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Abstract

Multi-instance learning (MIL) has demonstrated its use-
fulness in many real-world image applications in recent
years. However, two critical challenges prevent one from ef-
fectively using MIL in practice. First, existing MIL methods
routinely model the predictive targets using the instances of
input images, but rarely utilize an input image as a whole.
As a result, the useful information conveyed by the holistic
representation of an input image could be potentially lost.
Second, the varied numbers of the instances of the input im-
ages in a data set make it infeasible to use traditional learn-
ing models that can only deal with single-vector inputs. To
tackle these two challenges, in this paper we propose a nov-
el image representation learning method that can integrate
the local patches (the instances) of an input image (the bag)
and its holistic representation into one single-vector repre-
sentation. Our new method first learns a projection to pre-
serve both global and local consistencies of the instances of
an input image. It then projects the holistic representation
of the same image into the learned subspace for information
enrichment. Taking into account the content and character-
ization variations in natural scenes and photos, we develop
an objective that maximizes the ratio of the summations of
a number of ℓ1-norm distances, which is difficult to solve
in general. To solve our objective, we derive a new efficient
non-greedy iterative algorithm and rigorously prove its con-
vergence. Promising results in extensive experiments have
demonstrated improved performances of our new method
that validate its effectiveness.

1. Introduction

Learning images representations plays an important role
in many real-world applications due to the overwhelming
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amount of images and videos nowadays brought by modern
technologies. Recently, image representation techniques
using semi-local, or patch-based, features, such as SIFT and
geometric blur, have demonstrated some of the best perfor-
mance in image retrieval and object recognition application-
s. These algorithms choose a set of patches in an image, and
for each patch compute a fixed-length feature vector. This
gives a set of vectors per image, where the size of the set can
vary from image to image. Armed with these patch-based
features, image categorization and retrieval are recently for-
mulated as a multi-instance learning (MIL) problem with
improved retrieval, indexing and annotation performances
[19, 3, 40, 30, 28, 31]. Under the framework of MIL, an
image is viewed as a bag, which contains a number of in-
stances corresponding to the patches in the image. For ex-
ample, in the image in Figure 1 there exist a total of four
patches (surrounded by the yellow bounding boxes) that
represent a set of four different objects, including a car, a
bicycle, and two persons (one person is riding the bicycle
and the other one is standing aside). The image thereby is
a bag and each of the four patches, represented as a vec-
tor, in the image is consider as an instance. If any of these
instances is related to a semantic concept, the entire image
will be annotated with the corresponding semantic label.

Despite a number of successes in applying MIL in im-
age learning, there exist two critical challenges that prevent
one from effectively using available visual information in
an image as much as possible.

First, most, if not all, existing MIL methods only use
the instances of an input image to model the semantic con-
cepts, but not the entire image. For example, when a MIL
method [19, 3, 40, 30, 28, 31, 24, 35, 38] is used to study
the image in Figure 1, only the four instances are associ-
ated with some semantic concepts. However, these four
patches only occupy a small percent of the area of the en-
tire image, while the remained areas of the image that are
outside of the yellow bounding boxes are completely dis-
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Figure 1. Illustration of the proposed method to learn a multi-instance enriched image representation in the single-vector format.

carded, which, though, could potentially convey valuable
semantic information. For instance, a large area of this
picture is “ground”, which is closely correlated to “auto-
mobiles” and “bicycles” and could be used to improve the
image categorization accuracy [25, 26, 27]. Indeed, recent
studies have already demonstrated that holistic image rep-
resentations based upon global features are a necessity to
decode scene contents [10, 37]. Therefore, it is desirable
to learn an image representation that is able to capture both
instance-wise and holistic information of an input image.

Second, in MIL an image is represented as a set of vec-
tors and the numbers of the vectors in the images of a data
set are different in general. Although the multiple-vector
representation could describe the image details with better
granularity, varied data sizes make it infeasible to use tra-
ditional machine learning models that can only deal with
data represented by single-vectors, i.e., one vector per data
sample. Therefore, it would be beneficial to learn a single-
vector representation for an image that can integrate the
information from both its instances and its entire context.

