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Abstract

For a given weight of a complex simple Lie algebra, the q-analog of
Kostant’s partition function is a polynomial valued function in the vari-
able q, where the coefficient of qk is the number of ways the weight can be
written as a nonnegative integral sum of exactly k positive roots. In this
paper we determine generating functions for the q-analog of Kostant’s
partition function when the weight in question is the highest root of the
classical Lie algebras of types B, C, and D, and the exceptional Lie
algebras of type G2, F4, E6, E7, and E8.
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1 Introduction

In this paper we focus on finding an explicit formula for a partition counting problem
in the setting of combinatorial representation theory of finite-dimensional simple
Lie algebras. The problem of interest involves the q-analog of Kostant’s partition
function ℘q, a polynomial-valued function in the variable q whose evaluation at q = 1
counts the number of ways to write a weight ξ as a sum of positive roots, i.e.,

℘q(ξ) = a0 + a1q + a2q
2 + a3q

3 + · · ·+ akq
k (1)

where ai is the number of ways to write the weight ξ as a sum of exactly i positive
roots [19].

These functions appear in the q-analog of Kostant’s weight multiplicity formula,
which (after setting q = 1) gives the multiplicity of the weight µ in the finite-
dimensional complex irreducible representation with highest weight λ; this is given
by

mq(λ, µ) =
∑

w∈W

(−1)�(w)℘q(w(λ+ ρ)− (µ+ ρ)), (2)

where W denotes the Weyl group, ρ is half the sum of the positive roots, and �(w)
is the length of w ∈ W [18]. The following celebrated result involving the q-analog
of Kostant’s weight multiplicity formula is due to Lusztig [19, Section 10, p. 226]: if
g is a finite-dimensional simple Lie algebra, then

mq(α̃, 0) = qε1 + qε2 + · · ·+ qεr , (3)

where α̃ is the highest root and ε1, ε2, . . . , εr are the exponents of g. This article is
motivated by the following question:

Question 1.1. Can one use purely combinatorial techniques to prove Equation (3)?

The first author resolved this for type A, but the question remains open for
other Lie types [15]. One initial step in extending this work to other Lie types is
to compute the value of the term indexed by the identity of the Weyl group. This
term counts the number of ways to express the highest root of the Lie algebra as a
nonnegative integral sum of the positive roots. Our main theorem and the resulting
closed formulas provide insight into how to compute all other terms in Equation (3)
as σ(α̃ + ρ)− ρ has the most partitions into positive roots when σ = 1.

The main result of this paper resolves this in the classical Lie types (Theorems
3.8, 4.3, and 5.3):

Main Theorem (Generating Functions). The closed formulas for the generating
functions

∑

r≥1 PBr
(q)xr,

∑

r≥1 PCr
(q)xr, and

∑

r≥4 PDr
(q)xr, are given by

∑

r≥1

PBr
(q)xr =

qx+ (−q − q2)x2 + q2x3

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
,
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∑

r≥1

PCr
(q)xr =

qx+ (−q − q2)x2

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
,

∑

r≥4

PDr
(q)xr =

(q + 4q2 + 6q3 + 3q4 + q5)x4 − (q + 4q2 + 6q3 + 5q4 + 3q5 + q6)x5

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
,

where PBr
(q), PCr

(q), and PDr
(q) denote ℘q(α̃) when α̃ is the highest root of the

Lie algebras of type Br, Cr, and Dr, respectively.

We also compute ℘q(α̃) when α̃ is the highest root of the exceptional Lie algebras
of type G2, F4, E6, E7, and E8. Letting Pg(q) denote ℘q(α̃) when α̃ is the highest
root of the exceptional Lie algebra g we find that:

PG2
(q) = q(1 + 2q + 2q2 + q3 + q4)

PF4
(q) = q(q10 + 3q9 + 9q8 + 20q7 + 40q6 + 59q5 + 69q4 + 53q3 + 27q2 + 7q + 1)

PE6
(q) = q(q10+5q9+18q8+48q7+97q6+142q5+150q4+105q3+45q2+10q+1)

PE7
(q) = q(q16 + 6q15 + 26q14 + 87q13 + 247q12 + 592q11 + 1216q10 + 2106q9

+ 3054q8+3617q7+3420q6+2488q5+1340q4+500q3+120q2+16q+1)

PE8
(q) = q(q28+7q27+35q26+138q25+470q24+1421q23+3913q22+9902q21

+23216q20+50542q19 + 102283q18 + 192015q17 + 333340q16 + 532288q15

+776864q14+1027773q13+1220804q12+1287007q11+1188475q10

+946515q9+638680q8+357494q7+161931q6+57540q5+15435q4

+2961q3+378q2+28q+1).

From the generating functions in Theorem 1 one can easily extract explicit for-
mulas for ℘q(α̃) in all Lie types. We do this in Appendix A.

1.1 Connections to existing literature

Our work joins an extensive list of articles exploring combinatorial approaches to
computing the value of Kostant’s partition function and the associated weight multi-
plicity formula [6, 7, 10, 11, 13, 14, 15, 16, 22]. The rest of this introduction discusses
connections between our main results and the existing literature on vector partition
functions as they relate to polytope geometry and multiplex juggling sequences.

Geometric approaches have connected Kostant’s partition function to flow poly-
topes and their volumes [1, 2, 20]. In fact, the formulas for ℘q(α̃) in our Main
Theorem evaluated at q = 1 recover the generating functions for the number of lat-
tice points in the Chan-Robbins-Yuen (CRY) polytope of type A, B, C, and D [20].
Two experts on flow polytopes, Baldoni and Vergne, have noted that “[i]n general,
it is difficult to give ‘concrete’ formulae for the partition functions” [2]. This insight
is informed by the fact that these geometric approaches deal with the more general
theory of vector partition functions, i.e., functions computing the number of ways
one can express a vector as a linear combination of a fixed set of vectors using non-
negative integral coefficients. Much work has be done to construct efficient programs
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to compute the values of such functions [1, 9, 21] and part of the challenge is that
the computational complexity of doing so is polynomial in the size of the input in
some special cases, but NP-hard in general [3, 4, 5].

Applications of polyhedral geometry to such problems usually fix the dimension
(here, the Lie algebra’s rank) and scale the vector input of the partition function. Our
work introduces a novel approach by fixing the weight in question while increasing
the rank of the Lie algebra. This gives us a complete picture of the value of Kostant’s
partition function on the highest root (in all Lie types), and our approach is amenable
to generalization by replacing the highest root with other weights. However we
suspect this direction will be cumbersome to approach combinatorially and suspect
that a polytopal approach might give insight to deal with this in general.

Setting q = 1 in the generating functions for the Lie algebras of type B and C

recovers the generating functions used by Butler and Graham to count the number
of multiplex juggling sequences (OEIS sequence A136775) of length n, base state
〈1, 1〉 and hand capacity 2, and the number of periodic multiplex juggling sequences
(OEIS sequence A081567) of length n with base state 〈2〉 and hand capacity 2,
respectively [8]. We list these generating functions in Table 1. While the generating
functions agree, we do not know of a combinatorial bijection and pose the following
problem.

