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Abstract

We consider the computational and statistical issues for high dimensional Bayesian

model selection under the Gaussian spike and slab priors. To avoid large matrix com-

putations needed in a standard Gibbs sampler, we propose a novel Gibbs sampler

called “Skinny Gibbs” which is much more scalable to high dimensional problems,

both in memory and in computational efficiency. In particular, its computational

complexity grows only linearly in p, the number of predictors, while retaining the

property of strong model selection consistency even when p is much greater than

the sample size n. The present paper focuses on logistic regression due to its broad

applicability as a representative member of the generalized linear models. We com-

pare our proposed method with several leading variable selection methods through a

simulation study to show that Skinny Gibbs has a strong performance as indicated

by our theoretical work.
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1 Introduction

With the increased ability to collect and store large amounts of data, we have the op-

portunities and challenges to analyze data with a large number of covariates or features

per subject. When the number of covariates in a regression model is greater than the

sample size, the parameter estimation problem becomes ill posed, and variable selection

is usually a natural first-step. There have been extensive studies on variable selection in

high dimensional settings, especially since the advent of Lasso (Tibshirani 1996), an L1

regularized regression method for variable selection. Other penalization methods for sparse

model selection include smoothly clipped absolute deviation (SCAD) (Fan and Li 2001),

minimum concave penalty (MCP) (Zhang 2010), and many variations of such methods.

Though many of these methods are first introduced in the context of linear regression, their

theoretical properties and optimization methods for logistic regression and other general-

ized linear models (GLM) have also been studied. van de Geer S. A. (2008) proved oracle

inequalities for L1 penalized high dimensional GLM, whereas the oracle properties of Fan

and Peng (2004) also hold for GLM. Friedman et al. (2008), Breheny and Huang (2011) and

Huang and Zhang (2012) studied optimization approaches for penalized GLM methods.

The computational complexity of these algorithms typically grows linearly in p.

The literature on high dimensional Bayesian variable selection has focused mostly on

linear models, but most techniques generalize, with some efforts, to logistic regression

and other GLMs. It has been understood that most penalization methods have Bayesian

interpretations, because all the methods share the basic desire of shrinkage towards sparse

models. We refer to Bhattacharya et al. (2015); Bondell and Reich (2012); Johnson and

Rossell (2012); Park and Casella (2008); Ročková and George (2014) for some recent work

on Bayesian shrinkage. An advantage of Bayesian methods for variable selection is that

Markov Chain Monte Carlo (MCMC) techniques can be used to explore the posterior
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distributions, which often offer a more informative approach to model selection than the

corresponding penalization method with a highly non-convex optimization problem. For

instance, the methods proposed by Liang et al. (2013), Narisetty and He (2014), and Shen

et al. (2012) are similar to the L0 penalty, which is generally considered to be desirable for

model selection consistency.

Continuous spike and slab priors have been commonly used in practice and with appro-

priate prior choices have been shown to have desirable model selection properties (George

and McCulloch 1993; Ishwaran and Rao 2005; Narisetty and He 2014). For Gaussian linear

models, one has the option to use the point-mass distribution as the spike priors by inte-

grating out the p-dimensional coefficient vector to reduce computation (Guan and Stephens

(2011)). However, the integration step becomes less appealing in non-linear models. The

standard Gibbs sampling algorithm for posterior computation in this framework requires

sampling from a p-variate normal distribution with a non-sparse covariance matrix, which

is not so scalable for large p. In this paper, we propose a new computational technique

within the Gibbs sampling framework that replaces the high dimensional covariance matrix

by a sparse one so that large matrix operations can be avoided. The resulting algorithm is

called Skinny Gibbs, because it uses a “skinny” covariance matrix in the Gibbs algorithm.

One might view Skinny Gibbs as an approximation to the original Gibbs sampler, but

more importantly, we develop theoretical results which show that Skinny Gibbs has its

own stationary distribution, and there is no sacrifice on the strong model selection consis-

tency property desired for Bayesian model selection. In summary, the main contributions

of our paper are the following:

– We propose a novel strategy to sparsify the conditional sampling steps of a Gibbs

sampler to obtain a scalable Gibbs sampler suitable for high dimensional problems.

– In spite of the aforementioned sparsification of the conditional sampling steps within
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the Gibbs sampler to make it scalable, we establish that the resultant Skinny Gibbs

sampler has a stationary distribution (Theorem 3.1), which also exhibits the strong

selection consistency property (Theorem 3.6).

– Skinny Gibbs has a computational complexity of np for each iteration and is more

scalable than existing Gibbs sampling algorithms for variable selection.

– The techniques used in the paper provide a theoretical framework for studying high

dimensional Bayesian model selection for cases when the likelihood-prior combination

is not conjugate and when closed-form posterior expressions are not available.

The rest of the paper is organized as follows. In Section 2, we describe our model setup,

including the prior distributions and the standard Gibbs sampler, and then propose Skinny

Gibbs as a new model selection algorithm. In Section 3, we present the strong selection

consistency results for the proposed method. In Section 4, we compare the proposed

Skinny Gibbs approach to model selection with a number of leading penalization methods

in simulated settings. In Section 5, we present empirical studies on two examples to

demonstrate how the proposed methodology works with real data. We provide a conclusion

in Section 6. In the supplementary materials, we provide proofs for all the theorems,

several additional results, and discussions including a discussion about the connection

between Skinny Gibbs and L0 penalization and about an implementation of Skinny Gibbs

using Polya-Gamma scale mixture of the logistic distribution (Polson et al. 2013). The

supplementary materials also include discussions about marginal posterior plots for the

empirical studies to demonstrate stability and convergence of the Skinny Gibbs chain, and

additional simulation studies.
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2 Variable selection with continuous spike-slab priors

In this section, we first describe the framework for Bayesian variable selection followed

by our proposed Skinny Gibbs method. We focus on the logistic regression for the sake

of simplicity in presentation, but the method is applicable to linear, probit, and other

generalized linear models. Our data consist of an n× 1 binary response vector denoted by

E = (E1, · · · , En)T and an n × pn design matrix X. We use pn for the model dimension

in our methodological and theoretical development to emphasize its dependence on the

sample size n. We assume that the columns of X are standardized to have zero mean and

unit variance. We use xi to denote the ith row of X, which contains covariates for the ith

response Ei. Moreover, XA will be used to denote the n×|A| dimensional submatrix of X

containing the columns indexed by A, and |A| is the cardinality of A. Logistic regression

models the conditional distribution of E given X with the logit link, that is,

(1) P [Ei = 1|xi] =
exiβ

1 + exiβ
, i = 1, · · · , n,

for some unknown parameter β ∈ Rpn . The logistic model is one of the most widely used

statistical models for binary outcomes. This paper attempts to address the problem of

variable selection when the number of predictors pn is large. If pn is large relative to n,

even the estimation problem is ill posed without any further assumptions on the model

parameters. We work under the assumption that there is a true parameter vector β that

is sparse in the sense that it has only a small number of non-zero components. Even under

this assumption, it is a challenge to find the active predictors in the model.

