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Topological orders are new phases of matter beyond Landau symmetry breaking. They correspond
to patterns of long-range entanglement. In recent years, it was shown that in 1+1D bosonic systems
there is no nontrivial topological order, while in 2+1D bosonic systems the topological orders are
classified by a pair: a modular tensor category and a chiral central charge. In this paper, following
a new line of thinking, we find that in 3+1D the classification is much simpler than it was thought
to be; we propose a partial classification of topological orders for 3+1D bosonic systems: If all
the pointlike excitations are bosons, then such topological orders are classified by a simpler pair
(G,ω4): a finite group G and its group 4-cocycle ω4 ∈ H

4[G;U(1)] (up to group automorphisms).
Furthermore, all such 3+1D topological orders can be realized by Dijkgraaf-Witten gauge theories.
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I. INTRODUCTION

In history, we have completely classified some large
class of matter states only for a few times. The first time
is the classification of all spontaneous symmetry breaking
orders1,2. We find that all symmetry breaking orders can
be described by a pair:

(GΨ ⊂ GH), (1)
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where GH is the symmetry group of the system and GΨ,
a subgroup of GH , is the symmetry group of the ground
state.
The second time is the classification of all 1-

dimensional gapped quantum phases. We find that 1-
dimensional gapped quantum phases with on-site sym-
metry GH can be classified by a triple (even for strongly
interacting bosons/fermions)3,4:

[GΨ ⊂ GH ; pRep(GΨ)], (2)

where pRep(GΨ) is a projective representation of GΨ
5.

We see that all the 1-dimensional gapped quantum
phases are described by symmetry breaking plus an ad-
dition structure described by pRep(GΨ). The additional
structure is the symmetry-protected topological (SPT)
order6. The pRep(GΨ) structure can equivalently be de-
scribed by a pair (GΨ, ω2), where ω2 is a group 2-cocycle
in H2[GΨ;U(1)].
The third time is the classification of 2-dimensional

gapped quantum phases. In the absence of any symme-
try, a gapped phase may have a nontrivial topological
order7–9. We find that all 2+1D bosonic topological or-
ders are classified by a pair:9–11

(MTC, c), (3)

where MTC is a unitary modular tensor category and c
is the chiral central charge of the edge states. Physically,
the tensor category theory MTC is just a theory that de-
scribes the fusion and the braiding of quasiparticle excita-
tions, which correspond to fractional/non-abelian statis-
tics. Modular means that every nontrivial quasiparticle
has a nontrivial mutual statistics with some quasiparti-
cles.
The above idea of classification focused on the proper-

ties of topological excitations. Later, it was generalized
to fermionic systems12, then included symmetries13,14,
and became a fairly complete classification. Tradition-
ally symmetries are described by groups, but even when
we focus on only the excitations, no information of the
symmetry is missing. This is because excitations carry
representations of the symmetry group, from which the
group can be uniquely reconstructed (known as the Tan-
naka duality).
In particular, SPT orders15,16 in 2+1D, which were

known to be classified by the pair (G,ω3) where ω3 are
now group 3-cocycles, are also included in this complete
classification as a special case. From the excitation point
of view, they are equivalently classified by minimal mod-

ular extensions of symmetric fusion categories (SFC).
Here SFC describes the excitations above the symmetric
product state, carrying group representations. Symmet-

ric fusion emphasizes the nature that these excitations
have trivial statistics: they are either bosons or fermions
and have trivial mutual braidings. There are only two
variants of SFC: one is Rep(G), the usual representation
category, with all excitations being bosons; the other is

sRep(Gf ), for fermionic systems, with some representa-
tions assigned Fermi statistics. On the other hand, a min-
imal modular extension of the SFC just means a smallest
MTC that contains the SFC. It corresponds to the gauged
theory17 of the SPT order, which is a topological order
with no symmetry.
After those fairly complete classification results in

1+1D and 2+1D, in this paper, we are going to study the
classification of 3+1D topological orders. We will only
deal with the simpler case, the 3+1D topological orders
for bosonic systems. 3+1D bosonic topological orders
are gapped quantum liquids18,19 without any symmetry.
However, the physical definition of gapped quantum liq-
uids, which is from the point of view of renormalization
group or local unitary transformation, is far from applica-
ble. Instead, similar as the classification in 2+1D which
focuses on the properties of topological excitations, we
start with some basic properties of 3+1D topological or-
ders:

1. They have pointlike excitations and stringlike ex-
citations, that can move in all directions and have
nontrivial braidings among them.

2. The number of types of excitations is finite.

3. The statistics of pointlike excitations is trivial; they
are bosons or fermions with trivial mutual statis-
tics. In other words, the pointlike excitations in
a 3+1D topological order are described fully by a
SFC.

4. The braiding between pointlike and stringlike exci-
tations, and among stringlike excitations must be
non-degenerate, enough to detect every type of ex-
citations. This is the principle of remote detectabil-
ity, which will be elaborated on later.

5. The 2+1D boundary of 3+1D topological order
is always gappable. Furthermore, any interface
or boundary induced by condensation of bosonic
pointlike excitations is gappable. A detailed argu-
ment is given in Sec.VA.

6. Just like 2+1D topological orders, the bulk 3+1D
topological order is fully determined by its bound-
ary (the so called boundary-bulk duality20,21).
Furthermore, one can generalize the Turaev-Viro
TQFT22 or Levin-Wen model23 to construct the ex-
plicit model of bulk 3+1D topological order from
its gapped boundary. Mathematically this is the
generalization of Drinfeld center to higher dimen-
sions.

One may view the above as our axioms or assumptions
to mathematically define a 3+1D topological order. This
excludes the gapped non-liquid states in 3+1D, such
as stacked fractional-quantum Hall layers18, and frac-
tal/fracton topological states24–30 which include Haah’s
model31.
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Nexc NtopAB classification: H4
Aut(G) examples

1 1 H
4
Aut(Z1) = Z1 trivial product states

2 1 H
4
Aut(Z2) = Z1 Z2 gauge theory

3 2 H
4
Aut(Z3) = Z1, H

4
Aut(S3) = Z1 Z3 and S3 gauge theories

4 5 H
4
Aut(Z4) = Z1, H

4
Aut(Z2 × Z2) = Z2, H

4
Aut(D10) = Z1, H

4
Aut(A4) = Z1

· · · · · · · · ·

TABLE I. A table of simple 3+1D AB topological orders in bosonic systems, listed according the number Nexc of topological
types for pointlike excitations. Here, NtopAB is the number of distinct AB topological orders and H

4
Aut(G) is the set of cocycles

in H
4[G;U(1)] up to the automorphisms of G: H

4
Aut(G) = H

4[G;U(1)]/Aut. In particular, H
4[Z2 × Z2;U(1)] = Z

2
2 and

H
4
Aut(Z2 × Z2) = Z2.

If the pointlike excitations are all bosons, the corre-
sponding SFC will always have the form Rep(G) for some
finite group G. In other words, the pointlike excitations
of a 3+1D topological order can always be viewed as
carrying irreducible representations of the group.32 They
exactly behave like the quasiparticle excitations above a
product state with G symmetry. This is a quite amazing
result: a 3+1D topological order whose quasiparticles are
all bosonic is always related to a finite group G.33 We will
refer to such (point-like-excitations-are-)all-boson topo-
logical order as AB topological order.
One may naturally wonder if a 3+1D AB topologi-

cal order is always described by a G-gauge theory, since
the pointlike excitations in a G-gauge theory are indeed
described by Rep(G). In fact, the above statement is
not true. There are 3+1D topological orders arising
from the Dijkgraaf-Witten gauge theory34. Dijkgraaf-
Witten gauge theories can be viewed as gauged SPTs
which can be defined in any dimensions. They are de-
termined by, again, a pair (G,ωd+1): ωd+1 is a group
cocycle in Hd+1[G;U(1)] where d is the spacial dimen-
sion of the system. In 3+1D we need 4-cocycles. In
a Dijkgraaf-Witten theory with (G,ω4), pointlike exci-
tations are also described by Rep(G). So we cannot say
that all 3+1D topological order with Rep(G) pointlike ex-
citations are described by the usual G-gauge theory. But,
do we have something even more general than Dijkgraaf-
Witten gauge theory that also produce Rep(G) pointlike
excitations? In this paper, we like to show that there is
nothing more general:

All 3+1D topological orders, whose pointlike excita-
tions are all bosons, are classified by a finite group G
and its group 4-cocycle ω4 ∈ H4[G;U(1)], up to group
automorphisms.

In this paper, “classified” always means a correspondence
in a one-to-one fashion. The above result allows us to
obtain a table of simple 3+1D AB topological orders (see
Table I). Furthermore,

All 3+1D AB topological orders can be realized by
Dijkgraaf-Witten gauge theory with a finite gauge
group.

For a classification of 3+1D topological orders where
some pointlike excitations are fermions, see Ref. 35.
The classification of 3+1D AB topological orders is

obtained by condensing all the pointlike excitations in
a 3+1D topological order C4 to form a new topological
order D4 (which is possible when all the pointlike exci-
tations are bosons), and argue that

1. The new phase D4 is a trivial phase. Therefore, C4

has a 2+1D gapped boundary M3 induced by such
condensation, which carries only stringlike excita-
tions.

2. The above stringlike excitations on the boundary
are labeled by the elements of a finite group G,
and their fusion rule is given by the group multipli-
cation. It is the same group whose representations
are carried by the pointlike excitations in the bulk.

3. The string-only boundary M3 form a unitary
pointed fusion 2-category whose only nontrivial
level are the objects. The different pointed fusion
2-categories are classified by a finite group G and
its 4-cocycle ω4 in H4(G;U(1)), up to group auto-
morphisms.

4. The bulk topological order C4 is the center of the
fusion 2-category M3: C4 = Z(M3)20,21, which
is a Dijkgraaf-Witten gauge theory with (G,ω4).
Furthermore, each bulk topological order C4 cor-
responds to a unique unitary pointed fusion 2-
category M3.

In the following, we will discuss some general properties
of 3+1D topological orders. Then we will show the main
result of the paper following the above four steps.

II. EXCITATIONS IN TOPOLOGICALLY

ORDERED STATE

A. Pointlike excitations

1. Use trap Hamiltonian to define excitations

Consider a bosonic system defined by a local gapped
Hamiltonian H0 in d dimensional space Md without
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boundary. A collection of quasiparticle excitations la-
beled by pi and located at xi can be produced as gapped
ground states of H0 +

∑

i δHpi
where δHpi

is non-zero
only near xi. By choosing different δHpi

’s we can create
(or trap) all kinds of pointlike excitations. The gapped
ground states of H0 +

∑

i δHpi
may have a degener-

acyD(Md; p1, p2, · · · ) which depends on the quasiparticle
types p1, p2, · · · and the topology of the space Md. The
degeneracy is not exact, but becomes exact in the large
space and large particle separation limit. We will use
V(Md; p1, p2, · · · ) to denote the space of the degenerate
ground states, which will also be called fusion space. If
the Hamiltonian H0 +

∑

i δHpi
is not gapped, we will

say D(Md; p1, p2, · · · ) = 0 (i.e., V(Md; p1, p2, · · · ) has
zero dimension). If H0 +

∑

i δHpi
is gapped, but if δHpi

also creates quasiparticles away from xi’s (indicated by
the bump in the energy density away from xi’s), we will
also say D(Md; p1, p2, · · · ) = 0. (In this case quasipar-
ticles at xi’s do not fuse to trivial quasiparticles.) So,
if D(Md; p1, p2, · · · ) > 0, δHpi

only creates/traps quasi-
particles at xi’s.
For topologically ordered state with no spontaneous

symmetry breaking, the fusion space on d-dimensional
sphere Md = Sd with no particles V(Sd) is always one
dimensional. Thus in the presence of pointlike excita-
tions, dimension of the fusion space, V(Sd; p1, p2, · · · )
represents the total number of internal degrees of freedom
for the quasiparticles p1, p2, · · · ). To obtain the number
of internal degrees of freedom for type-pi quasiparticle,
we consider the dimension D(Sd; pi, pi, · · · , pi) of the fu-
sion space on n type-pi particles on Sd. In large n limit
D(Sd; pi, pi, · · · , pi) has a form

lnD(Sd; pi, pi, · · · , pi) = n(ln dpi
+ o(1/n)). (4)

Here dpi
is called the quantum dimension of the type-

pi particle, which describe the internal degrees of free-
dom the particle. For example, a spin-0 particle has a
quantum dimension d = 1, while a spin-1 particle has a
quantum dimension d = 3.

