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Abstract—With rapid progress and significant successes in a
wide spectrum of applications, deep learning is being applied
in many safety-critical environments. However, deep neural
networks have been recently found vulnerable to well-designed
input samples, called adversarial examples. Adversarial pertur-
bations are imperceptible to human but can easily fool deep
neural networks in the testing/deploying stage. The vulnerability
to adversarial examples becomes one of the major risks for
applying deep neural networks in safety-critical environments.
Therefore, attacks and defenses on adversarial examples draw
great attention. In this paper, we review recent findings on
adversarial examples for deep neural networks, summarize the
methods for generating adversarial examples, and propose a
taxonomy of these methods. Under the taxonomy, applications
for adversarial examples are investigated. We further elaborate
on countermeasures for adversarial examples. In addition, three
major challenges in adversarial examples and the potential
solutions are discussed.

Index Terms—deep neural network, deep learning, security,
adversarial examples

I. INTRODUCTION

Deep learning (DL) has made significant progress in a
wide domain of machine learning (ML): image classification,
object recognition [1], [2], object detection [3], [4], speech
recognition [5], language translation [6], voice synthesis [7].
Many deep learning empowered applications are life crucial,
raising great concerns in the field of safety and security. De-
spite great successes in numerous applications, recent studies
find that deep learning is vulnerable against well-designed
input samples. These samples can easily fool a well-performed
deep learning model with little perturbations imperceptible to
humans.

Szegedy et al. first generated small perturbations on the im-
ages for the image classification problem and fooled state-of-
the-art deep neural networks with high probability [8]. These
misclassified samples were named as Adversarial Examples.

Extensive deep learning based applications have been used
or planned to be deployed in the physical world, especially
in the safety-critical environments. In the meanwhile, recent
studies show that adversarial examples can be applied to
real world. For instance, an adversary can construct phys-
ical adversarial examples and confuse autonomous vehicles
by manipulating the stop sign in a traffic sign recognition
system [9], [10] or removing the segmentation of pedestrians
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in an object recognition system [11]. Attackers can generate
adversarial commands against automatic speech recognition
(ASR) models and Voice Controllable System (VCS) [12], [13]
such as Apple Siri [14], Amazon Alexa [15], and Microsoft
Cortana [16].

Deep learning is widely regarded as a “black box” technique
— we all know that it performs well, but with limited
knowledge of the reason [17], [18]. Many studies have been
proposed to explain and interpret deep neural networks [19]–
[22]. From inspecting adversarial examples, we may gain
insights on semantic inner levels of neural networks [23] and
find problematic decision boundaries, which in turn helps to
increase robustness and performance of neural networks [24]
and improve the interpretability [25].

In this paper, we investigate and summarize approaches for
generating adversarial examples, applications for adversarial
examples and corresponding countermeasures. We explore the
characteristics and possible causes of adversarial examples.
Recent advances in deep learning revolve around supervised
learning, especially in the field of computer vision task.
Therefore, most adversarial examples are generated against
computer vision models. We mainly discuss adversarial ex-
amples for image classification/object recognition tasks in this
paper. Adversarial examples for other tasks will be investigated
in Section V.

Inspired by [26], we define the Threat Model as follows:

• The adversaries can attack only at the testing/deploying
stage. They can tamper only the input data in the testing
stage after the victim deep learning model is trained.
Neither the trained model or the training dataset can be
modified. The adversaries may have knowledge of trained
models (architectures and parameters) but are not allowed
to modify models, which is a common assumption for
many online machine learning services. Attacking at the
training stage (e.g., training data poisoning) is another
interesting topic and has been studied in [27]–[32]. Due
to the limitation of space, we do not include this topic in
the paper.

• We focus on attacks against models built with deep neural
networks, due to their great performance achieved. We
will discuss adversarial examples against conventional
machine learning (e.g., SVM, Random Forest) in Sec-
tion II. Adversarial examples against deep neural net-
works proved effective in conventional machine learning
models [33] (see Section VII-A).
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Table I: Notation and symbols used in this paper

Notations and Symbols Description
x original (clean, unmodified) input data
l label of class in the classification problem. l =

1, 2, . . . ,m, where m is the number of classes
x′ adversarial example (modified input data)
l′ label of the adversarial class in targeted adver-

sarial examples
f(·) deep learning model (for the image classifica-

tion task, f ∈ F : Rn → l)
θ parameters of deep learning model f

Jf (·, ·) loss function (e.g., cross-entropy) of model f
η difference between original and modified input

data: η = x′ − x (the exact same size as the
input data)

‖ · ‖p `p norm
∇ gradient

H(·) Hessian, the second-order of derivatives
KL(·) Kullback-Leibler (KL) divergence function

• Adversaries only aim at compromising integrity. Integrity
is presented by performance metrics (e.g., accuracy, F1
score, AUC), which is essential to a deep learning model.
Although other security issues pertaining to confidential-
ity and privacy have been drawn attention in deep learn-
ing [34]–[36], we focus on the attacks that degrade the
performance of deep learning models, cause an increase
of false positives and false negatives.