In the Bayesian variable selection literature, spike and slab priors on β are commonly

used. The idea is to introduce binary latent variables Zj for the j-th component of β, which

indicates whether the jth covariate is active (i.e., having a nonzero coefficient). Then, priors

5



on βj given Zj are specified as

(2) βj | Zj = 0 ∼ π0(βj); βj | Zj = 1 ∼ π1(βj),

where π0 and π1 are called the spike and slab priors, respectively. We refer to George

and McCulloch (1993), Ishwaran and Rao (2005) and Narisetty and He (2014) for further

details. For linear regression with Gaussian errors, both the spike and slab priors are

often taken to be Gaussian with a small and a large variance, respectively. An advantage

of this approach for linear regression is that the conditionals of the Gibbs sampler are

standard distributions due to conjugacy of those priors. Though they are not conjugate

for the logistic model, the well-known normal scale mixture representation of the logistic

distribution due to Stefanski (1991) enables us to derive the conditional distributions used

in the Gibbs sampler. More specifically, let Yi follow the logistic distribution with location

parameter xiβ, and Ei = 1{Yi>0} in distribution. Then, Yi can be equivalently represented

as

Yi | si ∼ N(xiβ, s
2
i ), si/2 ∼ FKS,

where FKS is the Kolomogorov-Smirnov distribution whose CDF is given by G(σ) = 1 −

2
∑∞

n=1(−1)n+1 exp(−2n2σ2). By introducing the latent variables Yi, we can implement

the usual Gibbs sampler for logistic regression with simple conditionals. We will however

need to draw si’s from their conditional distributions, which we shall discuss in Section

2.2. An alternative sampler based on Polya-Gamma scale-mixture representation (Polson

et al. 2013) is provided in Supplementary Materials.
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2.1 Prior specification

We use the continuous spike and slab prior specification as proposed in George and Mc-

Culloch (1993). To achieve appropriate shrinkage and ensure model selection consistency,

we consider the priors to be sample-size dependent (Narisetty and He 2014). The priors

on the binary latent variables Zj and the corresponding regression coefficients βj are given

by

(3)
βj | Zj = 0 ∼ N(0, τ 20,n), βj | Zj = 1 ∼ N(0, τ 21,n)

P (Zj = 1) = 1− P (Zj = 0) = qn,

for j = 1, · · · , pn (with independence across different j), where the constants τ 20,n, τ
2
1,n and

qn are further specified below. Broadly speaking, we consider the settings where τ 20,n → 0,

and τ 21,n →∞ as n→∞. The specific rates for τ 20,n, τ 21,n are given by Condition 3.5. The

intuition behind such choices is that the inactive covariates will be identified with zero

Zj values, where small values of βj relative to τ 20n are truncated to zero. The diverging

parameter τ 21,n forces the inactive covariates to be classified under Zj = 0 because the prior

probability around zero becomes negligible as n → ∞. Finally, we shall use qn ∼ p−1n to

encourage the models to be sparse, i.e., it bounds the apriori size of |Z| :=
∑pn

j=1 Zj to be

small, where Z denotes the vector of Zj. The posterior probabilities of the binary variables

Zj will be used to select the active covariates.

In the linear regression case, Narisetty and He (2014) argued that the prior specification

similar to (3), referred to as Bayesian shrinking and diffusing priors (BASAD), implies a

posterior that is asymptotically similar to the L0 penalized likelihood. More specifically,

when nτ 20,n = o(1), the prior parameters imply a penalty in the order of log(
√
nτ1,nq

−1
n )

for each additional covariate added in the model. In this paper, we propose a fast and

scalable Gibbs sampler that preserves the similarity to the L0 penalty and achieves the
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strong selection consistency (see Section 3).

2.2 Gibbs sampler

As a prelude to our proposed Skinny Gibbs sampler, we first present the usual Gibbs

sampler corresponding to (3), which will provide motivation for our proposal of Skinny

Gibbs. In the rest of the paper, all the distributions are conditional on X but

we suppress it in the notations for convenience. By considering

(4) Ei =

 1 if Yi ≥ 0

0 if Yi < 0

Yi
ind∼ N(xiβ, s

2
i ), si/2

ind∼ FKS,

together with the priors in (3), the joint posterior of β, Z, Y and W = Diag (s−21 , ..., s−2pn )

is given by

(5)
f(β,W, Y, Z | E) ∝

∏n
i=1 φ (Yi, xiβ, s

2
i )1{Ei = 1{Yi ≥ 0}} g(si)

×
∏pn

j=1 ((1− qn)π0(βj))
1−Zj (qnπ1(βj))

Zj ,

where π0(x) = φ(x, 0, τ 20,n), π1(x) = φ(x, 0, τ 21,n), φ(x, µ, σ2) is the normal density function

with mean µ and variance σ2 evaluated at x, and g(σ) = (d/dσ)FKS(σ/2) is the density

function of two times the KS variable.

The conditional distribution of β is given by

(6) β | (W,Y, Z,E) ∼ N
(
(X ′WX +Dz)

−1X ′WY, (X ′WX +Dz)
−1) ,

where Dz = Diag(Zτ−21,n + (1−Z)τ−20,n). The conditional distributions of Yi are independent
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with the marginals given by

(7) f(Yi | β,W,Z,E) ∝


φ (Yi, xiβ, s

2
i )1{Yi > 0} if Ei = 1,

φ (Yi, xiβ, s
2
i )1{Yi < 0} if Ei = 0,

where 1{·} denotes the indicator function. The conditional distributions of Zj are inde-

pendent (across j) and given by

(8) P (Zj = 1 | β,W, Y,E) =
qnφ(βj, 0, τ

2
1,n)

(1− qn)φ(βj, 0, τ 20,n) + qnφ(βj, 0, τ 21,n)
.

The conditional distribution of W is described in terms of the independent distributions

of si as

(9) f(si | β, Y, Z,E) ∝ φ(Yi, xiβ, s
2
i ) g(si).

In this Gibbs sampler, sampling from the distribution (9) is not as straightforward as

the others. Holmes and Held (2006) proposed a rejection sampling algorithm. Albert and

Chib (1993) noted that the univariate logistic density can be approximated well by a t-

density. O’Brien and Dunson (2004) later used the t-approximation of the logistic density

for multivariate logistic regression. We simply adopt those ideas to proceed as follows.

Let us denote the t-distribution that approximates the KS distribution by T = w tν ,

i.e., t with ν degrees of freedom and scale parameter w. Due to the Gaussian scale mixture

representation of the t-distribution, it can be equivalently represented as

(10) T |φ ∼ N(0, φ2), φ2 ∼ w2IG (ν/2, ν/2) ,

where IG is the inverse gamma distribution. Following O’Brien and Dunson (2004), we
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take w2 = π2(ν − 2)/3ν and ν = 7.3 so that the resulting distribution of T is nearly

indistinguishable from the KS distribution. Using this approximation, the sampling of

(9) can be done using an inverse Gamma distribution. Polson et al. (2013) presented an

alternative scale mixture representation of the logistic distribution with a Polya-Gamma

distribution as the scale mixture, which does not require the introduction of the latent

variables Y . As this is also a normal scale mixture representation, the corresponding

Gibbs sampler obtained would have a conditional distribution for β which still requires

sampling from a pn dimensional multivariate normal distribution similar to Equation (6).

The Skinny Gibbs algorithm we propose in the next section also generalizes if we use

Polya-Gamma scale mixture representation and the details of this algorithm are provided

in the Supplementary Materials.

When pn is large, the real bottleneck with the usual Gibbs sampler lies in its need

to sample from the pn-variate normal distribution for β given by (6). For linear regres-

sion, Guan and Stephens (2011) avoided such sampling by integrating β out and devise

an MCMC method that samples Z directly. However, this technique does not seem to

generalize easily to logistic regression. A direct sampling scheme would require handling a

pn × pn covariance matrix of general forms, which is expensive in both CPU and memory.

Even if this task is decomposed into componentwise sampling by a further Gibbs iteration,

it requires operations in the order of p2n, making Bayesian model selection algorithm less

competitive with the penalty based optimization methods.