2. Simple type and composite type

Two excitations p (trapped by ∆Hp) and p′

(trapped by ∆Hp′) are said to have the same type
if the corresponding fusion spaces V(Sd; p, p1, · · · ) and
V(Sd; p′, p1, · · · ) can smoothly deform into each other as
we change the trap Hamiltonian from ∆Hp to ∆Hp′ . Two
excitations p and p′ are of the same type iff they only dif-
fer by some local operators. If an exaction can be created
by local operators from the ground state, the excitation
will be said to have a trivial type, and denoted as 1.

Even after quotient out the local excitations of trivial
type, topological quasiparticle type still have two kinds:
simple type and composite type: If the ground-state de-
generate subspace V(Md; p, q, · · · ) cannot not be splitted
by any small local perturbations near ∆Hp, then the par-

ticle p is said to be simple. Otherwise, the particle type
p is said to be composite.
When p is composite, the fusion space V(Md; p, q, · · · )

has a direct sum decomposition (after splitting by a
generic perturbation of ∆Hp):

V(Md; p, q, · · · )

= V(Md; p1, q, · · · )⊕ V(Md; p2, q, · · · )

⊕ V(Md; p3, q · · · )⊕ · · · (5)

where p1, p2, p3, etc. are simple types. The above de-
composition allows us to denote the composite type i1
as

p = p1 ⊕ p2 ⊕ p3 ⊕ · · · . (6)

3. Fusion of pointlike excitations

When we fuse two simple types of topological particles
p1 and p2 together, it may become a topological particle
of a composite type:

p1 ⊗ p2 = q = p′3 ⊕ p′′3 ⊕ · · · . (7)

Here, we will use an integer tensor Np1p2
p3

to describe the
quasiparticle fusion, where pi label simple types:

p1 ⊗ p2 =
⨁

p3

Np1p2

p3
p3. (8)

Such an integer tensor Np1p2
p3

is referred as the fusion
coefficients of the topological order, which is a universal
property of the topologically ordered state.

The internal degrees of freedom (i.e. the quantum di-
mension dp) for the type-p simple particle can be calcu-
lated directly from Np1p2

p3
. In fact dp is the largest eigen-

value of the matrix Np, whose elements are (Np)p2p1
=

Npp1
p2

.

B. Stringlike excitations

Similarly, we can also use gapped trap Hamiltonians
H0+

∑

s ∆Hs to define stringlike excitations, where ∆Hs

is no zero only near a loop. The ground state subspace
of H0 +

∑

s ∆Hs is called the fusion space of strings
V(Md, s, t, · · · ). If the fusion spaces V(Md, s, t, · · · ) and
V(Md, s′, t, · · · ) can smoothly deform into each other, we
say the strings s and s′ are of the same type.
If the ground-state degenerate subspace

V(Md; s, t, · · · ) cannot be split by any small non-

local perturbations along the string s, then the string s
is said to be simple. Otherwise, the string s is said to
be composite. We stress that here we allow non-local
perturbations along the string s. In other word, any
degrees of freedom near the string can interact no
matter how far are they. But the interactions do not
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involve degrees of freedom far away from the string. The
non-local perturbations is necessary. If we used local
perturbations to define string types, we would have too
many string types that are not related to the topological
orders in the ground state.
The fusion of the string loops is also described by in-

teger tensors

s1 ⊗ s2 =
⨁

s3

Ms1s2
s3 s3. (9)

The string loops can also shrink and become pointlike
excitations

si →
⨁

pj

Msi
pj
pj . (10)

We like to conjecture that

If Ms
1
> 1, then the string s is not simple (i.e. s is a

direct sum of several strings).

If a simple string satisfy Ms
1

= 1, we say s is a pure

simple string.

C. The on-string excitations are always gappable

The strings, as 1D extended objects, may carry excita-
tions that travel along them. Those excitations can some
times be gapless. In the following, we like to argue that,
if the types of pointlike and stringlike excitations are fi-
nite, those on-string excitations can always be gapped by
adding proper interactions.
We do this by contradiction. Assuming that on-string

excitations cannot be gapped by interactions, based on
what we know about 1+1D system, there are only two
situations.

1. When the on-string excitations are chiral with a
non-zero chiral central charge c. But in this case,
when fusing n string together, the new string will
have on-string excitations with chiral central charge
nc. This means that the fusion will produce infi-
nite types of strings. The finite string-type assump-
tion excludes the possibility of on-string excitations
with a non-zero chiral central charge.

2. When the on-string excitations are described by
the edge of certain fractional-quantum Hall states
(which have chiral central charge c = 0)36. In
this case, those on-string excitations have a grav-
itational anomaly described by a non-invertible
2+1D topological order20,37 In this case, the open
membrane operator that creates such a string on
its boundary must creates a non-invertible 2+1D
topological order on the membrane. Multiply-
ing membrane operators corresponds to stacking
2+1D topological orders together, and stacking

non-invertible topological order can never produce
a trivial topological order20. Thus fusing n string
together will always produce a new non-trivial
string. Again, finite string-type assumption ex-
clude this possibility.

We like to remark that ungappable strings can ap-
pear in gapped non-liquid states18,19, such as the 3+1D
gapped states obtained by stack fractional quantum Hall
layers. But in that case, the strings are not mobile in
all the directions. It appears that the liquid assump-
tion of topological order18,19 makes all strings gappable
in 3+1D. In the rest of this paper, we will always assume
the on-string excitations to be gapped.

III. SOME GENERAL PROPERTIES OF 3+1D

TOPOLOGICAL ORDERS OF BOSON SYSTEMS

A. The group structure in 3+1D topological order

We note that the pointlike excitations in 3+1D topo-
logical orders are described by a symmetric fusion cate-
gory (SFC). Physically, a SFC is just a collection of par-
ticles which are all bosons or fermions with trivial mutual
statistics.

Mathematically, it has been shown that a SFC must be
either Rep(G) (a braided fusion category (BFC) formed
by the representations of G with all the irreducible rep-
resentations being assigned Bose statistics) or sRep(G)
(a braided fusion category (BFC) formed by the repre-
sentations of G with some of the irreducible represen-
tations being assigned Bose statistics while other irre-
ducible representations being assigned Fermi statistics)
for some group G. Such group G is uniquely deter-
mined (up to isomorphisms) by the SFC, namely by the
pointlike excitations. This is known as the Tannaka du-
ality, which will be further explained in Sec. VC.

The above implies that

Each 3+1D topological order is associated with a group
G, where the pointlike excitations (particles) are de-
scribed by Rep(G) or sRep(G).

In this paper, we will use this fact heavily to gain a sys-
tematic understanding of 3+1D topological orders. (In
fact, each higher dimensional topological order is also re-
lated to a group in the same fashion.) In some sense,
3+1D topological orders can all be viewed as gauge the-
ories with some old or new twists.

However, those pointlike excitations have trivial mu-
tual statistics among them. One cannot use the point-
like excitations to detect other pointlike excitations by
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remote operations. In general, we believe20,36

The principle of remote detectability: In an
anomaly-free topological order, every topological exci-
tation can be detected by other topological excitations
via some remote operations. If every topological exci-
tation can be detected by other topological excitations
via some remote operations, then the topological order
is anomaly-free.

Here “anomaly-free” means realizable by a local bosonic
model on lattice in the same dimension37. Thus the re-
mote detectability condition is also the anomaly-free con-
dition.
The above implies that an anomaly-free (i.e. real-

izable) 3+1D topological order must contain stringlike
topological excitations, so that every pointlike topolog-
ical excitation can be detected by some stringlike topo-
logical excitations via remote braiding, and every string-
like topological excitation can be detected by some point-
like and/or stringlike topological excitations via remote
braiding. We see that the properties of stringlike topo-
logical excitations are determined by the pointlike topo-
logical excitations (i.e. Rep(G) or sRep(G)) to a certain
degree.

B. Dimension reduction of topological orders

To understand better the relation between the point-
like and the stringlike excitations, we will introduce the
dimension reduction in the next section, which turns out
to be a very useful tool in our approach. We can reduce a
d+1D topological order Cd+1 on space-time Md ×S1 to
dD topological orders on space-time Md by making the
circle S1 small (see Fig. 1). In this limit, the d+1D topo-
logical order Cd+1 can be viewed as several dD topological
orders Cd

i , i = 1, 2, · · · , N sec
1 which happen to have degen-

erate ground state energy. We denote such a dimensional
reduction process by

C
d+1 =

Nsec
1

⨁

i=1

C
d
i , (11)

S1

FIG. 1. (Color online) The dimension reduction of 3D space
M2

× S1 to 2D space M2. The top and the bottom surfaces
are identified and the vertical direction is the compactified S1

direction. A 3D pointlike excitation (the blue dot) becomes
an anyon particle in 2D. A 3D stringlike excitation wrapping
around S1 (the red line) also becomes an anyon particle in
2D.

TABLE II. The dimension reduction M3
× S1 to M3 of the

3+1D S3-gauge theory C
4
S3
, where Gχ’s are S3, Z2, Z3. The

3+1D pointlike excitations p0, p1, p2 becomes the 2+1D point-
like excitations. The 3+1D looplike excitations sχq, when
wrapped around the S1, also becomes the 2+1D pointlike
excitations. C

3
S3

is the untwisted sector where 1, A1, A2 cor-
respond to Rep(S3). See Ref. 38 and Appendix A.

C
4
S3

→ C
3
S3

C
3
Z2

C
3
Z3

Symmetry Breaking S3 → S3 S3 → Z2 S3 → Z3

p0 → 1 1 1

p1 → A1 e 1

p2 → A2 1⊕ e e1 ⊕ e2

s20 → B m -

s21 → B1 em -

s30 → C - m1 ⊕m2

s31 → C1 - e1m1 ⊕ e1m2

s32 → C2 - e2m1 ⊕ e2m2

where N sec
1 is the number of sectors produced by the

dimensional reduction.
For example, let us use C

d+1
G to denote the d + 1D

topological order described by the gauge theory with the
finite gauge group G. We find that, for d ≥ 3 (see Table
II)38,39,

C
d+1
G =

⨁

χ

C
d
Gχ

(12)

where
⨁

χ sums over all different conjugacy classes χ of
G, and Gχ is a subgroup of G formed by all the elements
that commute with an element in χ. In fact, each di-
mension reduced dD topological order, Cd

Gχ
, is produced

by threading a G-gauge flux described by the conjugacy
classes χ through the S1 in the space-time Md×S1. The
χ-flux breaks the gauge symmetry G down to Gχ. Thus
the corresponding dD topological order is a Gχ-gauge
theory.
For Dijkgraaf-Witten theories (gauge theories twisted

by group-cocycles of the gauge group), the dimension re-
duction have a form40

C
d+1
G,ωG

d+1

=
⨁

χ

C
d

Gχ,ω
Gχ

d
(χ)

, (13)

where ωG
d+1 is a (d + 1)-group-cocycle ωG

d+1 ∈

Hd+1(G;U(1)), ω
Gχ

d (χ) is a d-group-cocycle ω
Gχ

d (χ) ∈

Hd(Gχ;U(1)), and C
d+1
G,ωG

d+1

is the topological order de-

scribed by Dijkgraaf-Witten theory with gauge group G
and cocycle twist ωG

d+1.
To understand the number of sectors N sec

1 in the di-
mension reduction, we note that the different sectors
come from the different holonomy of moving pointlike
excitations around the S1 (see Fig. 1). For gauge the-
ory, this so called holonomy comes from the gauge flux
going through the compactified S1. For more general
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FIG. 2. (Color online) The untwisted sector in the dimension
reduction can be realized directly on a 2D sub-manifold in 3D
space without compactification.

topological orders, this holonomy comes from threading
co-dimension 2 topological excitations through the S1.