To address the above two challenges in multi-instance
image learning, in this paper we present a novel image
representation learning method. It first learns a projection
from the instances of an input image. Then it projects its
holistic image representation into the learned subspace. A
schematic illustration of our new method is shown in Fig-
ure 1. Through these procedures, the learned image rep-
resentation simultaneously captures the information from
both multi-instance image patches and the holistic summa-
rization of the entire image. In the proposed objective to
learn the projection from the instances of an input image,
we aim to preserve both global and local consistencies of
the instances in the projected subspace, which leads to an
optimization problem that maximizes the ratio of matrix
traces. By further recognizing the variations of the con-
tent and visual characterization in natural scenes and pho-
tos, we further develop the proposed objective by replacing
the squared ℓ2-norm distances by the ℓ1-norm distances in

our formulation, such that the robustness of the learned im-
age representations against outlying samples and features is
promoted [2, 4, 9, 15, 16, 36, 20, 34].

Despite its clear motivations to integrate the informa-
tion of an input image from both its local instances and its
holistic representation, the proposed objective ends up to
be an optimization problem that simultaneously maximizes
and minimizes the summations of a number of ℓ1-norm dis-
tances, which is difficult to solve in general. To solve this
challenging optimization problem, we derived an efficien-
t iterative algorithm with theoretically guaranteed conver-
gence. It is worth noting that, different from many previous
works, our new solution algorithm is a non-greedy algorith-
m, such that it has better chance to find the global optima.
To the best of our knowledge, our new algorithm solves the
general optimization problem that maximizes the ratio of
the summations of the ℓ1-norm distances in a non-greedy
way for the first time in literature, which can find many ap-
plications to improve a number of machine learning models.

Finally, we performed extensive experiments on three
benchmark multi-instance image data sets, the promising
experimental results have demonstrated the effectiveness of
our new method in image learning applications.

2. Learning multi-instance enriched image
representations in the single-vector format

In this section, first we formalize the representation
learning problem for images with semantic patches, where
we introduce the notations used in this paper. Then we grad-
ually develop the proposed objective to learn a single-vector
representation of an input image that captures both global
and local consistencies of the image patches and integrates
the holistic information conveyed by the entire image.

2.1. Notations and problem formalization

Throughout this paper, we write matrices as bold upper-
case letters and vectors as bold lowercase letters. The trace
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of the matrix M = [𝑚𝑖𝑗 ] is defined as tr (M) =
∑

𝑖 𝑚𝑖𝑖,
and the ℓ1-norm of M is defined as ∥M∥1 =

∑
𝑖

∑
𝑗 ∣𝑚𝑖𝑗 ∣.

The ℓ1-norm of a vector v is defined as ∥v∥1 =
∑

𝑖 ∣𝑣𝑖∣ and
the ℓ2-norm of v is defined as ∥v∥2 =

√∑
𝑖 𝑣

2
𝑖 .

In image retrieval and annotation tasks, we study a set of
images and every image contains a collection of semantical-
ly meaningful patches. For a given image, we represent it as
𝒳 = {x,X}, where x ∈ ℜ𝑑 denotes the holistic representa-
tion of the entire image and X = [x1, . . . ,x𝑛] ∈ ℜ𝑑×𝑛 de-
notes a collection of 𝑛 semantic patches, respectively. Here
x𝑖 ∈ ℜ𝑑 (for 𝑖 = 1, 2, . . . , 𝑛) represents a patch of the in-
put image, which can be illustrated as a yellow box in the
image in Figure 1. Under this framework, every image is
considered as a bag of instances (patches). In general, the
numbers of the semantic patches in the images of a data are
different from one to another. In order to tackle the two crit-
ical challenges analyzed before in Section 1, different from
existing MIL studies that model the associations between
the instances of input images and the predictive targets di-
rectly, in this paper we aim to learn from an input image𝒳 a
single-vector representation of y = 𝑓 (𝒳 ) that captures the
information in both local patches and the entire image. Be-
cause the new representations of the images in a data set are
of the same length, they can be readily used by traditional
learning models in various image learning tasks. In the fol-
lowing, we use instance and image patches interchangeably
when there is no risk of ambiguity.