Problem 1. Find a combinatorial bijection between the set of partitions (into positive
roots) of the highest root of the Lie algebra of

1. type Bn, and the set of multiplex juggling sequences of length n with base state
〈1, 1〉 and hand capacity 2;

2. type Cn, and the number of periodic multiplex juggling sequences of length n

with base state 〈2〉 and hand capacity 2.

Type Generating function

B
x− 2x2 + x3

1− 5x+ 5x2

C
x− 2x2

1− 5x+ 5x2

Table 1: Generating functions for the value of ℘(α̃) in Lie types B and C

This paper is organized as follows: Section 2 contains the necessary background
on root systems to make our approach precise. Sections 3 and 4 contain recursive
formulas that count the number of partitions of the highest root α̃ in types Br and
Cr (respectively) as sums of positive roots. These recursions are used to derive
the closed forms for the generating functions

∑

r≥1 PBr
(q)xr in Theorem 3.8 and

∑

r≥1 PCr
(q)xr in Theorem 4.3. Finally in Section 5 we describe how the total

number of partitions of the highest root as sums of positive roots in type Dr can
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be calculated using the partitions of the highest root in type Br−2, the content of
Theorem 5.2. This leads to the derivation of a closed formula for the generating
function

∑

r≥4 PDr
(q)xr in Theorem 5.3.

2 Background

The structure of classical root systems has been extensively studied and completely
classified up to isomorphism. We follow the conventions and choices of vector space
bases set forth in Goodman and Wallach’s text, [12, Section 2.4.3].

Let Φ be the root system for a Lie algebra g of type Ar, Br, Cr, or Dr.

Definition 2.1. A subset ∆ = {α1, α2, . . . , αr} ⊂ Φ is a set of simple roots if every
root in β ∈ Φ can be written uniquely as

β = c1α1 + c2α2 + · · ·+ crαr

with all the ci’s having the same sign. Choosing a set of simple roots ∆ partitions Φ
into two disjoint subsets Φ = Φ+ ∪ Φ− of positive roots Φ+ and negative roots Φ−,
where Φ+ is the collection of roots where ci ≥ 0 and Φ− is the set of roots with ci ≤ 0
for all αi ∈ ∆. If ∆ ⊂ Φ is a subset of simple roots and β = c1α1 + c2α2 + · · ·+ crαr

is a root, then the height of β is

ht(β) = c1 + c2 + · · ·+ cr.

Naturally the positive roots are those β ∈ Φ with ht(β) > 0. In the classical Lie
algebras, there is a unique highest root α̃ defined by the property ht(α̃) ≥ ht(β) for
all β ∈ Φ.

Following the conventions set in [12, Section 2.4.3], we now describe a choice of
simple roots, list the positive roots, and specify the corresponding highest root in
Lie types Br, Cr, and Dr.

Type Br (so2r+1(C)): Let r ≥ 2 and let ∆ = {αi | 1 ≤ i ≤ r} be a set of simple

roots. We describe the set of positive roots Φ+ by breaking them up into roots we
refer to as hooked and nonhooked. We define the set of nonhooked positive roots to
be

Φ+
BNH

r
= ∆ ∪ {αi + αi+1 + · · ·+ αj | 1 ≤ i < j ≤ r} ,

and we define the set of hooked positive roots to be

Φ+
BH

r
= {αi + αi+1 + · · ·+ αj−1 + 2αj + 2αj+1 + · · ·+ 2αr | 1 ≤ i < j ≤ r} .

Note the highest root of type Br is α̃ = α1+2α2+ · · ·+2αr and Φ+ = Φ+
BH

r

Φ+

BNH
r

.

Type Cr (sp2r(C)): Let r ≥ 2 and let ∆ = {αi | 1 ≤ i ≤ r} be a set of simple roots.

Again we break Φ+ into the set of hooked and nonhooked roots. We define the set
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of nonhooked positive roots to be

Φ+
CNH

r
= ∆ ∪ {αi + αi+1 + · · ·+ αj | 1 ≤ i < j ≤ r} ,

and we define the set of hooked positive roots to be

Φ
+
CH

r
={αi+αi+1 + · · · + αj−1 + 2αj + 2αj+1 + · · · + 2αr−1+ αr | 1 ≤ i < j ≤ r − 1} .

Note that the highest root is α̃ = 2α1+2α2+· · ·+2αr−1+αr and Φ+=Φ+
CH

r

Φ+

CNH
r

.

Type Dr (so2r(C)): Let r ≥ 4 and let ∆ = {αi | 1 ≤ i ≤ r} be a choice of a set of
simple roots. We define the set of nonhooked positive roots to be

Φ
+
DNH

r
=∆ ∪ {αi+· · ·+αj |1 ≤ i < j ≤ r} ∪ {αi+αi+1+· · ·+ αr−2+αr |1 ≤ i ≤ r−2} ,

and we define the set of hooked positive roots to be

Φ
+
DH

r
={αi+αi+1+· · ·+αj−1+2αj+2αj+1+· · ·+2αr−2+αr+1+αr |1 ≤ i<j ≤ r−2} .

Note that the highest root of type Dr is α̃ = α1 + 2α2 + · · ·+ 2αr−2 + αr−1 + αr

and the set of positive roots is the disjoint union Φ+ = Φ+
DH

r

 Φ+

DNH
r

.

Definition 2.2. A partition of the highest root α̃ in Φ+ is a multiset {β1, β2, . . . , βk}
= Γ such that βi ∈ Φ+ for all 1 ≤ i ≤ k and α̃ = β1 + β2 + · · ·+ βk. The elements
β ∈ Γ are called the parts of the partition Γ.

2.1 Coordinate Vector Notation

Let ei = (0, 0, . . . , 1, 0, 0, . . .) denote the ith standard basis vector of C∞. For each
classical Lie algebra g with set of roots Φg we let Ψ : Φg → C

∞ be the map defined
on the simple roots of the Lie algebras of type Br and Dr via Ψ(αi) = ei and for
the Lie algebra of type Cr via Ψ(αi) = er−i+1. We extend this map linearly to the
roots in Φg. In doing this, we relate the coefficients of PBr

(q), PCr
(q), PDr

(q)
respectively to counting the number of ways a specific vector in C

∞ can be expressed
as a linear combination of vectors from a fixed set, where scalars are required to be
nonnegative integers. This is presented in the lemmas of this section.

Before presenting these lemmas, consistency of notation with literature must
be addressed. The coordinate maps Ψ(αi) are not standard (see [1, 17, 12, 20]).
Our purpose for introducing non-standard coordinate maps is that it makes the
combinatorial arguments significantly more manageable to present.

Lemma 2.3 (Type B). Let r, k ≥ 1 be integers. The number of partitions of the
highest root α̃ of the Lie algebra of type Br with k parts is equal to the number of
ways of writing the vector

Ψ(α̃) = e1 + 2e2 + 2e3 + · · ·+ 2er = ( 1, 2, 2, . . . , 2
︸ ︷︷ ︸

r nonzero entries

, 0, 0, . . .) ∈ C
∞

as a nonnegative integer combination of k of the following vectors:
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• Nonhooked vectors (parts) of the form ei with 1 ≤ i ≤ r.

