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ABSTRACT

In this paper, we present the results of our three-dimensional, multigroup, multineutrino-
species radiation/hydrodynamic simulation using the state-of-the-art code FORNAX of the
terminal dynamics of the core of a non-rotating 16 M stellar progenitor. The calculation
incorporates redistribution by inelastic scattering, a correction for the effect of many-body in-
teractions on the neutrino—nucleon scattering rates, approximate general relativity (including
the effects of gravitational redshifts), velocity-dependent frequency advection, and an imple-
mentation of initial perturbations in the progenitor core. The model explodes within ~100 ms
of bounce (near when the silicon—oxygen interface is accreted through the temporarily stalled
shock) and by the end of the simulation (here, ~677 ms after bounce) is accumulating explo-
sion energy at a rate of ~2.5 x 10°° erg s~!. The supernova explodes with an asymmetrical
multiplume structure, with one hemisphere predominating. The gravitational mass of the resid-
ual proto-neutron star at ~677 ms is ~1.42 M. Even at the end of the simulation, explosion
in most of the solid angle is accompanied by some accretion in an annular region at the
wasp-like waist of the debris field. The ejecta electron fraction (Y,) is distributed between
~0.48 and ~0.56, with most of the ejecta mass proton-rich. This may have implications for
supernova nucleosynthesis, and could have a bearing on the p- and vp-processes and on the site
of the first peak of the r-process. The ejecta spatial distributions of both Y, and mass density
are predominantly in wide-angle plumes and large-scale structures, but are nevertheless quite
patchy.

Key words: stars: general —supernovae: general.

1 INTRODUCTION

The neutrino mechanism of core-collapse supernovae (CCSNe) was
proposed more than 50 yr ago (Colgate & White 1966), but due to
the complexity and exotic character of the environment in which
it occurs and the realization that hydrodynamic instabilities and
turbulence are crucial to explosion in all but a small subset of
progenitor stars, credible confirmation of this mechanism and its
observational validation have been frustratingly slow. Along with
the requirement to incorporate nuclear and particle physics that
does justice to the wide range of relevant neutrino—matter interac-
tions and to the equation of state (EOS) of dense nuclear matter,
the centrality of turbulent convective and shock instabilities that
break spherical symmetry has necessitated performing theoretical
simulations in multiple spatial dimensions. The two-dimensional
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(2D) simulations (axisymmetric) of the 1990s lacked detailed neu-
trino physics, but demonstrated the relevance of neutrino-driven
convection (Herant et al. 1994; Burrows, Hayes & Fryxell 1995).
The early years of this millennium introduced another instability
[the standing-accretion shock instability (SASI); Blondin, Mezza-
cappa & DeMarino 2003 and subsequent work built on previous
2D efforts by incorporating general relativity (GR, at various levels
of approximation), improving the physical fidelity of the neutrino
interactions embedded into the codes, enhancing the spatial res-
olution of the calculations, and carrying simulations out to later
physical times. Summaries of some of this history can be found
in reviews by Janka (2012), Burrows (2013), Miiller (2016), and
Janka, Melson & Summa (2016). In fact, progress in understanding
the CCSN mechanism has paralleled progress in both physics and
computational capability, and such progress has spanned decades. It
is only recently that fully three-dimensional (3D) simulations with
multigroup neutrino transfer that address all the physical terms and
effects, employ state-of-the-art nuclear equations of state, and cal-
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culate for a physically significant duration have emerged. Though
there is still much work to do, the recent advent of codes that ad-
dress the full dimensional and physics requirements of the CCSN
problem represents a watershed in the theoretical exploration of the
supernova mechanism. In this paper, we present one such modern
simulation of the explosion in 3D of a 16 M, star, using our new su-
pernova code FORNAX (Skinner, Burrows & Dolence 2016; Radice
etal. 2017; Burrows et al. 2018; Skinner et al. 2018; Vartanyan et al.
2018).

State-of-the-art calculations in 3D exploring the mechanism of
CCSN explosions have undergone significant evolution and im-
provement over the years. Sixteen years ago, Fryer & Warren (2002,
2004) used a smoothed particle hydrodynamics code SNSPH to
explore the differences between 2D and 3D simulations and the
possible role of rapid rotation. They found their 2D and 3D simula-
tions were similar and that rapid rotation modified the driving core
neutrino emissions. However, these simulations employed grey ra-
diation, did not include inelastic energy redistribution nor velocity-
dependent transport effects, and ignored GR effects. Parametrized
studies in 3D (Nordhaus et al. 2010; Hanke et al. 2012; Dolence et al.
2013; Couch & O’Connor 2014; Couch & Ott 2015) disagreed on
the relative difficulty of explosion in 3D versus 2D. However, these
simulations, while boasting improved hydrodynamics algorithms
and resolution, used ‘lightbulb’ neutrino driving and did not employ
competitive neutrino transfer and microphysics. Using ZEUS-MP
on a low-resolution 3D grid, Takiwaki, Kotake & Suwa (2012) wit-
nessed the explosion of a 11.2 M) progenitor (Woosley, Heger &
Weaver 2002). However, these authors used the sub-optimal IDSA
scheme neutrino transport approach (Liebendorfer, Whitehouse &
Fischer 2009), which ignores velocity dependence, GR, and inelas-
ticity, stitches together the opaque and transparent realms in an ad
hoc fashion, uses the problematic ‘ray-by-ray’ approach to multi-D
transport, and either neglects ‘heavy’ neutrinos or incorporates them
in a ‘leakage’ format. The ray-by-ray approach used by many early
and current studies performs multiple one-dimension transport cal-
culations, in lieu of truly multi-D transport, and thereby ignores the
important effects of lateral transport (Skinner et al. 2016).

Using the CHIMERA code, Lentz et al. (2015) witnessed the explo-
sion of a 15 M, progenitor star (Woosley & Heger 2007) ~300 ms
after bounce, ~100 ms later than their 2D simulation. These authors
used state-of-the-art microphysics and approximate GR, but used
multigroup flux-limited diffusion and the reduced-dimension ray-
by-ray approach and evolved the inner 6-8 km in spherical sym-
metry. In addition, they employed the LS220 EOS (Lattimer &
Swesty 1991), now known to be inconsistent with known nuclear
systematics.

Early low-resolution 3D simulations using the PROMETHEUS-
VERTEX code (Hanke et al. 2013; Tamborra et al. 2014) found
that the 11.2, 27 (Woosley et al. 2002), and 25 M (Woosley &
Heger 2007) non-rotating progenitors did not explode in 3D, while
their 2D counterparts did. PROMETHEUS-VERTEX uses state-of-the-
art neutrino microphysics, a multigroup variable Eddington factor
transport algorithm with approximate GR (Marek et al. 2006), but
uses the ray-by-ray approximation to neutrino transport. Later, this
group (Melson, Janka & Marek 2015a) witnessed the explosion of
a zero-metallicity 9.6 M) progenitor in 3D, a model that explodes
easily in 1D (Radice et al. 2017). By making a large strangeness
correction to the axial-vector coupling constant in PROMETHEUS-
VERTEX, Melson et al. (2015b) were able to generate an explosion
in 3D of the non-rotating 20 M progenitor that did not other-
wise explode. However, such a large correction may be inconsistent
with nuclear experiment (Ahmed et al. 2012; Green et al. 2017).
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Recently, this group (Summa et al. 2018) has found that rapidly ro-
tating progenitor models (Heger, Woosley & Spruit 2005) explode
shortly after the accretion of the silicon—oxygen (Si—O) interface.
They argue, as do Takiwaki, Kotake & Suwa (2016), that a strong
non-axisymmetric spiral mode facilitates explosion in the rapidly
rotating context. However, with their default neutrino physics, this
group has yet to witness the explosion in 3D of any non-rotating
models using PROMETHEUS-VERTEX. Moreover, their 3D models
were all calculated using the L.S220 EOS.

Using the COCONUT-FMT code in 3D, Miiller (2015) witnessed
the explosion of the 11.2 M progenitor of Woosley et al. (2002)
in 3D employing the LS220 nuclear EOS. However, COCONUT-FMT
employs simplified multigroup neutrino transport, the ray-by-ray
approximation, neglects both velocity dependence in the neutrino
sector and inelastic scattering, and cuts out the proto-neutron star
(PNS) core. Its virtue is that it incorporates conformally flat GR.
Using COCONUT-FMT and a 3D 18 My initial progenitor to provide
perturbations, Miiller et al. (2017) witnessed what they interpret as
a perturbation-aided explosion and the simulation was carried out
to an impressive ~2.5 s after bounce.

It is only recently that codes with truly multidimensional, multi-
group transport, without the ray-by-ray compromise and with state-
of-the-art microphysics and approximate or accurate GR, have been
constructed and fielded. Roberts et al. (2016) used the adaptive-
mesh-refinement (AMR) Cartesian code Zelmani with full GR, the
M1 moment closure approach, the SFHo nuclear EOS (Steiner,
Hempel & Fischer 2013), but without velocity dependence in the
transport sector or inelastic scattering, to evolve the 27 M) pro-
genitor of Woosley et al. (2002). Using the same code, Ott et al.
(2018) explored the 12, 15, 20, 27, and 40 M progenitor models
of Woosley & Heger (2007). This team witnessed the low-energ,
explosion of all models, save the 12 M model. More recently,
Kuroda, Takiwaki & Kotake (2016a) have developed a multigroup
radiation-hydrodynamic CCSN code with M1 closure, detailed mi-
crophysics, and full GR. However, their recent CCSN simulations
(Kuroda, Kotake & Takiwaki 2016b) of 11.2, 40 (Woosley et al.
2002), and 15 M (Woosley & Weaver 1995) progenitors were
done with grey transport and none of their models exploded. A
related code using the FLASH architecture, AMR, state-of-the-art
microphysics, approximate GR, and M1 transport more recently
witnesses no explosion for a 20 M progenitor, but noted large
asymmetries in the Si and O shells that might dynamically aid
explosion (O’Connor & Couch 2018).