• The rest of the threat model differs in different adversarial
attacks. We will categorize them in Section III.

Notations and symbols used in this paper are listed in
Table I.

This paper presents the following contributions:

• To systematically analyze approaches for generating ad-
versarial examples, we taxonomize attack approaches
along different axes to provide an accessible and intuitive
overview of these approaches.

• We investigate recent approaches and their variants for
generating adversarial examples and compare them us-
ing the proposed taxonomy. We show examples of se-
lected applications from fields of reinforcement learning,
generative modeling, face recognition, object detection,
semantic segmentation, natural language processing, and
malware detection. Countermeasures for adversarial ex-
amples are also discussed.

• We outline main challenges and potential future research
directions for adversarial examples based on three main
problems: transferability of adversarial examples, exis-
tence of adversarial examples, and robustness evaluation
of deep neural networks.

The remaining of this paper is organized as follows. Sec-
tion II introduces the background of deep learning techniques,
models, and datasets. We discuss adversarial examples raised
in conventional machine learning in Section II. We propose a
taxonomy of approaches for generating adversarial examples
in Section III and elaborate on these approaches in Section IV.
In Section V, we discuss applications for adversarial examples.
Corresponding countermeasures are investigated in Section VI.
We discuss current challenges and potential solutions in Sec-
tion VII. Section VIII concludes the work.

II. BACKGROUND

In this section, we briefly introduce basic deep learning
techniques and approaches related to adversarial examples.
Next, we review adversarial examples in the era of conven-
tional ML and compare the difference between adversarial
examples in conventional ML and that in DL.

A. Brief Introduction to Deep Learning

This subsection discusses main concepts, existed techniques,
popular architectures, and standard datasets in deep learning,
which, due to the extensive use and breakthrough successes,
have become acknowledged targets of attacks, where adver-
saries are usually applied to evaluate their attack methods.

1) Main concepts in deep learning: Deep learning is a type
of machine learning methods that makes computers to learn
from experience and knowledge without explicit programming
and extract useful patterns from raw data. For conventional
machine learning algorithms, it is difficult to extract well-
represented features due to limitations, such as curse of dimen-
sionality [37], computational bottleneck [38], and requirement
of the domain and expert knowledge. Deep learning solves
the problem of representation by building multiple simple
features to represent a sophisticated concept. For example,
a deep learning-based image classification system represents
an object by describing edges, fabrics, and structures in the
hidden layers. With the increasing number of available training
data, deep learning becomes more powerful. Deep learning
models have solved many complicated problems, with the help
of hardware acceleration in computational time.

A neural network layer is composed of a set of perceptrons
(artificial neurons). Each perceptron maps a set of inputs to
output values with an activation function. The function of a
neural network is formed in a chain:

f(x) = f (k)(· · · f (2)(f (1)(x))), (1)

where f (i) is the function of the ith layer of the network,
i = 1, 2, · · · k.

Convolutional neural networks (CNNs) and Recurrent neu-
ral networks (RNNs) are two most widely used neural net-
works in recent neural network architectures. CNNs deploy
convolution operations on hidden layers to share weights and
reduce the number of parameters. CNNs can extract local
information from grid-like input data. CNNs have shown
incredible successes in computer vision tasks, such as im-
age classification [1], [39], object detection [4], [40], text
recognition [41], [42], and semantic segmentation [43], [44].
RNNs are neural networks for processing sequential input
data with variable length. RNNs produce outputs at each time
step. The hidden neuron at each time step is calculated based
on current input data and hidden neurons at the previous
time step. Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) with controllable gates are designed
to avoid vanishing/exploding gradients of RNNs in long-term
dependency.
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2) Architectures of deep neural networks: Several deep
learning architectures are widely used in computer vision
tasks: LeNet [45], VGG [2], AlexNet [1], GoogLeNet [46]–
[48] (Inception V1-V4), and ResNet [39], from the simplest
(oldest) network to the deepest and the most complex (newest)
one. AlexNet first showed that deep learning models can
largely surpass conventional machine learning algorithms in
the ImageNet 2012 challenge and led the future study of deep
learning. These architectures made tremendous breakthroughs
in the ImageNet challenge and can be seen as milestones
in image classification problem. Attackers usually generate
adversarial examples against these baseline architectures.