2.2. Our objective

In this subsection, we will develop the proposed objec-
tive to learn a new single-vector representation for an input
image from its holistic representation and its semantic in-
stances. When we integrate the holistic representation and
the semantic instances of the input image, we aim to pre-
serve both global and local consistencies among the seman-
tic instances in the learned projected subspace.

Learning with global consistency via PCA. With recent
advances in digital imaging techniques, one can easily have
a camera with very high resolution. As a result, the derived
visual descriptors from a raw picture are usually of high di-
mensionality. When the image dimensionality grows, most
image retrieval and annotation methods will fail due to “the
curse of dimensionality” [8] and intractable computational
costs. Thus, learning a lower-dimensional image represen-
tation while maintaining the original geometrical structures
of the input image is valuable for practical use. To achieve
this goal, principal component analysis (PCA) [14] is the
right tool to preserve as much information as possible by
learning a projection W ∈ ℜ𝑑×𝑟 (usually 𝑟 ≪ 𝑑) from the
semantic instances X of the input image 𝒳 , which maps x𝑖

in the high 𝑑-dimensional space into a vector y𝑖 in a lower
𝑟-dimensional space by computing y𝑖 = W𝑇x𝑖, such that
the overall variance of the input data in the projected space

ℜ𝑟 is maximized. Formally, let the global mean vector of
the input data X as x̄ = 1

𝑛

∑𝑛
𝑖=1 x𝑖, PCA seeks the projec-

tion W by maximizing the following objective:

𝒥Global (W) = tr
(
W𝑇S𝐺W

)
=

𝑛∑
𝑖=1

∥∥W𝑇 (x𝑖 − x̄)
∥∥2

2
,

𝑠.𝑡. W𝑇W = I , (1)

where S𝐺 =
∑𝑛

𝑖=1 (x𝑖 − x̄) (x𝑖 − x̄)
𝑇 is the covariance

matrix of X and the constant factor 1
𝑛 is omitted for brevi-

ty. Because 𝒥Global maximizes the global variance of the
instances of the input image in the projected subspace, the
projected instances via the learned projection W are glob-
ally consistent in terms of information preservation.

Learning with local consistency via neighborhood vari-
ances. Besides taking advantage of the global consistency
of the semantic instances of the input image, we further take
into account the local geometric structures of these semantic
instances in the projected subspace and consider their local
consistency. Ideally, in the learned subspace the instances
with similar semantic labels should be close to each oth-
er, while those with different semantic labels should be far
away from each other. In other words, in contrast to maxi-
mizing the projected global variance, we also want to min-
imize the local variance around every instance in the pro-
jected subspace. Mathematically, denoting the 𝐾-nearest
neighbors of x𝑖 as 𝒩𝑖 and the local mean vector of x𝑖 as
x̄𝑖 = 1

𝐾+1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}} x𝑗 , we can achieve the overall

local consistency by minimizing the following objective:

𝒥Local (W) = tr
(
W𝑇S𝐿W

)
𝑠.𝑡. W𝑇W = I , (2)

where, following our previous work [33], we define:

S𝐿 =

𝑛∑
𝑖=1

S𝐿𝑖; S𝐿𝑖 =
∑

x𝑗∈{𝒩𝑖∪{x𝑖}}
(x𝑗 − x̄𝑖) (x𝑗 − x̄𝑖)

𝑇
.