• Nonhooked vectors (parts) of the form ei + ei+1 + · · ·+ ej with 1 ≤ i < j ≤ r.

• Hooked vectors (parts) of the the form ei+ei+1+· · ·+ej−1+2ej+2ej+1+· · ·+2er
with 1 ≤ i < j ≤ r.

Lemma 2.4 (Type C). Let r, k ≥ 1 be integers. The number of partitions of the
highest root α̃ of the Lie algebra of type Cr with k parts is equal to the number of
ways of writing the vector

Ψ(α̃) = e1 + 2e2 + · · ·+ 2er−1 + 2er = ( 1, 2, 2, . . . , 2,
︸ ︷︷ ︸

r nonzero entries

0, 0, . . .) ∈ C
∞

as a nonnegative integer combination of k of the following vectors:

• Nonhooked vectors (parts) of the form ei with 1 ≤ i ≤ r.

• Nonhooked vectors (parts) of the form ei + ei+1 + · · ·+ ej with 1 ≤ i ≤ j ≤ r.

• Hooked vectors (parts) of the form e1 + 2e2 + · · · + 2ei + ei+1 + · · · + ej with
1 < i < j ≤ r.

Lemma 2.5 (Type D). Let r, k ≥ 1 be integers. The number of partitions of the
highest root α̃ of the Lie algebra of type Dr with k parts is equal to the number of
ways of writing the vector

Ψ(α̃) = e1+2e2+2e3+ · · ·+2er−2+er−1+er = ( 1, 2, 2, . . . , 2, 1, 1
︸ ︷︷ ︸

r nonzero entries

, 0, 0, . . .) ∈ C
∞

as a nonnegative integer combination of k of the following vectors:

• Nonhooked vectors (parts) of the form ei with 1 ≤ i ≤ r.

• Nonhooked vectors (parts) of the form ei + ei+1 + · · ·+ ej with 1 ≤ i < j ≤ r.

• Nonhooked vectors (parts) of the form ei+ei+1+· · ·+er−2+er with 1 ≤ i ≤ r−2.

• Hooked vectors (parts) of the the form

ei + ei+1 + · · ·+ ej−1 + 2ej + 2ej+1 + · · ·+ 2er−2 + er+1 + er

with 1 ≤ i < j ≤ r − 2.

We use the words vector and part interchangeably throughout the rest of the
article, the context will be clear.

We note that the nonhooked vectors of the Lie algebras of type B, C, and D in
a fixed rank correspond to the positive roots of the Lie algebra of type A in that
rank. Consequently one can use Equation (4) or (9) to find generating functions
for Kostant’s partition function on the highest root of types B and D, respectively,
when the positive roots used are restricted to those of type A (we omitted Type C

as that can be done directly).
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3 Type B

Let PBr
(q) := ℘q(α̃), where α̃ = α1 + 2α2 + · · ·+ 2αr is the highest root of the Lie

algebra of type Br. We can recover PBr
(q) by determining the number of partitions

of e1 +2e2 + · · ·+2er into k parts where the parts are as specified in Lemma 2.3. In
this light, throughout this section, a partition of the vector e1+2e2+ · · ·+2e� in C

∞

where 2 ≤ � ≤ r is a nonnegative integer combination of k (not necessarily distinct)
vectors from the following set:

• Nonhooked vectors (parts) of the form ei with 1 ≤ i ≤ �.

• Nonhooked vectors (parts) of the form ei + ei+1 + · · ·+ ej with 1 ≤ i < j ≤ �.

• Hooked vectors (parts) of the the form ei+ei+1+· · ·+ej−1+2ej+2ej+1+· · ·+2e�
with 1 ≤ i < j ≤ �.

The following example illustrates the computation of a partition function.

Example 3.1. In Table 2 we provide the 40 ways in which γ = e1 + 2e2 + 2e3 + 2e4
can be expressed as a sum of nonhooked and hooked vectors of type B4. From this
we can compute

PB4
(q) = q7 + 3q6 + 8q5 + 11q4 + 11q3 + 5q2 + q.

Let P denote a partition of the vector e1 + 2e2 + · · · + 2er−1. If P does not
have a part containing 2er−1 as a summand, then P contains exactly two parts each
containing an er−1 summand. Hence let u = ei + · · ·+ er−1 and v = ej + · · ·+ er−1

denote these two parts.

For any partition P containing only nonhooked parts there are exactly four ways
to extend these partitions P of e1+2e2+ · · ·+2er−1 to a partition of e1+2e2+ · · ·+
2er−1 + 2er, where the only parts that change are the ones containing er−1:

EB(1): replace u and v with ū = u+ er and v̄ = v + er in P ,

EB(2): replace u with ū = u+ er in P , introduce the part er into P , and leave v

unchanged,

EB(3): replace v with v̄ = v + er in P , introduce the part er to P , and leave u

unchanged,

EB(4): introduce the part er twice in P , and leave u and v unchanged.

From the definition of a partition and the extensions above the following is im-
mediate.

Proposition 3.2. Let P be a partition of e1+2e2+ · · ·+2er−1 that does not contain
a hooked vector as a part, and for 1 ≤ � ≤ 4 let P (�) be the result of applying
extension EB(�) to P . Then for � �= k, P (�) = P (k) if and only if {�, k} = {2, 3}.
Furthermore, if P (�) = P (k), then u = v.



P.E. HARRIS ET AL. /AUSTRALAS. J. COMBIN. 71 (1) (2018), 68–91 76

n Partitions of γ using n vectors

7 {e1, e2, e2, e3, e3, e4, e4}

6
{e1 + e2, e2, e3, e3, e4, e4}
{e1, e2, e2 + e3, e3, e4, e4}
{e1, e2, e2, e3, e3 + e4, e4}

5

{e1, e2, e2, e3, e3 + 2e4}
{e1, e2, e3, e4, e2 + e3 + e4}
{e2, e3, e4, e4, e1 + e2 + e3}
{e1, e2, e2 + e3, e4, e3 + e4}
{e1, e2, e2, e3 + e4, e3 + e4}
{e1 + e2, e2, e3, e4, e3 + e4}
{e1 + e2, e3, e4, e4, e2 + e3}
{e1, e2 + e3, e4, e4, e2 + e3}

4

{e1, e2, e3, e2 + e3 + 2e4}
{e1, e2, e2 + e3, e3 + 2e4}
{e1 + e2, e2, e3, e3 + 2e4}
{e2, e3, e4, e1 + e2 + e3 + e4}
{e1, e2 + e3, e4, e2 + e3 + e4}
{e1, e2, e3 + e4, e2 + e3 + e4}
{e1 + e2, e3, e4, e2 + e3 + e4}
{e2 + e3, e4, e4, e1 + e2 + e3}

n Partitions of γ using n vectors

4
{e2, e3 + e4, e4, e1 + e2 + e3}
{e2, e1 + e2, e3 + e4, e3 + e4}
{e1 + e2, e3 + e4, e4, e3 + e4}