3) Standard deep learning datasets: MNIST, CIFAR-10,
ImageNet are three widely used datasets in computer vi-
sion tasks. The MNIST dataset is for handwritten digits
recognition [49]. The CIFAR-10 dataset and the ImageNet

dataset are for image recognition task [50]. The CIFAR-10

consists of 60,000 tiny color images (32 × 32) with ten
classes. The ImageNet dataset consists 14,197,122 images
with 1,000 classes [51]. Because of the large number of
images in the ImageNet dataset, most adversarial approaches
are evaluated on only part of the ImageNet dataset. The Street

View House Numbers (SVHN) dataset, similar to the MNIST

dataset, consists of ten digits obtained from real-world house
numbers in Google Street View images. The YoutubeDataset

dataset is gained from Youtube consisting of about ten million
images [45] and used in [8].

B. Adversarial Examples and Countermeasures in Machine

Learning

Adversarial examples in conventional machine learning
models have been discussed since decades ago. Machine
learning-based systems with handcrafted features are primary
targets, such as spam filters, intrusion detection, biometric
authentication, fraud detection, etc. [52]. For example, spam
emails are often modified by adding characters to avoid
detection [53]–[55].

Dalvi et al. first discussed adversarial examples and formu-
lated this problem as a game between adversary and classifier
(Naïve Bayes), both of which are sensitive to cost [53]. The
attack and defense on adversarial examples became an iterative
game. Biggio et al. first tried a gradient-based approach to
generate adversarial examples against linear classifier, support
vector machine (SVM), and a neural network [56]. Compared
with deep learning adversarial examples, their methods allow
more freedom to modify the data. The MNIST dataset was
first evaluated under their attack, although a human could
easily distinguish the adversarial digit images. Biggio et al.
also reviewed several proactive defenses and discussed reac-
tive approaches to improve the security of machine learning
models [28].

Barreno et al. presented an initial investigation on the secu-
rity problems of machine learning [52], [57]. They categorized
attacking against machine learning system into three axes: 1)
influence: whether attacks can poison the training data; 2)
security violation: whether an adversarial example belongs to
false positive or false negative; 3) specificity: attack is targeted

to a particular instance or a wide class. We discuss these axes
for deep learning area in Section III. Barreno et al. compared
attacks against SpamBayes spam filter and defenses as a study
case. However, they mainly focused on binary classification
problem such as virus detection system, intrusion detection
system (IDS), and intrusion prevention system (IPS).

Adversarial examples in conventional machine learning re-
quire knowledge of feature extraction, while deep learning
usually needs only raw data input. In conventional ML,
both attacking and defending methods paid great attention to
features, even the previous step (data collection), giving less
attention to the impact of humans. Then the target becomes
a fully automatic machine learning system. Inspired by these
studies on conventional ML, in this paper, we review recent
security issues in the deep learning area.

[26] provided a comprehensive overview of security issues
in machine learning and recent findings in deep learning. [26]
established a unifying threat model. A “no free lunch” theorem
was introduced: the tradeoff between accuracy and robustness.

Compared to their work, our paper focuses on adversarial
examples in deep learning and has a detailed discussion on
recent studies and findings.

For example, adversarial examples in an image classification
task can be described as follows: Using a trained image
classifier published by a third party, a user inputs one image
to get the prediction of class label. Adversarial images are
original clean images with small perturbations, often barely
recognizable by humans. However, such perturbations mis-
guide the image classifier. The user will get a response of an
incorrect image label. Given a trained deep learning model f
and an original input data sample x, generating an adversarial
example x′ can generally be described as a box-constrained
optimization problem:

min
x′

‖x′ − x‖

s.t. f(x′) = l′,

f(x) = l,

l 6= l′,

x′ ∈ [0, 1],

(2)

where l and l′ denote the output label of x and x′, ‖ · ‖
denotes the distance between two data sample. Let η = x′−x

be the perturbation added on x. This optimization problem
minimizes the perturbation while misclassifying the prediction
with a constraint of input data. In the rest of the paper, we
will discuss variants of generating adversarial images and
adversarial examples in other tasks.