In this paper, we present the first results in a series of 3D sim-
ulations that employ our new code FORNAX (Skinner et al. 2018).
FORNAX is a multigroup, velocity-dependent neutrino transport code
that employs the M1 two-moment closure scheme. It incorporates
state-of-the-art neutrino microphysics, approximate GR (with grav-
itational redshifts), inelastic energy redistribution via scattering, and
does not employ the ray-by-ray simplification. Furthermore, it uses
a dendritic grid that deresolves in angle upon approach to the core,
while maintaining good zone sizes. This allows us to include the
stellar centre while employing a spherical grid but without incur-
ring an onerous Courant time-step penalty. We find that the 16 M
progenitor (Woosley & Heger 2007) explodes in 3D, and does so
shortly before its 2D counterpart.

Throughout this paper, we explore the dimensional dependence
(2D versus 3D) of the explosion properties. We organize the paper
as follows: In Section 2, we outline the setup of our simulation. We
explore the basic explosion properties in the beginning of Section 3
and the shock evolution in Section 3.1. In Sections 3.2 and 3.3, we
explore the explosion energetics and heating rates and the lumi-
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nosities and mean energies, respectively. We look at the ejecta com-
position in Section 3.4, and study PNS convection in Section 3.5.
We comment in Section 3.6 on the possibility of the lepton-number
emission self-sustained asymmetry (LESA; Tamborra et al. 2014)
in our 3D simulation and the lack of the SASI. In Section 4, we
conclude with summary comments and observations.

2 NUMERICAL SETUP AND METHODS

The progenitor upon which we focus in this paper is the 16 Mg
model of Woosley & Heger (2007) (which was studied in 2D in
Vartanyan et al. 2018), and we employ the state-of-the-art multi-D,
multigroup radiation/hydrodynamic code FORNAX (Skinner et al.
2018). Earlier supernova work using FORNAX includes Wallace,
Burrows & Dolence 2016 (neutrino breakout burst detection), Skin-
ner et al. 2016 (shortcomings of the ray-by-ray approximation
in core-collapse simulations), Radice et al. 2017 (low-mass CC-
SNe), Burrows et al. 2018 (the role of microphysics in CCSNe),
Morozova et al. 2018 (gravitational wave signatures of CCSNe),
Vartanyan et al. 2018 (CCSNe from 12 to 25 M), and Seadrow
et al. 2018 (neutrino detection of CCSNe).

FORNAX is a multidimensional, multigroup radiation hydrody-
namics code originally constructed to study CCSNe and its struc-
ture, capabilities, and variety of code tests are described in Skinner
et al. (2018). The generalization of the equations to approximate
general-relativistic gravity and redshifts is described in Appendix A.
In 2D and 3D, FORNAX employs a dendritic grid which deresolves
at small radii and in 3D along the ¢ axis to avoid overly restric-
tive CFL time-step limitations, while at the same time preserving
cell size and aspect ratios. Our method of deresolving near the po-
lar axis for 3D simulations allows us to partially overcome axial
artefacts seen conventionally in 3D simulations in spherical coor-
dinates (see e.g. Lentz et al. 2015; Miiller et al. 2017). FORNAX
solves the comoving-frame velocity-dependent transport equations
to order O(v/c). The hydrodynamics uses a directionally unsplit
Godunov-type finite-volume scheme and computes fluxes at cell
interfaces using an HLLC Riemann solver. For the 3D simulation
highlighted in this paper, we employ a spherical grid in 7, 9, and ¢
of resolution 608 x 128 x 256. For the comparison 2D simulation,
the axisymmetric grid has resolution 608 x 128. The radial grid
extends out to 10000 km and is spaced evenly with Ar ~ 0.5km
for r < 50km and logarithmically for » = 50 km, with a smooth
transition in between. The angular grid resolution varies smoothly
from A6 ~ 1.9° at the poles to Af ~ 1.3° at the equator, and has
A¢ ~ 1.4° uniformly. For this project, we used a monopole ap-
proximation for relativistic gravity following Marek et al. (2006),
as described in Appendix A, and employed the SFHo EOS (Steiner
et al. 2013), which is consistent with all currently known nuclear
constraints (Tews et al. 2017).

We solve for radiation transfer using the M1 closure scheme for
the second and third moments of the radiation fields (Vaytet et al.
2011) and follow three species of neutrinos: electron-type (v,),
anti-electron-type (¥.), and ‘v,’-type (v, V,, V;, and D; neutrino
species collectively). We use 12 energy groups spaced logarithmi-
cally between 1 and 300 MeV for the electron neutrinos and to 100
MeYV for the anti-electron- and ‘v,,’-neutrinos. The neutrino—matter
interactions implemented and the handling of inelastic scattering
and energy redistribution of neutrinos off electrons and nucleons
are both summarized in Appendix B.

For this paper, we initially evolve collapse in 1D until 10 ms
after bounce, and then map to higher dimensions. After mapping,
we impose velocity perturbations (for the 2D and 3D, but not 1D,
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simulations) following Miiller & Janka (2015) in three spatially
distinct regions (50-85, 90-250, and 260-500 km), with a maximum
speed of 500 km s~! and harmonic quantum numbers of [ =2, m
= 1, and n = 5 (radial), as defined in Miiller & Janka (2015).
These perturbations were motivated by Miiller et al. (2016), who
evolve the last minutes of a 3D progenitor and find convective
velocities of almost 1000km s™! at the onset of collapse (with a
corresponding Mach number of 0.1) in the O-shell around 5000 km
with a prominent / = 2 mode.

Our 3D simulation was evolved to 677 ms after core bounce, and
required a total resource burn of ~18 million CPU-hours on the
NERSC/Cori II machine using 16256 cores in parallel.!

We note that the 16 M progenitor was studied in Vartanyan et al.
(2018), but with a different setup. In that paper, we did not include
initial velocity perturbations, had 20 (instead of 12) energy bins per
neutrino species, and employed an angular resolution of 256 polar
cells (instead of 128). We also did not map from 1D to 2D 10 ms
after bounce, but evolved entirely in 2D. Our grid then extended to
20000 km (not 10000 km). For the 2D comparison model in this
paper, we maintain these differences to mimic the setup we use for
our concurrent 3D run. However, we obtain the same overall results
for the 16 M) progenitor seen in Vartanyan et al. (2018).

3 EXPLOSION PROPERTIES

We find that the 16 M, progenitor of Woosley & Heger (2007) ex-
plodes in both the corresponding 2D and 3D simulations, at ~100
and ~120 ms after bounce, respectively. The corresponding 1D sim-
ulation does not explode. The explosions in 2D and 3D are abetted
by the inclusion of detailed microphysics — in particular, inelastic
scattering off electrons, nucleons, and the associated energy redis-
tribution, and the decrease in the neutral-current neutrino—nucleon
scattering rates due to the many-body effect (Horowitz et al. 2017;
Burrows et al. 2018) — as well as a steep density gradient at the
Si—O interface located deep within the progenitor, near an interior
mass of ~1.5 M (Ott et al. 2018; Vartanyan et al. 2018). Unlike
in many recent 3D simulations, we use the SFHo EOS in this work.

At the end of our 3D simulation, ~677 ms after bounce, the
maximum shock radius has reached ~5000km, with an asymp-
totic velocity of ~10000km s~'. The diagnostic explosion energy
is ~1.7 x 10% erg by this time. The mass of the core ejecta,
defined as neutrino-processed gravitationally unbound material, is
~0.08 M, and growing. The corresponding gravitational PNS mass
is ~1.42 M, and the mean PNS radius ~29 km. These features are
explored in greater detail in the later sections and compared to the
results in 2D. In all regards, we find that integrated 3D metrics are
significantly less variable with time than their 2D analogues.

In Fig. 1, we show a time sequence of the entropy of the 3D
simulation, illustrating the highly non-axisymmetric nature of the
explosion. By ~100 ms after bounce, shock expansion and explo-
sion are underway, with the outflow initially constituting bubbles
interior to the shock. The explosion assumes a bi-cameral struc-
ture, with the two hemispheres separated by a plane oriented with
6 ~40° and ¢ ~ 50° in spherical coordinates. Unlike in 2D, the
explosion does not orient around any coordinate axis and there is
no axial sloshing; any explosion axis that emerges does so naturally
and is not imposed. Indeed, the explosion is not isotropic, but has

"For comparison, some earlier 3D simulations (e.g. Summa et al. 2018 for a
model with slightly lower resolution, but with rotation.) required ~50-100
million CPU-hours to evolve to 0.5 s after bounce.
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Time =0.120 s

Time =0.443 s

4000 km

Figure 1. Time sequence of the entropy of the 16 M) progenitor. Note the different spatial scales. The inner white sphere is a 10" gem™
roughly delineates the PNS, and the blue veil traces an entropy contour of 4-kp/baryon, a proxy for the shock radius. Note the bifurcated cerebral structure of

Time =0.271s

1200 km

Time =0.677 s

6000 km

3 isosurface that

the explosion plumes, with one dominant hemisphere (on the left in this projection). Several ‘fingers’ are also visible along the axis, though these are accreted
shortly after. Note the high-entropy regions (dark red) both along the outer cusps of the plumes and in the interior as matter is funnelled on to the PNS.

a preferred direction, clockwise-orthogonal to the dividing plane.
The left hemisphere (in this projection) dominates and we see some
fingers along the axis at ~443 ms (3rd panel), but these are accreted
soon after. The electron fraction distribution follows the entropy
distribution, with high Y, (¥, > 0.53) concentrated along the outer
cusps of each plume (see Section 3.4). We see high-Y, material in
both plumes as well as in the interior.