2.3 Skinny Gibbs algorithm

We propose the Skinny Gibbs algorithm as a simple yet effective modification of the Gibbs

sampler to avoid the computational complexity in the case of large pn. The idea is to split

β into two parts in each Gibbs iteration, corresponding to the “active” (with the current
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Zj = 1) and “inactive” (with the current Zj = 0) sub-vectors. The active part has a

low dimension, and is sampled from the multivariate normal distribution. The inactive

part has a high dimension, but we simply sample it from a normal distribution with

independent marginals. More specifically, the Skinny Gibbs sampler proceeds as follows,

after an initialization.

(a) Decompose β = (βA, βI), where βA and βI contain the components of β corresponding

to Zj = 1 and Zj = 0, respectively. Similarly let X = [XA, XI ]. Then, generate

(11) βA | (W,Y, Z,E) ∼ N(mA, V
−1
A ), βI | (W,Y, Z,E) ∼ N(0, V −1I ),

where VA = (X ′AWXA + τ−21n I), mA = V −1A X ′AWY , and VI = Diag (X ′IXI + τ−20n I) =

(n+ τ−20n )I. Note that the dimension of VA is only |Z| .

(b) Generate Zj (j = 1, · · · , pn) sequentially based on

(12)
P [Zj = 1 | Z−j, β,W, Y,E]

P [Zj = 0 | Z−j, β,W, Y,E]

=
qnφ(βj, 0, τ

2
1,n)

(1− qn)φ(βj, 0, τ 20,n)
× exp

{
βjX

′
jW (Y −XCj

βCj
) +

1

2
X ′j(I −W )Xjβ

2
j )

}
,

where Z−j is the Z vector without the jth component, and Cj is the index set corre-

sponding to the active components of Z−j, i.e., Cj = {k : k 6= j, Zk = 1}.

(c) The conditional distribution of Y is changed to

(13) f(Yi | β,W,Z,E) ∝


φ (Yi, xAiβA, s

2
i )1{Yi > 0} if Ei = 1,

φ (Yi, xAiβA, s
2
i )1{Yi < 0} if Ei = 0,
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(d) The conditional distribution of si is

(14) f(si | β, Y, Z,E) ∝ φ(Yi, xAiβA, s
2
i ) g(si).

In (a), the update of β is changed such that the coefficients corresponding to Zj =

1 (denoted by βA) and those corresponding to Zj = 0 (denoted by βI ) are sampled

independently. Furthermore, the components of βI are updated independently. This is in

contrast with the usual Gibbs, where the entire β is updated jointly. It is worth noting that

the precision matrix of βA is just the corresponding sub-matrix of the precision matrix of

β, which is Vz = (X ′WX +Dz). Essentially, Skinny Gibbs sparsifies the precision matrix

Vz as

Vz =

X ′AWXA + τ−21n I X ′AWXI

X ′IWXA X ′IWXI + τ−20n I


ww�X ′AWXA + τ−21n I 0

0 (n+ τ−20n )I

 .

This modification in step (a) alters the Gibbs sampler in such a non-trivial way that

the correlation structure among the coefficients βj is lost. Without any compensation, the

modified sampler would not converge to a desirable stationary distribution. The step (b)

of the proposed Skinny Gibbs is designed to compensate for the loss in step (a), but the

computational complexity in step (b) is minimal.

Remark 1 (Computational complexity). The computational complexity of Skinny Gibbs

for each iteration is n(pn ∨ |A|2) where |A| is the active model size. This is much faster

than the typical complexity of p2n(pn ∨ n) for BASAD. Bhattacharya et al. (2016) recently
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proposed an alternative sampling algorithm for structured high dimensional multivari-

ate Gaussian distributions whose complexity is n2pn if the weight matrix W is diagonal,

whereas the complexity is np2n if W is non-sparse.

Remark 2 (Prior choices). Several other commonly used prior specifications on either β or

Z can be incorporated in Skinny Gibbs. While we use the independent prior specification

for the Z ′s, Scott and Berger (2010); Castillo and van der Vaart (2012) place a Beta prior

on qn instead of treating it as a hyperparameter. The Skinny Gibbs algorithm can be

easily implemented with a Beta prior on qn as the full conditional of qn will also be a Beta

distribution. Instead of Gaussian priors, Gelman et al. (2008) placed weakly informative t

prior distributions on the regression coefficients. Implementation of Skinny Gibbs for the

alternative prior choices on β and qn can be derived in a similar way.

3 Theoretical results

In this section, we study the model selection properties of the proposed Skinny Gibbs algo-

rithm. We show that Skinny Gibbs has a stationary posterior distribution that preserves

the strong model selection consistency. We first introduce the following notations.

Notations: We use k (and s) to denote a generic model and t to denote the true

model. A model is treated both as a pn × 1 binary vector similar to Z and as the set

containing the active covariates, but this will be clear depending on the context. The size

of the model k is denoted by |k|. For any pn × 1 vector v, v(k) is used to denote the

|k| × 1 vector containing the components of v corresponding to model k. We denote the

true regression vector as β0(t), and for any k ⊃ t, β0(k) denotes the |k| × 1 vector having

β0(t) for t and zeroes for k ∩ tc. For sequences an and bn, an ∼ bn means an
bn
→ c for some

c > 0, bn � an (or an � bn) means bn = O(an), and bn � an (or an ≺ bn) means bn = o(an).
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The log-likelihood for a model k is

(15) Ln(β(k)) :=
n∑
i=1

Ei logF (xiβ(k)) + (1− Ei) log(1− F (xiβ(k))),

where F (.) is the cdf of the logistic distribution. Let

(16) sn(β(k)) =
∂Ln(β(k))

∂β(k)
=

n∑
i=1

(Ei − µi(β(k)))xi,

with µi(β(k)) = exp{xiβ(k)}
1+exp{xiβ(k)} . The negative Hessian of Ln(β(k)) is

(17) Hn(β(k)) = − ∂2Ln(β(k))

∂β(k)∂β(k)′
=

n∑
i=1

σ2
i (β(k))xix

′
i,

where σ2
i (·) = µi(·)(1 − µi(·). Note that in our notations, xi and X are restricted to

the model under consideration, even though it is not explicitly displayed. That is, xi in

Equations (16) and (17) is a |k| × 1 vector containing the components corresponding to

model k. Therefore, the dimension of sn(β(k)) is |k| × 1 and that of Hn(β(k)) is |k| × |k|.

We shall also use µi and σ2
i in place of µi(β0(t)) and σ2

i (β0(t)), respectively, for the sake of

simplicity.

We first prove the following to provide the posterior that corresponds to the Skinny

Gibbs sampler.

Theorem 3.1. The joint posterior of β, Z, Y and W corresponding to the Skinny Gibbs

algorithm is given by

(18)

f(β,W, Y, Z = k | E) ∝ |W |1/2 exp
{
−1

2
(Y −Xβ(k))′W (Y −Xβ(k))

}
v
−|k|
n

×
∏
i

g(si) exp
{
−1

2
(β′Dkβ + nβ(kc)′β(kc))

}
1{Ei = 1{Yi ≥ 0}},
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where W = Diag (s−21 , ..., s−2pn ), Dk = Diag(kτ−21n +(1−k)τ−20n ) and vn = τ1n(1−qn)/(qnτ0n).

Remark 3 (Connection to penalization). The posterior (18) suggests that with everything

else the same, a unit increase in the model size (|k|) reduces the posterior by a multiple of

v−1n = (qnτ0n)/τ1n(1− qn). This hints at the following: (a) the similarity of the posterior to

L0 penalty as discussed in Supplementary Materials, and (b) the reason for allowing the

prior parameters to depend on n (see Condition 3.5) so that the shrinkage implied by v−1n

is at an appropriate level.