III. TAXONOMY OF ADVERSARIAL EXAMPLES

To systematically analyze approaches for generating adver-
sarial examples, we analyze the approaches for generating
adversarial examples (see details in Section IV) and categorize
them along three dimensions: threat model, perturbation, and
benchmark.

A. Threat Model

We discuss the threat model in Section I. Based on different
scenarios, assumptions, and quality requirements, adversaries
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decide the attributes they need in adversarial examples and
then deploy specific attack approaches. We further decompose
the threat model into four aspects: adversarial falsification,
adversary’s knowledge, adversarial specificity, and attack fre-
quency. For example, if an adversarial example is required to
be generated in real-time, adversaries should choose a one-
time attack instead of an iterative attack, in order to complete
the task (see Attack Frequency).

• Adversarial Falsification

– False positive attacks generate a negative sample which
is misclassified as a positive one (Type I Error). In a
malware detection task, a benign software being classified
as malware is a false positive. In an image classification
task, a false positive can be an adversarial image unrecog-
nizable to human, while deep neural networks predict it to
a class with a high confidence score. Figure 2 illustrates
a false positive example of image classification.

– False negative attacks generate a positive sample which
is misclassified as a negative one (Type II Error). In
a malware detection task, a false negative can be the
condition that a malware (usually considered as positive)
cannot be identified by the trained model. False negative
attack is also called machine learning evasion. This error
is shown in most adversarial images, where a human
can recognize the image, but the neural networks cannot
identify it.

• Adversary’s Knowledge

– White-box attacks assume the adversary knows everything
related to trained neural network models, including train-
ing data, model architectures, hyper-parameters, numbers
of layers, activation functions, model weights. Many
adversarial examples are generated by calculating model
gradients. Since deep neural networks tend to require only
raw input data without handcrafted features and to deploy
end-to-end structure, feature selection is not necessary
compared to adversarial examples in machine learning.

– Black-box attacks assume the adversary has no access to
the trained neural network model. The adversary, acting
as a standard user, only knows the output of the model
(label or confidence score). This assumption is common
for attacking online Machine Learning services (e.g.,
Machine Learning on AWS1, Google Cloud AI2, BigML3,
Clarifai4, Microsoft Azure5, IBM Bluemix6, Face++7).
Most adversarial example attacks are white-box attacks.
However, they can be transferred to attack black-box

services due to the transferability of adversarial examples
proposed by Papernot et al. [33]. We will elaborate on it
in Section VII-A.

• Adversarial Specificity

– Targeted attacks misguide deep neural networks to a

1https://aws.amazon.com/machine-learning
2https://cloud.google.com/products/machine-learning
3https://bigml.com
4https://www.clarifai.com
5https://azure.microsoft.com/en-us/services/machine-learning
6https://console.bluemix.net/catalog/services/machine-learning
7https://www.faceplusplus.com

specific class. Targeted attacks usually occur in the multi-
class classification problem. For example, an adversary
fools an image classifier to predict all adversarial exam-
ples as one class. In a face recognition/biometric system,
an adversary tries to disguise a face as an authorized user
(Impersonation) [58]. Targeted attacks usually maximize
the probability of targeted adversarial class.

– Non-targeted attacks do not assign a specific class to the
neural network output. The adversarial class of output
can be arbitrary except the original one. For example, an
adversary makes his/her face misidentified as an arbitrary
face in face recognition system to evade detection (dodg-
ing) [58]. Non-targeted attacks are easier to implement
compared to targeted attacks since it has more options
and space to redirect the output. Non-targeted adversarial
examples are usually generated in two ways: 1) running
several targeted attacks and taking the one with the
smallest perturbation from the results; 2) minimizing the
probability of the correct class.
Some generation approaches (e.g., extended BIM, ZOO)
can be applied to both targeted and non-targeted attacks.
For binary classification, targeted attacks are equivalent
to non-targeted attacks.

• Attack Frequency

– One-time attacks take only one time to optimize the
adversarial examples.

– Iterative attacks take multiple times to update the adver-
sarial examples.
Compared with one-time attacks, iterative attacks usually
perform better adversarial examples, but require more
interactions with victim classifier (more queries) and
cost more computational time to generate them. For
some computational-intensive tasks (e.g., reinforcement
learning), one-time attacking may be the only feasible
choice.