Obviously, S𝐿𝑖 computes the local covariance matrix of the
data points around x𝑖. Thus minimizing tr

(
W𝑇S𝐿𝑖W

)
ensures the local consistency around x𝑖 and minimizing
𝒥Local in Eq. (2) ensures the overall local consistency around
all the instances in a bag. Here, again the constant factor

1
𝐾+1 is omitted for brevity.

Our objective to integrate the global and local consisten-
cies of the semantic instances. Armed with the objectives
that can capture the global and local consistencies of the
semantic instances of an input image separately, we can de-
velop a combined objective to capture both of them simulta-
neously. Among several possible ways to combine the two
objectives in Eqs. (1-2), we can formulate our new objective
using the trace ratio of matrices [12], which maximizes the
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following objective:

𝒥ℓ2 (W) =
tr

(
W𝑇S𝐺W

)
tr (W𝑇S𝐿W)

=

∑𝑛
𝑖=1

∥∥W𝑇 (x𝑖 − x̄)
∥∥2

2∑𝑛
𝑖=1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}} ∥W𝑇 (x𝑗 − x̄𝑖)∥22

,

𝑠.𝑡. W𝑇W = I . (3)

A critical problem of 𝒥ℓ2 in Eq. (3) lies in that it computes
the ratio of the summations of a number of squared ℓ2-norm
distances, which are notoriously known to be sensitive to
both outlying sample and outlying features [4, 34]. Many
images from natural scenes and photos often have clustered
objects. This is particularly true when there exist a crowd
of people in a picture, where each individual people may
not characterize the the semantic category of “person” ap-
propriately and many instances have to be considered as
outlying samples. Similarly, due to cropped objects and
(partially) shaded objects in pictures, such as the car in the
image in Figure 1, outlying features also inevitably exist
in real image data sets. Following many previous works
[2, 4, 9, 15, 16, 36, 29, 32, 21, 34], to deal with the feature
and content variances in natural images, we propose to learn
the projection by maximizing the following objective:

𝒥 (W) =

∑𝑛
𝑖=1

∥∥W𝑇 (x𝑖 − x̄)
∥∥
1∑𝑛

𝑖=1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}} ∥W𝑇 (x𝑗 − x̄𝑖)∥1

,

𝑠.𝑡. W𝑇W = I , (4)

in which we compute the summations of the ℓ1-norm dis-
tances, because the ℓ1-norm distance can promote the ro-
bustness against both outlier samples and outlier features.

Upon solving the optimization problem in Eq. (4), the
learned W not only preserves the global variance of the se-
mantic instances of an input image, but also rewards the
local geometric structures of the semantic instances, which
thereby is both globally and locally consistent in the learned
subspace. Then we enrich the holistic representation x of
the input image 𝒳 by computing y = W𝑇x, which is a
fixed-length single-vector representation and can be readi-
ly used by any traditional single-instance machine learning
models. This indeed is the main contribution of this paper.

3. An efficient solution algorithm

Our new objective in Eq. (4) maximizes the ratio of the
summations of a number of the ℓ1-norm distances, which is
obviously not smooth and thus difficult to solve in general.
To solve the general problem that maximizes the ratio of the
summations of the ℓ1-norm distances, such as our objective
in Eq. (4), in this section we will derive an efficient itera-
tive algorithm that is non-greedy. We will also prove the
convergence of our new solution algorithm.

3.1. Solving a general ratio maximization problem

We first generalize the objectives in Eq. (3) and Eq. (4)
into the following general optimization problem and then
derive its solution algorithm:

𝑣opt = argmax
𝑣∈Ω

ℎ(𝑣)

𝑚(𝑣)
,

∀𝑣 ∈Ω
{
𝐶2 ≥ 𝑚(𝑣) ≥ 𝐶1 > 0 ,

𝐶4 ≥ ℎ(𝑣) ≥ 𝐶3 > 0 .

(5)

where Ω is the feasible domain.
Motivated by our previous works [34, 33, 24], we pro-

pose a simple, yet efficient, iterative framework in Algo-
rithm 1 to solve the objective in Eq. (5), whose convergence
is rigorously guaranteed by Theorems 1.