We now provide the conditions assumed for proving strong selection consistency prop-

erty of Skinny Gibbs. By strong selection consistency, we mean that the posterior prob-

ability of the true model converges to one as sample size increases to infinity, as used in

Johnson and Rossell (2012) and Narisetty and He (2014).

Condition 3.2 (On Dimension pn). pn →∞ and log pn = o(n) as n→∞.

Condition 3.3 (On Regularity of the Design).

(a) The predictors are bounded, that is, max{|xij|, 1 ≤ i ≤ n, 1 ≤ j ≤ pn} ≤ C, for some

0 < C <∞;

(b) for some fixed 0 ≤ d < d′ ≤ 1,

0 < λ ≤ min
k:|k|≤mn+|t|

λmin
(
n−1Hn(β0(k))

)
≤ max

k:|k|≤mn+|t|
λmax

(
n−1X ′kXk)

)
≤ C2

(
n

log pn

)d
,

where, λmin(·), λmax(·) are the minimum and maximum eigenvalues of their arguments

respectively,

mn :=

( n

log pn

) 1−d′
2

∧ pn

 ,

and
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(c) for any possible model k with |k| ≤ mn + |t| and any u ∈ Rn in the space spanned by

the columns of Σ1/2Xk, there exists δ∗ > 0 and N(δ∗) such that

E

[
exp{u′Σ−

1
2 (E− µ)}

]
≤ exp

{
(1 + δ∗)u′u

2

}
,

for any n ≥ N(δ∗), where E denotes expectation over E (conditional on the design).

Condition 3.4 (On True Model and Signal Strength). We assume that there exists con-

stant c > 1 such that

c|t| ≤ mn, and min
1≤i≤|t|

|β0i(t)| ≥
√
c|t|Λc|t| log pn

n
,

where β0(t) = (β0i(t))
|t|
i=1 is the nonzero coefficients of β under the true model, and Λc|t| :=

max
k:|k|≤c|t|

λmax (n−1X ′kXk).

Condition 3.5 (Prior Parameters). The prior parameters τ 20n, τ 21n and qn are such that

for some δ > δ∗,

nτ 20n = o(1), nτ 21n ∼ (n ∨ p2+2δ
n ), qn ∼ p−1n .

The upper bound on the maximum eigenvalue in Condition 3.3 (b) is always satis-

fied if 1/3 < d < d′. This is because, λmax (n−1X ′kXk) ≤ Trace (n−1X ′kXk) ≤ C2|k| ≤

C2(n/ log pn)d holds for any |k| ≤ mn + |t| when 1/3 < d < d′. This condition is weaker

than the bounded maximum eigenvalue condition as assumed in Bondell and Reich (2012).

If the maximum eigenvalue here is bounded, we have the case d = 0, and mn can be almost

as large as (n/log pn)1/2.

The lower bound in Condition 3.3 (b) is essentially a restricted eigenvalue condition

for L0−sparse vectors. Restricted eigenvalue (RE) conditions are routinely assumed in

high-dimensional theory to guarantee some level of curvature of the objective function in

lower dimensions. However, our restricted eigenvalue condition for L0-sparse vectors is

16



weaker than irrepresentable conditions required for consistency of Lasso-type L1 penaliza-

tion methods (Zhao and Yu 2006; Liang et al. 2013). The lower bound in Condition 3.3

(b) is satisfied by sub-Gaussian random design matrices with high probability. A formal

statement about this is stated and proved as Lemma A.4 in Supplementary Materials. The

intuition behind the L0-sparse eigenvalue condition for Skinny Gibbs is attributable to the

similarity between Skinny Gibbs and the L0 type penalization as discussed in Supplemen-

tary Materials.

Condition 3.3 (c) is not really a restriction, because such a δ∗ > 0 always exists due

to the sub-Gaussianity of Σ−
1
2 (E − µ). Also note that for typical random designs, the

variable u′Σ−
1
2 (E − µ)/||u|| is asymptotically distributed as N(0, 1), so Condition 3.3 (c)

is expected to hold for a small positive constant δ∗. In Condition 3.4, the upper bound

on the true model size, and the minimum signal strength match with those for penalized

methods such as Lasso when d = 0, but impose slightly stronger conditions when d > 0.

For the screening property of Lasso to hold, Corollary 7.6 of Bühlmann and van de Geer

(2011) assumes the minimum signal to be at least in the order of
√
|t| log pn/n and the

true model size |t| = O(
√
n/ log pn).

Theorem 3.6. Under Conditions 3.2 – 3.5, we have

P [Z = t | (E, and |Z| ≤ mn)]
P−→ 1, as n→∞.

Moreover,
∑

k 6=t;|k|≤mn

P [Z=k|E]
P [Z=t|E]

≤ C exp{−ε log pn} → 0 for some C, ε > 0.

The strong selection consistency (SSC) is a stronger property than the usual Bayes

factor consistency as well as the model selection consistency considered for penalization

methods. As Johnson and Rossell (2012) argued (see proof of Theorem 2 there) that for

large pn > n1/2+ε, the posterior of the true model relative to models of a fixed size may
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also be very small, i.e., it is possible that
∑

k 6=t;|k|=|t|+1

P [Z=k|E]
P [Z=t|E]

→ ∞, even under the Bayes

factor consistency. This will make it difficult to identify the active predictors based on

a finite chain, because the posterior probability of the true model can be close to zero,

so that the ratios P [Z = k | E]/P [Z = t | E] are difficult to estimate. In a Bayesian

context, the model selection consistency for penalization methods corresponds to showing

that P [Z = t | E] > sup
k 6=t;|k|≤mn

P [Z = k | E], with a large probability. On the other

hand, SSC implies a much stronger statement since it guarantees a large “gap” between

the posterior probabilities of the true model and the rest. This gap is practically useful

for accurately identifying the true model.

Narisetty and He (2014) provided SSC for BASAD in the context of linear regression.

Due to the conjugacy of likelihood-prior set-up of linear regression and the availability

of closed-form posterior expressions, properties of Gaussian random vectors could be em-

ployed for the proofs of Narisetty and He (2014). On the other hand, a proof of Theorem

3.6 for showing SSC for Skinny Gibbs in the logistic regression context requires substantial

technical developments with careful use of concentration inequalities since the posterior of

Z is only available in the form of high dimensional integrals. For more details about the

proof, we refer to the Supplementary Materials.

Remark 4 (True model). For the sake of convenience, we assume that the true model

representation t is unique. If multiple representations of the true model are available (due

to the existence of linearly dependent predictors) the result of Theorem 3.6 holds if t

represents the union of the true model’s representations.

Remark 5 (Model size restriction). Although Theorem 3.6 provides strong selection con-

sistency conditional on |Z| < mn, models of size larger than |Z| ≥ mn can be completely

avoided by restricting the prior distribution on |Z| < mn as commonly done in the litera-

ture (Liang et al. 2013). In practice, we restrict the model size apriori to max(30,
√
n).
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Remark 6 (Marginal posterior probabilities). Theorem 3.6 justifies the use of marginal

posterior probabilities P [Zj | E] for selecting the variables. This is useful in practice

because we only need to estimate and store pn marginal posterior probabilities as opposed

to dealing with posterior probabilities of
(
pn
mn

)
models.