B. Perturbation

Small perturbation is a fundamental premise for adversarial
examples. Adversarial examples are designed to be close to
the original samples and imperceptible to a human, which
causes the performance degradation of deep learning models
compared to that of a human. We analyze three aspects of
perturbation: perturbation scope, perturbation limitation, and
perturbation measurement.

• Perturbation Scope

– Individual attacks generate different perturbations for
each clean input.

– Universal attacks only create a universal perturbation for
the whole dataset. This perturbation can be applied to all
clean input data.
Most of the current attacks generate adversarial examples
individually. However, universal perturbations make it
easier to deploy adversary examples in the real world.
Adversaries do not require to change the perturbation
when the input sample changes.

• Perturbation Limitation
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Table II: Taxonomy of Adversarial Examples

Threat Model

Adversarial Falsification
False Negative [8], [9], [59]–[73]
False Positive [74]

Adversary’s Knowledge
White-Box [8], [9], [59]–[63], [65], [67], [69]–[74]
Black-Box [64], [66], [68], [73]

Adversarial Specificity
Targeted [8], [59], [61], [63], [64], [66], [67], [69]–[73]

Non-Targeted [9], [60], [62], [64]–[66], [68], [69], [73], [74]

Attack Frequency
One-time [59], [60]
Iterative [8], [9], [61]–[74]

Perturbation

Perturbation Scope
Individual [8], [9], [59]–[64], [66]–[71], [73], [74]
Universal [65]

Perturbation Limitation
Optimized [8], [59], [61]–[65], [68], [70], [71]
Constraint [59], [66], [67], [69], [73]

None [9], [60], [72], [74]

Perturbation Measurement

Element-wise [9], [60], [72]

`p(p ≥ 0)

`0: [63], [66],
`1: [70],

`2: [8], [61]–[65], [67]–[69], [71], [73],
`∞: [62], [63], [65], [70], [73],

PASS [59]
None [74]

Benchmark

Datasets

MNIST [8], [59]–[63], [68], [70], [71], [74]
CIFAR-10 [62]–[64], [66]
ImageNet [8], [9], [59], [60], [62]–[65], [67], [69], [71]–[74]

Others
YoutubeDataset: [8]
LSUN, SNLI: [68]

Victim Models

LeNet [59], [61], [62], [68], [74]
VGG [65]–[67], [69]

AlexNet [67], [74]
QuocNet [8]

GoogLeNet [9], [59], [60], [62]–[65], [67]–[69], [72], [73]
CaffeNet [62], [65], [67]
ResNet [59], [65], [69], [73]
LSTM [68]

According to [72], one-step attack is easy to transfer but also
easy to defend (see Section VII-A). [73] applied momentum
to FGSM to generate adversarial examples more iteratively.
The gradients were calculated by:

gt+1 = µgt +
∇xJθ(x

′
t, l)

‖∇xJθ(x′
t, l)‖

, (6)

then the adversarial example is derived by x′
t+1 = x′

t +
εsigngt+1. The authors increased the effectiveness of attack
by introducing momentum and improved the transferability by
applying the one-step attack and the ensembling method.

[72] extended FGSM to a targeted attack by maximizing
the probability of the target class:

x′ = x− εsign(∇xJ(θ, x, l
′)). (7)

The authors refer to this attack as One-step Target Class

Method (OTCM).
[75] found that FGSM with adversarial training is more

robust to white-box attacks than to black-box attacks due to
gradient masking. They proposed a new attack, RAND-FGSM,
which added random when updating the adversarial examples
to defeat adversarial training:

xtmp = x+ α · sign(N (0d, Id)),

x′ = xtmp + (ε− α) · sign(∇xtmp
J(xtmp, l)),

(8)

where α, ε are the parameters, α < ε.

C. Basic Iterative Method (BIM) and Iterative Least-Likely

Class Method (ILLC)

Previous methods assume adversarial data can be directly
fed into deep neural networks. However, in many applications,

people can only pass data through devices (e.g., cameras,
sensors). Kurakin et al. applied adversarial examples to the
physical world [9]. They extended Fast Gradient Sign method
by running a finer optimization (smaller change) for multiple
iterations. In each iteration, they clipped pixel values to avoid
large change on each pixel:

Clipx,ξ{x
′} = min{255, x+ ξ,max{0, x− ε, x′}}, (9)

where Clipx,ξ{x
′} limits the change of the generated adver-

sarial image in each iteration. The adversarial examples were
generated in multiple iterations:

x0 = x,

xn+1 = Clipx,ξ{xn + εsign(∇xJ(xn, y))}.
(10)

The authors referred to this method as Basic Iterative method.
To further attack a specific class, they chose the least-likely

class of the prediction and tried to maximize the cross-entropy
loss. This method is referred to as Iterative Least-Likely Class

method:

x0 = x,

yLL = argminy{p(y|x)},

xn+1 = Clipx,ε{xn − εsign(∇xJ(xn, yLL))}.