From this picture, we see that the number of sec-
tors N sec

1 is bounded by the number of types of the co-
dimension 2 pure topological excitations. Also, if two
co-dimension 2 topological excitations cannot be distin-
guished by their braiding with pointlike excitations, then
threading them through the S1 will not produce different
sectors. Thus, the number of sectors N sec

1 is the number
of the classes of co-dimension 2 topological excitations
that can be distinguished by the braiding with the point-
like excitations. In particular, in 3+1D, the number of
the sectors N sec

1 is the number of the classes of stringlike
topological excitations that can be distinguished by the
braiding with the pointlike excitations.

From the above discussion, we also see that the dimen-
sion reduction always contain a sector where we do not
thread any nontrivial string through S1 and the holon-
omy of moving any pointlike excitations around the S1 is
trivial. Such a sector will be called the untwisted sector.
Also, if a topological order has no nontrivial pointlike ex-
citation, then its dimension reduction contains only one
sector – the untwisted sector.

In the untwisted sector, there are three kinds of anyons.
The first kind of anyons correspond to the 3+1D pointlike
excitations. The second kind of anyons correspond to the
3+1D pure stringlike excitations wrapping around the
compactified S1. The third kind of anyons are bound
states of the first two kinds (see Fig. 1).

We like to point out that the untwisted sector in the
dimension reduction can even be realized directly in 3D
space without compactification. Consider a 2D sub-
manifold in the 3D space (see Fig. 2), and put the 3D
pointlike excitations on the 2D sub-manifold. We can
have a loop of string across the 2D sub-manifold which
can be viewed as an effective pointlike excitation on the
2D sub-manifold. We can also have a bound state of
the above two types of effective pointlike excitations on
the 2D sub-manifold. Those effective pointlike excita-
tions on the 2D sub-manifold can fuse and braid just
like the anyons in 2+1D. The principle of remote de-
tectability requires those effective pointlike excitations to
form a MTC. When we perform dimension reduction, the
above MTC becomes the untwisted sector of the dimen-
sion reduced 2+1D topological order. We like to men-

tion that the dimension reduction introduce new types
of the perturbations that may not be local from 3+1D
point of view. But those new perturbations are local in
the dimension reduced 2+1D theory. MTC is very rigid
which cannot be changed by any 2+1D local perturba-
tions. This is why the untwisted sector is still described
by the same MTC that describes the effective pointlike
excitations on the 2D sub-manifold.
This way, we show that

The distinct (simple) pointlike excitations in the 3+1D
topological order become the distinct anyons (i.e. the
simple objects) in the dimension reduced 2+1D topo-
logical order that corresponds to the untwisted sector.

Table II describes the dimension reduction of a 3+1D
topological order C4

S3
described by S3-gauge theory:

C
4
S3

→ C
3
S3

⊕ C
3
Z2

⊕ C
3
Z3
. (14)

The 2+1D topological order C3
S3

is the untwisted sec-

tor. The three types of particles in 3+1D C4
S3
, p0, p1, p2,

that form a SFC Rep(S3) becomes three types of parti-
cles in the untwisted sector C3

S3
, 1, A1, A2, that also form

a Rep(S3). We also see that in other sectors, the dis-
tinct pointlike excitations in 3+1D may not be reduced
to distinct simple objects in the dimension reduced 2+1D
topological orders.
Since the dimension reduced 2+1D topological orders

must be anomaly-free, they must be described by mod-
ular tensor category. Since the untwisted sector always
contains Rep(G), we conclude that

The untwisted sector of a dimension reduced 3+1D
topological order is a modular extension of Rep(G).

In next section, we will show that such a modular exten-
sion must be a minimal one.

C. Untwisted sector of dimension reduction is the

Drinfeld center of E

In the following we will show a stronger result, for
the untwisted sector. Given a 3+1D bosonic topological
order, let the symmetric fusion category formed by the
pointlike excitations be E, E = Rep(G) or E = sRep(Gf ).

The untwisted sector C3
untw of dimension reduction of a

3+1D topological orders must be the 2+1D topological
order described by Drinfeld center of E: C3

untw = Z(E).

Note that Drinfeld center Z(E) is the minimal modular
extension of E.
First, let us recall the definition of Drinfeld center. The

Drinfeld center Z(A) of a fusion category A, is a braided
fusion category, whose objects are pairs (A, bA,−), where
A is an object in A, bA,− is a set of isomorphisms
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FIG. 4. (Color online) The braiding path of moving the
string s2 around s1. (a), (b), (c) described the same kind of
the braiding paths that can deform into each other smoothly.

the end of introduction. First, we like to show that con-
densing all the pointlike excitations in 3+1D always gives
us a trivial topological order. To do so, we first like to
show the following:

A. There is no 3+1D topological order with only

nontrivial stringlike excitations

Such a result can be shown using the principle of re-
mote detectability in Section IIIA. When there is no non-
trivial pointlike excitations, the remote detectability con-
dition requires that a single loop of string can be remotely
detected by braiding other stringlike excitations around
the loop. Such a braiding is the two-string braiding de-
scribed by Fig. 4a where a string s2 is braided around a
loop s1.
We can also use the dimension reduction picture to

show that the anomaly-free condition requires that the
two-string braiding must be nontrivial. Since there is
no nontrivial pointlike excitations, the dimension reduc-
tion contains only the untwisted sector. In the 2+1D
dimension reduced topological order, all the nontrivial
anyons come from the pure strings in the 3+1D topolog-
ical order, and correspond to the pure strings wrapping
around the compactified S1. The 2+1D topological or-
der is anomaly-free and the anyons form a modular ten-
sor category. Physically, it means that any nontrivial
anyon must have nontrivial mutual statistics with some
anyons. This implies that any nontrivial pure strings in
3+1D must have nontrivial two-string braiding with some
strings.
Next we like to show that the two-string braiding is

always trivial when there is no nontrivial pointlike exci-
tations. This is because the braiding path of s2-string
around a s1-string in Fig. 4a is a torus wrapped around
the loop s1. Such a torus can be deformed into a sphere
S2 around s1 with a thin tube going through its center
(see Fig. 4b). If the total space is a 3-sphere S3, we can
deform the sphere S2 into a small sphere on the other
side of S3. This deforms the braiding path of s2 into
a thin torus, that describes a small string s2 braiding
around the loop s1 (see Fig. 4c). This is like shrinking
the string s2 into a point and let the point braid around
the loop s1, Since there is no nontrivial pointlike excita-

tions, the point that represents the small s2 must have
the trivial braiding phase around the loop s1. This way,
we show that the two strings must have trivial braiding
around each other when there is no nontrivial pointlike
excitations. Therefore,

The 3+1D topological orders with only stringlike exci-
tations cannot exist (i.e. they must be anomalous).

B. There is no nontrivial stringlike excitations that

have trivial braiding with all pointlike excitations

Let us assume that there is a nontrivial stringlike ex-
citation s, that has trivial braiding with all pointlike ex-
citations. If all the pointlike excitations are bosons, then
we can condense all the pointlike excitations to obtain
a new 3+1D topological order, which will have no non-
trivial pointlike excitations. But since the string s has
trivial braiding with all pointlike excitations, it can sur-
vive the condensation and become a nontrivial stringlike
excitation in the new 3+1D topological order.
However, in the last section, we have shown that 3+1D

topological orders with only stringlike excitations cannot
exist. This contradiction implies that

There is no nontrivial stringlike excitations with trivial
braiding with all pointlike excitations, if all the point-
like excitations are bosons.

This result also implies that

The untwisted sector of a dimension reduced 3+1D
topological order is a minimal modular extension of
Rep(G).

This is because, in the untwisted sector, other anyons
beside Rep(G) all come from strings in 3+1D, which all
have nontrivial braiding with the particles in Rep(G).
This implies the modular extension to be minimal. How-
ever, the above result is weaker than that obtained in
Section. III C.

C. Condensing all the pointlike excitations gives

rise to a trivial 3+1D topological order

When all the pointlike excitations are bosons, we can
obtain a new topological order by condensing all the
pointike excitations. The new topological order has no
nontrivial pointlike excitations (since they are all con-
densed) and has no nontrivial stringlike excitations (they
are confined due to the nontrivial braiding with the point-
like excitations). Thus the new topological order must be
an invertible topological order . But in 3+1D all the
invertible topological orders are the trivial one20,41,42.
Hence condensing all the pointlike excitations gives us
a trivial 3+1D topological order.
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In a gauge theory, condensing all the pointlike excita-
tions corresponds to condensing all the charged excita-
tions, which breaks all the “gauge symmetry”. This will
give us an Anderson-Higgs phase, which is a trivial phase
with no topological order.

V. STRING-ONLY BOUNDARY OF 3+1D

TOPOLOGICAL ORDER

A. The canonical gapped boundary of 3+1D

topological order

In this section, we are going to study a particular
boundary of 3+1D topological orders. In Ref. 20, it was
argued that all 3+1D bosonic topological orders can have
a gapped boundary. The argument goes as follows.
First, topological orders have an important topolog-

ical invariant: the ground state degeneracy on closed
spaces43. To obtain a more detailed characterization of
topological orders, we consider degenerate ground states
on closed spaces with different metrics. The set of closed
spaces with different metrics forms the moduli space.
So the degenerate ground states on closed spaces with
different metrics form a vector bundle over the moduli
space7–9. Such a vector bundle should fully characterize
topological orders.
We can view the space as a boundary of the space-

time. If the above vector bundle admits a flat connec-
tion, it means that the corresponding partition function
on space-time with a boundary can be independent of
perturbation of space-time metrics. This implies that for
such a special realization of the topological order, the
correlations of local operators on the boundary are short
ranged, i.e. the boundary is gapped.
If the vector bundle does not admits a flat connec-

tion (i.e. when the Chern class is non-trivial), then the
non-flat connection must be a U(1) connection, since the
ground state degeneracy cannot be lifted by any pertur-
bations. Such a non-flat U(1) connection is described by
a gravitational Chern-Simons term in the partition func-
tion on closed space-time (for more details, see Ref. 20).
But in 3+1D, there is no gravitational Chern-Simons
term. So the vector bundle always admits a flat connec-
tion. Thus all 3+1D bosonic topological orders can have
a gapped boundary. We call such a gapped boundary an
anomalous 2+1D topological order.
It is known in the theory of 2+1D topological orders,

that the interface induced by boson condensation, be-
tween the original phase and the condensed phase, is
always gappable. We believe that this is also true in
higher dimensional topological orders. The idea is as fol-
lows. In the most clean case, where we do nothing more
than forcing the desired bosonic pointlike excitations to
condense, new excitations in the condensed phase and on
the interface in-between should all come from the original
phase. More precisely, those excitations that have non-
trivial braiding with the condensed boson can no longer

g
1

g
2

g
2

g
1

FIG. 5. The fusion of boundary stringlike excitations sbdryg1
⊗

sbdryg2
= sbdryg1g2

which can be abbreviated as g1 ⊗ g2 = g1g2.

move freely in the condensed phase; they are confined
and stuck on the interface. On the other hand, those
excitations that have trivial braiding with the condensed
boson survive and become excitations in the condensed
phase. Since all the excitations in the original phase are
gapped, we believe that both the condensed phase and
the interface are also gapped. When the condensed phase
is a trivial, the interface is a gapped boundary.
From the last section, we see that every 3+1D AB

topological order (where all pointlike excitations are
bosons) has a boundary obtained by condensing all the
pointlike excitations. Such a boundary has no topo-
logically non-trivial pointlike excitations, and has only
stringlike excitations. In light of the above argument, we
believe that such a string-only boundary is gapped:

Every 3+1D AB topological order has a string-only
gapped boundary.