Algorithm 1: Algorithm to solve Eq. (5).

1. Randomly initialize 𝑣0 ∈ Ω and set 𝑘 = 1.
while not converge do

2. Calculate 𝜆𝑘 = ℎ(𝑣𝑘−1)

𝑚(𝑣𝑘−1)
.

3. Find a 𝑣𝑘 ∈ Ω satisfying
ℎ(𝑣𝑘)− 𝜆𝑘𝑚(𝑣𝑘) > ℎ(𝑣𝑘−1)− 𝜆𝑘𝑚(𝑣𝑘−1) = 0.
4. 𝑘 = 𝑘 + 1.

Output: 𝑣.

Theorem 1. In Algorithm 1, for each iteration we have (1)
ℎ(𝑣𝑘)
𝑚(𝑣𝑘)

≥ ℎ(𝑣𝑘−1)
𝑚(𝑣𝑘−1)

; and (2) ∀𝛿, there exists a 𝑘 such that

∀𝑘 > 𝑘 ℎ(𝑣𝑘)
𝑚(𝑣𝑘)

− ℎ(𝑣𝑘−1)
𝑚(𝑣𝑘−1)

< 𝛿.

Proof. In Algorithm 1, from step 3, we have ℎ(𝑣𝑘) −
𝜆𝑘𝑚(𝑣𝑘) > 0. Because ∀𝑣 ∈ Ω 𝑚(𝑣) > 0, we can get
ℎ(𝑣𝑘)
𝑚(𝑣𝑘)

> 𝜆𝑘 = ℎ(𝑣𝑘−1)
𝑚(𝑣𝑘−1)

, which completes the proof of the
first statement of Theorem 1.

Suppose that for the 𝑘-th iteration, there exists a 𝑐𝑘 such
that ℎ(𝑣𝑘)− 𝜆𝑘𝑚(𝑣𝑘) = 𝑐𝑘 > 0. We have:

ℎ(𝑣𝑘)

𝑚(𝑣𝑘)
=

ℎ(𝑣𝑘−1)

𝑚(𝑣𝑘−1)
+

𝑐𝑘
𝑚(𝑣𝑘)

, (6)

by which we can derive:

ℎ(𝑣𝑘)

𝑚(𝑣𝑘)
=

ℎ(𝑣0)

𝑚(𝑣0)
+

𝑘∑
𝑖=1

𝑐𝑖

𝑚(𝑣𝑖)
. (7)

From Eq. (7), we can derive:

ℎ(𝑣0)

𝑚(𝑣0)
+

1

𝐶2

𝑘∑
𝑖=1

𝑐𝑖 ≤ ℎ(𝑣𝑘)

𝑚(𝑣𝑘)
≤ ℎ(𝑣0)

𝑚(𝑣0)
+

1

𝐶1

𝑘∑
𝑖=1

𝑐𝑖 . (8)

Suppose that there exist a positive constant 𝐶 such
that lim𝑘→∞

∑𝑘
𝑖=1 𝑐

𝑖 = 𝐶. If this is not true, we have
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lim𝑘→∞
∑𝑘

𝑖=1 𝑐
𝑖 = ∞, by which, together with Eq. (8),

we can derive lim𝑘→∞
∑𝑘

𝑖=1
ℎ(𝑣𝑘)
𝑚(𝑣𝑘)

= ∞. This, howev-

er, contradicts the fact that ℎ(𝑣𝑘)
𝑚(𝑣𝑘)

is bounded as defined in

Eq. (5), which means that lim𝑘→∞
∑𝑘

𝑖=1 𝑐
𝑖 = 𝐶 holds.