We show in Fig. 2 a volume rendering of the entropy per baryon
showing the morphology of the explosion of the 11 M progenitor
from Sukhbold, Woosley & Heger (2018) from an upcoming paper
(Radice et al. 2018). The snapshot is taken at ~690 ms after bounce,
when the shock wave (blue outer surface in the figure) has an
average radius of ~3500km. The explosion behaves similarly to
that of the 16 M) progenitor we evolve. The shock is expanding
quasi-spherically; however, accretion continues on one side of the
PNS, while neutrino-driven winds inflate high-entropy bubbles on
the other side.

In Fig. 3, we illustrate a time sequence of entropy slices for the
3D simulation of the 16 M, progenitor along the x—y plane (top).
At early times, shock breakout is driven by multiple smaller bubbles
in 3D, as opposed to a few large plumes in 2D. The shock evolution
in 3D transitions from quasi-spherical expansion to expansion along
an axis, with the axis randomly chosen. By ~300 ms after bounce,
the plumes in 3D have merged into two distinct larger solid-angle

MNRAS 482, 351-369 (2019)

Figure 2. Volume rendering of the entropy per baryon showing the mor-
phology of the explosion of the 11 M) progenitor from Sukhbold et al.
(2018). The snapshot is taken at ~690 ms after bounce, when the shock
wave (blue outer surface in the figure) has an average radius of ~3500 km.
The shock is expanding quasi-spherically, however accretion continues on
one side of the PNS, while neutrino-driven winds inflate higher entropy
bubbles on the other side.
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Time after bounce: 0.139 [s] Time after bounce: 0.244 [s]
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Figure 3. Time sequence slices in the x—y plane illustrating the entropy of the 3D simulation of the 16 M) progenitor. Note the changing spatial scales with
time. At early times, shock expansion is driven by multiple bubbles, which coalesce into larger plumes. At approximately 300 ms after bounce, we note the
development of a dividing axis with two dominant plumes in this slicing. At late times, a single dominant explosion plume emerges, seemingly at the expense
of the secondary plume. A persistent wind is present in both plumes initially, and finally, only in the dominant plume. The secondary plume persists and grows,
with a characteristic scale of ~2000 km, half the size of the primary plume at the end of our simulation. We see simultaneous explosion and accretion. The
shock evolution transitions from quasi-spherical expansion to axial expansion, with the axis arbitrarily chosen. See the text for a discussion.
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bubbles oriented along a clear axis. We see matter cross and accrete
through this axis at earlier times before the explosion settles into
the final configuration (see panels 3—5 of Fig. 3). At late times in
the 3D simulation, we see the larger plume growing relative to the
smaller, leaving a dominant driving plume. This is similar to the
behaviour in 2D. A persistent wind that emerges ~300 ms after
bounce is present in both the large and small explosion plumes,
and finally in the dominant plume alone. We see simultaneous
explosion and accretion — the smaller plume in Fig. 3 growing
relatively in size. Even up to the end of our simulation, some ma-
terial partially circumnavigates the explosion plumes, plunges in-
ward in a sheet that seems to pinch off the larger from the smaller
plume, and is accreted on to the PNS. This accretion pinching in the
early explosion phase between the two differently sized exploding
plumes resembles a wasp’s waist and may be a common feature of
some CCSN explosion morphologies. The smaller plume is more
prominent in 3D than in 2D, for which at late times the oppos-
ing explosion plume’s volume ratio is significantly smaller than
in 3D.

An inner structure with two counter-ejected large lobes such as
we see in this simulation, with one demonstrably larger than the
other, crudely resembles the iron ejecta pattern inferred from XMM
X-ray observations of the supernova remnant (SNR) Cas A (Will-
ingale et al. 2003). This is suggestive, but the remnant structure
in any SNR depends upon its entire propagation history through
the star’s matter field and any apparent morphological association
between early and late ejecta patterns could be happenstance. This
remains to be determined. However, the rough similarity between
our preliminary debris field morphology and the inferred inner
mass density and composition patterns from X-ray data is indeed
intriguing.

The 3D simulation has lower maximum entropies at late times
by ~4.5 units (Boltzmann constant (kg) per baryon) than its 2D
counterpart. However, the entropy averaged over the shocked re-
gion (defined where the specific entropy is greater than 4 kg per
baryon) is comparable for both simulations. This is because the
3D simulation maintains a more ‘isotropic’ explosion in that even
the subdominant plume subsists, producing comparable mean en-
tropies over the shocked region despite the higher entropies along
the dominant axial plume in 2D.

3.1 Shock wave evolution

We find, perhaps surprisingly (Hanke et al. 2012, 2013; Dolence
et al. 2013) that our 3D model explodes roughly 50 ms earlier than
the corresponding 2D model. In the top panel of Fig. 4, we plot
the shock radius versus time after bounce for the 2D (dashed, blue
swath) and 3D (solid, green swath). The coloured-in areas indicate
the radial spread of the shock location, from minimum to maximum.
At the end of our 3D simulation, the mean shock radius has reached
beyond ~5000 km. The 2D model remains roughly spherical in
expansion for the first ~120 ms, whereas the 3D model deviates
from spherical symmetry earlier. We show in the inset a zoomed-in
plot of the average shock radii at early times. The shock radii for
the 2D and 3D simulations diverge around ~50 ms after bounce.
The shock of the 3D model barely stalls, while the shock for its 2D
counterpart stalls for ~50 ms.

In the bottom panel of Fig. 4, we plot the first four spherical
harmonics of the shock radius as a function of time after bounce.
We take the norm over all orders m and compare 3D (solid) with
2D (dashed). We use the approach outlined in Burrows, Dolence &
Murphy (2012) to decompose the shock surface Ry(6, ¢) into spher-
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ical harmonic components with coefficients:

(="
ap = —F——
m = JAr I E 1)
normalized such that agy = ap = (Ry) (the average shock radius)
and a1, a; _ 1, and ajo correspond to the average Cartesian coor-
dinates of the shock surface (x;), (ys), and (zs), respectively. The
orthonormal harmonic basis functions are given by

R0, 9)Y]" (0, ¢) d2, O]

V2NJ" P" (cos §) cos me m>0,
Y6, ¢) = { NP PP(cosf) m=0, (2)
\/EN,‘””P,""‘(COS O)sin|ml¢p m <0,

where

w [2+10—m)!
NE=ATa aE ®

P/"(cos 8) are the associated Legendre polynomials, and 6 and ¢
are the spherical coordinate angles. We plot the norm,

4
Pe _ Zm:7[ alzm ) (4)
Aoo

Up to ~70 ms after bounce, the £ = 2, 4 moments dominate,
the former due to the initial quadrupolar velocity perturbations im-
posed. From ~100 to ~200 ms, all moments are comparable in
magnitude. Note that the dip in the quadrupole moment at ~300 ms
corresponds to the dip in mean shock radius seen in the left-hand
panel. Shortly afterwards, the shock surface of the 2D simulation
rapidly expands, catching up with that of the 3D simulation. At late
times, the large-scale, lower £ moments dominate. Up to £ = 11 (not
shown), we find that the moment magnitudes decrease monotoni-
cally with increasing £ (and decreasing angular scale). We witness a
transition from small structures at early times, coalescing into large-
scale structures at later times. As the explosion commences, the 3D
simulation evinces larger deviations from spherical symmetry than
the 2D simulation, as indicated by the larger magnitudes of the re-
spective moments. However, at late times the 2D simulation begins
to manifest larger asymmetries than its 3D counterpart, indicated by
the larger magnitude of the lower order moments. Both simulations
have similar asymptotic shock velocities and maximum shock radii
(at a given post-bounce time), though the 2D simulation minimum
and average shock radii are roughly ~1000 km smaller.

In Fig. 5, we track the dipole orientation of the shock with time.
Early on, the shock dipole vector changes sporadically (but does not
simply jump up and down as in 2D), but at later times it settles to
an axis seemingly chosen arbitrarily. The randomly chosen axis is
a defining feature of 3D non-rotating simulations (see e.g. fig. 3 in
Burrows et al. 2012). We also see pronounced azimuthal structures
in the 3D simulation (as opposed to rings in 2D). Along with the
£ = 0 explosion mode, the £ = 1, m = —1 dipolar mode dominates
at late times, and we see such a structure in the 3D explosion maps
(Fig. 1).