3

{e1, e2, e2 + 2e3 + 2e4}
{e2, e3, e1 + e2 + e3 + 2e4}
{e1, e2 + e3, e2 + e3 + 4e4}
{e1 + e2, e3, e2 + e3 + 2e4}
{e1 + e2, e2 + e3, e3 + 2e4}
{e1 + e2 + e3, e2, e3 + 2e4}
{e2, e3 + e4, e1 + e2 + e3 + e4}
{e2 + e3, e4, e1 + e2 + e3 + e4}
{e1, e2 + e3 + e4, e2 + e3 + e4}
{e1 + e2 + e3, e4, e2 + e3 + e4}
{e1 + e2, e3 + e4, e2 + e3 + e4}

2

{e1 + e2 + e3 + e4, e2 + e3 + e4}
{e1 + e2 + e3, e2 + e3 + 2e4}
{e1 + e2, e2 + 2e3 + 2e4}
{e2 + e3, e1 + e2 + e3 + 2e4}
{e2, e1 + e2 + 2e3 + 2e4}

1 {e1 + 2e2 + 2e3 + 2e4}

Table 2: Partitions of α̃ in type B4

It is important to note that if we began with two distinct partitions P and P ′ of
the vector e1 + 2e2 + · · ·+ 2er−1 which do not have a hooked vector as a part, then
by the definition of the extensions EB(1), EB(2), EB(3), and EB(4), the extensions
of P and P ′ do not yield the same final partition as these extensions only affect the
parts that involve er.

Definition 3.3. Let r ≥ 2, the let

P
H
Br
(q) = c0 + c1q + c2q

2 + · · ·+ ckq
k,

where ci is the number of partitions of e1 + 2e2 + · · · + 2er with i parts where one
part is a hooked vector. Similarly, let

P
NH
Br

(q) = c0 + c1q + c2q
2 + · · ·+ ckq

k,

where ci is the number of ways to write e1 + 2e2 + · · · + 2er as a sum of exactly i

parts where no part is a hooked vector.

We remark that the function P
NH
Br

(q) is the restriction of Kostant partition func-
tion to the positive roots of type Ar. A similar phenomenon holds for P

NH
Cr

(q) and
P

NH
Dr

(q).
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Lemma 3.4. For r ≥ 3,

PBr
(q) = P

H
Br
(q) + P

NH
Br

(q).

Proof. This follows directly from Lemma 2.3 and the fact that any partition of e1 +
2e2 + · · ·+ 2er has at most one part that is a hooked vector.

Proposition 3.5. For r ≥ 3, the polynomials {PNH
Bi

(q)} satisfy the following recur-
sion

P
NH
Br

(q) = (1 + q)2PNH
Br−1

(q)− q3

(
r−2∑

i=1

P
NH
Bi

(q)

)

. (4)

Proof. Recall that every partition P of e1 + 2e2 + · · · + 2er with no hooked parts
comes from an extension of a partition P ′ of e1 + 2e2 + · · ·+ 2er−1 with no hooked
parts via at least one of the four extensions EB(1), EB(2), EB(3), and EB(4). These
extensions respectively add zero, one, one, and two summands.

Hence, the polynomial whose coefficients encode the total of number of said ex-
tensions is

(1 + 2q + q2)PNH
Br−1

(q) = (1 + q)2PNH
Br−1

(q).

However, by Proposition 3.2, (1 + q)2PNH
Br−1

(q) double counts the contribution of
partitions P of e1 + 2e2 + · · · + 2er obtained from extensions EB(2) and EB(3) of
partitions P ′ of e1 + 2e2 + · · ·+ 2er−1 that contain two equal parts u and v with

u = v = ei+1 + · · ·+ er−1

for some i with 1 ≤ i ≤ r − 2. Consider these partitions for a fixed i. By removing
u and v from such a partition P ′, we see that these partitions are in bijection with
the set of partitions of e1 + 2e2 + · · ·+ 2ei. Thus, the polynomial whose coefficients
encode the total number of such partitions is given by q3PNH

Bi
(q), where we multiply

by q3 because P̄ (2) and P̄ (3) each have three more parts than P ′. By ranging over
all possible i we have that the polynomial encoding the double counted partitions is

q3

(
r−2∑

i=1

P
NH
Bi

(q)

)

.

Thus

P
NH
Br

(q) = (1 + q)2PNH
Br−1

(q)− q3

(
r−2∑

i=1

P
NH
Bi

(q)

)

.

Proposition 3.6. The closed form for the generating function
∑

r≥1 PNH
Br

(q)xr is

qx+ (−2q − q2)x2 + (q + q2)x3

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
.
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Proof. For simplicity, let S(q, x) =
∑

r≥1

PBr
(q)xr. Then

S(q, x) = P
NH
B1

(q)x+ P
NH
B2

(q)x2 +
∑

r≥3

P
NH
Br

(q)xr

= qx+ (q3 + q2)x2 +
∑

r≥3

[

(1 + q)2PNH
Br−1

(q)− q3

(
r−2∑

i=1

P
NH
Bi

(q)

)]

xr

= qx+ (q3 + q2)x2 + x(1 + q)2

(
∑

r≥3

P
NH
Br−1

(q)xr−1

)

− q3x2
∑

r≥3

(
r−2∑

i=1

P
NH
Bi

(q)

)

xr−2

= qx+ (q3 + q2)x2 + x(1 + q)2 (S(q, x)− qx)−
q3x2

1− x
S(q, x).

The second equality given above comes from Proposition 3.5. Hence,

S(q, x) ·

(

1− x(1 + q)2 +
q3x2

1− x

)

= qx+ (q3 + q2)x2 − qx2(1 + q)2,

so

S(q, x) =
qx+ (−2q − q2)x2 + (q + q2)x3

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
.

Proposition 3.7. For r ≥ 3, the polynomials {PH
Bi
(q)}, {PNH

Bi
(q)} satisfy the fol-

lowing recurrence

P
H
Br
(q) = q + 2

(
r−1∑

i=2

P
NH
Bi

(q)

)

− q2

(
r−2∑

i=1

i∑

j=1

P
NH
Bj

(q)

)

.

Proof. Let i ∈ {2, 3 . . . , r− 1}. Let P be a partition of e1 +2e2 + · · ·+2ei that does
not have any hooked part. Then P has two parts that contain ei as a summand. Let
these two parts be denoted u = ej + · · ·+ ei and v = ek + · · ·+ ei. We can extend P

to a partition of Br that has a hooked part: either replace u by ej + · · ·+ei+2ei+1+
· · ·+2er or replace v with ek + · · ·+ ei+2ei+1+ · · ·+2er. Ignoring the full partition
e1+2e2+ · · ·+2er, every partition of e1+2e2+ · · ·+2er that has a hooked part can
be constructed by extending a partition P of e1+2e2+ · · ·+2ei for some i using the
aforementioned process. Indeed, suppose Q is a partition of e1 +2e2 + · · ·+2er that
has a hooked part, say ej + ej+1 + · · ·+ ei + 2ei+1 + · · ·+ 2er. Then the partition P

that has all the same parts as Q but replaces ej + ej+1 + · · ·+ ei + 2ei+1 + · · ·+ 2er
with ej + ej+1 + · · · + ei is a partition of e1 + 2e2 + · · · + 2ei that extends to Q.
Consequently, we have

P
H
Br
(q) = q + 2

(
r−1∑

i=2

P
NH
Bi

(q)

)

−G(q)
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where G(q) subtracts the contribution of partitions of e1 + 2e2 + · · ·+ 2er that can
arise from partitions of e1 + 2e2, e1 + 2e2 + 2e3, . . . , e1 + 2e2 + · · ·+ 2er−1 (that do
not have any hooked part) via the above extension in multiple ways.