B. Unitary pointed fusion 2-category

We will show that the string-only gapped boundary is
described by a so called unitary pointed fusion 2-category.
But what is a fusion 2-categories? In general, a fu-
sion category describes the fusion of codimension-1 ex-
citations, i.e. domain-wall excitations. In 1-dimensional
space, the domain-wall excitations are pointlike. The fu-
sion of those pointlike excitations in 1D space is described
by a fusion 1-category (which is also called fusion cate-
gory). In 2-dimensional space, the domain-wall excita-
tions are stringlike. The fusion of those stringlike excita-
tions in 2D space is described by a fusion 2-category.
We like to point out that the fusion 2-categories that

describes the string-only boundary of 3+1D AB topolog-
ical order are very special: (1) the stringlike excitations
on the boundary are labeled by the group elements of G:
sbdryg , g ∈ G. (2) The fusion of the boundary stringlike
excitations (see Fig. 5) is very simple and is given by the
group multiplication

sbdryg1 ⊗ sbdryg2 = sbdryg1g2 . (20)

The fusion 2-categories with the above type of fusion rule
are called pointed fusion 2-categories. Such an amazing
result is a consequence of condensing all the pointlike
excitations described by Rep(G) on the boundary.
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One way to show the above result is to consider the
untwisted sector of the dimension reduction, which is a
2+1D topological order. We have shown that the un-
twisted sector is a minimal modular extension of Rep(G)
in Sections III C and IVB. The 2+1D boundary with only
strings corresponds to a 1+1D boundary with only par-
ticles of the untwisted sector in the dimension reduced
2+1D topological order. Such a 1+1D boundary is ob-
tained by condensing all the anyons in Rep(G). The
corresponding mathematical problem has already been
solved, see for example Ref. 44; we reorganized the re-
lated mathematical results and provided physical inter-
pretations in Ref. 14 (Section VID). We find that the
particles on such 1+1D boundary of the untwisted sector
are labeled by group elements in G with a fusion given
by group multiplication. Those 1+1D boundary particles
correspond to the strings on the 2+1D boundary (see Fig.
1), this allows us to show eqn. (20). In the next a few
sections, we will give a different argument without using
dimension reduction.

C. Tannaka Duality in more explicit language

Our argument relies heavily on the Tannaka duality,
or Tannaka reconstruction theorem for group represen-
tations. It is exactly how we extract the group G from
an abstract symmetric fusion category (SFC). A naive
example is that for an abelian group, the tensor product
of its irreducible representations, has exactly the same
group structure, which can be viewed as a Fourier trans-
formation.
In more general cases, one can reconstruct a group G

from its representation category Rep(G), by the auto-
morphisms of a fiber functor, namely a functor F from
Rep(G) to the category of vector spaces Vect, that pre-
serves the fusion and braiding. We know that the cate-
gory of vector spaces Vect describes particles in a trivial
phase (i.e. in a product state with no symmetry). So one
way to physically realize a fiber functor is by condensing
(or other ways such as symmetry breaking) a nontrivial
phase to a trivial phase. With a fiber functor F , we have

G ∼= Aut(F : Rep(G) → Vect). (21)

To understand the physical significance of the above
amazing result, let us consider a physical problem: given
a system with a symmetry whose ground state is a prod-
uct state with the symmetry, if we only measure the sys-
tem via probes that do not break the symmetry, can we
determine the symmetry group of the system? Here sym-
metric probes correspond to operators O that commute
with all group actions, gOg−1 = O, ∀g. Generic group
actions are not symmetric probes, unless they are in the
center of the group. On the other hand, the fusion and
braiding of the pointlike excitations above the ground
state correspond to symmetric operation. The represen-
tation category Rep(G) contains only those symmetric

probes. Tannaka duality tells us that we can indeed de-
termine the symmetry group via only symmetric probes.
Although the fiber functor seems to break the symme-
try if we realize it physically, mathematically it is proven
that such fiber functor always exists and is unique up
to isomorphisms. Therefore, from the data of symmet-
ric probes (fusion and braiding) in Rep(G), we can ob-
tain (formally calculate) the groupG up to isomorphisms,
without really breaking the symmetry of the system.
Now let us try to break the abstract theorem into more

explicit terms. Firstly, the fiber functor means nothing
but realizing the abstract fusion and braiding in Rep(G)
category with the tensor product and (trivial) braiding of
concrete Hilbert spaces in a quantum system. It is help-
ful to consider how we build Rep(G) in Vect: a group
representation is a vector space V equipped with a group
action ρV : G → GL(V ). Moreover, there is a monoidal
structure for the representations, which is taking the ten-
sor product of the vector spaces V ⊗C W and the new
group action is ρV⊗CW (g) = ρV (g) ⊗C ρW (g) (which is
called the fusion of group representations).
The Tannaka duality goes exactly the other direc-

tion. Assuming that we know a representation category
Rep(G), which contains only information on symmet-
ric operations such as how the representations fuse with
each other, can we obtain the group actions and also the
group? The answer of the theorem then goes:

1. If we have a collection of invertible linear maps αX

for each irreducible representation X, acting on the
vector space F (X) assigned to X by a fiber functor
F , such that

2. They are compatible with the fusion, in the sense
that αX⊗Y = αX ⊗C αY ,

F (X ⊗ Y )
∼

αX⊗Y

↓↓

F (X)⊗C F (Y )

αX⊗CαY

↓↓

F (X ⊗ Y )
∼

F (X)⊗C F (Y )

(22)

It is possible that X ⊗ Y is a reducible representa-
tion. We extend the linear maps αW to W being
reducible representations by direct sums, i.e. if W
is the direct sum of irreducible representations Wi,
W =

⨁

i Wi, αW is given by the corresponding di-
rect sum αW =

⨁

i αWi
.

This collection of invertible linear maps αX , must cor-
respond to the action of some group element g ∈ G,
αX = ρF (X)(g).
Moreover, take all collections of such invertible lin-

ear maps, they form a group under composition,
namely the automorphism group of the fiber functor,
Aut(F : Rep(G) → Vect). It is isomorphic to G. In
other words, if at the beginning we are given an abstract
bosonic SFC E, with a fiber functor F : E → Vect, we
can use the above reconstruction to extract the group
underlying E, via E ∼= Rep(Aut(F : E → Vect)).
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trivial phase
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X
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FIG. 6. (Color online) (a) The fusion space F (X) for a 3-
disk D3 containing only one particle X. (b) Merging two 3-
disks to one 3-disk induces an isomorphism F (X)⊗CF (Y ) ∼=
F (X ⊗ Y ).

D. Fusion of boundary strings recover the group

Let us focus on the loop excitations on the string-
only boundary. A loop excitation shrunk to a point
may become a direct sum of pointlike excitations (see
eqn. (A20))

s = n1⊕ · · · (23)

where 1 is the trivial pointlike excitation and · · · repre-
sent other possible nontrivial pointlike excitations. When
n = 0, the string is not pure. Another possibility is that
n > 1. In this case the string is unstable; it has acciden-
tal degeneracy which can be lifted by perturbations. So
the pure simple strings have n = 1.

Since there is only trivial particle on the boundary,
when we shrink a loop on the boundary, it must become
a multiple of the trivial particle, n1. Thus, it suffices to
consider only the simple loops (n = 1) on the boundary,
which shrink to the trivial particle 1. In other words,
simple loops on the boundary shrinks to nothing ; this
is an essential property in the following discussions. We
note that such simple loops have a quantum dimension
d = 1, and their fusion is grouplike. For the moment,
we denote the group formed by the simple loops on the
boundary under fusion (see Fig. 5), by H.
To apply the Tannaka duality, we need a physical real-

ization of the fiber functor. Consider a simple topology
for a string-only boundary: put the 3+1D topological or-
der C4 in a 3-disk D3, the boundary on ∂D3 = S2, and
outside is the trivial phase D4. When there is only a
particle X in the 3-disk, with no string and no other par-
ticles, we associate the corresponding fusion space (the
physical states with such a configuration) to the particle
X, and denote this fusion space by F (X) (see Fig. 6).
Viewed from very far away, a 3-disk containing a particle
X is like a “local excitation” in the trivial phase, thus
F (X) mimics a local Hilbert space. When there are two
3-disks, each containing only one particle, X and Y re-
spectively, the fusion space is F (X)⊗C F (Y ). Moreover,
as adiabatically deforming the system will not change

|v >
1

|v >
0

topo. phase trivial phase

h

X

FIG. 7. (Color online) Moving a particle (blue) around a loop
excitation (red) on the boundary. The solid line is a half-
braiding path. The dashed line is the complementing path in
the trivial phase.

the fusion space, we can “merge” the two 3-disks to ob-
tain one 3-disk containing one particle X⊗Y . Therefore
F (X)⊗C F (Y ) ∼= F (X ⊗ Y ). Similarly, F also preserves
the braiding of particles. In other words, the assignment
X → F (X) gives rise to a fiber functor. By Tannaka
duality, we can, at least formally, reconstruct a group
G = Aut(F ), such that the particles in the bulk C4 are
identified with Rep(G). Our goal is to show that the fu-
sion group H of the simple loops on the boundary, is the
same as G.
To do this we consider the process of adiabatically

moving a particle X around a simple loop h ∈ H on
the boundary, as shown in Fig. 7. As the simple loop
shrinks to nothing, inserting simple loops will not change
the fusion space. But an initial state |v0⟩ ∈ F (X),
after such an adiabatically moving process, can evolve
into a different end state |v1⟩ ∈ F (X). Thus, braiding
X around h induces an invertible (since we can always
moveX backwards) linear map on the fusion space F (X),
αX,h : |v0⟩ ↦→ |v1⟩.
Next, consider that we have two particles X,Y in the

bulk. If we braid them together (fusing them to one
particle X ⊗ Y ) around the simple loop h, we obtain the
linear map αX⊗Y,h. If the fusion of the bulk particles is
given by X ⊗ Y =

⨁

i Wi, we can split X ⊗ Y to the
irreducible representations Wi, and braid Wi with h; in
other words, αX⊗Y,h =

⨁

i αWi,h.
But it is also equivalent if we move X,Y one after

the other. More precisely, we can first separate Y into
another 3-disk, braidX with h, and then merge Y back to
the original 3-disk. Thus moving X alone corresponds to
the linear map αX,h⊗C idF (Y ). Similarly, moving Y alone
corresponds to idF (X) ⊗CαY,h and in total we have the
linear map αX,h ⊗C αY,h. Therefore, αX⊗Y,h = αX,h ⊗C

αY,h, or using only irreducible representations,

αX,h ⊗C αY,h =
⨁

i

αWi,h. (24)

These linear maps are compatible with the fusion of bulk
particles.
Moreover, the simple loop h provides such an invert-

ible linear map αX,h for each particle X ∈ Rep(G) in C4,
thus by Tannaka duality, these linear maps must corre-
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spond to the action of certain group element φ(h) ∈ G,
αX,h = ρF (X)(φ(h)). In other words, we obtain a map φ
from the simple loops H to G, φ : H → G. It is com-
patible with the fusion of simple loops, because the path
of braiding around two concentric simple loops, g1, g2
(as in Fig. 5), separately, can be continuously deform
to the braiding path around the two loops together, or
around their fusion g1 ⊗ g2 = g1g2. This implies that
φ(g1)φ(g2) = φ(g1g2), namely, φ is a group homomor-
phism.
What we really want is that φ is an isomorphism and

H = G. This is a consequence of the remote detectabil-
ity condition. Before proving it, we explain in detail
the principle of remote detectability near the string-only
boundary. The general idea is the same, that every-
thing must be detectable remotely. Near a string-only
boundary, the only way to perform remote detection is
the half-braiding between bulk particles and boundary
strings20,36. Therefore,

(1) there is no nontrivial boundary string that has triv-
ial half-braiding with all the bulk particles (boundary
strings are detectable by bulk particles).

(2) there is no nontrivial bulk particle that has trivial
half-braiding with all the boundary string.