3.1 Comparisons with existing Bayesian methods

Chen and Chen (2012) proposed the extended Bayesian Information Criterion (EBIC)

(19) EBIC(k) = −2Ln(β̂(k)) + |k|(log n+ 2γ log pn)

for model selection, which is similar to the regular BIC except for an additional penalization

term depending on pn. The model selection consistency under EBIC is established by Chen

and Chen (2012) for γ > (1 − 1
2κ

), where pn = O(nκ). For high dimensional problems,

such an objective function cannot be applied to all possible models. Even if we restrict

ourselves to a model of size m for a relatively small m, the number of possible models
(
pn
m

)
could be too large. The EBIC is typically used to choose models among a much smaller

number of candidate models.

An alternative approach to Gaussian spike priors used in this paper is to take point

mass spike priors, i.e., βj | Zj = 0 ∼ δ0, the point-mass distribution at zero. An apparent

attraction of the point mass prior is that we no longer have to deal with pn × pn matrix

computations, if we can sample from the posterior of Zj without βj. This can indeed be

done in linear regression models, as shown in Guan and Stephens (2011). Unfortunately,

the posterior P (Z = k | E) does not have a closed-form for logistic regression, and approx-

imations have to be used for sampling from the posterior. In this direction, Hans et al.

(2007) proposed a shotgun stochastic search (SSS) algorithm based on a Laplace approx-

imation to the posterior. Liang et al. (2013) proposed Bayesian subset regression (BSR)
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modeling using a stochastic approximation Monte Carlo (SAMC) algorithm (Liang et al.

2007) that aims to avoid the potential local-trap problem for SSS by sampling a specified

sub-regions of the model space uniformly. Like Skinny Gibbs, these algorithms avoid p2n op-

erations in each step of the iteration, but they are analogous to stepwise variable selection

whereas Skinny Gibbs allows more general updates of the model in every iteration. More

specifically, for stepwise algorithms using point mass priors if the current model is k, the

model in the next step can only be a model that has at most one variable different from k

restricting it to be one of pn(|k|+1)+ |k| models when the total number of possible models

is 2pn . Skinny Gibbs has the potential to update any number of Z components at each

step, making the search more efficient. Also, for the SAMC algorithm to be competitive,

the number of sub-regions used in the method needs to increase with pn, making it less

computationally competitive. Some empirical comparisons of various methods are given

in Section 4.

For the strong selection consistency we established here, the spike prior variance τ 20n

can be arbitrarily close to zero making the limiting case of τ 20n = 0 the same as the point-

mass prior for βj | Zj = 0. We note that Liang et al. (2013) used a point-mass spike

prior and a slab prior whose variance depends on the size of the model, and showed strong

selection consistency. However, the consistency result of Liang et al. (2013) relied on a

condition on the posterior distribution itself, which makes their result indicative rather

than confirmatory. In this sense, we hope that our theoretical treatment also completes

the strong selection consistency theory on point-mass priors in high dimensional models.

Geweke (1996) proposed a sampling approach where Z ′is are sampled using conditional

Bayesian factors given the β′s, followed by a conditional sampling of corresponding ac-

tive β′s from univariate truncated normal distributions. This approach is similar to the

block update of Ishwaran and Rao (2005) with as many blocks as the number of vari-

ables. Geweke (1996) and Ishwaran and Rao (2005) provide consistency of the posterior in
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terms of convergence of Bayes factors whereas we show a stronger version of consistency

for Skinny Gibbs in the form of strong selection consistency. Recently, Bhattacharya et al.

(2016) proposed an alternative sampling approach whose typical complexity is n2pn, which

is slightly slower than Skinny Gibbs as discussed in Remark 1. Carbonetto and Stephens

(2012) proposed a variational Bayesian algorithm which is also scalable. Skinny Gibbs

has similarity with variational Bayes methods in the sense that both provided computa-

tionally motivated approximation to the posterior. The main difference is that Skinny

Gibbs performs sampling rather than optimization and even though it was motivated as

an approximation, Skinny Gibbs posterior itself can be shown theoretically to have strong

selection consistency property.

4 Simulation study

In this section, we study the performance of the proposed method and compare them with

several existing methods by simulation studies. Let X denote the design matrix whose

first |t| columns correspond to the active covariates for which we have nonzero coefficients,

while the rest correspond to the inactive ones with zero coefficients. In this section and

thereafter, we shall use p := pn to denote the number of covariates. In all the simulations,

we generate each row of X independently from a normal distribution with a p-dimensional

covariance matrix such that the correlation between any pair of active covariates is equal

to ρ1, the correlation between an active covariate and an inactive covariate is ρ2, and the

correlation between any pair of inactive covariates is ρ3. Given X, we sample Y from a

logistic model P (Yi = 1|xi) = exiβ/(1 + exiβ), for i = 1, . . . , n. We will specify the number

of observations n, the number of covariates p, the correlations ρ1, ρ2, and ρ3 in the tables.

We will also mention the number of active covariates |t| and the corresponding active

coefficients βt in the tables.
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We report the results from the usual Gibbs sampler described in Subsection 2.2 (BASAD),

and Skinny Gibbs (as a simplified version of BASAD), Bayesian Subset Regression (BSR,

Liang et al. (2013)), variational Bayes (Carbonetto and Stephens 2012), Adaptive Lasso,

SCAD, as well as MCP. For BSR, we set its hyperparameter γ = 1. For variational Bayes

algorithm, we choose the recent R package “varbvs” for implementation, and select the

median probability model based on the variational posterior inclusion probabilities. We

use the R package “glmnet” for Adaptive Lasso, and the package “ncvreg” for SCAD and

MCP. For Adaptive Lasso, the initial estimate of β is obtained from Lasso tuned using

BIC. For all the penalization methods, BIC is used to select the tuning parameters. More

specifically, we select the model which corresponds to the first local minimum of BIC since

it produces a sparser and more accurate model compared to the model that minimizes BIC

globally. While it is possible to use EBIC for tuning the penalization methods instead of

the classical BIC criterion, we use BIC because EBIC performed worse in our studies due

to model under-fitting. For the BASAD and Skinny Gibbs, we have three parameters to

choose: τ 20n, τ 21n and qn. In all our empirical work, we use

τ 20n = 1
n
, τ 21n = max

(
p2.1

100n
, 1
)
,

and we choose qn = P [Zi = 1] such that P [
∑p

i=1 Zi = 1 > K] = 0.1, for a pre-specified

value of K. Our default value is K = max(10, log(n)). These choices are very similar to

the implementation of BASAD for linear models in Narisetty and He (2014). We would

like to mention that instead of specifying the hyperparameters, a different approach is to

tune one or more hyperparameters. For instance, a few different values for τ1n around the

default parameter may be used to obtain different models followed by using a criterion

such as BIC to select the final model. In our empirical experience, such methods do not

always outperform default choices.
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For BASAD and Skinny Gibbs, we obtain the results based on averaging 10 Gibbs

chains each with a burn-in of 2000 and a length of 5000. The maximum model size along

the chain is restricted to be max(30,
√
n). The models for BASAD and Skinny Gibbs are

obtained by thresholding the marginal posterior probabilities at 0.5, which is referred to

as the median probability model by Barbieri and Berger (2004).

We will present the following model selection performance measures using 100 randomly

generated datasets. Average True Positive (TP) is the average number of active covariates

chosen; TPs is the average number of active covariates selected if the sparsity level is

known, that is, if we select a model with exactly |t| covariates; Average False Positive

(FP) is the average number of inactive covariates chosen; The column Z = t gives the

proportion of choosing the true model exactly, while Z ⊃ t is the proportion of times the

true model is included in the chosen model; Finally, the column Zs = t gives the proportion

of times the model chosen with size |t| is the true model. We note that the measures TPs

and Zs = t indicate how well a method can order the active covariates ahead of the inactive

ones, and do not depend much on the specific choice of the tuning parameters involved.