To compute G(q), we suppose P and P ′ are partitions of e1 + 2e2 + · · · + 2ei
and e1 + 2e2 + · · · + 2ei′ respectively for which the above extension leads to the
same partition Q of e1 + 2e2 + · · · + 2er. Only one part of the partition achieved
after extending P (similarly P ′) to Q contains a hooked part, and it is of the form
ek + · · ·+ ei + 2ei+1 + · · ·+ 2er (similarly ek′ + · · ·+ ei′ + 2ei′+1 + · · ·+ 2er). Since
P and P ′ both extend to Q, this implies

ek + · · ·+ ei + 2ei+1 + · · ·+ 2er = ek′ + · · ·+ ei′ + 2ei′+1 + · · ·+ 2er

and hence i = i′ and ek + · · · + ei = ek′ + · · · + ei′ . Since all other parts of P and
P ′ are the same as the parts of Q besides the part containing a 2er summand, we
deduce P = P ′.

Thus, in order to determine G(q), we need to determine when applying the two
different aforementioned extensions to a partition P (not containing a hooked part)
of e1+2e2+· · ·+2ei for some i ∈ {2, . . . , r−1} can result in the same partition. Let P
be a partition of e1+2e2+ · · ·+2ei not containing a hooked part. Then P has exactly
two parts containing ei as a summand. Call these u = ek+· · ·+ei and v = ek′+· · ·+ei.
When applying our extension, these are replaced by ek + · · ·+ ei + 2ei+1 + · · ·+ 2er
and ek′ + · · ·+ ei+2ei+1+ · · ·+2er respectively, and all other summands remain the
same, so the two extensions are equal if and only if u = v (i.e. k = k′).

We can now compute G(q). Fix i ∈ {2, . . . , r−1}. We determine the contribution
of the set of partitions P of e1 + 2e2 + · · · + 2ei (not containing a hooked part) to
G(q). From the previous paragraph, we obtain a contribution to G(q) for every such
partition P in which its two parts u,v containing ei are the same, say u = v =
ej+1 + · · ·+ ei. The remainder of the partition P can then range over any partition
of e1 + 2e2 + · · · + 2ej with 1 ≤ j < i not containing a hooked part. For each such
partition of e1 + 2e2 + · · · + 2ej, the partition P (and hence its extension) has two
more parts than it, accounting for u and v. Thus, the combined contribution to
G(q) arising from partitions of e1 + 2e2 + · · ·+ 2ei is given by

i−1∑

j=1

q2PNH
Bj

(q).

Ranging over all i gives us

G(q) =

r−1∑

i=2

i−1∑

j=1

q2PNH
Bj

(q) =

r−2∑

i=1

i∑

j=1

q2PNH
Bj

(q).

Theorem 3.8. The closed formula for the generating function
∑

r≥1 PBr
(q)xr is

given by

∑

r≥1

PBr
(q)xr =

qx+ (−q − q2)x2 + q2x3

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
.
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Proof. For simplicity, let T (q, x) =
∑

r≥1 P
H
Br
(q)xr, and S(q, x) =

∑

r≥1 P
NH
Br

(q)xr.
Then

T (q, x) = P
H
B1
(q)x+ P

H
B2
(q)x2 +

∑

r≥3

P
H
Br
(q)xr

= qx2 +
∑

r≥3

(

q + 2

(
r−1∑

i=2

P
NH
Bi

(q)

)

− q2

(
r−2∑

i=1

i∑

j=1

P
NH
Bj

(q)

))

xr

= qx2 +
∑

r≥3

qxr +
∑

r≥3

2

(
r−1∑

i=2

P
NH
Bi

(q)

)

xr − q2
∑

r≥3

(
r−2∑

i=1

i∑

j=1

P
NH
Bj

(q)

)

xr

= qx2 +
qx3

1− x
+

2x

1− x
(S(q, x)− qx)−

q2x2

(1− x)2
S(q, x).

The second equality follows from Proposition 3.7. Hence,

∑

r≥1

PBr
(q)xr = S(q, x) + T (q, x)

= S(q, x) + qx2 +
qx3

1− x
−

2qx2

1− x
+

2x

1− x
S(q, x)−

q2x2

(1− x)2
S(q, x),

the first equality following from Lemma 3.4. It follows then that

∑

r≥1

PBr
(q)xr =

qx+ (−q − q2)x2 + q2x3

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
.

4 Type C

Let PCr
(q) := ℘q(α̃), where α̃ = 2α1 + 2α2 + · · ·+ 2αr−1 + αr is the highest root of

the Lie algebra of type Cr. By Lemma 2.4, we can recover PCr
(q) by determining

the number of partitions of e1 + 2e2 + · · · + 2er into k parts where the parts are
as specified in Lemma 2.4. In this light, throughout this section, a partition of the
vector e1+2e2+· · ·+2e� in C

∞ where 2 ≤ � ≤ r is a nonnegative integer combination
of k (not necessarily distinct) vectors from the following set:

• Nonhooked vectors (parts) of the form ei + ei+1 + · · ·+ ej with 1 ≤ i ≤ j ≤ �.

• Hooked vectors (parts) of the form e1 + 2e2 + · · ·+ 2ei + ei+1 + · · ·+ ej with
1 < i < j ≤ �.

Let P be a partition of Ψ(α̃) = e1 + 2e2 + 2e3 + · · ·+ 2er−1 ∈ C
∞. If P has more

than one part, then exactly two of the parts of P must contain er−1 as a summand.
Let u = ei + · · ·+ er−1 and v = ej + · · ·+ er−1 be these two parts. For any partition
P besides the partition {e1+2e2+ · · ·+2er−1} there are exactly four ways to extend
a partition P of e1 + 2e2 + · · ·+ 2er−1 to a partition of e1 + 2e2 + · · ·+ 2er−1 + 2er,
where the parts that do not contain er−1 remain the same:
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EC(1): introduce two er parts to P to get P ∪ {er, er},

EC(2): replace u by ū = ei + · · ·+ er−1+ er, introduce the part er to P , and leave
v unchanged,

EC(3): replace v by v̄ = ej + · · ·+ er−1+ er, introduce the part er to P , and leave
u unchanged,

EC(4): replace both u and v by ū = ei+ · · ·+er−1+er and v̄ = ej+ · · ·+er−1+er
respectively.