3.2 Energetics

Before explosion, the energy deposited in the gain region, that thick
shellular volume interior to the shock wave where neutrino heating
rate exceeds the cooling rate, is most relevant for driving turbulence
and establishing the potential for explosion. The larger the energy
deposition rate, the closer a given progenitor model is (with its mass
accretion rate) to explosion (Burrows & Goshy 1993). However, the
total energy deposited in advance of explosion is not related to the

6102 Aenuep og uo Jasn AisiaAlun uoleoulld Aq £9€901S/1SE/ L /28A0BISqe-8]oIue/Seluw/woo dno-olwspese/:sdiy woJj papeojumoq



3D CCSN explosion 357

T T T T T T 1p T T T T T T

5000} — JUSCTSRSPEEEEEEEE
Solid: 3D P S
— =2 . s oINS -
Dashed: 2D _ ' AR PP Ty
o _— =3 Y - "
4000 5 . —4 b
- o 0.
£ g
v 3000} g PN
5 >
S (0]
¥ 3
8 2000} € 102
& &
<
Q
]
<= .
1000} 2 Solid: 3D
' Dashed: 2D
102}
90 01 02 03 04 05 06 00 01 02 03 04 05 06 07

Time after bounce [s] Time after bounce [s]

Figure 4. Left: The shock radius (km) versus time after bounce (in seconds) for the 2D (dashed, blue swath) and 3D (solid, green swath). The coloured-in
regions indicate the range of the shock location, from minimum to maximum. The 3D simulation explodes slightly earlier. At the end of our simulation, the
shock achieves ~5000 km. The shock of the 3D model barely stalls in radius, while the shock for its 2D counterpart stalls for ~50 ms. We show in the inset a
zoomed-in plot of the average shock radii at early times. The mean shock radii for the 2D and 3D simulations have diverged by ~50 ms after bounce. Right:
The first four spherical harmonic moments of the shock radius as a function of time (in seconds) after bounce, normalized to the mean shock radius (the £ =
0 component). We take the norm over all orders m and compare 3D (solid) to 2D (dashed). Up to ~70 ms after bounce, the £ = 2, 4 moments dominate, the
former due to the initial quadrupolar velocity perturbations imposed. From ~100 to ~200 ms, all reduced moments are comparable in magnitude. At late
times, the large scale, lower £ moments increase in significance. Up to £ = 11 (not shown), we find monotonically decreasing relative moment magnitudes
with increasing £ (and decreasing angular scale). We see a transition from small structures at early times to large structures at later times. Up to explosion, the
3D simulation evinces much larger deviations from spherical symmetry. At late times, however, the 2D simulation shows much larger asymmetries than the
3D simulation, indicated by the larger magnitude of the reduced moments.

750 Shock Radius Dipole
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Figure 5. A Mollweide projection of the direction of the shock dipole as a function of time (in seconds) after bounce, colour-coded. Early on, the shock
dipolar direction is changes sporadically before settling at late times to a randomly chosen axis. See fig. 3 of Burrows et al. (2012) for a comparison. Note that,
in a 2D simulation, the dipole axis is required to lie along the z-axis; this is not the case in a 3D simulation.

explosion energy (Burrows et al. 1995). The matter heated in the
gain region is subsequently advected into the PNS, where it first
reradiates a fraction of the acquired energy and then merges with
the radiating PNS. It is only after the explosion commences that
the deposited energy might be retained to contribute to the asymp-
totic explosion energy. However, even though explosive expansion
leads to diminished cooling as the matter temperatures decrease,
there continues to be some neutrino cooling. More importantly,
the exploding matter expands against gravity, so that much of the

ongoing neutrino energy deposited is used to lift the matter out
of the deep potential well. This explains why the neutrino heating
rates even during explosion are larger than the accumulation rate
of the supernova blast energy in the first seconds of the explosion
phase. Recombination of the nucleons into nuclei will provide a
boost (~9 MeV per baryon) to the asymptotic kinetic energy of the
supernova ejecta, but the associated recombining mass is generally
not large (here ~0.08 M)). Moreover, the associated total energy
is comparable to the gravitational binding term. As a result, it ap-
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Figure 6. Left: Diagnostic (blue) and net (black) explosion energies (in 10%° erg) for the 16 M, progenitor as a function of time after bounce (in seconds).

Right: Internal (blue, left y-axis) and kinetic (green, right y-axis) energies (in 1050 erg) as a function of time after bounce (in seconds). Solid indicates the
3D model and dashed the corresponding 2D model for both figures. The diagnostic energy (left, green) does not account for the gravitational overburden of
~2.5 x 10 erg exterior to our simulation grid (outer boundary 10000 km). The total explosion energy (blue) is not yet positive for the 3D simulation (at
677 ms after bounce), though the 3D simulation explodes slightly earlier. The 3D simulation maintains a higher internal energy, by ~15 per cent, through the
end of the simulation, and a higher explosion energy, but similar kinetic energies, until ~550 ms after bounce. The subsequent rise in explosion energy for the
2D model corresponds with the steep rise in its kinetic energy, also seen in Vartanyan et al. (2018) for the same 16 M) progenitor, but with a different initial

setup. Such a sharp rise in kinetic energy is not seen in our 3D simulation.

pears that the supernova will take many seconds to achieve its final
energy. Therefore, even though our 3D simulation of this 16 Mg,
progenitor’s core has been conducted farther post-bounce than any
other simulation with state-of-the-art numerics and microphysics,
we have captured only the early stages of an explosion that will
need to be followed numerically for a few more seconds to witness
the asymptoting of the explosion energy (Miiller 2016; Miiller et al.
2017).

The total energy we plot in Fig. 6 is comprised of the kinetic en-
ergy, the thermal energy, the recombination energy, and the gravita-
tional energy of the ejecta. The so-called diagnostic energy ignores
the binding energy (thermal plus gravitational) of the progenitor
exterior to the computational domain. Here, the total energy quoted
includes this penalty, different for every progenitor and outer com-
putational boundary radius; including this term is required to assess
the true supernova explosion energy.

We calculate diagnostic energies for our 16 M progenitor in
3D and 2D, summing the kinetic, thermal, gravitational, and nu-
clear binding energies interior to our 10000km simulation grid
where the matter parcel’s Bernoulli term is positive. We correct for
the gravitational binding energy of 2.5 x 10% erg exterior to our
grid, and plot both the diagnostic (blue) and net (black) explosion
energies in the left-hand panel of Fig. 6. In the right-hand panel, we
plot the thermal (blue, left y-axis), gravitational (red, left y-axis),
and kinetic (green, right y-axis) energies (in 10°° erg) as a function
of time after bounce (in seconds). Solid indicates the 3D model and
dashed the 2D analogue for both figures.

The 3D model explodes slightly earlier and initially has a higher
explosion energy than its 2D model counterpart (Fig. 6). At the
end of the simulation, 677 ms after bounce, the 3D model has a
diagnostic explosion energy of 1.7 x 10°° erg. Accounting for the
gravitational overburden, the total explosion energy (blue) is not yet
positive for the 3D simulation (—0.8 x 10%° erg). Before ~550 ms
after bounce, the 3D simulation maintains similar kinetic energies
and a higher internal energy by ~15 per cent than its 2D analogue.
Thenabouts, the 2D model explosion energy overtakes that of the
3D model, with the rise in explosion energy corresponding to a
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steep rise in its kinetic energy at a growth rate of ~5 x 10% erg
s~1. Such arise, also at ~550 ms after bounce, is seen in Vartanyan
et al. (2018) for the same 16 M) progenitor, but with a different
initial setup. It is not seen in our 3D simulation. We conjecture that
the stronger dipole and quadrupole moments of the 2D simulation
(Fig. 4, right) relative to those of the corresponding 3D model at late
times contribute to this divergence in kinetic energy. At the end of
our simulation, the explosion energy for the 3D model is climbing at
a rate of approximately 2.5 x 10°° erg s~!, half that of the 2D case.
Similar energy growth rates are found for the 3D simulations in the
literature (see e.g. Miiller et al. 2017) and necessitate continuing 3D
simulations for several seconds.

In Fig. 7, top panel, we illustrate the heating rates and the gain
mass as a function of time after bounce for the 3D (solid) and
2D (dashed) simulations of the 16 M, progenitor. Just prior to
explosion, at ~100 ms, the heating rate for the 3D simulation is
~30 percent (2 Bethe s~!) higher than for the corresponding 2D
model. The gain mass is also slightly higher for the 3D model,
exceeding 0.12 M, at the end of our simulation). After ~150 ms
post-bounce, we see more variability in the heating rate for the 2D
simulation than for the 3D simulation. Through almost ~700 ms
after bounce, the growth rate of the explosion energy is less than
20 per cent of the heating rate, the difference due to the work done
against gravity by the ejecta. It is not until late times that the growth
rate of the explosion energy is expected to be close to the heating
rate. In the middle panel, we show the spread of the inner boundary
of the gain region a function of time after bounce, defined here where
the net heating (heating minus cooling) is greater than 10 per cent
of the heating alone. The 3D simulation (green, solid) maintains a
much larger variation in radial boundary throughout the evolution,
extending almost twice as far at late times as the 2D model. In
the bottom panel, we show the heating efficiency 7, defined as the
heating rate divided by the luminosity entering the gain region,

n= Lfi‘:‘z\ag ) (5)
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Figure 7. Top: We illustrate the heating rates (blue, 105! erg s=!), and
the gain mass (black, in 1073 M) as a function of time after bounce (in
seconds) for the 3D (solid) and 2D (dashed) simulations of the 16 M,
progenitor. Prior to explosion (~100 ms), the heating rate for the 3D simu-
lation is ~30 per cent higher than for the 2D simulation. The gain mass is
also slightly higher for the 3D model, exceeding 0.12 M(;) at the end of our
simulation. Middle: Inner boundary of the gain region (in km) as a function
of time after bounce (in seconds). Black lines depict the mean positions
of the inner gain region (solid for 3D, dashed for 2D). The 3D simulation
(green, solid) maintains a much larger variation of the inner boundary of the
gain region throughout the evolution. Bottom: Heating efficiency 7 (black),
defined as the gain-region heating rate divided by the sum of the v, and
v, luminosities entering the gain region, and the accretion rate at 150 km
(blue, in M, s~1). Through the first ~150 ms, the 3D simulation (green)
has a heating efficiency ~40 per cent higher than the 2D (blue) simulation.
However, after ~200 ms, the 2D simulation overtakes the 3D simulation,
and showcases a high degree of variability over ~50 ms time-scales. Note
the correlation between jumps in accretion rate and jumps in heating rates
(and efficiencies) in the 2D simulation.
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Figure 8. Neutrino luminosity (fop, 10°' erg s~') and average neutrino
energy (bottom, MeV) as a function of time after bounce (in seconds) at
500 km. Note that the luminosities and average energies for 2D and 3D are
remarkably similar and show a significant difference only after 600 ms after
bounce.