(11)

They successfully fooled the neural network with a crafted
image taken from a cellphone camera. They also found that
Fast Gradient Sign method is robust to phototransformation,
while iterative methods cannot resist phototransformation.
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layers instead of the output layer [67]. We refer to this attack
as Feature Adversary. The problem can be described by:

min
x′

‖φk(x)− φk(x
′)‖

s.t. ‖x− x′‖∞ < δ,
(22)

where φk denotes a mapping from image input to the output
of the kth layer. Instead of finding a minimal perturbation,
δ is used as a constraint of perturbation. They claimed that
a small fixed value δ is good enough for human perception.
Similar to [8], they used L-BFGS-B to solve the optimization
problem. The adversarial images are more natural and closer
to the targeted images in the internal layers.

L. Hot/Cold

Rozsa et al. proposed a Hot/Cold method to find multiple
adversarial examples for every single image input [59]. They
thought small translations and rotations should be allowed as
long as they were imperceptible.

They defined a new metric, Psychometric Perceptual Ad-
versarial Similarity Score (PASS), to measure the noticeable
similarity to humans. Hot/Cold neglected the unnoticeable dif-
ference based on pixels and replaced widely used `p distance
with PASS. PASS includes two stages: 1) aligning the modified
image with the original image; 2) measuring the similarity
between the aligned image and the original one.

Let φ(x′, x) be a homography transform from the adversar-
ial example x′ to the original example x. H is the homography
matrix, with size 3 × 3. H is solved by maximizing the
enhanced correlation coefficient (ECC) [81] between x′ and
x. The optimization function is:

argmin
H

∥

∥

∥

∥

x

‖x‖
−

φ(x′, x)

‖φ(x′, x)‖

∥

∥

∥

∥

, (23)

where · denotes the normalization of an image.
Structural SIMilarity (SSIM) index [82] was adopted to mea-

sure the just noticeable difference of images. [59] leveraged
SSIM and defined a new measurement, regional SSIM index
(RSSIM) as:

RSSIM(xi,j , x
′

i,j) = L(xi,j , x
′

i,j)
αC(xi,j , x

′

i,j)
βS(xi,j , x

′

i,j)
γ ,

where α, β, γ are weights of importance for luminance
(L(·, ·)), contrast (C(·, ·)), and structure (S(·, ·)). The SSIM
can be calculated by averaging RSSIM:

SSIM(xi,j , x
′

i,j) =
1

n×m

∑

i,j

RSSIM(xi,j , x
′

i,j).

PASS is defined by combination of the alignment and the
similarity measurement:

PASS(x′, x) = SSIM(φ∗(x′, x), x). (24)

The adversarial problem with the new distance is described
as:

min D(x, x′)

s.t. f(x′) = y′,

PASS(x, x′) ≥ γ.

(25)

D(x, x′) denotes a measure of distance (e.g., 1−PASS(x, x′)
or ‖x− x′‖p).

To generate a diverse set of adversarial examples, the au-
thors defined the targeted label l′ as hot class, and the original
label l as cold class. In each iteration, they moved toward a
target (hot) class while moving away from the original (cold)
class. Their results showed that generated adversarial examples
are comparable to FGSM, and with more diversity.

M. Natural GAN

Zhao et al. utilized Generative Adversarial Networks
(GANs) as part of their approach to generate adversarial
examples of images and texts [68], which made adversarial
examples more natural to human. We name this approach
Natural GAN. The authors first trained a WGAN model on the
dataset, where the generator G maps random noise to the input
domain. They also trained an “inverter” I to map input data to
dense inner representations. Hence, the adversarial noise was
generated by minimizing the distance of the inner representa-
tions like “Feature Adversary.” The adversarial examples were
generated using the generator: x′ = G(z′):

min
z

‖z − I(x)‖

s.t. f(G(z)) 6= f(x).
(26)

Both the generator G and the inverter I were built to make
adversarial examples natural. Natural GAN was a general
framework for many deep learning fields. [68] applied Natural

GAN to image classification, textual entailment, and machine
translation. Since Natural GAN does not require gradients of
original neural networks, it can also be applied to Black-box

Attack.