One may have doubts in (2): even if bulk particles can
not be detected by boundary strings, we may still have
bulk strings to detect them. The reason for (2) is that
we believe generalized boundary-bulk duality, that the
bulk strings can always be viewed as certain “lift” of
boundary strings to the bulk.20,21 If a bulk particle has
trivial half-braiding with all boundary strings, it also has
trivial braiding with all the “lift” of boundary strings,
i.e. all the bulk strings, which conflicts with the remote
detectability condition in the bulk.
A typical half-braiding path is shown in Fig. 7. It

is important to note that the (non-Abelian) geometric
phase depends on the half-braiding path; however, we
can extract a universal path-independent half-braiding
invariant, by complementing the half-braiding path into
a full loop with another half loop of path in the triv-
ial phase outside the boundary. Different half loop of
path in the trivial phase with the same starting and end
points on the boundary always contribute the same ge-
ometric phase (because closed paths in the trivial phase
has no geometric phase). This way we obtain the half-
braiding invariant as the expectation value of such whole
loop adiabatically moving process (half in the bulk, half
in the trivial phase).45 Trivial half-braiding means that
such half-braiding invariant is trivial. Immediately we
see that the linear maps αX,h are directly related to the
half-braidings, in the sense that ⟨αX,h⟩ gives the above
half-braiding invariant. If αX,h is the identity map, it
implies trivial half-braiding between X and h.
Now, we are ready to show that φ : H → G is an

isomorphism:

1. φ is injective. Consider kerφ, namely the simple

loops that induce just identity linear maps on all
bulk particles. In other words, kerφ consists of
simple loops that have trivial half-braiding with all
bulk particles. By the remote detectability condi-
tion (1), kerφ must be trivial, which means φ is
injective.

2. φ is surjective. We already showed that φ : H → G
is injective, so we can view H as a subgroup of G.

Now consider a special particle in the bulk, which
carries the representation Fun(G/H), linear func-
tions on the right cosets G/H. More precisely,
Fun(G/H) consists of all linear functions on G,
f : G → C, such that f(hx) = f(x), ∀h ∈
H,x ∈ G (takes the same value on a coset).
The group action is the usual one on functions,
ρFun(G/H)(g) : f(x) ↦→ f(g−1x).

The linear maps αX,h induced by the simple loops
are all actions of group elements in H, and they are
all identity maps on the special particle Fun(G/H).
In other words, the bulk particle Fun(G/H) has
trivial half-braiding with all the boundary strings.
By the remote detectability condition (2), it must
be the trivial particle carrying the trivial represen-
tation. In other words, we have G = H.

To conclude, the simple loop excitations on the string-
only boundary, forms a group under fusion. It is exactly
the same group whose representations are carried by the
pointlike excitations in the bulk.
If we insert a bulk loop excitation in the 3-disk and

perform a similar braiding process, it also induces a linear
map on the underlining fusion space. One may wonder
if this also associates group elements to the bulk strings.
This is in general not true. Unlike the boundary simple
loops, inserting a bulk string, even if it is pure and simple,
will enlarge the fusion space of only particles, as long as
the quantum dimension of such string is greater than
1. As a result, only those bulk strings with quantum
dimension d = 1 can be associated with group elements.
In section III C we have shown that all the bulk strings
can be associated with conjugacy classes of the group G
(even if topological order is not a G-gauge theory). Some
further discussions can be found in Appendix C.

VI. THE CLASSIFICATION OF UNITARY

POINTED FUSION 2-CATEGORIES

A. A mathematical formulation

First, let us consider the so-called unitary pointed fu-
sion (1-)categories. A pointed fusion category consists of
a finite number of simple objects. A simple object x is an
object such that Hom(x, x) = C. For each simple object
x, there is a simple object y such that x⊗y = 1, where 1
is the tensor unit, i.e. 1⊗x = x = x⊗ 1. In other words,
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the set of simple objects form a finite group G. We will
also denote the simple object by g1, g2, g3, etc.

In this case, the only not-yet-fixed structure is the as-
sociator isomorphism:

(g1 ⊗ g2)⊗ g3 → g1 ⊗ (g2 ⊗ g3). (25)

Note that both domain and target are the same simple
object. But the associator isomorphisms can be non-
trivial. By the simpleness, the isomorphism is just a
non-zero complex number ω3(g1, g2, g3). If the theory
is unitary, one needs to further require that this num-
ber is a phase (in U(1)). Then the pentagon condition
implies that ω3(g1, g2, g3) is a 3-cocycle. Different co-
cycles give equivalent fusion categories if they differ by
a 3-coboundary. Moreover, we may permute the simple
objects by group automorphisms, thus two different co-
cycles also give equivalent fusion categories if they got
mapped to each other by group automorphisms. In con-
clusion, unitary pointed fusion categories, are classified
by (G,ω3) where ω3 ∈ H3[G;U(1)] up to group automor-
phisms.
Now let us consider a pointed unitary fusion 2-

category46. We will not define it in full detail here, but
only describe some physically relevant ingredients of it. It
has only finite number of simple objects. A generic object
is a direct sum of simple objects. For two simple objects
x, y, we have Hom(x, x) = Vect and Hom(x, y) = 0 for
x ̸= y, where 0 is the category consisting of only the 0-
vector space. The tensor unit 1 is simple. For each simple
object x, there is a simple object y such that x⊗ y = 1,
where 1 is the tensor unit. So, again the set of simple
objects is a finite group G. We will denote simple objects
by group elements g1, g2, g3, etc.

For a simple object g, the identity 1-morphism idg is C

(the only invertible object in Vect). The 2-morphisms
form Hom(idg, idg) = HomVect(C,C) = C, and there
are unit 1-isomorphisms and associator 1-isomorphisms:
(1) The unit 1-isomorphisms: 1 ⊗ g = g → g is just
the identity morphism idg = C. (2) The associator 1-
isomorphism:

(g1 ⊗ g2)⊗ g3 → g1 ⊗ (g2 ⊗ g3) (26)

is also still the identity 1-morphism idg1g2g3 = C. There
are two ways to go from ((g1g2)g3)g4 to g1(g2(g3g4)) via
identity 1-morphisms. Therefore, two paths both give the
identity map idg1g2g3g4 = C. So the commutative of the
pentagon diagram is clear. But we can introduce for each
pentagon a 2-isomorphism: C → C, which is a phase, de-
noted by ω4(g1, g2, g3, g4). These 2-isomorphisms need
satisfy a higher coherence relation. Then this coher-
ence relation implies that ω4(g1, g2, g3, g4) is a 4-cocycle.
Again, 4-cocycles differing only by a coboundary give
equivalent pointed fusion 2-categories. One can do the
same for the triangle relation. Namely, one can intro-
duce a 2-isomorphism for each triangle. We believe that
these 2-isomorphisms should give the same unitary fusion
2-category.

(a) (b)
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FIG. 8. (Color online) (a) Two boundary strings sbdryg1
and

sbdryg2
on the surface S2 of D3. The process of fusing the two

strings to a no string state is described by a membrane-net in
D3 (which is formed by two hemispheres in this case). The
dual of the membrane-net is a string-net (which is formed
by two strings in this case). (b) The intersection of three
membranes is dual to a triangle of strings. The fusion rule
of the boundary strings corresponds to the flat connection
condition eqn. (28) on the string-net.

The same structure is discussed in Ref. 47, under a
different name, G-graded 2-vector spaces 2Vecω4

G , where
they also believe that (G,ω4) is enough to determine a
unitary pointed fusion 2-category.
Note that the equivalence between unitary pointed fu-

sion 2-categories must preserve the tensor product of sim-
ple objects, thus must correspond to some group auto-
morphism ϕ : G ∼= G. Such automorphism also acts on
the cocycles (necessarily change the cocycle if it is an
outer automorphism, namely, not of the form x ↦→ gxg−1

for some g ∈ G). Under such automorphism ϕ, (G,ω4)
and (G,ϕ(ω4)), where ω4 is a 4-cocycle, correspond to
the same pointed unitary fusion 2-category. There-
fore, we believe that pointed unitary fusion 2-categories
one-to-one correspond to the pairs (G,ω4) where ω4 ∈
H4[G;U(1)], up to group automorphisms.

B. A physical argument

In the following, we will try to understand the above
mathematical result from a physical point of view. Let
the 3-dimensional space to be a 3-disk D3. Consider the
boundary strings sbdryg1 and sbdryg2 on the surface of the

3-disk S2 = ∂D3 (see Fig. 8a). The process for the
boundary strings to fuse to a non-string state can be
represented by a membrane-net in D3 (see also Ref. 47).
The same boundary strings can fuse to a non-string state
through a different process which is represented by an-
other membrane-net in D3. To compare the two pro-
cesses, we can glue the boundary of the above two mem-
brane together along the S2, to form a membrane-net
in S3. Such a membrane-net in S3 describe the pro-
cess of creating boundary strings from a no-string state,
and then fuse those boundary strings to no-string state.
Such a process induce a U(1) geometric phase e iθ, since
the fusion space of the boundary strings is always 1-
dimensional. So we assign such a U(1) geometric phase
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FIG. 9. (Color online) Two processes are described by
membrane-net on the two boundaries of S3

× I. The change
between the two processes is described by a 3-brane-net (the
blue lines) on S3

× I (with 2 of the 3 dimensions suppressed).
The red lines form the string-net which is dual to the 3-brane-
net.

e iθ to the membrane-net on S3.
But such a U(1) geometric phase may not have a local

expression. Let us assume that the membrane-net on S3

is formed by the 2-simplices of a triangulation of S3. The
vertices of the triangulation are labeled by I, J,K, · · · .
“Having no local expression” means that we cannot as-
sign a phase factor ω3(IJKL) to each 3-simplex ⟨IJKL⟩
of the triangulation to express the total U(1) geometric
phase e iθ as a product of those local phases:

e iθ ̸=
∏

⟨IJKL⟩

ω3(IJKL). (27)

We see that the process of creating some boundary
strings from nothing and then fusing them to nothing can
be represented by a membrane-net on space S3. Such a
process correspond to a phase factor e iθ. Two different
processes of creating some boundary strings from nothing
and then fusing them to nothing give rise to two phase
factors e iθ and e iθ

′

. The two processes can be compared
by a “time”-evolution from the membrane-net on S3 that
correspond to the first process, to the membrane-net on
S3 that correspond to the second process. In other words,
the comparison of the two processes is represented by a
3-brane-net on S3 × I, where S3 is the space and the
segment I represents the “time” direction (see Fig. 9).
The first process corresponds to the membrane-net on
one boundary of S3 × I which is one boundary of the 3-
brane-net on S3 × I. The second process corresponds to
the membrane-net on the other boundary of S3×I which
is the other boundary of the 3-brane-net on S3 × I.
In 4-dimensions, a 3-brane-net is dual to a string-net

where each 3-brane in the 3-brane-net intersects with a
string in the string-net (see Fig. 9 and 8). So the strings
in the string-net is also labeled by gi. In the 3-brane-net,
only the 3-branes that satisfy the fusion rule eqn. (20) can
intersect along a line (see Fig. 9 and 8b). This means
that the labels of the strings in the string-net satisfies

g1g2 = g3. (28)

[Note the same string with opposite orientations is la-
beled by g and g−1 respectively. The orientation of

strings in the string-net is chosen to from a branching
structure (see Appendix E) of the string-net .] The above
happen to be the flat connection condition if we view gi
on a string as the gauge connect between the two ver-
tices connected by the string. So the evolution from one
process to the other can be represented by a string-net
on S3 × I.
The two different processes may differ by a phase factor

e i (θ
′−θ). So we can assign the string-net on S3×I by such

a phase factor, to represent the difference of the two pro-
cesses. Let us assume the string-net on S3 × I is formed
by the edges of a triangulation of S3 × I. Then starting
from one boundary of S3× I, we can build the whole tri-
angulation of S3× I by adding one pentachoron (i.e. one
4-simplex) at a time. We note that adding a pentachoron
corresponds to change one process to its neighboring pro-
cess. The difference of the two neighboring processes is
described by the added pentachoron with edges labeled
by gIJ , I, J = 0, 1, 2, 3, 4 (where I = 0, 1, 2, 3, 4 label
the five vertices of the pentachoron). We may assign
the phase difference of the two neighboring processes
to the added pentachoron. So each pentachoron is as-
signed to a phase factor ω4({gIJ}). Due to the flat con-
nection condition eqn. (28), gIJ ’s for the pentachoron
are not independent. So ω4({gIJ}) can be rewritten as
ω4(g01, g12, g23, g34). Such a 4-variable function on G can
be viewed as a group 4-cochain.