Through the first ~150 ms, the 3D simulation has a heating ef-
ficiency of ~0.09, 40 percent higher than the corresponding 2D
model. However, after 200 ms, the efficiency of the 2D simulation
overtakes that of the 3D simulation, and showcases a high degree
of variability with a time-scale of ~50 ms.

3.3 Luminosity and mean energies

In Fig. 8, we plot the luminosity (top) and mean energies (bottom)
at a radius of 500 km as a function of time after bounce. Note that
the luminosities and average energies for the 2D and 3D models
are remarkably similar and show significant difference only beyond
~600 ms after bounce. We note, however, key differences in the
electron—neutrino luminosities through the first ~150 ms, with the
2D simulation boasting a luminosity ~7 percent larger than that
for the 3D simulation. Furthermore, the ‘heavy’-neutrino luminos-
ity is ~3 percent smaller for the 2D simulation than for the 3D
simulation over the same time period. We explore this more in Sec-
tion 3.5. Here, we remark that the interplay between the greater
electron—neutrino luminosity and the smaller ‘heavy’ neutrino lu-
minosity in the critical first 100 ms of our 2D simulation (compared
to our 3D model) impede earlier explosion revival in the 2D case.
The former strips the gain region of energy deposition by neutrinos
(since the electron-type neutrinos have a much higher absorption
opacity than the ‘heavy’-type neutrinos). Furthermore, the greater
‘heavy’-neutrino luminosity in the 3D simulation may act in the
same direction as the axial-vector many-body correction to pro-
duce a harder electron—neutrino spectrum and facilitate explosion
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Figure 9. Mollweide projections of the accretion rate for the 3D and the 2D
simulations at 450 ms after bounce. The spatial variation of accretion rate
in the 3D simulation is in sharp contrast with the accretion rate in the 2D
simulation, where we see only a dominant dipole component in the Southern
hemisphere.

(Burrows et al. 2018). The culmination of these effects is visible
in Fig. 7, top panel, where a small difference in the respective lu-
minosities translates into a significantly smaller heating rate in the
2D simulation compared to the analogous 3D simulation. In Fig. 9,
we show Mollweide projections of the accretion rate for the 3D
and 2D models. The spatial variations for the 3D simulation for the
accretion rate contrast sharply with that for the 2D simulation, in
which we see a dominant dipole component only in the Southern
hemisphere.

3.4 Ejecta composition

Our calculations follow the evolution in space and time of the elec-
tron fraction, Y,. This quantity is an essential determinant of sub-
sequent nucleosynthesis. While we do not in this paper derive the
detailed elemental composition of our ejecta, the distributions of
the entropies and Y,s in the inner explosion debris provide quali-
tative information on the likely character of the emergent element
burden. In our previous 2D simulations (Vartanyan et al. 2018),
histograms of the ejecta Y, were derived. What we found was that
much of the ejecta have Y,s above 0.5, implying that the ejected
matter has been processed by differential v, and ¥, absorption that
has made some of it proton-rich. This is what we witness in this
3D simulation, though whether this is a generic outcome remains to
be determined. Proton-rich ejecta could be a site of the p- and vp-
processes (Frohlich et al. 2006; Pruet et al. 2006; Wanajo, Janka &
Kubono 2011) and might be the context for the production of some
of the first peak of the r-process (Hoffman et al. 1996; Frohlich et al.
2006; Pruet et al. 2006; Wanajo et al. 2011; Bliss, Arcones & Qian
2018; Frebel 2018).

In Fig. 10, we provide a histogram of the ejecta mass distribution
in Y, at 0.529 s after bounce. The green bars indicate the results
of the 3D simulation, and the blue bars that of the 2D simulation.
Though both models peak at ¥, = 0.5, we find the interesting
result that the ejecta distribution in the 2D model has a wider tail
extending out to both higher (>0.55) and lower (<0.5) Y, than the
3D simulation at any given time. For much of the evolution, the
ejecta of the 3D simulation spans Y, ~ 0.5-0.55, whereas the ejecta
in the 2D simulation encompasses Y, ~ 0.45-0.6. Only at late times
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Figure 10. Histogram of ejecta mass distribution by Y, at 0.529 s) after
bounce. The green bars indicate the results of the 3D simulation, and the
blue those for the 2D simulation. We find the interesting result that the ejecta
mass distribution in 2D has a tail extending out to both higher (>0.55) and
lower (<0.5) Y, than the 3D simulation at a given time.

Time =0.677 s

Figure 11. Y, distribution at ~677 ms after bounce. The white ‘veil’ en-
compasses the expanding plumes, just interior to the shock radius, at a Y, of
0.5. The blue plumes indicate a Y, spanning the interval 0.5-0.52, and the
red caps a Y, greater than 0.52. The latter is concentrated along the exterior
cusps of the plumes, and interior where accretion is funnelled on to the PNS.
Note the resemblance of the high-Y, distribution to the entropy distribution
in Fig. 1. The violet tail shows the low-Y, (<0.5) ejecta seen in Fig. 10. This
trailing ‘tail’ is also visible in the density evolution of the progenitor.

does the 3D simulation have significant low-Y, ejecta at large radii
(see the violet tail in Fig. 11).2

In an earlier paper on 2D models (Vartanyan et al. 2018), we
found that only the 16 M progenitor had an ejecta-Y, distribution
that extended to lower Y,, among the four progenitors considered.
We claimed that an anisotropic explosion, with much of the outflow
directed towards one hemisphere, would leave the opposite hemi-
sphere with relatively untouched neutron-rich material. We see a

2We provide here the Y, distribution in ejecta (defined as gravitationally
unbound mass) beyond 1000 km. We also looked at the Y, mass distribution
of ejecta beyond 100km. Our conclusion that our 3D simulation has a
narrower Y, span than the 2D model, remains unchanged.
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similar result here. The 3D simulation, on the other hand, produces
a more omnidirectional explosion — leaving little matter untouched.
The achievement of higher Y, in 2D can similarly be understood —
the concentration of explosion in one direction in the 2D simulation
allows ample neutrino processing of the ejecta to higher Y,.

We illustrate the 3D distribution of Y, in the ejecta in Fig. 11
at ~667 ms after bounce. The white ‘veil’ illustrates a Y, of 0.5,
just interior to the location of the shock radius. The high-Y, plumes
correspond to the high-entropy plumes of Fig. 1, with the blue
plumes indicating Y,’s that span 0.5-0.52, and the red blobs Y,
greater than 0.52. The latter is concentrated along the exterior cusps
of the plumes, and in the interior where accretion is funnelled on to
the PNS. Note the resemblance of the high-Y, distribution in Fig. 11
to the entropy distribution in Fig. 1.

3.5 Inner PNS convection

The original delayed explosion mechanism of Wilson (1985) was
facilitated by the enhancement of the driving neutrino luminosities
by what he termed ‘neutron-finger’ convection. This was a doubly
diffusive instability, akin to salt-finger convection in the oceans,
that was suggested to result in an otherwise stably stratified PNS.
A Ledoux-stable balance of Y, and entropy gradients was thought
to be undermined by the more rapid diffusion of energy vis a vis
lepton number. Wilson captured this effect in 1D spherical mod-
els of explosion with a mixing-length-like diffusive flux, and the
v, and 7, luminosities were thereby augmented by ~25 per cent.
Without this effect, Wilson’s models did not explode. However,
Bruenn & Dineva (1996) showed that the core was not unstable to
such ‘neutron-finger’ convection, and this was confirmed by Dessart
et al. (2006) using 2D simulations. However, after bounce, there is
aregion in the PNS between ~10 and ~30 km that is in fact unsta-
ble to classical convection, driven mostly by negative Y, gradients.
This PNS convection is a feature in all modern multidimensional
simulations of CCSN. In their study, Dessart et al. (2006) noticed
that this overturning convection increased the emergent luminosi-
ties, but by the end of their simulation ~200-300 ms after bounce
this increase was not large. In addition, inner PNS convection and
the outer neutrino-driven convection interior to the stalled shock did
not merge into one large convective zone. Given this, Dessart et al.
(2006) concluded that PNS convection was not centrally important
to the neutrino mechanism of CCSNe.

On the contrary, in their study of the lowest mass progenitor
stars, Radice et al. (2017) found that the contribution of a PNS
convection boost to the emergent neutrino luminosities grew with
time after bounce, and could reach significant fractions. This was
particularly true for v, and v, neutrinos, for which the respective
neutrinospheres are deepest. Here, we explore the corresponding
effects and numbers for our 3D simulation of the 16 M) progenitor
of Woosley & Heger (2007), and compare them to the 2D case.