We remark that the only remaining partitions P of e1 + 2e2 + 2e3 + · · ·+ 2er in C
∞

which are not formed from the above extensions are the following three partitions:

P1 = {e1 + 2e2 + · · ·+ 2er} (5)

P2 = {e1 + 2e2 + · · ·+ 2er−1 + er, er} (6)

P3 = {e1 + 2e2 + · · ·+ 2er−1, er, er} (7)

which contain one, two, and three parts respectively. From the definition of a parti-
tion and the extensions above the following is immediate.

Proposition 4.1. Let P be a partition of Ψ(α̃) = e1+2e2+ · · ·+2er−1 ∈ C
∞ distinct

from the partition with only one part {e1 + 2e2 + · · ·+ 2er−1} and for 1 ≤ � ≤ 4 let
P (�) be the result of applying extension EC(�) to P . Then for � �= k, P (�) = P (k) if
and only if {�, k} = {2, 3}. Furthermore, if P (�) = P (k), then u = v.

Note that the extensions EC(1), EC(2), EC(3), and EC(4) only affect parts that
contain er−1 as a summand, hence if you start with two distinct partitions P and
P ′ of e1 + 2e2 + 2e3 + · · · + 2er−1 in C

∞ then the extensions P (�) �= P ′(j) for any
1 ≤ �, j ≤ 4.

Theorem 4.2. If r ≥ 3, then the polynomials {PCi
(q)} satisfy the following recur-

rence

PCr
(q) = (1 + q)2(PCr−1

(q)− q)− q3

(
r−2∑

i=1

PCi
(q)

)

+ (q + q2 + q3).

Proof. Recall that every partition P (except for the three partitions P1, P2 and P3

listed in Equations (5), (6), and (7), respectively) of the vector e1+2e2+ · · ·+2er−1+
2er comes from an extension of a partition P ′ of e1 + 2e2 + · · · + 2er−1 except the
full partition {e1 + 2e2 + · · ·+ 2er−1} via the four extensions EC(1), EC(2), EC(3),
and EC(4). These extensions respectively add two, one, one, and zero parts. The
polynomial whose coefficients encode the total of number of said extensions is

(1 + 2q + q2)(PCr−1
(q)− q) = (1 + q)2(PCr−1

(q)− q).

However, by Proposition 4.1, (1 + q)2(PCr−1
(q)− q) double counts the contribution

of the partitions P of e1 + 2e2 + · · · + 2er−1 + 2er obtained from extensions EC(2)
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and EC(3) of partitions P ′ of e1 + 2e2 + · · ·+ 2er−1 which contain two equal parts u
and v such that

u = v = ei+1 + · · ·+ er−1

for some i with 1 ≤ i ≤ r − 2. Consider such partitions P ′ for a fixed i. The set
of such partitions correspond bijectively with the partitions of e1 + 2e2 + · · · + 2ei.
Thus the polynomial encoding such double counted partitions is given by q3PCi

(q),
where we multiply by q3 because P ′(2) and P ′(3) each have three more parts than
P ′. By ranging over all possible i we have that the total number of double counted
partitions is

q3

(
r−2∑

i=1

PCi
(q)

)

.

Thus

PCr
(q) = (1 + q)2(PCr−1

(q)− q)− q3

(
r−2∑

i=1

PCi
(q)

)

+ (q + q2 + q3),

where the term (q+ q2+ q3) is the contribution from the three partitions P1, P2, and
P3 given in Equations (5), (6), and (7).

Theorem 4.3. The closed formula for the generating function
∑

k≥1 PCk
(q)xk is

given by

∑

k≥1

PCk
(q)xk =

qx+ (−q2 − q)x2

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
.

Proof. Let

∑

k≥1

fk(q)x
k =

qx+ (−q2 − q)x2

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
. (8)

We will show that fk(q) = PCk
(q) for all k ≥ 1. We proceed by induction, and we

observe that

f1(q) = PC1
(q) = q,

f2(q) = PC2
(q) = q(q2 + q + 1), and

f3(q) = PC3
(q) = q(q4 + 2q3 + 4q2 + 2q + 1).

By induction we can assume that fk−1(q) = PCk−1
(q) and fk−2(q) = PCk−2

(q). From
the rational expression of the generating formula given in Equation (8) we know that

fk(q) = (2 + 2q + q2)fk−1(q)− (1 + 2q + q2 + q3)fk−2(q)

= (1 + q)2fk−1(q)− q3fk−2(q) + fk−1(q)− (1 + q)2fk−2(q),

and by induction hypothesis

= (1 + q)2PCk−1
(q)− q3PCk−2

(q) + PCk−1
(q)− (1 + q)2PCk−2

(q).
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Using Theorem 4.2 we note that

(1 + q)2PCk−1
(q)− q3PCk−2

(q) = q2 + PCk
(q) + q3

(
k−3∑

i=1

PCi
(q)

)

and

PCk−1
(q)− (1 + q)2PCk−2

(q) = −q2 − q3

(
k−3∑

i=1

PCi
(q)

)

.

Adding the last two equalities yields the desired result.

5 Type D

Let PDr
(q) := ℘q(α̃), where α̃ = α1+2α2+ · · ·+2αr−2+αr−1+αr is the highest root

of the Lie algebra of type Dr. By Lemma 2.5, we can recover PDr
(q) by determining

the number of partitions of e1 + 2e2 + · · ·+ 2er−2 + er−1 + er into k parts where the
parts are as specified in Lemma 2.5. In this light, throughout this section, for any
� ≥ 5 we refer to a partition of e1+2e2+ · · ·+2e�−2+e�−1+e� ∈ C

∞, or equivalently
a partition of the highest root in type D�, as a nonnegative integer combination of k
(not necessarily distinct) vectors from the following set:

• Nonhooked vectors (parts) of the form ei + ei+1 + · · ·+ ej with 1 ≤ i ≤ j ≤ �.

• Nonhooked vectors (parts) of the form ei+ei+1+· · ·+e�−2+e� with 1 ≤ i ≤ �−2.

• Hooked vectors (parts) of the the form

ei + ei+1 + · · ·+ ej−1 + 2ej + 2ej+1 + · · ·+ 2e�−2 + e�−1 + e�

with 1 ≤ i < j ≤ �− 2.

Throughout our proof, we will relate the polynomials {PDi
(q)} to the polyno-

mials {PH
Bi
(q)} and {PNH

Bi
(q)} from Section 3. As such, for r ≥ 3, we refer to a

partition of e1+2e2+2e3+ · · ·+2e� ∈ C
∞, or equivalently a partition of the highest

root in type B�, as a nonnegative integer combination of k (not necessarily distinct)
vectors from the following set:

• Nonhooked vectors (parts) of the form ei + ei+1 + · · ·+ ej with 1 ≤ i ≤ j ≤ �.

• Hooked vectors (parts) of the the form ei+ei+1+· · ·+ej−1+2ej+2ej+1+· · ·+2e�
with 1 ≤ i < j ≤ �.