So the total phase difference of the two processes can
be written as

e i (θ
′−θ) =

∏

⟨IJKLM⟩∈S3×I

ωsIJKLM

4 (gIJ , gJK , gKL, gLM ) (29)

where
∏

⟨IJKLM⟩∈S3×I multiply over all the penta-

chorons ⟨IJKLM⟩ in the triangulation of S3 × I, and
sIJKLM = ±1 describes the two different orientations
of the pentachorons ⟨IJKLM⟩ which arises from the
branching structure (see Appendix E).

If we choose the two processes described by the bound-
ary of S3 × I to be the do nothing process that the leave
the no-string state unchanged, then the string-net on
S3 × I can be viewed as a string-net on S4. The total
phase difference of the two do-nothing processes (which
is actually the same process) should be zero:

1 =
∏

⟨IJKLM⟩∈S4

ωsIJKLM

4 (gIJ , gJK , gKL, gLM ), (30)

and the above should hold for any triangulation of S4 and
any assignment of the label gIJ on the edges (as long as
the flat connection condition eqn. (28) is satisfied). It
implies that ω4(g01, g12, g23, g34) is a group 4-cocycle in
H4(G;U(1)). This is a physical way to explain why

Unitary pointed fusion 2-categories are classified by a
pair (G,ω4) up to group automorphisms, where G is a
finite group and ω4 its group 4-cohomology class: ω4 ∈
H4(G;U(1)).
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VII. FROM BOUNDARY TO BULK

We have shown that all 3+1D AB bosonic topolog-
ical orders can have a boundary described by pointed
unitary fusion 2-category M3 whose fusion is given by
the group G. It is believed the boundary anomalous
topological order completely determine the bulk topolog-
ical order20,21. More precisely, the bulk topological order
should be given by the center Z(M3), which can be ex-
plicitly defined by the 2-category FunM3|M3(M3,M3)

of M3-M3-bimodule 2-functors.
But their relation can be many-to-one: several differ-

ent anomalous boundary topological orders may corre-
spond to the same bulk topological order; in other words,
the same bulk topological order can have several differ-
ent gapped boundaries. Since 3+1D topological orders
always have gapped boundaries, all 3+1D topological or-
ders are determined by some anomalous 2+1D boundary
topological orders. Mathematically, we say that there is
surjective map from the set of anomalous 2+1D boundary
topological orders to the set of 3+1D topological orders

2+1D boundary anomalous topological orders

↠ 3+1D topological orders. (31)

Furthermore, since all 3+1D AB topological orders have
a string-only boundary described by unitary pointed fu-
sion 2-categories, we further have

Unitary pointed fusion 2-categories

↠ 3+1D AB topological orders. (32)

In this paper the string-only boundary is obtained by
condensing all the pointlike particles that form Rep(G).
A natural question is whether such condensation process,
and also the resulting boundary, are unique or not.
Firstly, we believe that the condensation of particles

in 3+1D follows the same rule as that for condensation
of anyons in 2+1D (at least if we restrict the 3+1D con-
densation to a 2+1D sub-manifold, see Fig. 2). Anyon
condensation in 2+1D has been thoroughly studied. It is
fully controlled by the so-called condensable algebra48 in
the category of anyons. In other words, the condensable
algebra completely determines the condensed phase and
the domain wall/boundary between the old phase and
the condensed phase.
Thus, we should focus on the condensable algebras in

Rep(G). They are already classified in Theorem 2.2 in
Ref. 49 (see also Theorem 3.7 in Ref. 50). There is a
unique condensable algebra that condenses all the parti-
cles in Rep(G). It is given by Fun(G), the algebra of
all functions on G. Therefore, there is only one way
to condense all particles Rep(G). We obtain a unique
condensed phase, which is trivial. As result, there is a
unique, also canonical, string-only boundary.
This way, we got an even stronger result. Each 3+1D

AB topological order only have a unique boundary that
corresponds to the condensation of all pointlike excita-

tions. In other words, each 3+1D topological order cor-
responds to a unique unitary pointed fusion 2-category.

Unitary pointed fusion 2-categories classify all 3+1D
AB topological orders in a one-to-one fashion.

Such a result is similar to a result in one lower dimension:

Unitary fusion categories describes all 2+1D topologi-
cal orders with gappable boundary (but in a many-to-
one way)51,52.

Let us briefly explain why the approach used in this pa-
per for 3+1D topological orders does not apply in 2+1D,
which gives a flavour why we can obtain a stronger result
in 3+1D. In 3+1D, all pointlike excitations have trivial
statistics; if they are all bosons, it is a natural and canon-
ical choice to condense all of them and we obtain a unique
string-only 2+1D gapped boundary. In 2+1D, there are
only pointlike excitations with non-trivial statistics be-
tween them. One can choose a subset of quasiparticles
to condense; if the subset is big enough one can also ob-
tain a gapped 1+1D boundary. However, in general there
are several such subsets to condense, among which none
is special. As a result, there is no canonical gapped 1+1D
boundary. This essential difference makes the classifica-
tion of topological orders in 3+1D simpler than those in
2+1D.

VIII. REALIZATION BY DIJKGRAAF-WITTEN

MODELS

Combining the results from the last a few sections, we
obtain that

3+1D AB topological orders are classified by a finite
group G and its group 4-cocycle ω4 ∈ H4(G;U(1)), up
to group automorphisms.

A finite group G and its group 4-cocycle happen to be the
data needed to construct the Dijkgraaf-Witten model. In
fact all the 3+1D AB topological orders can be realized
by Dijkgraaf-Witten models.
We note that 3+1D Dijkgraaf-Witten models34 are de-

fined on a 4-dimensional simplicial complex with branch-
ing structure (see Appendix E). Let us use I, J, · · · to
label the vertices of the complex. The degrees of free-
doms live on the links of the complex, which are labeled
by gIJ ∈ G where G is a finite group. gIJ ’s satisfies a
flat-connection condition

gIJgJK = gIK , (33)

for any triangles ⟨IJK⟩. The Dijkgraaf-Witten models
are defined via a path integral

Z =
∑

{gIJ}

∏

⟨IJKLM⟩

ωsIJKLM

4 (gIJ , gJK , gKL, gLM ), (34)
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where
∏

⟨IJKLM⟩ multiply over all the 4-cells ⟨IJKLM⟩

whose vertices are ordered as I < J < K < L < M .
Also, sIJKLM = ±1 describes the orientation of the 4-cell
⟨IJKLM⟩ (see Appendix E), and ω4 is a group 4-cocycle
ω4 ∈ H4[G;U(1)].
When the space-time has a boundary, we can obtain

an exactly soluble boundary by setting gIJ = 1 on all
the links ⟨IJ⟩ on the boundary. Such an exactly soluble
boundary is actually the string-only boundary discussed
in this paper. The world-lines of topological pointlike
excitations are described by Wilson lines in the bulk

∏

⟨IJ⟩

R(gIJ) (35)

where R is a representation of G. But on the bound-
ary, gIJ = 1 and R(gIJ = 1) is an identity matrix.
All the different topological pointlike excitations becomes
the same trivial excitation on the boundary. However,
there are non-trivial stringlike excitations on the bound-
ary. The world-sheet of those boundary stringlike exci-
tations is given by the following: Draw a membrane on
the 3-dimension boundary of space-time. Change gIJ on
the links that intersect the membrane from gIJ = 1 to
gIJ = h. Such a change still satisfy the flat-connection
condition. We see that different boundary strings are la-
beled by the group elements and their fusion is given by
the group multiplication. Therefore, Dijkgraaf-Witten
models can realize all unitary pointed fusion 2-category
on the boundary. Using the boundary-bulk relation20,21,
we can show that Dijkgraaf-Witten models can realize all
3+1D AB topological orders.

IX. RELATION TO 3+1D BOSONIC SPT

ORDERS

There are two kinds of SPT orders when the symme-
try group is unitary and finite: the ones whose bound-
ary have a pure gauge-anomaly will be called pure
SPT orders15,16, and the ones whose boundary have a
mixed gauge-gravity-anomaly will be called mixed SPT
orders53. In 3+1D space-time, the pure SPT orders are
classified by group cohomology H4[G;U(1)], while all the
mixed SPT orders are described by some elements in53

H1(G;H3[SO(∞);U(1)])⊕H2(G;H2[SO(∞);U(1)])

= H1(G;Z)⊕H2(G;Z2) = H2(G;Z2). (36)

For many groups, H2(G;Z2) ̸= 0. But a non zero
H2(G;Z2) does not implies the existence of mixed SPT,
since not all the elements in H2(G;Z2) correspond to ex-
isting SPT orders.
Since 3+1D AB topological orders can be obtained by

gauging17 the symmetry of 3+1D bosonic SPT states,
and since Dijkgraaf-Witten models only correspond to
gauging the pure SPT states, we see that the classifica-

tion results in this paper implies that

In 3+1D, there is no mixed bosonic SPT order for uni-
tary finite symmetry group G.

In fact, using SPT invariant, we can directly show that
for unitary finite symmetry group G, there is no mixed
SPT orders in 3+1D. (However, if G contains time rever-
sal, there are mixed SPT orders in 3+1D41,54.) To obtain
SPT invariant, we gauge the symmetry and put a flat-
connection A on a closed orientable space-time M4. The
partition function of the system on M4 with a fixed flat-
connection A is the so called SPT invariant55–57. If there
is a mixed 3+1D SPT order described by H2(G;Z2) =
⨁

Z2, its SPT invariant will have a form

Z(M4, A) = e iπ
∫
M4 ω1(A)⌣w3+ω2(A)⌣w2 , (37)

where ωn(A), wn are topological n-cocycles in
Hn(M4;Z2), and wn is also the nth Stiefel-Whitney
class. There are many relations between Stiefel-Whitney
classes and cocycles ωn(A). For example, by calculat-
ing Sq1(ω1(A) ⌣ w2) in two different ways, we find that
on orientable M4, ω1(A) ⌣ w3 = ω1(A) ⌣ ω1(A) ⌣
w2

53,58. (Here Sqn is the Steenrod operation.) Thus

Z(M4, A) = e iπ
∫
M4 [ω2(A)+ω1(A)⌣ω1(A)]⌣w2 , (38)

Similarly, [ω2(A)+ω1(A) ⌣ ω1(A)] ⌣ w2 = Sq2[ω2(A)+
ω1(A) ⌣ ω1(A)] = [ω2(A)+ω1(A) ⌣ ω1(A)] ⌣ [ω2(A)+
ω1(A) ⌣ ω1(A)]. Thus

Z(M4, A) = e iπ
∫
[ω2(A)+ω1(A)⌣ω1(A)]⌣[ω2(A)+ω1(A)⌣ω1(A)].

(39)

We see that the SPT order described by the above SPT
invariant is actually a pure SPT order described by
H4[G;U(1)]41,53 and hence, there is no mixed SPT order
in 3+1D for unitary finite symmetry group. This result
supports our classification of 3+1D AB topological orders
in terms of Dijkgraaf-Witten models. In 4+1D, there is
a mixed bosonic Z2 SPT state53. Gauging such a mixed
Z2 SPT state will produce a 4+1D AB topological order
that is beyond Dijkgraaf-Witten theory.

X. WALKER-WANG MODELS AND

PARTICLE-ONLY BOUNDARIES

We like to remark that Walker-Wang models59–62 is
another quite systematic way to construct 3+1D bosonic
topological orders. In fact, Walker-Wang models realize
all 3+1D bosonic topological orders who have a particle-
only boundary, which is described by a premodular tensor
category. Such particle-only boundary can exist for a
3+1D topological order, if condensing the maximum set
of strings that have trivial mutual braiding will change
the 3+1D topological order to a trivial phase.
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It is known that Walker-Wang models (and the related
3+1D string-net models51) can realize 3+1D bosonic
topological orders with emergent fermionic pointlike ex-
citations.60 It appears that Walker-Wang models cannot
realize all 3+1D Dijkgraaf-Witten models (i.e. not all
3+1D bosonic topological orders whose pointlike excita-
tions are all bosons).