Thus, we have lim𝑘→∞ 𝑐𝑘 = 0, i.e., lim𝑘→∞ 𝑐𝑘

𝑚(𝑣𝑘)
= 0,

which indicates that ∀𝛿 > 0, there must exist a 𝑘 such that:

∀𝑘 > 𝑘
𝑐𝑘

𝑚(𝑣𝑘)
< 𝛿 , (9)

by which and Eq. (6), we have:

∀𝑘 > 𝑘
ℎ(𝑣𝑘)

𝑚(𝑣𝑘)
− ℎ(𝑣𝑘−1)

𝑚(𝑣𝑘−1)
< 𝛿 , (10)

which indicates that Algorithm 1 converges to a local op-
timum and completes the proof of the second statement of
Theorem 1.

3.2. Our algorithm to solve the objective in Eq. (4)

To solve our objective in Eq. (4), according to Step 3 in
Algorithm 1, we need find a solution that satisfy the con-
straint of W𝑇W = I and the following inequality:

𝐹 (W) = 𝐻(W)− 𝜆𝑘𝑀(W) > 0 , (11)

where 𝜆𝑘 is computed by

𝜆𝑘 =

𝑛∑
𝑖=1

∥∥(W𝑘−1)𝑇 (x𝑖 − x̄)
∥∥
1

𝑛∑
𝑖=1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}}

∥(W𝑘−1)𝑇 (x𝑗 − x̄𝑖))∥1
, (12)

and W𝑘−1 denotes the projection matrix in the (𝑘 − 1)-th
iteration, which is already known in the 𝑘-th iteration. Here,
for notation brevity, we define:

𝐻(W) =

𝑛∑
𝑖=1

∥∥W𝑇 (x𝑖 − x̄)
∥∥
1

, (13)

𝑀(W) =

𝑛∑
𝑖=1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}}

∥∥W𝑇 (x𝑗 − x̄𝑖)
∥∥
1

. (14)

Now we need solve the problem in Eq. (11), for which
we first introduce the following two lemmas.

Lemma 1. [18, Theorem 1] For any vector 𝝃 =
[𝜉1, ⋅ ⋅ ⋅ , 𝜉𝑚]

𝑇 ∈ ℜ𝑚, we have ∥𝝃∥1 = max
𝜼∈ℜ𝑚

(sign(𝜼))
𝑇
𝝃,

where the maximum value is attained if and only if 𝜼 =
𝑎× 𝝃, where 𝑎 > 0 is a scalar.

Lemma 2. [11, Lemma 3.1] For any vector 𝝃 =

[𝜉1, ⋅ ⋅ ⋅ , 𝜉𝑚]
𝑇 ∈ ℜ𝑚, we have ∥𝝃∥1 = min

𝜼∈ℜ𝑚
+

1

2

𝑚∑
𝑖=1

𝜉2𝑖
𝜂𝑖

+

1

2
∥𝜼∥1, where the minimum value is attained if and only if

𝜂𝑗 = ∣𝜉𝑗 ∣, 𝑗 ∈ {1, 2, ⋅ ⋅ ⋅ ,𝑚}.

First, motivated by Lemma 1 and Lemma 2, we construct
the following objective:

𝐿(W,W𝑘−1) = 𝐾(W)− 𝜆𝑘𝑁(W) , (15)

where 𝐾(W) and 𝑁(W) are defined as:

𝐾(W) =
𝑟∑

𝑔=1

w𝑇
𝑔 B sign

(
B𝑇w𝑘−1

𝑔

)
, (16)

𝑁(W) =
1

2

𝑟∑
𝑔=1

w𝑇
𝑔 A𝑔w𝑔 +

(
w𝑘−1

𝑔

)𝑇
A𝑔w

𝑘−1
𝑔 . (17)

Here w𝑔 and w𝑘−1
𝑔 denote the 𝑔-th column of matrices W

and W𝑘−1, respectively; B and A𝑔 for 𝑔 = 1, 2, ⋅ ⋅ ⋅ , 𝑟 are
defined as follows:

B = [x̄1 − x̄, x̄2 − x̄, ⋅ ⋅ ⋅ , x̄𝑛 − x̄] , (18)

A𝑔 =
𝑛∑

𝑖=1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}}

(x𝑗 − x̄𝑖) (x𝑗 − x̄𝑖)
𝑇∣∣∣(w𝑘−1

𝑔

)𝑇
(x𝑗 − x̄𝑖)

∣∣∣ , (19)

and sign(𝑥) is the sign function.
Then, using the definition of 𝐿(W,W𝑘−1) in Eq. (15)

and Lemmas 1—2, we can prove the following theorem.