In order to determine the generating function for the sequence {PDr
(q)}r≥4, we ex-

plictly relate this sequence to the polynomials for the Lie algebras of type B. Before
stating the first result we provide the following.
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Definition 5.1. Let r ≥ 2, the let

P
H
Dr
(q) = c0 + c1q + c2q

2 + · · ·+ ckq
k,

where ci is the number of partitions of e1 + 2e2 + · · ·+ 2er−2 + er−1 + er with i parts
where one part is a hooked vector (of type Dr). Similarly, let

P
NH
Dr

(q) = c0 + c1q + c2q
2 + · · ·+ ckq

k,

where ci is the number of ways to write e1 + 2e2 + · · ·+ 2er−2 + er−1 + er as a sum
of exactly i parts where no parts are hooked vectors (of type Dr).

Theorem 5.2. For r ≥ 2,

PDr+2
(q) = P

H
Br
(q) + q2PNH

Br
(q) + (2q + 2)

(

2PNH
Br

(q)− q2
r−1∑

i=1

P
NH
Bi

(q)

)

.

Proof. We first observe there is a bijection between partitions of e1+2e2+ · · ·+2er+
er+1 + er+2 that have a hooked part and partitions of e1 + 2e2 + 2e3 + · · ·+ 2er that
have a hooked part that preserves the number of parts in each partition. Indeed,
this bijection takes any partition of e1 + 2e2 + · · · + 2er + er+1 + er+2 and removes
the er+1 + er+2 from its hooked part. From this we deduce P

H
Dr+2

(q) = P
H
Br
(q). It

therefore remains to show that

P
NH
Dr+2

(q) = q2PNH
Br

(q) + (2q + 2)

(

2PNH
Br

(q)− q2
r−1∑

i=1

P
NH
Bi

(q)

)

. (9)

We split this into five cases depending on the partitions of e1 + 2e2 + · · ·+ 2er +
er+1 + er+2 and the parts which contain the summands er+1 and er+2.

Case 1: This case considers partitions of e1+2e2+ · · ·+2er+ er+1+ er+2 containing
er+1 and er+2 as parts. The polynomial encoding the count for all such partitions
is q2PNH

Br
(q) because each of these is uniquely obtained by introducing the parts

{er+1, er+2} to a partition of e1 +2e2 +2e3 + · · ·+2er (in type Br) that itself has no
hooked part.

Case 2: This case considers partitions of e1+2e2+ · · ·+2er+ er+1+ er+2 containing
er+2 as a part, but in which er+1 is not a part. Every partition of e1 + 2e2 +
2e3 + · · · + 2er without a hooked part can be extended in two ways to get such a
partition by adding er+1 to a summand involving er. On the level of polynomials, this
gives 2qPNH

Br
(q) (the q comes from introducing the lone er+2 part to the partition of

e1+2e2+2e3+ · · ·+2er). However, this double counts the contributions of partitions
of e1 + 2e2 + 2e3 + · · ·+ 2er whose two parts containing er are the same. The over
count is given by q

(
q2

∑r−1
i=1 PNH

Bi
(q)

)
, the q for the lone er+2 part, and the q2 for the
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two summands containing er extended from a partition of e1 + 2e2 + 2e3 + · · ·+ 2ei
for some i ∈ {1, 2 . . . , r − 1}. On the level of polynomials this gives us

q

(

2PNH
Br

(q)− q2
r−1∑

i=1

P
NH
Bi

(q)

)

.

Case 3: This case considers partitions of e1+2e2+ · · ·+2er+ er+1+ er+2 containing
er+1 as a part, but in which er+2 is not a part. This argument follows directly from
the argument in the previous case and gives us

q

(

2PNH
Br

(q)− q2
r−1∑

i=1

P
NH
Bi

(q)

)

.

Case 4: This case considers the partitions of e1+2e2+· · ·+2er+er+1+er+2 with er+1

and er+2 as summands in different parts. Any partition of e1 + 2e2 + 2e3 + · · ·+ 2er
that does not have a hooked part can be extended to such a partition in two ways:
by adding er+1 to one part containing er and adding er+2 to the other part containing
er. This does not change the number of parts so on the level of polynomials we get
2PNH

Br
(q), but we must subtract double counts which come from those partitions of

e1 + 2e2 + 2e3 + · · ·+ 2er

whose two parts containing er are the same. By a similar argument to the previous
case, this double count is accounted for by q2

∑r−1
i=1 PNH

Bi
(q). Hence the polynomial

encoding the count for such partitions is

2PNH
Br

(q)− q2
r−1∑

i=1

P
NH
Bi

(q).

Case 5: This case considers the remaining partitions of e1 +2e2+ · · ·+2er + er+1 +
er+2: those with er+1 and er+2 as summands of the same part. Any partition of
e1 + 2e2 + 2e3 + · · · + 2er not containing a hooked part can be extended to such a
partition by adding er+1 + er+2 to a summand containing er. This does not change
the number of parts so the total we get on the level of polynomials is 2PNH

Br
(q). But

we must subtract double counts which come from those partitions in e1+2e2+2e3+
· · ·+ 2er whose two summands containing er are the same. This is accounted for by
q2

∑r−1
i=1 PNH

Bi
(q). So the polynomial encoding the count for such partitions is given

by

2PNH
Br

(q)− q2
r−1∑

i=1

P
NH
Bi

(q).

Adding these five cases yields the desired result.

Theorem 5.3. The closed form for the generating series
∑

r≥4 PDr
(q)xr is

∑

r≥4

PDr
(q)xr =

(q + 4q2 + 6q3 + 3q4 + q5)x4 − (q + 4q2 + 6q3 + 5q4 + 3q5 + q6)x5

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
.
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Proof. Observe that
∑

r≥4

PDr
(q)xr

=
∑

r≥2

PDr+2
(q)xr+2

=
∑

r≥2

(

P
H
Br
(q) + q2PNH

Br
(q) + (2q + 2)

(

2PNH
Br

(q)− q2
r−1∑

i=1

P
NH
Bi

(q)

))

xr+2

=
∑

r≥2

P
H
Br
(q)xr+2 + q2

∑

r≥2

P
NH
Br

(q)xr+2 + (4q + 4)
∑

r≥2

P
NH
Br

(q)xr+2

− q2(2q + 2)
∑

r≥2

(
r−1∑

i=1

P
NH
Bi

(q)

)

xr+2

= x2
∑

r≥2

P
H
Br
(q)xr + q2x2

∑

r≥2

P
NH
Br

(q)xr + (4q + 4)x2
∑

r≥2

P
NH
Br

(q)xr

−
q2(2q + 2)x3

1− x

∑

r≥1

P
NH
Br

(q)xr.

Now for simplicity, let

S(q, x) =
∑

r≥1

P
H
Br
(q)xr, T (q, x) =

∑

r≥1

P
NH
Br

(q)xr.

Directly from Proposition 3.6, we have

T (q, x) =
qx+ (−2q − q2)x2 + (q + q2)x3

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2

and Lemma 3.4 together with Theorem 3.8 implies

S(q, x) =
qx+ (−q − q2)x2 + q2x3

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
− T (q, x)

=
qx+ (−q − q2)x2 + q2x3

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2

−
qx+ (−2q − q2)x2 + (q + q2)x3

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2

=
qx2 − qx3

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
.