In Table 1, we have four cases corresponding to the number of covariates p = 50 or 250

and with a common correlation of ρ1 = ρ2 = ρ3 = 0 or 0.25. The results show that BASAD

and Skinny Gibbs, like other Bayesian model selection methods, have much smaller false

positives than non-Bayesian methods, and do not lose much in terms of true positives.

Overall, our proposed methods have higher exact identification rate (Z = t) but none of

the methods dominate others in all the measures. Variational Bayes method also provides

a competitive performance in terms of selecting the true model.

In our next simulation settings, we consider a less sparse case with |t| = 8 with all the

other aspects of data generating model the same as that of Table 1. We observe that the

performance of all the methods deteriorates in comparison to the sparser case (Table 1)

as expected. However, the effects on our methods are less substantial than on the other
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Table 1: Simulation results with high sparsity (|t| = 4 active variables): TP → True Positive; TPs: true
positives with known sparsity level, i.e., for the model selected with size equal to |t| = 4; FP → False
Positive; Z = t → The proportion of times true model is selected; Z ⊃ t → The proportion of times true
model is included; Zs = t → The proportion of times the chosen model of size |t| = 4 is the true model.
The active coefficients are βt = (−1.5, 2,−2.5, 3).

(a) n = 100; p = 50; ρ1 = ρ2 = ρ3 = 0; |t| = 4.

TP TPs FP Z = t Z ⊃ t Zs = t
BASAD 3.71 3.78 0.19 0.59 0.71 0.78
Skinny 3.82 3.76 0.42 0.53 0.82 0.76
VBayes 3.61 3.79 0.07 0.59 0.62 0.79
BSR 3.45 3.85 0.15 0.47 0.54 0.85
Alasso 3.79 3.70 0.84 0.35 0.79 0.64
SCAD 3.83 3.63 1.24 0.25 0.83 0.60
MCP 3.87 3.69 2.11 0.12 0.87 0.64

(b) n = 100; p = 50; ρ1 = ρ2 = ρ3 = 0.25; |t| = 4.

TP TPs FP Z = t Z ⊃ t Zs = t
BASAD 3.68 3.72 0.23 0.58 0.69 0.72
Skinny 3.74 3.72 0.46 0.51 0.75 0.72
VBayes 3.48 3.72 0.09 0.54 0.56 0.73
BSR 3.51 3.70 0.09 0.62 0.65 0.72
Alasso 3.70 3.66 0.65 0.42 0.72 0.59
SCAD 3.74 3.55 1.11 0.32 0.75 0.49
MCP 3.79 3.64 1.96 0.18 0.80 0.59

(c) n = 100; p = 250 ρ1 = ρ2 = ρ3 = 0; |t| = 4.

TP TPs FP Z = t Z ⊃ t Zs = t
BASAD 3.66 3.73 0.24 0.53 0.69 0.76
Skinny 3.72 3.68 0.54 0.50 0.75 0.70
VBayes 3.33 3.74 0.04 0.46 0.47 0.75
BSR 2.90 3.47 0.09 0.23 0.28 0.52
Alasso 3.69 3.54 1.23 0.24 0.70 0.52
SCAD 3.69 3.39 1.75 0.17 0.71 0.40
MCP 3.82 3.57 2.69 0.13 0.83 0.56

(d) n = 100; p = 250; ρ1 = ρ2 = ρ3 = 0.25; |t| = 4.

TP TPs FP Z = t Z ⊃ t Zs = t
BASAD 3.55 3.63 0.29 0.45 0.60 0.65
Skinny 3.62 3.64 0.56 0.38 0.65 0.66
VBayes 3.07 3.57 0.03 0.33 0.33 0.60
BSR 2.82 3.38 0.14 0.23 0.26 0.46
Alasso 3.30 3.33 1.06 0.15 0.40 0.28
SCAD 3.33 3.16 1.65 0.09 0.47 0.24
MCP 3.72 3.48 3.22 0.03 0.74 0.47
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methods. For example, in Table 2, exact selection proportions (Z = t and Zs = t) and

true positive rates (TP and TPs) are almost always higher for Skinny Gibbs than for the

competing methods. The performance of variational Bayes suffers substantially compared

to the results in Table 1. Overall, the results indicate that this is a challenging setting

and it is difficult to detect all the active covariates. In Figure 1, we plot the proportion

of active covariates (out of the eight active ones) that are selected as a function of model

sizes. Note that this plot does not depend on tuning in the penalization methods and

shows that Skinny Gibbs has the largest proportion of active covariates across settings for

all model sizes. We exclude BASAD in Figure 1 simply because its performance is almost

identical to that of Skinny Gibbs but with much more computational time involved.

We will now consider a setting with a larger number of variables with p = 1000 and

n = 200. In Table 3, we present the results for two sparsity levels |t| = 4 and |t| = 8

and two correlation settings ρ1 = ρ2 = ρ3 = 0 and ρ1 = ρ2 = ρ3 = 0.25. For this case,

we do not report the results for BASAD and BSR as they are very time consuming and

do not seem to offer significant performance gains compared to Skinny Gibbs based on

the previous results. We use a burn-in of size 5000 and an iteration length of 5000 for

each of the Skinny Gibbs chains. The results from Table 3 indicate that Skinny Gibbs and

variational Bayes perform the best with Skinny Gibbs having a slight edge over variational

Bayes for Table 3 (d) with p = 1000 and |t| = 8.

In the Supplementary Materials, we provide additional simulation results under high

correlation and weak signal settings, and plots of the marginal posterior probabilities along

the Skinny Gibbs iterates to demonstrate the stability in the convergence of the Skinny

Gibbs chains. Based on the additional simulation results, we note that the performance of

Skinny Gibbs is less affected by high correlations which can be attributed to its similarity

with the L0 penalty. It also demonstrates good performance in detecting weak signals rela-

tive to other existing methods. In summary, we conclude that Skinny Gibbs demonstrates
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Table 2: Simulation results with a less sparse setting (|t| = 8 active variables): TP → True Positive;
TPs: true positives with known sparsity level, i.e., for the model selected with size equal to |t| = 8; FP
→ False Positive; Z = t → The proportion of times true model is selected; Z ⊃ t → The proportion of
times true model is included; Zs = t → The proportion of times the chosen model of size |t| = 8 is the
true model. The active coefficients are βt = (−2, 2.143,−2.286, 2.429,−2.571, 2.714,−2.857, 3)8×1.

(a) n = 100; p = 50; ρ1 = ρ2 = ρ3 = 0; |t| = 8.

TP TPs FP Z = t Z ⊃ t Zs = t
BASAD 6.95 7.62 0.10 0.30 0.34 0.65
Skinny 7.28 7.63 0.24 0.43 0.52 0.66
VBayes 5.61 7.29 0.02 0.10 0.11 0.46
BSR 4.86 6.64 0.34 0.15 0.26 0.27
Alasso 6.60 7.28 0.71 0.19 0.41 0.26
SCAD 6.82 6.97 1.07 0.15 0.49 0.20
MCP 7.43 7.23 1.18 0.24 0.69 0.39

(b) n = 100; p = 50; ρ1 = ρ2 = ρ3 = 0.25; |t| = 8.