N. Model-based Ensembling Attack

Liu et al. conducted a study of transferability (Sec-
tion VII-A) over deep neural networks on ImageNet and
proposed a Model-based Ensembling Attack for targeted adver-
sarial examples [69]. The authors argued that compared to non-
targeted adversarial examples, targeted adversarial examples
are much harder to transfer over deep models. Using Model-

based Ensembling Attack, they can generate transferable ad-
versarial examples to attack a black-box model.

The authors generated adversarial examples on multiple
deep neural networks with full knowledge and tested them
on a black-box model. Model-based Ensembling Attack was
derived by the following optimization problem:

argmin
x′

− log

(

(

k
∑

i=1

αiJi(x
′, l′))

)

+ λ‖x′ − x‖, (27)

where k is the number of deep neural networks in the
generation, fi is the function of each network, and αi is
the ensemble weight (

∑k
i αi = 1). The results showed that

Model-based Ensembling Attack could generate transferable
targeted adversarial images, which enhanced the power of
adversarial examples for black-box attacks. They also proved
that this method performs better in generating non-targeted
adversarial examples than previous methods. The authors
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Table III: Summary of Applications for Adversarial Examples

Applications Representative
Study

Method Adversarial
Falsification

Adversary’s
Knowledge

Adversarial
Specificity

Perturbation
Scope

Perturbation
Limitation

Attack
Frequency

Perturbation
Measurement

Dataset Architecture

Reinforcement
Learning

[84] FGSM N/A White-box &
Black-box

Non-
Targeted

Individual N/A One-time `1, `2, `∞ Atari DQN,
TRPO, A3C

[85] FGSM N/A White-box Non-
Targeted

Individual N/A One-time N/A Atari Pong A3C

Generative
Modeling

[86] Feature
Adversary,

C&W

N/A White-box Targeted Individual Optimized Iterative `2 MNIST,
SVHN,
CelebA

VAE,
VAE-GAN

[87] Feature
Adversary

N/A White-box Targeted Individual Optimized Iterative `2 MNIST,
SVHN

VAE, AE

Face Recog-
nition

[58] Impersonation
& Dodging

Attack

False
negative

white-box &
black-box

Targeted &
Non-

Targeted

Universal Optimized Iterative Total
Variation

LFW, VGGFace

Object
Detection

[11] DAG False
negative &

False
positive

White-box &
Black-box

Non-
Targeted

Individual N/A Iterative N/A VOC2007,
VOC2012

Faster-
RCNN

Semantic
Segmentation

[11] DAG False
negative &

False
positive

White-box &
Black-box

Non-
Targeted

Individual N/A Iterative N/A DeepLab FCN

[88] ILLC False
negative

White-box Targeted Individual N/A Iterative `∞ Cityscapes FCN

[89] ILLC False
negative

White-box Targeted Universal N/A Iterative N/A Cityscapes FCN

Reading
Comprehension

[90] AddSent,
AddAny

N/A Black-box Non-
Targeted

Individual N/A One-time &
Iterative

N/A SQuAD BiDAF,
Match-

LSTM, and
twelve other

published
models

[91] Reinforcement
Learning

False
negative

White-box Non-
Targeted

Individual Optimized Iterative `0 TripAdvisor
Dataset

Bi-LSTM,
memory
network

Malware
Detection

[92] JSMA False
negative

White-box Targeted Individual Optimized Iterative `2 DREBIN 2-layer FC

[93] Reinforcement
Learning

False
negative

Black-box Targeted Individual N/A Iterative N/A N/A Gradient
Boosted
Decision

Tree
[94] GAN False

negative
Black-box Targeted Individual N/A Iterative N/A malwr Multi-layer

Perceptron
[95] GAN False

negative
Black-box Targeted Individual N/A Iterative N/A Alexa Top

1M
Random
Forest

[96] Generic Pro-
gramming

False
negative

Black-box Targeted Individual N/A Iterative N/A Contagio Random
Forest, SVM
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VII. CHALLENGES AND DISCUSSIONS

In this section, we discuss the current challenges and the
potential solutions for adversarial examples. Although many
methods and theorems have been proposed and developed
recently, a lot of fundamental questions need to be well ex-
plained and many challenges need to be addressed. The reason
for the existence of adversarial examples is an interesting and
one of the most fundamental problems for both adversaries
and researchers, which exploits the vulnerability of neural
networks and help defenders to resist adversarial examples. We
will discuss the following questions in this section: Why do
adversarial examples transfer? How to stop the transferability?
Why are some defenses effective and others not? How to
measure the strength of an attack as well as a defense? How
to evaluate the robustness of a deep neural network against
seen/unseen adversarial examples?