Thus,

∑

r≥4

PDr
(q)xr = x2

∑

r≥2

P
H
Br
(q)xr + q2x2

∑

r≥2

P
NH
Br

(q)xr + (4q + 4)x2
∑

r≥2

P
NH
Br

(q)xr

−
q2(2q + 2)x3

1− x

∑

r≥1

P
NH
Br

(q)xr
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= x2S(q, x) + q2x2(T (q, x)− qx) + (4q + 4)x2(T (q, x)− qx)

−
q2(2q + 2)x3

1− x
T (q, x)

=
(q + 4q2 + 6q3 + 3q4 + q5)x4 − (q + 4q2 + 6q3 + 5q4 + 3q5 + q6)x5

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
.
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A Appendix: Explicit Formulas

Using classical techniques from generating functions we extract the following explicit
formulas.

Corollary (Explicit Formulas). The following are explicit formulas for the value of
the q-analog of Kostant’s partition function on the highest root of the classical Lie
algebras:

Type Br (r ≥ 2) : PBr
(q) = b1(q) · (f1(q))

r−2 + b2(q) · (f2(q))
r−2

,

Type Cr (r ≥ 1) : PCr
(q) = c1(q) · (f1(q))

r−1 + c2(q) · (f2(q))
r−1

,

Type Dr (r ≥ 4) : PDr
(q) = d1(q) · (f1(q))

r−4 + d2(q) · (f2(q))
r−4

,

where

f1(q) =
(q2 + 2q + 2) + q

√

q2 + 4

2
, f2(q) =

(q2 + 2q + 2)− q
√

q2 + 4

2

and

b1(q) =
(q5 + q4 + 5q3 + 4q2 + 4q) + (q4 + q3 + 3q2 + 2q)

√

q2 + 4

2(q2 + 4)
,

b2(q) =
(q5 + q4 + 5q3 + 4q2 + 4q)− (q4 + q3 + 3q2 + 2q)

√

q2 + 4

2(q2 + 4)
,

c1(q) =
(q3 + 4q) + q2

√

q2 + 4

2(q2 + 4)
, c2(q) =

(q3 + 4q)− q2
√

q2 + 4

2(q2 + 4)
,

d1(q) =

(q7+3q6+10q5+16q4+25q3+16q2+4q)+(q6+3q5+8q4+12q3+9q2+2q)
√

q2+4

2(q2 + 4)
,
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d2(q) =

(q7+3q6+10q5+16q4+25q3+16q2+4q)−(q6+3q5+8q4+12q3+9q2+2q)
√

q2 + 4

2(q2+4)
.

Proof. Prior to proceeding to each Lie type individually we recall the generating
functions for

∑

r≥1 PBr
(q)xr,

∑

r≥1 PCr
(q)xr and

∑

r≥4 PDr
(q)xr satisfy the rat-

ional expressions

∑

r≥1

PBr
(q)xr =

qx+ (−q − q2)x2 + q2x3

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
(10)

∑

r≥1

PCr
(q)xr =

qx+ (−q − q2)x2

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
(11)

∑

r≥4

PDr
(q)xr =

(q + 4q2 + 6q3 + 3q4 + q5)x4 − (q + 4q2 + 6q3 + 5q4 + 3q5 + q6)x5

1− (2 + 2q + q2)x+ (1 + 2q + q2 + q3)x2
.

(12)

Thus, the sequences {PBr
(q)}, {PCr

(q)} and {PDr
(q)} satisfy the recurrence rela-

tions

PBr
(q) = (2 + 2q + q2)PBr−1

(q)− (1 + 2q + q2 + q3)PBr−2
(q), for r ≥ 4,

PCr
(q) = (2 + 2q + q2)PCr−1

(q)− (1 + 2q + q2 + q3)PCr−2
(q), for r ≥ 3,

PDr
(q) = (2 + 2q + q2)PDr−1

(q)− (1 + 2q + q2 + q3)PDr−2
(q), for r ≥ 6.

Consequently, there are functions b1(q), b2(q), c1(q), c2(q), d1(q), d2(q), f1(q), f2(q)
such that

PBr
(q) = b1(q) · (f1(q))

r−2 + b2(q) · (f2(q))
r−2 for every r ≥ 2,

PCr
(q) = c1(q) · (f1(q))

r−1 + c2(q) · (f2(q))
r−1 for every r ≥ 1,

PDr
(q) = d1(q) · (f1(q))

r−4 + d2(q) · (f2(q))
r−4 for every r ≥ 4.

To find the explicit formulas for PBr
(q), PCr

(q) and PDr
(q) in terms of r, we

determine the functions b1(q), b2(q), c1(q), c2(q), d1(q), d2(q), f1(q), f2(q).

From the generating functions in Equations (10), (11) and (12), f1(q) and f2(q)
are roots, in the variable λ in terms of q, of the polynomial fλ(q) = λ2 − (2 + 2q +
q2)λ+ (1 + 2q + q2 + q3). Hence, without loss of generality,

f1(q) =
(q2 + 2q + 2) + q

√

q2 + 4

2
, f2(q) =

(q2 + 2q + 2)− q
√

q2 + 4

2
.

We now continue on a case by case basis.
Type B: Since PB2

(q) = q3 + q2 + q and PB3
(q) = q5 +2q4 + 4q3 +3q2 + q, we can

determine b1(q), b2(q) by solving the system

q3 + q2 + q = b1(q) + b2(q)
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q5 + 2q4 + 4q3 + 3q2 + q = b1(q) · f1(q) + b2(q) · f2(q).

This yields

b1(q) =
(q5 + q4 + 5q3 + 4q2 + 4q) + (q4 + q3 + 3q2 + 2q)

√

q2 + 4

2(q2 + 4)

b2(q) =
(q5 + q4 + 5q3 + 4q2 + 4q)− (q4 + q3 + 3q2 + 2q)

√

q2 + 4

2(q2 + 4)
.

Type C: Since PC1
(q) = q and PC2

(q) = q3 + q2 + q, we can determine c1(q), c2(q)
by solving the system

q = c1(q) + c2(q)

q3 + q2 + q = c1(q) · f1(q) + c2(q) · f2(q).

This yields

c1(q) =
(q4 + 4q) + q2

√

q2 + 4

2(q2 + 4)
, c2(q) =

(q4 + 4q)− q2
√

q2 + 4

2(q2 + 4)
.

Type D: Since PD4
(q) = q5 + 3q4 + 6q3 + 4q2 + q and PD5

(q) = q7 + 4q6 + 11q5 +
17q4 + 15q3 + 6q2 + q, we can determine d1(q), d2(q) by solving the system

q5 + 3q4 + 6q3 + 4q2 + q = d1(q) + d2(q)

q7 + 4q6 + 11q5 + 17q4 + 15q3 + 6q2 + q = d1(q) · f1(q) + d2(q) · f2(q).

This yields

d1(q) =

(q7+3q6+10q5+16q4+25q3+16q2+4q)+(q6+3q5+8q4+12q3+9q2+2q)
√

q2+4

2(q2 + 4)
,

d2(q) =

(q7+3q6+10q5+16q4+25q3+16q2+4q)−(q6+3q5+8q4+12q3+9q2+2q)
√

q2+4

2(q2 + 4)
.
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