TP TPs FP Z = t Z ⊃ t Zs = t
BASAD 6.67 7.59 0.12 0.22 0.24 0.64
Skinny 7.23 7.61 0.23 0.40 0.51 0.66
VBayes 4.44 6.89 0.08 0.03 0.03 0.18
BSR 4.27 6.63 0.22 0.10 0.14 0.19
Alasso 5.57 7.29 0.61 0.06 0.29 0.17
SCAD 5.75 6.84 0.95 0.04 0.31 0.15
MCP 6.75 7.13 1.30 0.08 0.51 0.32

(c) n = 100; p = 250; ρ1 = ρ2 = ρ3 = 0; |t| = 8.

TP TPs FP Z = t Z ⊃ t Zs = t
BASAD 5.69 6.47 0.43 0.12 0.12 0.21
Skinny 6.11 6.52 0.63 0.16 0.17 0.21
VBayes 2.64 5.71 0.12 0.00 0.00 0.06
BSR 1.97 4.00 0.06 0.00 0.00 0.00
Alasso 5.26 5.93 1.49 0.02 0.04 0.02
SCAD 5.33 5.69 2.11 0.02 0.05 0.02
MCP 6.06 5.88 2.37 0.04 0.16 0.03

(d) n = 100; p = 250; ρ1 = ρ2 = ρ3 = 0.25; |t| = 8.

TP TPs FP Z = t Z ⊃ t Zs = t
BASAD 5.37 6.42 0.34 0.06 0.08 0.19
Skinny 5.84 6.55 0.67 0.11 0.14 0.21
VBayes 1.93 5.01 0.07 0.00 0.00 0.00
BSR 2.06 3.56 0.13 0.00 0.00 0.00
Alasso 4.43 5.85 1.21 0.00 0.01 0.00
SCAD 4.57 5.33 1.41 0.00 0.01 0.00
MCP 5.21 5.60 1.96 0.00 0.10 0.00
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Figure 1: Proportion of True Covariates included versus Model Size under the same
settings of Table 2. The curve for Skinny Gibbs consistently stays above those for other
methods indicating its better performance for variable selection. The below four plots are
for the four different settings of Table 2 denoted by (a) - (d), respectively.
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strong performance across a wide range of settings.

4.1 Time improvement of Skinny Gibbs

We perform a small study for time comparison between BASAD and Skinny Gibbs. We

present the CPU time for different methods based on 10 data sets with sample size n = 100

and varying number of variables as p = 50, 100, . . . , 1000. We generate data using one of our

simulation settings (as in Table 1 of the paper with ρ1 = ρ2 = ρ3 = 0). That is, we generate

each row of X independently from a normal distribution with a p-dimensional identity

matrix Ip. Given X, we sample E from a logistic model P (Ei = 1|xi) = exiβ/(1 + exiβ), for

i = 1, . . . , n. We use |t| = 4, and βt = (1.5, 2, 2.5, 3). We use thinkpad s230u Twist with

Intel(R) Core(TM) i7-3537U CPU@ 2.00GHz, 8.00GB memory, and Windows7 64bit. For

both the methods, we use a burn-in of size 2000 and additional 5000 iterations.

In Figure 2, we plot the time (in seconds) for BASAD and Skinny Gibbs. It can be seen

that the time for BASAD grows at a higher rate than Skinny Gibbs and look quadratic in

p whereas the time for Skinny grows linearly in p. Computations for penalization methods

are generally faster than those for Bayesian methods including Skinny Gibbs. However, in

terms of computational complexity, Skinny Gibbs is competitive with penalization based

methods since its complexity is also a linear function of p similar to the penalization based

methods.

5 Real data examples

5.1 PCR dataset

We consider the data from an experiment by Lan et al. (2006) to study the genetics of

two inbred mouse populations B6 and BTBR. The data include expression levels of 22,575
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Table 3: Simulation results with a large number of variables (p = 1000):TP → True Positive; TPs:
true positives with known sparsity level, i.e., for the model selected with size equal to |t|; FP →
False Positive; Z = t → The proportion of times true model is selected; Z ⊃ t → The propor-
tion of times true model is included; Zs = t → The proportion of times the chosen model of size
equal to |t| is the true model. The active coefficients are βt = (−1.5, 2,−2.5, 3)4×1 for |t| = 4 and
βt = (−1.5, 1.714,−1.929, 2.143,−2.357, 2.571,−2.786, 3)8×1 for |t| = 8.

(a) n = 200; p = 1000; ρ1 = ρ2 = ρ3 = 0; |t| = 4.

TP TPs FP Z = t Z ⊃ t Zs = t
Skinny 3.95 3.97 0.18 0.82 0.95 0.97
VBayes 3.88 3.97 0.00 0.88 0.88 0.97
Alasso 3.98 3.90 1.93 0.23 0.98 0.89
SCAD 3.99 3.87 2.97 0.13 0.99 0.84
MCP 4.00 3.94 5.47 0.01 1.00 0.92

(b) n = 200; p = 1000; ρ1 = ρ2 = ρ3 = 0.25; |t| = 4.

TP TPs FP Z = t Z ⊃ t Zs = t
Skinny 3.93 3.98 0.13 0.81 0.93 0.98
VBayes 3.82 3.97 0.02 0.83 0.83 0.97
Alasso 3.87 3.87 1.30 0.24 0.87 0.80
SCAD 3.96 3.82 2.84 0.13 0.96 0.75
MCP 4.00 3.91 5.36 0.01 1.00 0.89

(c) n = 200; p = 1000; ρ1 = ρ2 = ρ3 = 0; |t| = 8.

TP TPs FP Z = t Z ⊃ t Zs = t
Skinny 7.37 7.70 0.08 0.44 0.47 0.71
VBayes 7.25 7.71 0.02 0.44 0.45 0.71
Alasso 7.06 7.11 1.19 0.11 0.32 0.19
SCAD 7.07 6.84 1.72 0.06 0.33 0.11
MCP 7.70 7.21 3.20 0.05 0.72 0.34

(d) n = 200; p = 1000; ρ1 = ρ2 = ρ3 = 0.25; |t| = 8.

TP TPs FP Z = t Z ⊃ t Zs = t
Skinny 7.04 7.46 0.20 0.29 0.35 0.52
VBayes 6.69 7.47 0.02 0.24 0.24 0.52
Alasso 6.68 7.00 1.04 0.11 0.23 0.20
SCAD 6.60 6.66 1.68 0.05 0.27 0.11
MCP 7.67 7.26 3.60 0.02 0.71 0.39
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Figure 2: CPU time (in seconds) for BASAD and Skinny Gibbs (SG) on 10 data sets with
n = 100 and p varies. Plot (a) shows Time as a function of p and (b) shows log (1+Time)
as a function of log p.

genes from 31 female and 29 male mice, resulting in a total of 60 arrays. The physiological

phenotype glycerol-3-phosphate acyltransferase (GPAT) was also measured by quantitative

real-time PCR. The gene expression data and the phenotypic data are publicly available at

GEO (http://www.ncbi.nlm.nih.gov/geo; accession number GSE3330). It is of importance

to learn which genes are associated with low levels of GPAT as low levels of GPAT are

found to diminish Hepatic Steatosis, a disease commonly caused by obesity (Wendel et al.

2010). For illustration, we obtain a binary response based on the variable GPAT as E =

I(GPAT < Q(0.4)), where Q(0.4) is the 0.4th quantile of GPAT. The subsequent analysis

will be made on the response variable E. Due to the very large number of genes, we first

perform a screening in this example but a larger p is considered in the Lymph dataset

in Subsection 5.2. We use p-values obtained from the simple logistic regression of the

response E against individual genes to select 99 marginally most significant genes, which

along with the gender variable form p = 100 covariates. We apply Skinny Gibbs along
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the Bayesian Subset Regression method (BSR) of Liang et al. (2013)), Lasso, SCAD and

MCP for selecting the covariates. The results for Skinny Gibbs are based on a chain of

length 4× 104 obtained after a burn-in of length 2× 104. The initial value for β is the zero

vector and the initialization of Z contains ones for the K = 10 marginally most significant

covariates. For BSR, the results are based on an MCMC chain of length 2 × 105 after a

burn-in chain of length 5× 104.