XI. SUMMARY

3+1D topological orders contain both pointlike and
stringlike excitations. At first, it appears that 3+1D
topological orders, with all the fusion and braiding of
those pointlike and stringlike excitations, have a very
complicated structure, which may be hard to classify.
However, in this paper, we obtain a very simple classi-
fication of 3+1D topological orders for bosonic systems,
when all the pointlike excitations are bosons: they are
classified by unitary pointed fusion 2-categories, which
in turn are classified by pairs (G,ω4) up to group auto-
morphisms. This gives us hope that the 3+1D topological
orders may not be that complicated. We may get a simple
classification even for the general case when some point-
like excitations are emergent fermions. We hope that the
arguments developed in this paper are helpful for such a
task, which we plan to carry out in a forthcoming work.

We like to thank Meng Cheng, Zhenghan Wang, and
Edward Witten for helpful discussions. XGW is sup-
ported by NSF Grant No. DMR-1506475 and NSFC
11274192. Research at Perimeter Institute is supported
by the Government of Canada through Industry Canada
and by the Province of Ontario through the Ministry of
Research.

Appendix A: An example: 3+1D G-gauge theory

To gain an intuitive understanding of 3+1D topolog-
ical orders and to introduce the related concepts, let
us study an exactly soluble local bosonic model whose
ground state has a topological order described by a 3+1D
gauge theory of a finite group G. Our lattice bosonic
model is defined on a 3D spatial lattice whose sites are
labeled by I. The degrees of freedom live on the links
labeled by IJ . On an oriented link IJ , such degrees of
freedom are labeled by gIJ ∈ G. gIJ ’s on links with
opposite orientations satisfy

gIJ = g−1
JI (A1)

The Hamiltonian of the exactly soluble model is ex-
pressed in terms of string operators and membrane oper-
ators.

1. The string operators

The string operators are labeled by i’s, the irreducible
representations Ri(gIJ) of the gauge group G (where
Ri(gIJ) is the matrix of the irreducible representation):

Bi|{gIJ}⟩ =
[

Tr
∏

IJ∈string

Ri(gIJ)
]

|{gIJ}⟩

=
[

TrRi(
∏

IJ∈string

gIJ)
]

|{gIJ}⟩ (A2)

We note that

BiBj = Tr
∏

I∈string

Ri(gIJ)⊗C Rj(gIJ). (A3)

We use ⊗C to denote the usual tensor product of matrices
or vector spaces over the complex numbers C, while ⊗ to
denote the fusion of excitations. Using

Ri(g)⊗C Rj(g) =
⨁

k

N ij
k Rk(g) (A4)

we see that

BiBj =
∑

k

N ij
k Bk. (A5)

The ends of the strings are pointlike topological excita-
tions and the aboveN ij

k are the fusion coefficients of those
topological excitations. Let di be the quantum dimension
of those topological excitations which satisfy

∑

j

N ij
k dj = didk, (A6)

and let

B =
∑

i

di
D2

Bi, D2 =
∑

i

d2i . (A7)

We have

B2 =
∑

i,j

didj
D4

BiBj =
∑

i,j,k

didj
D4

N ij
k Bk

=
∑

i,k

didi
D4

dkBk = B. (A8)

Thus, B is a projection operator. In fact, it is a projec-
tion operator into the subspace with

∏

IJ∈string gIJ = 1.

2. The membrane operators

A membrane is formed by the faces of the dual lattice,
which is also a cubic lattice. The faces of the dual lattice
correspond to the links in the original lattice and are also
labeled by IJ .
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TABLE III. Fusion rules of pointlike and stringlike excitations in 3+1D S3 gauge theory. Here p0 corresponds to the trivial
pointlike excitations which is also the trivial stringlike excitations. p1 and p2 are nontrivial pointlike excitations corresponding
to the 1D and 2D representation of S3 (i.e. the charged particles). s20 and s30 correspond to pure stringlike excitations labeled
by conjugacy classes χ2 and χ3, and s21, s31 and s32 are charge and string bound state, as one can see from the fusion rules.
See Ref. 38.

⊗ p0 p1 p2 s20 (pure) s21 s30 (pure) s31 s32

p0 p0 p1 p2 s20 s21 s30 s31 s32

p1 p1 p0 p2 s21 s20 s30 s31 s32

p2 p2 p2 p0 ⊕ p1 ⊕ p2 s20 ⊕ s21 s20 ⊕ s21 s31 ⊕ s32 s30 ⊕ s32 s30 ⊕ s31

s20 s20 s21 s20 ⊕ s21 p0 ⊕ p2 ⊕ s30 ⊕ s31 ⊕ s32 p1 ⊕ p2 ⊕ s30 ⊕ s31 ⊕ s32 s20 ⊕ s21 s20 ⊕ s21 s20 ⊕ s21

s21 s21 s20 s20 ⊕ s21 p1 ⊕ p2 ⊕ s30 ⊕ s31 ⊕ s32 p0 ⊕ p2 ⊕ s30 ⊕ s31 ⊕ s32 s20 ⊕ s21 s20 ⊕ s21 s20 ⊕ s21

s30 s30 s30 s31 ⊕ s32 s20 ⊕ s21 s20 ⊕ s21 p0 ⊕ p1 ⊕ s30 s32 ⊕ p2 s31 ⊕ p2

s31 s31 s31 s30 ⊕ s32 s20 ⊕ s21 s20 ⊕ s21 s32 ⊕ p2 p0 ⊕ p1 ⊕ s31 s30 ⊕ p2

s32 s32 s32 s30 ⊕ s31 s20 ⊕ s21 s20 ⊕ s21 s31 ⊕ p2 s30 ⊕ p2 p0 ⊕ p1 ⊕ s32

A membrane operator is given by

Qa =
∑

h∈χa

∏

IJ∈membrane

ÂIJ(h). (A9)

where the operator ÂIJ(h) is defined as

ÂIJ(h)|gIJ⟩ = |hgIJ⟩, (A10)

and χa is the ath conjugacy class of G. Also I’s are on
one side of the membrane and J ’s are on the other side
of the membrane,
We note that

QaQb =
∑

h∈χa

∑

h̃∈χb

∏

IJ∈membrane

ÂIJ(hh̃) =
∑

c

Mab
c Qc,

(A11)

The above expression allows us to see that Mab
c are

non-negative integers. Clearly QaQb = QbQa and
(QaQb)Qc = Qa(QbQc), which imply that

Mab
c = M ba

c ,
∑

d

Mab
d Mdc

e =
∑

d

Mad
e M bc

d (A12)

Let (Ma)cb = Mab
c , and we can rewrite the second equa-

tion in the above as

McMa = MaMc. (A13)

For example, the permutation group of three el-
ements S3 = {(123), (132), (321), (213), (231), (312)}
has three conjugacy classes: χ1 = {(123)}, χ2 =
{(132), (321), (213)}, and χ3 = {(231), (312)}. We find
that

Q1Qa = Qa, Q2Q2 = 3Q1 + 3Q3,

Q3Q3 = 2Q1 +Q3, Q2Q3 = 2Q2. (A14)

Let c be a common eigenvector of Ma whose compo-
nents are all non-negative. (Such common eigenvector ex-
ists since the matrix elements ofMa are all non-negative.)

The eigenvalue of such a eigenvector is λa for Ma. We
choose the scaling factor of c to satisfy

∑

a

λaca = 1. (A15)

In this case

Q2 = Q, Q =
∑

a

caQa. (A16)

3. A commuting-projector Hamiltonian

Let QI,a be the smallest membrane operator that cre-
ates a small membrane corresponding to the surface of a
cube in the dual lattice. Such a membrane wraps a site I
in the original cubic lattice. We note that QI,a is a sum
of gauge transformation operators gIJ → hGIJ . Since
the string operators are gauge invariant, we have

[Bi, QI,a] = 0. (A17)

Therefore, we can construct the following commuting
projector Hamiltonian63,64

H =
∑

I

(1−QI) +
∑

⟨IJKL⟩

(1−B⟨IJKL⟩), (A18)

where

QI =
∑

a

caQI,a, B⟨IJKL⟩ =
∑

i

di
D
B⟨IJKL⟩,i (A19)

and ⟨IJKL⟩ labels the loops around the squares of the
original cubic lattice.

The ground state of the above exactly soluble Hamil-
tonian has a nontrivial topological order. The low energy
effective theory is the G-gauge theory.
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4. The pointlike and stringlike excitations

What are the excitations for the above Hamiltonian?
There are local pointlike excitations created by local op-
erators. There are also topological pointlike excitations
that cannot be created by local operators. Two topo-
logical pointlike excitations are said to be equivalent if
they differ by local pointlike excitations. The equivalent
topological pointlike excitations are said to have the same
type.
The different types of topological pointlike excitations

are created at the ends of the open string operators that
we discussed before. Thus we see that types of topo-
logical pointlike excitations one-to-one correspond to the
irreducible representations of G. In other words, topo-
logical pointlike excitations are described by Rep(G) in
a G-gauge theory.
Similarly, there are also topological stringlike excita-

tions. They are created at the boundary of the open
membrane operators. However, the types of membrane
operators are not one-to-one correspond to the types
of stringlike excitations. There are pure stringlike ex-
citations which one-to-one correspond to the conjugacy
classes of G. There are also mixed stringlike excitations
which are bound state of pure stringlike excitations and
pointlike excitations20,47,65. In general, the types (pure
and mixed) of stringlike excitations in a G-gauge theory
are labeled by a pair χ,R(Gχ), where χ is a conjugacy
class of G, R(Gχ) is a representation of Gχ, and Gχ is a
subgroup of G whose elements all commute with a fixed
element in χ (a centralizer subgroup).
For example, in S3-gauge theory, the χ2-flux-loop

breaks the S3 gauge “symmetry” down to Z2 gauge
symmetry. So there are two types of χ2-flux-loop ex-
citations, one carries no Z2 charge (which is the pure
one denoted by s20) and the other carries Z2 charge
1 (denoted by s21). Similarly, the χ3-flux-loop breaks
the S3 gauge “symmetry” down to Z3 gauge symme-
try. So there are three types of χ3-flux-loop excita-
tions, charring Z3 charge q = 0, 1, 2 (denoted by s3q).
Thus, the string excitations in S3-gauge theory are given
by s20 = (χ2, R0(Z2)); s21 = (χ2, R1(Z2)); s30 =
(χ3, R0(Z3)); s31 = (χ3, R1(Z3)); s32 = (χ3, R2(Z3)).
(Note that Gχ2

= Z2 and Gχ3
= Z3.) Those string

like excitations also have a shrinking rule: if we shrink a
string to a point, it will behave like a pointlike excitation:

s20 → p0 ⊕ p2, s21 → p1 ⊕ p2,

s30 → p0 ⊕ p1, s31 → p2, s32 → p2. (A20)

In general, the string-excitations whose shrinking rule
contain the trivial excitation p0 are the pure string exci-
tations, which are s20 and s30 in the S3-gauge example.
We see that the types of pure string excitations are la-
beled by χ, the conjugacy classes of G.
The χ1-flux-loop (i.e. trivial flux-loop) does not break

the S3 gauge. So there are three types of χ1-flux-loop
excitations, carrying a trivial representation (denoted by

s10 or p0), a nontrivial 1D irreducible representation (de-
noted by s11 or p1), or a 2D irreducible representation
(denoted by s12 or p2) of S3. In fact, those χ1-flux-loop
excitations (or trivial-string excitations) correspond to
the pointlike excitations. The fusions of all those string-
like excitations are given by Table III.
We may regard looplike excitations (χ, q) with the

same conjugacy class χ but different representations q
as equivalent and introduce a notion of pure-type: the
looplike excitation (χ, q) is said to have an pure-type χ.
So the fusion of the membrane operators correspond to
the fusion of pure-types, which is closely related to the
fusion of stringlike excitations, after we quotient out the
Gχ-representations q, by identifying

p0 = Q1, p1 = Q1, p2 = 2Q1,

s2q = Q2, s3q = Q3, (A21)

in the fusion rule table III. The general identification for-
mula is

sχq = dim(q)Qχ, (A22)

where dim(q) is the dimension of the Gχ-representations
q.