We plot in Fig. 12 the PNS mass (in M, blue) and mean radius
(black) as a function of time after bounce for the 3D (solid), 2D
(dashed), and 1D (red) simulations of the 16 M) progenitor. The
PNS surface here is defined where the density is 10'' gcm™. The
baryonic PNS mass in our 3D simulation at ~677 ms after bounce is
~ 1.57T M@ (1.6 M in the 2D model, 1.63 M, in the 1D model),
corresponding to a gravitational mass of 1.42 M, (1.44 M in the
2D model, 1.47 M, in the 1D model). The PNS mass reflects the
disruption of net accretion on to the PNS. Interestingly, we find that
the difference between the PNS mass for the 1D and 2D models is
roughly comparable to the difference in the same quantity between
the 2D and the 3D models at late times, despite the absence of ex-
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Figure 12. The PNS mass (in M(,, blue) and radius (in km, black) as a
function of time after bounce (in seconds) for the 3D (solid), 2D (dashed),
and 1D (red) simulations of the 16 M,y progenitor. At late times, the PNS
radii for the 2D and 3D simulations are virtually identical, but significantly
smaller in the 1D case. The larger PNS mass in 1D than 2D, and in 2D
than 3D, is due to the longer accretion history than in 3D, where we see
early explosion. In the inset, we show the PNS radius zoomed in for the first
150 ms after bounce. Until ~140 ms after bounce, the PNS radius in the 2D
simulation is as much as ~3 per cent smaller than for the 3D simulation.

plosion in the 1D model and the correspondingly lengthier accretion
history. Furthermore, at late times, the mean PNS radii in the 2D and
3D simulations are virtually identical (~29 km) but are significantly
smaller in the 1D case (~23 km). A similar dependence of the PNS
radii on simulation dimension was found in Radice et al. (2017) and
Vartanyan et al. (2018). Here, we have the opportunity to compare
such quantities to that of a 3D simulation. In the inset, we show
the PNS radius zoomed-in for the first 150 ms after bounce. Until
~140 ms after bounce, the PNS radius in the 2D simulation is as
much as ~3 per cent smaller than in the 3D model, lying between
the PNS radii in the 3D simulation and in the 1D simulation. Si-
multaneously, as shown in Fig. 8, the ‘heavy’-neutrino luminosity
is slightly smaller in the 2D simulation than in the 3D simulation.
At later times, both the ‘heavy’-neutrino luminosity and the PNS
radius in the 1D simulation are significantly lower than in the mul-
tidimensional simulations (see also Radice et al. 2018; Vartanyan
et al. 2018). On time-scales greater than ~200 ms, PNS convection
boosts the ‘heavy’-neutrino luminosities in the 2D and 3D simu-
lations. Furthermore, the shrinking PNS radius comes into close
contact with the inner convective region after 200 ms (see Fig. 13),
explaining the larger PNS radii in multidimensional simulations.
However, electron-type neutrino luminosities are higher in 1D than
in multidimensional simulations simply because that model does
not explode, and accretion power remains significant.

In Fig. 13, we provide a space—time diagram of the standard de-
viation over angle of the radial velocity within the inner 100 km
through 300 ms after bounce for the 3D (left) and 2D (right) mod-
els. Both convective regions are visible here as the bright regions
— the interior convective band is similar to that seen in Dessart
et al. (2006), and the exterior, neutrino-driven convection recedes
to ~50km by ~300 ms. The interior convective zone in the 2D
simulation is a few kilometres wider and has higher convective ve-
locities than its 3D counterpart. Furthermore, we see more variation
in the radial location of the convective zones in the 2D simulation.
However, in the 3D simulation, the exterior, neutrino-driven con-
vective region is located deeper in at early times, reaching ~80km
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Figure 13. A space—time diagram of the standard deviation ( (v, — (u,))z)) over angle of the radial velocity within the inner 100 km through 300 ms
after bounce for the 3D (left) and 2D (right) models. Note that it is significantly smaller in 3D than in 2D (see also Fig. 14). Both the outer and inner (PNS)
convective regions are visible here, and the interior convective zone is a band in velocity similar to that seen in Dessart et al. (2006). The black lines illustrate
the mean PNS radius, which in 3D, and not 2D, is sampled by the outer neutrino-driven convection through the first 120 ms after-bounce. By ~300 ms after
bounce, the exterior convective zone has receded to ~50km. In the 2D simulation, the interior convective zone is a few km wider and has higher convective
velocities by several hundred km s~! than its 3D counterpart. Furthermore, we see more variation in the radial location of the convective zones in the 2D
simulation, with the outer convective zone making excursions almost to the inner convective zone by ~300 ms after bounce. See the text for further discussion.

by ~50 ms after bounce in the 3D simulation (by comparison, the
exterior convective region in the 2D case reaches 80 km more than
100 ms after bounce). Through the first ~150 ms, this exterior con-
vection reaches down into the PNS region in the 3D (but not the 2D)
simulation. This may explain the slightly increased neutrino lumi-
nosities and shock radii in the 3D simulation seen in Figs 8 and 12
at these earlier times. Lastly, we see a turbulent ‘teardrop’ in the 3D
simulation extending from ~20 to ~80 km in the first ~40 ms after
bounce, trailing off to both the inner and outer convective regions by
~60 ms after bounce. By comparison, this feature is much smaller
in extent and delayed to ~40 ms after bounce in the 2D model. The
PNS convective zone has a characteristic size of ~10 km, a turnover
time of <10 ms, and convective velocities of ~1000km s~!. This
is a manifestation of the stronger turbulence within 100 km at early
times in the 3D simulation.

We explore the convective differences in the 2D and 3D simula-
tions in Fig. 14. We show velocity vectors (white) on a Y, colourmap
depicted on an x—y slice of the 3D simulation (left) and an x—z slice
of the 2D simulation (right) at ~57 (top), ~304 (middle), and ~667
(bottom) ms after bounce to illustrate the evolution of inner PNS
convection. The vector lengths are scaled to velocity and made to
saturate at 2000km s~!. Note the characteristic convective whorls
forming within the first ~60 ms after bounce.

3.6 On the possible presence of the LESA and the SASI

The LESA was proposed in Tamborra et al. (2014) as a neutrino-
hydrodynamical instability resulting in v, — ¥, asymmetry. In an
earlier work (Vartanyan et al. 2018), we explored the possibility of
LESA by examining the dipole harmonic component, a,¢, of the net
lepton number flux. In that paper, we concluded that, at least in 2D,
the effect was negligible and speculated that the inference of LESA
may be a consequence of the use of the ray-by-ray approximation
to multidimensional neutrino transport.

We now extend our exploration of the possible presence of the
LESA, using for the first time an exploding 3D model with full
physical realism. In Fig. 15, we depict the monopole and dipole
components of the lepton asymmetry (F,, — F;,) as a function of
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time after bounce at 500 km for both our 3D and 2D simulations.
Here, we follow O’Connor & Couch (2018) and plot instead the
dipole magnitude,

©)

Adipole =3x

using the normalization scheme of Burrows et al. (2012). The net
effect is to increase the strength of the dipole term relative to the
monopole term by a factor of ~1.73 (3/+/3). We conclude that we
do indeed find a LESA (see also O’Connor & Couch 2018) effect,
and that (at least for these models) it is stronger in 3D than in 2D.
However, the magnitude of the fluctuations in the lepton asymmetry
is larger in 2D than in 3D. In addition, whereas Tamborra et al.
(2014) find that the dipole term overtakes the monopole term as
early as ~200 ms after bounce, we find that only after ~650 ms after
bounce does the dipole component of the LESA become comparable
to the monopole term. We continue to suggest that the ray-by-ray
approach leads to a larger LESA, but this remains to be tested with
a comparison of 3D ray-by-ray and multi-angle simulations.

‘We have also studied our 3D simulation for the possible presence
of the SASI (Blondin et al. 2003) during any phase of its evolution.
If present, this should manifest in a narrow and obvious frequency
peak in various power spectra. Recent work in 3D (Walk et al.
2018) found pronounced peaks in the electron antineutrino power
spectrum at ~60 and ~110 Hz that the authors associated with the
SASI. In addition, Kuroda et al. (2016b, 2017) suggested that softer
equations of state manifest the SASI, with its gravitational wave
signature lasting for an interval of ~100 ms (a fraction of their
simulation time) at frequencies of ~50-200 Hz. Fig. 16 portrays
the Fourier decomposition of the dipole moment of the shock radius
in both our 3D simulation and the associated 2D simulation out to
200 ms after bounce. We find no clear peak at these frequencies,
either by this metric or in the gravitational wave emissions (not
shown here). Moreover, a glance at Fig. 4 reiterates that we see
in the 3D run no significant dipole term in the shock radius until
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Figure 14. Velocity vectors (white) on a Y, colourmap depicted on an x—y slice of the 3D simulation (/eff) and an x—z slice of the 2D simulation (right) at
~57 (top), ~304 (middle), and ~667 (bottom) ms after bounce to illustrate the evolution of inner-PNS convection. The velocity vector lengths are scaled to
velocity and saturate at 2000 km s~!. Note the characteristic convective whorls forming within the first ~60 ms after bounce. The region of inner convection
(with ¥, ~0.15-0.2) shrinks with the PNS, and at later times the exterior, neutrino-driven convective region (with Y, 20.3) is visible beyond ~30km, with

low-Y, ‘flares’ traversing the boundary.
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Figure 15. We plot the monopole (black) and dipole (blue) of net lepton
number asymmetry F,,—F;, (in units of 1056 s=1) as a function of time
after bounce (in seconds) at 500 km to explore the possible appearance of
the ‘LESA’ phenomenon. Solid indicates the 3D model and dashed the 2D
model. We do see the LESA effect, and the dipole term in the 3D simulation
is larger and less variable than in the corresponding 2D model. However, the
dipole term becomes comparable in magnitude to the monopole term only
after ~650 ms.
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Figure 16. We plot the Fourier decomposition of the shock radius dipole
component as a function of frequency (in Hz) for the first 100 ms after
bounce for the 3D (dashed) and 2D (solid) simulations. Note that while the
dipole component is insignificant for both models early on, it is larger for
the 3D model during the first ~100 ms. This is also as seen in Fig. 4 (solid
red line, right-hand panel).

after explosion.? Therefore, we conclude that we have no evidence
for the SASI in our 16 Mg simulations. However, since we find
an early explosion in both the 3D and 2D simulations, perhaps the
SASI may have had insufficient time to develop. It is important to
note, however, that O’Connor & Couch (2018) likewise did not see
a SASI for their 3D simulation (which was carried out to ~600 ms
after bounce, and did not explode) of a 20 M) progenitor when
incorporating velocity dependence. Note that the small bump at
~40 Hz in Fig. 4 corresponds to small-amplitude oscillations of
the shock dipole in the first ~100 ms after bounce. This feature is

3However, the dipole term is slighter stronger in the first ~100 ms for the
3D simulation than for its 2D counterpart.
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easily associated with the characteristic large-scale advective and
convective time-scales in the region between the shock and the PNS.