A. Transferability

Transferability is a common property for adversarial ex-
amples. Szegedy et al. first found that adversarial examples
generated against a neural network can fool the same neural
networks trained by different datasets. Papernot et al. found
that adversarial examples generated against a neural network
can fool other neural networks with different architectures,
even other classifiers trained by different machine learning al-
gorithms [33]. Transferability is critical for Black-Box attacks
where the victim deep learning model and the training dataset
are not accessible. Attackers can train a substitute neural
network model and then generate adversarial examples against
substitute model. Then the victim model will be vulnerable
to these adversarial examples due to transferability. From a
defender’s view, if we hinder transferability of adversarial
examples, we can defend all white-box attackers who need
to access the model and require transferability.

We define the transferability of adversarial examples in three
levels from easy to hard: 1) transfer among the same neural
network architecture trained with different data; 2) transfer
among different neural network architectures trained for the
same task; 3) transfer among deep neural networks for differ-
ent tasks. To our best knowledge, there is no existing solution
on the third level yet (for instance, transfer an adversarial
image from object detection to semantic segmentation).

Many studies examined transferability to show the ability
of adversarial examples [8], [60]. Papernot et al. studied the
transferability between conventional machine learning tech-
niques (i.e., logistic regression, SVM, decision tree, kNN)
and deep neural networks. They found that adversarial exam-
ples can be transferred between different parameters, training
dataset of a machine learning models and even across different
machine learning techniques.

Liu et al. investigated transferability of targeted and non-
targeted adversarial examples on complex models and large
datasets (e.g., the ImageNet dataset) [69]. They found that
non-targeted adversarial examples are much more transferable
than targeted ones. They observed that the decision boundaries
of different models aligned well with each other. Thus they

proposed Model-Based Ensembling Attack to create transfer-
able targeted adversarial examples.

Tramèr et al. found that the distance to the model’s decision
boundary is on average larger than the distance between two
models’ boundaries in the same direction [129]. This may
explain the existence of transferability of adversarial examples.
Tramèr et al. also claimed that transferability might not be
an inherent property of deep neural networks by showing a
counter-example.

B. The existence of Adversarial Examples

The reason for the existence of adversarial examples is
still an open question. Are adversarial examples an inherent
property of deep neural networks? Are adversarial examples
the “Achilles’ heel” of deep neural networks with high perfor-
mance? Many hypotheses have been proposed to explain the
existence.

Data incompletion One assumption is that adversarial
examples are of low probability and low test coverage of
corner cases in the testing dataset [8], [130]. From training
a PixelCNN, [118] found that the distribution of adversarial
examples was different from clean data. Even for a simple
Gaussian model, a robust model can be more complicated and
requires much more training data than that of a “standard”
model [131].

Model capability Adversarial examples are a phenomenon
not only for deep neural networks but also for all classi-
fiers [33], [132]. [60] suggested that adversarial examples are
the results of models being too linear in high dimensional
manifolds. [133] showed that in the linear case, the adversarial
examples exist when the decision boundary is close to the
manifold of the training data.

Contrary to [60], [132] believed that adversarial examples
are due to the “low flexibility” of the classifier for certain
tasks. Linearity is not an “obvious explanation” [67]. [71]
blamed adversarial examples for the sparse and discontinuous
manifold which makes classifier erratic.

No robust model [25] suggested that the decision bound-
aries of deep neural networks are inherently incorrect, which
do not detect semantic objects. [134] showed that if a dataset
is generated by a smooth generative model with large latent
space, there is no robust classifier to adversarial examples.
Similarly, [135] prove that if a model is trained on a sphere
dataset and misclassifies a small part of the dataset, then there
exist adversarial examples with a small perturbation.

In addition to adversarial examples for image classification
task, as discussed in Section V, adversarial examples have
been generated in various applications. Many of them de-
ployed utterly different methods. Some applications can use
the same method used in image classification task. However,
some need to propose a novel method. Current studies on ad-
versarial examples mainly focus on image classification task.
No existing paper explains the relationship among different
applications and existence of a universal attacking/defending
method to be applied to all the applications.
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