In the real data applications, we consider 10-fold cross-validated prediction errors as

a measure of performance of the variable selection methods. For obtaining these cross-

validated errors, we divide the data D into 10 folds D1, · · · , D10. For each Dk, {k ∈

1, 2, · · · , 10}, we perform variable selection using the data from D \Dk to obtain predicted

probabilities for the responses in Dk. The cross validation error for the fold k is defined as

CVk =
∑
i∈Dk

(π̂i − Ei)2, where π̂i is the predicted probability for the ith observation. The

overall CV error is CV =
∑10

k=1CVk/n, where n =
10∑
k=1

|Dk|.

Figure 3 shows the 10-fold cross validation errors for different methods given the number

of covariates chosen. The X-axis represents different model sizes, and the Y-axis shows

CV-errors for different methods considered. We note that Skinny Gibbs performs well

along with MCP. In particular, the CV error is the smallest for Skinny Gibbs if we use

smaller model sizes. In Figure 4, we plot the marginal posterior probabilities using the

entire data D for two different Gibbs chains. We see that the top three genes from both

the chains are the same and have higher inclusion probabilities than the rest. This is also

consistent with Figure 3, which shows the largest decrease in CV error for the first three

covariates. The Affymetrix IDs of the top genes in descending order of marginal posterior

probabilities are 1432002-at, 1441569-at, and 1438936-s-at. The genes 1438936-s-at and

1438937-x-at (which is among the top five genes in both the Gibbs chains) belong to the

Angiogenin gene family, which is previously found to be associated with obesity (Imai et al.
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Figure 3: PCR Dataset: Cross Validated Prediction Error versus Model Size for several
model selection methods

Figure 4: PCR Dataset: Marginal posterior probabilities from two different chains of
Skinny Gibbs. The Affymetrix IDs of the top genes are given in the legend.
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2008).

5.2 Lymph data

We now consider the gene expression data set considered in Hans et al. (2007), and Liang

et al. (2013). The dataset contains gene expressions of n = 148 individuals. The response

of interest is positive (high risk) or negative (low risk) status of the lymph node that is

related to human breast cancer. There are 100 low risk cases and 48 high risk cases. After

prescreening in Hans et al. (2007), a total of 4512 genes are selected showing a variation

above the noise levels. In addition, there are two clinical variables, including the tumor

size in centimeters as well as the protein assay-based estrogen receptor status (coded as

binary). Hence we have p = 4514 candidate covariates with a sample size of n = 148. Due

to the large p in this example, the results for Skinny Gibbs are based on combining ten

different chains with the length and initialization described in Subsection 5.1.

As in Subsection 5.1, we present the 10-fold cross validated prediction errors for the

methods considered, see Figure 5. We reported the errors for the models of size smaller

than or equal to seven as the larger models often lead to complete separation when the

model is fit to the estimation data leading to an unstable prediction for the testing data.

All the methods considered have similar performance in terms of CV errors, with Skinny

Gibbs having slightly lower errors. The CV errors from Skinny Gibbs suggest that the

top six genes are important. Figure 6 shows the largest 100 posterior probabilities of

Zj = 1 from two different chains of Skinny Gibbs. The two chains lead to slightly different

ordering of the top six genes, but there is only one non-overlapping gene in the two sets

indicating the stability of the results. It is comforting to note that a few variables have

substantially higher marginal probabilities than the rest in both the chains. However,

some of the top variables do not have the marginal posterior probabilities close to 1, which
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Figure 5: Lymph Dataset: Cross Validated Prediction Error versus Model Size for several
model selection methods

Figure 6: Lymph Dataset: Marginal Posterior Probabilities from two different chains of
Skinny Gibbs. The labels on the top six points correspond to the column numbers of the
genes.
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can be attributed to the phenomenon that multiple sets of predictors in this problem can

represent the model nearly equally well. In the supplementary materials, plots of the

marginal posterior probabilities along the Skinny Gibbs iterates are provided.

6 Conclusion

In this paper, we propose a novel Gibbs sampler for variable selection in logistic regression.

The proposed Skinny Gibbs has desired theoretical and computational properties. The

strong selection consistency of the Gibbs sampler is established, which guarantees that the

posterior probability of the true model goes to one. Computationally, each iteration of

Skinny Gibbs requires complexity that is linear in p. Empirical results presented in the

paper show the highly competitive performance of this approach for model selection. The

theoretical and computational techniques developed in the paper can be extended to other

models that have normal scale mixture representations. Skinny Gibbs can also be extended

to the case where the prior distribution has a normal scale mixture representation such as

the conjugate priors of Chen et al. (2008).

Supplementary materials

Part A: Proofs of Theorems 3.1 and 3.6.

Part B: A discussion about the connection between L0 penalization and Skinny Gibbs.

Part C: A discussion about an unbiasedness property of Skinny Gibbs.

Part D: Skinny Gibbs algorithm using the Polya-Gamma scale mixture representation

(Polson et al. 2013) of the logistic distribution.

Part E: A discussion on the stability and convergence of Skinny Gibbs chains for the

empirical studies of Sections 4 and 5.
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Part F: Additional simulation results for high correlation and weak signal settings that are

not presented in the paper.
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Ročková, V. and George, E. I. (2014), “EMVS: The EM Approach to Bayesian Variable

Selection,” Journal of the American Statistical Association, 109, 828–846.

Scott, G. and Berger, J. (2010), “Bayes and Empirical-Bayes Multiplicity Adjustment in

the Variable-Selection Problem,” Annals of Statistics, 38, 2587–2619.

Shen, X., Pan, W., and Zhu, Y. (2012), “Likelihood-based Selection and Sharp Parameter

Estimation,” Journal of the American Statistical Association, 107, 223–232.

39



Stefanski, L. A. (1991), “A Normal Scale Mixture Representation of the Logistic Distribu-

tion,” Statistics and Probability Letters, 69–70.

Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,” Journal of the

Royal Statistical Society, Series B, 58, 267–288.

van de Geer S. A. (2008), “High-dimensional Generalized Linear Models and the Lasso,”

Annals of Statistics, 36, 614–645.

Wendel, A. A., Li, L. O., Y., L., Cline, G. W., Shulman, G. I., and Coleman, R. A. (2010),

“Glycerol-3-phosphate Acyltransferase 1 Deficiency in ob/ob Mice Diminishes Hepatic

Steatosis but Does Not Protect against Insulin Resistance or Obesity.” Diabetes, 59,

1321–1329.

Zhang, C. H. (2010), “Nearly Unbiased Variable Selection under Minimax Concave

Penalty.” The Annals of Statistics, 38, 894–942.

Zhao, P. and Yu, B. (2006), “On Model Selection Consistency of Lasso,” Efficient Empirical

Bayes Variable Selection and Estimation in Linear Models, 7, 2541–2563.

40


	Introduction
	Variable selection with continuous spike-slab priors
	Prior specification
	Gibbs sampler
	Skinny Gibbs algorithm

	Theoretical results
	Comparisons with existing Bayesian methods

	Simulation study
	Time improvement of Skinny Gibbs

	Real data examples
	PCR dataset
	Lymph data

	Conclusion