‘We summarize here some of the catalysts to explosion in 3D. The
16 M progenitor model (Woosley & Heger 2007) upon which we
focus in this paper has a steep density dropoff interior to 1.7 M,
due to its Si—O interface. Such a sharp density drop has been shown
to facilitate explosion in models incorporating turbulence (be they
2D or 3D) (Vartanyan et al. 2018) and we witnessed the explosion of
this model in our previous 2D study. In addition, our inclusion of the
many-body effect on the neutrino—nucleon scattering cross-sections
(Burrows et al. 2018) and the introduction of the significant velocity
perturbations to the progenitor are both conducive to explosion.
These aspects, in addition to the effects of GR and heating due to
inelastic neutrino—electron and neutrino—nucleon scattering, seem
to be some of the agents of ‘success’.

4 CONCLUSIONS

We have presented in this paper one of the first non-rotating, state-
of-the-art, full-microphysics simulations in three spatial dimensions
to explode as a supernova. The explosion of a 16 M) progenitor
is fully underway by ~200 ms after bounce and at the end of the
simulation is accumulating energy at a rate that if continued would
reach ~0.5 Bethes (0.5 x 10°! erg) within 2 s. However, what its
final asymptotic energy will be remains to be seen. The gravitational
mass of the remaining neutron star is ~1.42 M. The morphology
of the emerging debris field has a roughly dipolar structure, with
two asymmetric wide-angle lobes (one large, one small), whose
axis emerged randomly. Whether slight rotation would impose an
axis for the ejecta, or what rotation rate would be necessary to bias
the emergent explosion axis, is not here determined. By the end
of the simulation, an exploding debris field is accompanied by si-
multaneous inward accretion between the expanding lobes of some
of the inner-progenitor matter, partly responsible for maintaining
a driving neutrino luminosity (Burrows et al. 2007a). Interestingly,
the majority of the ejecta of this supernova are proton-rich, with Y,
between 0.5 and 0.56. This will have interesting consequences for
the associated nucleosynthesis, with the potential to explain in part
the first r-process peak and p-process yields (Hoffman et al. 1996;
Frohlich et al. 2006; Pruet et al. 2006; Wanajo et al. 2011; Bliss
et al. 2018; Frebel 2018).

It has been shown in the past that vigorous turbulent convection
behind the temporarily stalled shock is essential to ignite an ex-
plosion for almost all anticipated progenitor structures. Only the
rare progenitors at the lowest ZAMS masses with very steep den-
sity profiles exterior to the collapsing Chandrasekhar core explode
in spherical symmetry (Kitaura, Janka & Hillebrandt 2006; Bur-
rows, Dessart & Livne 2007c; Radice et al. 2018). The turbulent
motions, boasting as they do a large effective ‘y’ connecting ki-
netic energy with pressure/stress, are one agency. Another is the
consequently larger gain region in the multi-D turbulent context.
A third could be the longer dwell times in the gain region occa-
sioned by the non-radial motions (Murphy & Burrows 2008). Aside
from the necessity in most cases of the turbulence enabled in the
multi-D context, the specific progenitor density profile is a major
determinant, though the dependence upon the associated ‘compact-
ness’ parameter (O’Connor & Ott 2013) of the ‘explodability’ of
a model is non-monotonic in subtle ways (Burrows et al. 2018).
Models with the lowest compactness may explode even in 1D via
a wind mechanism (Burrows 1987). However, models with slightly
higher compactness have trouble exploding (O’Connor et al. 2017;
Burrows et al. 2018), while models with even higher compactness
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(such as the 16 My of this paper) explode rather easily. Clearly, the
explodability’s dependence upon progenitor density profile is not
straightforward.

One aspect of this nuanced behaviour is the role of the accre-
tion through the shock of the Si—O interface (see Summa et al.
2018; Vartanyan et al. 2018). The jump up in entropy at that in-
terface is accompanied by a corresponding drop in mass density.
If that drop is large and sharp, then when that interface is accreted
through the stalled shock the confining ram pressure temporarily
and abruptly declines, while not immediately altering the driving
neutrino luminosities (emanating from the core) and heating rates.
The consequence is often (as in the case studied in this paper) a kick
into explosion, which in the immediate term is generally irreversible
due to the quick diminution of neutrino cooling occasioned by ex-
pansion and the maintenance of heating. However, the magnitude
and radius of this interface and the overall density profile of the core
at collapse are functions of stellar evolution (and stellar progenitor
models), emphasizing the centrality to the viability and character of
CCSN explosion phenomenology of these initial states.

Another progenitor determinant of explosion may be its initial
seed perturbations. It has been shown (Couch & Ott 2013, 2015;
Miiller & Janka 2015; Miiller 2016; Burrows et al. 2018) that if
the seeds are of sufficient strength, then the ability of turbulence to
ignite explosion is enhanced. In the simulation highlighted in this
paper, we imposed a modest physical perturbation to the accreted
velocity field that may have helped or accelerated explosion. How-
ever, whether perturbations are important, or merely facilitators, has
not been determined and the next generation of fully 3D progenitor
models may illuminate this question (Couch et al. 2015; Miiller
et al. 2016).

Those realistic physical processes that were conducive to the
3D explosion we witnessed in this paper include neutrino-driven
turbulence (Herant et al. 1994; Burrows et al. 1995), the net effects
of GR (Bruenn, De Nisco & Mezzacappa 2001), the inclusion of
inelastic scattering and energy redistribution via neutrino—electron
and neutrino—nucleon scattering (Burrows et al. 2018; Just et al.
2018; Vartanyan et al. 2018), the many-body correction to neutrino—
nucleon scattering (Burrows & Sawyer 1998; Horowitz et al. 2017;
Burrows et al. 2018), the accretion of a sharp Si—O interface at
a propitious time (Vartanyan et al. 2018), and the imposition of
velocity perturbations in the progenitor. A major consequence of
the many-body correction is the decrease in the scattering rate that
increases the neutrino emission rates. This is particularly true for
the v,s, and the resulting acceleration of core contraction leads
to, among other things, the increase in the temperatures around
the v, and ¥, neutrinospheres. This leads to a slight hardening of
the emergent v, and v, spectra and an increase in the heating rate
due to charged-current absorption on the free nucleons in the gain
region. One of the most important future classes of investigations
of direct relevance to the CCSN mechanism is the magnitude and
role of many-body corrections to both the neutral-current and the
charged-current (Burrows & Sawyer 1999; Roberts, Reddy & Shen
2012; Roberts & Reddy 2017) neutrino—matter interaction rates.
We note as well that even though the number of viable published
nuclear equations of state is dwindling, the EOS dependence of the
outcome of collapse has not been definitively addressed, nor well
explained. This will be a necessity in the years to come as laboratory
constraints become ever more stringent.

While the results presented in this paper are quite encouraging,
there remain a number of important caveats. Important among these
are the dependence upon the spatial and energy-group resolutions.
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In 3D, a resolution study, even with modern codes such as FORNAX,
is expensive, but will be necessary to determine both the quanti-
tative and qualitative limitations of what we have presented here.
The chaotic character of turbulent flow will make this a challenging
endeavour for the community going forward. Moreover, we have
conducted these calculations including the effects of GR in approx-
imate fashion (Appendix A). Doing these calculations with full GR
will be important and attempts in this direction have already been
made (Roberts et al. 2016; Kuroda et al. 2018; Ott et al. 2018). To
enable these forefront simulations, we still had to make approxima-
tions in the neutrino sector. Foremost among these is the use of the
moment formalism and an analytic closure for the second and third
moments. While recent tests of the accuracy of such an approach
in the core-collapse context are encouraging (Richers et al. 2017,
O’Connor et al. 2018), solving the full Boltzmann equation with
neutrino angles in the full six-dimensional phase space will require
a significantly more capable national and international computa-
tional infrastructure. Finally, it has been shown that explodability
when near criticality and in multi-D is a sensitive function of details
in the neutrino—matter interaction rates (Burrows et al. 2018) in a
way not seen in 1D simulations. This puts a premium on imple-
menting correctly the correct microphysics. All modellers aspire to
this goal, but whether we or others actually have achieved this is,
or should be, a constant worry.

The model we presented was non-rotating. We think that most
collapsing cores, while they are certainly rotating, are not gener-
ically rotating at rates sufficient to make a qualitative difference
most of the time (Emmering & Chevalier 1989; Faucher-Giguere &
Kaspi 2006; Popov & Turolla 2012; Noutsos et al. 2013). How-
ever, this remains to be exhaustively explored. Rapid rotation can
certainly affect the outcome, both directly and by providing sig-
nificant free energy to feed large magnetic fields and enable the
direct effects of magnetic stress, when strong, on the explosion
dynamics (see e.g. Burrows et al. 2007b; Mosta et al. 2015). In
fact, rapid rotation alone can affect the dynamics and facilitate
explosion even when the expected magnetic field amplifications
are ignored (Fryer & Warren 2002, 2004; Marek & Janka 2009;
Summa et al. 2018). Moreover, rapid rotation can also generate a
non-axisymmetric spiral-arm mode, which resembles the SASI in
the rotating context and might enlarge the gain region and, thereby,
facilitate explosion (Takiwaki et al. 2016; Summa et al. 2018). Cu-
riously, if the explosion is suitably delayed, such a mode may also
grow in the non-rotating context (Blondin & Shaw 2007; Rantsiou
et al. 2011; Guilet & Fernandez 2014; O’Connor & Couch 2018).
This and other related issues are fruitful topics for future work.

