second edition, 2001.

[BAMT75] L. Boutet de Monvel. Intégration des équations de Cauchy-Riemann induites formelles. pages Exp.
No. 9, 14, 1975.

[BE90] Daniel M. Burns and Charles L. Epstein. Embeddability for three-dimensional CR-manifolds. J.
Amer. Math. Soc., 3(4):809-841, 1990.

[Bog91] A. Boggess. CR Manifolds and the Tangential Cauchy Riemann Complex. Studies in Advanced
Mathematics. Taylor & Francis, 1991.

14



[Bur79)

[CS01]
[D95)

[Fu05)]
[Fu08]

[Fol72]
[Hwa04]

[Kohs5]

[Ros65]

Daniel M. Burns, Jr. Global behavior of some tangential Cauchy-Riemann equations. In Partial
differential equations and geometry (Proc. Conf., Park City, Utah, 1977), volume 48 of Lecture
Notes in Pure and Appl. Math., pages 51-56. Dekker, New York, 1979.

S.C. Chen and M.C. Shaw. Partial Differential Equations in Several Complex Variables. AMS /TP
studies in advanced mathematics. American Mathematical Society, 2001.

E. B. Davies. Spectral theory and differential operators. Cambridge studies in advanced mathemat-
ics. Cambridge University Press, 1995.

Siqi Fu. Hearing pseudoconvexity with the Kohn Laplacian. Math. Ann., 331(2):475-485, 2005.
Siqi Fu. Hearing the type of a domain in C? with the O-Neumann Laplacian. Adv. Math.,
219(2):568-603, 2008.

G. B. Folland The tangential Cauchy-Riemann complex on spheres. Trans. Amer. Math. Soc.,
171:83-133, 1972.

Suk-Geun Hwang. Cauchy’s interlace theorem for eigenvalues of Hermitian matrices. Amer. Math.
Monthly, 111(2):157-159, 2004.

J. J. Kohn. Estimates for dj, on pseudoconvex CR manifolds. In Pseudodifferential operators and
applications (Notre Dame, Ind., 1984), volume 43 of Proc. Sympos. Pure Math., pages 207-217.
Amer. Math. Soc., Providence, RI, 1985.

H. Rossi. Attaching analytic spaces to an analytic space along a pseudoconcave boundary. In Proc.
Conf. Complex Analysis (Minneapolis, 1964 ), pages 242-256. Springer, Berlin, 1965.

(Tawfik Abbas) MICHIGAN STATE UNIVERSITY, DEPARTMENT OF MATHEMATICS, EAST LANSING, MI
48824, USA
FE-mail address: abbastaw@msu.edu

(Madelyne M. Brown) BUCKNELL UNIVERSITY, DEPARTMENT OF MATHEMATICS, LEWISBURG, PA
17837, USA
FE-mail address: mmb021@bucknell.edu

(Ravikumar Ramasami) UNIVERSITY OF MICHIGAN-DEARBORN, DEPARTMENT OF MATHEMATICS &
STATISTICS, DEARBORN, MI 48128, USA
E-mail address: rramasam@umich.edu

(Yunus E. Zeytuncu) UNIVERSITY OF MICHIGAN-DEARBORN, DEPARTMENT OF MATHEMATICS & STA-
TISTICS, DEARBORN, MI 48128, USA
E-mail address: zeytuncu@umich.edu

15