Appendix B: A general discussion of string and

membrane operators in 3+1D topological orders

1. String operators in 3+1D topological orders

For a generic 3+1D topological order, the type-i parti-
clelike excitations are still described by string operators

Bi =
∑

a1a2a3···

Ôaa1

i (I1)Ô
a1a2

i (I2)Ô
a2a3

i (I3) · · · . (B1)

Here the string operators are matrix product operators.
Those Ôaa1

i (I) are operators acting on the degrees of free-
dom on site-I. We may view the superscripts a, a1, a2, · · ·
as the indices of the matrix elements for an operator-
valued matrix. We say that two closed string operators

are equivalent if they differ by a local unitary transfor-

mation. More precisely, two closed string operators are
equivalent iff they can deform into each other while keep
all the local operators having short ranged correlations.
We also normalize the string operators such that ⟨Bi⟩
is independent of string length when the string is closed.
Such normalized string operators satisfy the following fu-
sion algebra

BiBj = N ij
k Bk. (B2)

We can show that N ij
k are non-negative integers, by view-

ing the string operators as the world-lines in time direc-
tion.
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2. Membrane operators in 3+1D topological orders

Similarly, the type-a stringlike excitations are de-
scribed by membrane operators

Qa =
∑

{aI}

Ôa1a2a3a4

a (I1)Ô
a4a5a6a7

a (I2)Ô
a3a8a9a10

a (I3) · · · ,

(B3)

which are tensor network operators. Ôa(I) are operator-
valued tensors and the superscripts are tensor indices.
Also two closed membrane operators are equivalent if they

differ by a local unitary transformation. More precisely,
two closed membrane operators are equivalent iff they
can deform into each other while keep all the local oper-
ators having short ranged correlations.
The equivalent classes of the membrane operators can

be different, for membrane operators with different topol-
ogy. The equivalent classes of the spherical closed mem-

brane operators, QS2

a , correspond to the pure membrane
types. The pure membrane type corresponds to the type
for pure stringlike excitations. For toric closed membrane

operators, QT 2

a , the number of the equivalent classes will
in general be different from the number of the equiva-
lent classes of spherical closed membrane operators. This
is because toric closed membrane operators may con-
tain closed string operators wrapping around the non-
contractible loops, which generate different equivalent
classes. Clearly, if we do not have nontrivial pointlike
excitations, then there will be a one-to-one correspon-
dence between the spherical membrane operators and
toric membrane operators.
Since the loop of string operator on S2 is always con-

tractible, the spherical membrane operators does not con-
tain loops of string operator. Thus the spherical mem-
brane operators are labeled by the conjugacy classes only.

The spherical membrane operators QS2

χ also satisfy the
following fusion algebra

QS2

χ1
QS2

χ2
=

∑

k

Mχ1χ2

S2;χ3
QS2

χ3
. (B4)

In particular

Mχ1χ2

S2;χ3
= Mχ1χ2

χ3
(B5)

which can be calculated from the fusion of the conjugacy
classes χ1 and χ2 (see eqn. (A11)).

Appendix C: More general properties of stringlike

excitations in 3+1D topological orders

1. Pure stringlike excitations and sectors in

dimension reduction

In Section III B, we have shown that in 3+1D, the num-
ber of the sectors N sec

1 in the dimension reduction is the

number of the classes of stringlike topological excitations
that can be distinguished by the braiding with the point-
like excitations. But in Section IVB, we have shown that
all stringlike topological excitations can be distinguished
from each other via their braiding properties with the
pointlike excitations. Therefore,

The number of the sectors N sec
1 is the number of type of

pure stringlike topological excitations, if all the point-
like excitations are bosons.

Let GSDCd+1(Md
space) be the ground state degener-

acy of a d + 1D topological order Cd+1 on a closed d-
dimensional space manifold Md

space. We note that

GSDCd+1(Sd
space) = 1. (C1)

Now, let us consider a more general dimension re-
duction where we reduce d-dimensional space Md

space =

Ld−n
space×Sn to (d−n)-dimensional space Ld−n

space by shrink-
ing the Sn. N sec

n be the number of sectors of the dimen-
sion reduced topological orders. We find that

N sec
n = GSDCd+1(Sd−n × Sn). (C2)

We see that

N sec
n = N sec

d−n. (C3)

2. Pure stringlike excitations are labeled by the

conjugacy classes of G

From last section, we see that for 3+1D AB topological
order

N sec
1 = N sec

2 = number of types of pure strings. (C4)

In the following, we like to show that

N sec
2 = number of types of pointlike excitations. (C5)

We consider the GSD on S1 × S2. We note that the
path integral on space-time S1×D3 gives us a particular
ground state on S1×S2. To obtain other ground states on
S1×S2 we insert a type-i string operator Bi along the S1

in S1×D3. The string operator is inserted at a particular
point on D3. The insertion of different string operators
generate linear independent states. This is because the
pointlike excitations represented by the string operators
have non-degenerate braiding with the pure stringlike ex-
citations.
The braiding between the inserted pointlike excitations

and the stringlike excitations is described by creating a
small loop of strings on S2 = ∂D3. Then we enlarge
the loop and let the loop wrap around the S2. Such
a braiding process is equivalent to applying the sphere
membrane operator Qa on S2 = ∂D3. The eigenvalues
of the sphere membrane operators Qa should distinguish
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all the state created by inserting the string operators Bi.
Therefore,

The number of the sectors N sec
2 in the S2-dimension

reduction of a 3+1D topological order is the number of
type of pointlike topological excitations.

This allows us to show that

For 3+1D topological orders, the number of types of
pointlike excitations and is the same as the number of
types of pure stringlike excitations.

Moreover, from the fact that the untwisted sector of di-
mension reduction is the Drinfeld center Z[Rep(G)], we
know that

The pure stringlike excitations in a generic 3+1D AB
topological orders are labeled by the conjugacy classes
of G.

Now, the dimension reduction of a generic bosonic 3+
1D topological order C4 can be written as

C
4 =

⨁

χ

C
3
χ (C6)

where χ is the conjugacy class of the group G whose
representations form the SFC of C4, and

∑

χ sums over
all the conjugacy classes of G.
From the dimension reduction eqn. (C6), we can also

compute the ground state degeneracy on 3-torus

GSDC4(T 3) =
∑

χ

GSDC3
χ
(T 2) (C7)

Those degenerate ground states form a representation of
the mapping class group of T 3, which is SL(3,Z).

The dimensional reduction leads to reduction of the
representation of SL(3,Z) to the representations of
SL(2,Z) that characterize the 2+1D dimension reduced
topological orders C3

χ. We consider SL(2,Z) ⊂ SL(3,Z)
subgroup and the reduction of the SL(3,Z) representa-
tion RC4 to the SL(2,Z) representations RC3

χ
:

RC4 =
⨁

χ

RC3
χ
. (C8)

The SL(3,Z) representation RC4 describes the 3+1D
topological order C4 and the SL(2,Z) representations
RC3

χ
describe the 2+1D topological orders C3

χ. The de-

composition eqn. (C8) gives us the dimensional reduction
eqn. (C6).

3. Stringlike excitations are G-flux, even in generic

3+1D AB topological orders

From the fact that the untwisted sector of dimension
reduction is the Drinfeld center Z[Rep(G)], we even know

that,

The pure stringlike excitations in a generic 3+1D AB
topological order have the same fusion ring as the gauge
theory with the corresponding gauge group G.

Alternatively, we can argue the above claim using the re-
sults for the string-only boundary. This is because the
bulk stringlike excitations can be obtained by lifting the
boundary stringlike excitations. Since a bulk stringlike
excitation si can braid around a boundary stringlike ex-
citation sbdryg , their fusion satisfy

si ⊗ sbdryg = sbdryg ⊗ si. (C9)

This allows us to show that

si =
⨁

g∈χ

sbdryg ≡ sχ, (C10)

where χ is a conjugacy class of G. Therefore, even in a
generic 3+1D topological order, we may still view string-
like excitations as the G-gauge flux which is described the
conjugacy classes of the group G. In particular, the bulk
pure stringlike excitations fuse like the conjugacy classes
(see eqn. (A11)). As a result, the quantum dimension
of a pure stringlike excitation is given by the size of the
conjugacy class: dsχ = |χ|. This is one of the key result
of this paper.
There is a simple physical way to understand the re-

lation between the bulk and boundary stringlike excita-
tions. Since the boundary is induced by the condensation
of all the pointlike excitations, it corresponds to breaks
all the “gauge symmetry”. So there is no gauge equiva-
lence of g ∼ hgh−1, and there is no degeneracy between
the flux-loop that induce g monodromy and hgh−1 mon-
odromy. So, if we bring a bulk string sχ near the bound-
ary, it will split sχ →

⨁

g∈χ sbdryg (see eqn. (C10)).

Appendix D: More about dimension reduction

We argued that the stringlike excitations are G-flux,
even in generic 3+1D AB bosonic topological orders.
Now we can say more about the 2+1D topological orders
C3
χ that appear in the dimension reduction eqn. (C6). We

first note that the pointlike excitations in 3+1D topolog-
ical order C4 are described by Rep(G) for a group G.
In the dimension reduction, those 3+1D pointlike excita-
tions becomes the 2+1D pointlike excitations with triv-
ial mutual statistics between them; they form symmetric
fusion subcategories Eχ of the 2+1D dimension reduced
topological orders C3

χ.
For the conjugacy class χ = {1}, i.e. the untwisted

sector, Eχ={1} = Rep(G) and C3
χ={1} = Z[Rep(G)] is a

minimal modular extension of Rep(G). But what about
the other conjugacy classes?
Because C3

χ is induced by threading a G-flux described

by χ through S1, such a G-flux will break the “gauge
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FIG. 10. (Color online) Two branched simplices with oppo-
site orientations. (a) A branched simplex with positive orien-
tation and (b) a branched simplex with negative orientation.

symmetry” from G to Gχ, where Gχ is a subgroup of G
that commutes with a fixed element in conjugacy class χ.
Therefore, the SFC Eχ in C3

χ is given by Rep(Gχ). The
3+1D pointlike excitations described by Rep(G) will split
into 2+1D pointlike excitations described by Rep(Gχ) in
each sector (see Table II).
Similarly for the other sectors we have

The dimension reduced 2+1D topological orders C3
χ are

minimal modular extensions of Rep(Gχ).

The minimal modular extension means that the anyons
in C3

χ that are not in Rep(Gχ) all have nontrivial mutual
statistics with the bosons in Rep(Gχ). This condition
comes from the result in Section IVB. Note that unlike
the untwisted sector, C3

χ is in general not the Drinfeld

center of Rep(Gχ).

Appendix E: The branching structure of space-time

lattice

In order to define a generic lattice theory on the space-
time complex Md

latt using local tensors, it is important to
give the vertices of each simplex a local order. A nice
local scheme to order the vertices is given by a branch-
ing structure.15,16,66 A branching structure is a choice of
orientation of each link in the d-dimensional complex so
that there is no oriented loop on any triangle (see Fig.
10).

The branching structure induces a local order of the
vertices on each simplex. The first vertex of a simplex is
the vertex with no incoming links, and the second vertex
is the vertex with only one incoming link, etc . So the
simplex in Fig. 10a has the following vertex ordering:
0, 1, 2, 3.

The branching structure also gives the simplex (and its
sub-simplices) a canonical orientation. Fig. 10 illustrates
two 3-simplices with opposite canonical orientations com-
pared with the 3-dimension space in which they are em-
bedded. The blue arrows indicate the canonical orienta-
tions of the 2-simplices. The black arrows indicate the
canonical orientations of the 1-simplices.
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