However, we view the achievement of a 3D simulation that leads
naturally to explosion, with competitive resolution, including all
the relevant microphysics, using a state-of-the-art simulation tool,
and calculating significantly post-bounce as a major milestone in
the decades-long quest to resolve the CCSN puzzle in quantitative
detail. What remains in the near term is to determine the progenitor
mass dependence of the outcome of collapse in 3D, to understand
the possible roles of rotation, to explain the supernova energies and
neutron star masses observed, and to explain the morphologies of
the debris fields seen in SNRs. Furthermore, a major motivation of
all supernova simulations is the detailed explanation of the explosive
production of the elements. The ejecta we find are mostly proton-
rich, and this emerges naturally from the detailed simulations. What
the consequences are of this finding will be one of the topics of our
future studies as we continue our quest to understand one of the
most persistent problems in stellar and nuclear astrophysics.
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APPENDIX A: APPROXIMATE GENERAL RELATIVISTIC FORMULATION

As stated in Section 1, we use the M1 closure to truncate the radiation moment hierarchy by specifying the second and third moments as
algebraic functions in terms of the zeroth and first. The basic equations of radiative transfer in the comoving frame that we solve are the
zeroth- and first-moment equations of the full equation of radiative transfer for the specific intensity. For neutrino transfer, we currently follow
the evolution of v,, ¥., and v, neutrinos, where the latter represents the v, V,, and v, neutrinos collectively. With explicit neutrino source
and sink terms, the full set of Newtonian radiation/hydrodynamic equations, with a specific focus on the neutrino radiation implementation
relevant to the study of CCSNe, are

pi+ (pv'); =0, (AT)
(0 + (pV'v; + P8 = —pj + ¢ 30, [ (ke + 0 F e jde, (A2)
1 2 i 1 2 P i x [ - v tr
plet+ EHUH + |pv e+ E”UH + ; = —pv ¢.i - Zs .[0 (./ss - CKSSESE - ?(Kss + Usg)Fssi) de ’ (A3)
\t K
(,0 Yg)‘[ + (,Oyyvi);i = ZA\- fOoo ‘S\'E(jxa — ek Ege)de (A4)
i i i 0 J ;
E.cat + (Fjg +v E.?E):i - v;jmp_\-gi = Jse — CKseEss ) (AS)
. . . .0
Fssj.t + (CZP_lygj + vl Fssj):i + vngssi - vék %(8 Qfgji) = _C(Kse + U;Q)Fsej’ (A6)

where e is the specific internal energy, P = P(p, e, Y,) is the pressure, p is the mass density, Y, is the electron fraction, v; are the velocity
components, k. and O'X[; are the absorption and transport scattering opacities, and s € {v,, ¥, v, }, where

Sse = (NAs)il § =V, (A7)
0 =V,
The corresponding radiation energy and momentum equations modified to approximately incorporate general relativistic effects are
: . ! .
Ess.! + (OlF.l,-e + less);i - avijmpisi = a(jss - CKssEss) + aG’ ) (A8)
2 pi i i i 9 k tr m
Fieju +(CaPyj + 0 Foepi + o Fooi — avy o= Qi) = —colkse + 0 ) Fiej + G (A9)

where differentiation is indicated with standard notation, ¢ is the neutrino energy, s € {v,, V,, v,}, E is the radiation energy density spectrum

(zeroth moment), F; is radiation flux spectrum (first moment), P_{.;i is the radiation pressure tensor (second moment), Qfg ji is the heat tensor
(third moment), a = exp (¢/c?), and the other variables have their standard meanings. ¢ is the gravitational potential.
G* and G’;’ are the main terms to add in order to include gravitational redshifts (Rampp & Janka 2002; Shibata et al. 2011). They are given

by
G*=—F, - V$/c* +V$/c* d(cF,)/0s,
G" = —E.Vp+Vig- 3P, )/ 0e,

sej

where V ¢/ c=—g i /c?, and one must do the contravariant/covariant raising or lowering according to the metric. Notice that the last terms
in the equations for G and G} integrate out to zero when one integrates over energy groups, leaving the terms analogous to the ‘pv - g” and
‘pg’ work and force terms.

The gravitational potential, ¢, is generally taken to be the ‘GR-corrected’ monopole term (¢rov ). There are a variety of ways to approximate
this, and the source for this approximation is Marek et al. (2006). Many people use their ‘Case A’, as do we, though they say their ‘Case B’
is also very good. The relevant equations are

dérov myoy+4nrd(P+Py)/c? | p+E/c*+P/c?

o = . [ ; ] ; (A10)
T(r) = \/1+v2/62—%, (A11)
dm 2
% = dgr? (p +E/? + E,/c* 4 Ml ) I' (CaseA), (A12)

p
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dmrov
dr

where p is the rest mass density, P, is the total neutrino pressure, E is the total matter internal energy density, P is the matter pressure, v is
some averaged radial speed, E, is the total neutrino energy density, and F, is the total neutrino flux. If one is using a multipole expansion to
derive the potential, then the potential used is

P =& — ¢ + Prov . (Al14)

where ¢ is the multipole Newtonian potential, ¢ is the monopole Newtonian potential, and ¢roy is the monopole TOV potential. Note that
this equation merely subtracts out the monopole term from the total Newtonian potential, and then adds it back, corrected for the GR effects
in the approximate way suggested by Marek et al. (2006).

So, one needs to calculate the total pressure, energy density, and flux of the neutrinos, calculate (v2/c?) as a function of radius, and then
integrate radially/spherically to get mtoy and ¢1oy. All the non-monopolar potential contributions (if included) are Newtonian; only the
monopole term is adjusted approximately for GR. This correction to the monopolar potential used in the matter momentum equation is likely
the dominant effect of GR. However, the ‘GR-corrected’ transport scheme above incorporates the neutrino energy redshifts, as well as the
time dilation. In the steady-state, zero-motion limit, the total luminosity x exp(2¢/c?) is a constant, as it should be (note the factor of 2).

= 47r2p (Case B), (A13)

APPENDIX B: NEUTRINO-MATTER INTERACTIONS FOR THE SUPERNOVA PROBLEM

A comprehensive set of neutrino—matter interactions is implemented into FORNAX, and these are described in Burrows, Reddy & Thompson
(2006). They include neutrino—nucleon scattering and absorption and neutrino—nucleus scattering with ion—ion correlations, weak screening,
and form-factor corrections. For the neutrino—nucleon scattering cross-sections, we use equation 24 of Burrows et al. (2006) and for the
charged-current absorption cross-sections (i.e. v, + n — p + ¢~ and b, + p — n + e') we follow the approach described in sections 3.1
and 3.2 of Burrows et al. (2006). Emissivities are calculated to be consistent with Kirchhoff’s law of detailed balance, as described with
equations 7 and 8 of Burrows et al. (2006). The latter incorporates the stimulated emission term for fermions, which in other formulations
(cf. Bruenn 1985) is equivalent to Pauli blocking.

The weak magnetism and recoil corrections for both absorption and scattering are incorporated as multiplicative factors, using the linear
fits in neutrino energy of Horowitz (2002). The linear fits are accurate below ~100 MeV for v,s and ~50 MeV for 7¥,s, but deviate at
higher neutrino energies. Nevertheless, higher energy v,s reside only in the core. Moreover, there are effectively no higher energy 7,s in the
supernova core. The degeneracy of v,s that results from lepton trapping also results in a positive v, chemical potential, and, hence, a negative
v, chemical potential. Such a negative potential exponentially suppresses v,s. Where the ¥,s can finally achieve significant occupancy, the
temperatures and densities are too low to produce many ,s above ~60 MeV. The v, s do not experience such Boltzmann suppression, but are
thermally produced, and, hence, given the core temperatures, are not produced in significant numbers above ~100 MeV. Be that as it may, we
have also implemented the fully non-linear weak-magnetism and recoil formalism into FORNAX, done side-by-side comparison simulations in
1D, and found that the hydrodynamic and radiation results are almost identical. For the ‘v,,’ neutrino—nucleon scattering, we use the average
of the weak magnetism and recoil corrections for the neutrino and antineutrino types.

Inelastic neutrino—nucleon scattering is handled using a modified version of the Thompson, Burrows & Pinto (2003) approach. A
comprehensive discussion of the equations and techniques we employ to handle inelasticity in both neutrino—nucleon and neutrino—electron
scattering is found in Section 4 of Burrows & Thompson (2004). The integrals for the dynamic structure functions for inelastic neutrino—
electron scattering are handled relativistically, as in Reddy et al. (1999) and the equations on pages 144-148 of Burrows & Thompson
(2004). As in the case of inelastic scattering off nucleons, all integrals for inelastic neutrino—electron scattering are done numerically with
quadratures, and the results are tabulated in large tables for use during simulation when inelasticity and redistribution are turned on (as they
are in this work). This involves as an intermediate step the numerical calculation of polylogarithmic functions. Neutrino sources and sinks due
to nucleon—nucleon bremsstrahlung and electron—positron annihilation are included, as described in Thompson, Burrows & Horvath (2000).
We also include the many-body correction to neutrino—nucleon scattering of Horowitz et al. (2017), which is a variation of the formalism of
Burrows & Sawyer (1998) extended to lower densities. This correction, which slightly decreases the scattering rate at progressively higher
densities, has been shown to support the ‘explodability’ of supernova models and is physically well motivated. A corresponding correction
for charged-current absorption on to nucleons has not been calculated in full (Roberts & Reddy 2017), nor included in FORNAX, but could be
of equal relevance. For electron capture on nuclei, of importance during the infall phase, we employ the rates of Juodagalvis et al. (2010).

This paper has been typeset from a TRX/IATEX file prepared by the author.
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