Theorem 2. For any W ∈ ℜ𝑑×𝑟, we have

𝐿(W,W𝑘−1) ≤ 𝐹 (W) . (20)

The equality holds on if and only if W = W𝑘−1.

Proof. First, according to Lemma 1 we can compute:

𝐻(W) =

𝑛∑
𝑖=1

∥∥W𝑇 (x𝑖 − x̄)
∥∥
1

=

𝑛∑
𝑖=1

𝑟∑
𝑔=1

∥∥w𝑇
𝑔 (x𝑖 − x̄)

∥∥
1

≥
𝑟∑

𝑔=1

𝑛∑
𝑖=1

sign
[
(w𝑘−1

𝑔 )𝑇 (x𝑖 − x̄)
] [

w𝑇
𝑔 (x𝑖 − x̄)

]

=
𝑟∑

𝑔=1

w𝑇
𝑔 B sign

(
B𝑇w𝑘−1

𝑔

)
= 𝐾(W) . (21)

Then, according to Lemma 2 we have:

𝑛∑
𝑖=1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}}

{
1

2

𝝃𝑇 (x𝑗 − x̄𝑖) (x𝑗 − x̄𝑖)
𝑇
𝝃

𝝃𝑇 (x𝑗 − x̄𝑖)

+
1

2

∥∥∥𝝃𝑇 (x𝑗 − x̄𝑖)
∥∥∥
1

}
≤

𝑛∑
𝑖=1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}}

{
1

2

𝝃𝑇 (x𝑗 − x̄𝑖) (x𝑗 − x̄𝑖)
𝑇
𝝃

𝜼𝑇 (x𝑗 − x̄𝑖)

+
1

2

∥∥𝜼𝑇 (x𝑗 − x̄𝑖)
∥∥
1

}
,

(22)
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which indicates that:

𝑀(W) =

𝑛∑
𝑖=1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}}

∥∥W𝑇 (x𝑗 − x̄𝑖)
∥∥
1

(23)

=
𝑟∑

𝑔=1

𝑛∑
𝑖=1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}}

{
1

2

w𝑇
𝑔 (x𝑗 − x̄𝑖) (x𝑗 − x̄𝑖)

𝑇
w𝑔

w𝑇
𝑔 (x𝑗 − x̄𝑖)

+
1

2

∥∥w𝑇
𝑔 (x𝑗 − x̄𝑖)

∥∥
1

}

≤
𝑟∑

𝑔=1

𝑛∑
𝑖=1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}}

{
1

2

w𝑇
𝑔 (x𝑗 − x̄𝑖) (x𝑗 − x̄𝑖)

𝑇
w𝑔(

w𝑘−1
𝑔

)𝑇
(x𝑗 − x̄𝑖)

+
1

2

∥∥∥(w𝑘−1
𝑔

)𝑇
(x𝑗 − x̄𝑖)

∥∥∥
1

}

=
1

2

𝑟∑
𝑔=1

w𝑇
𝑔 A𝑔w𝑔 +

(
w𝑘−1

𝑔

)𝑇
A𝑔w

𝑘−1
𝑔 = 𝑁(W) .

Combining Eq. (21) and Eq. (23), we can derive:

𝐿(W,W𝑘−1) = 𝐾(W)− 𝜆𝑘𝑁(W)

≤ 𝐻(W)− 𝜆𝑘𝑀(W) = 𝐹 (W) .
(24)

According to Lemma 1 and Lemma 2, it is easy to verify
that equality holds in Eq. (21) and Eq. (23) if and only if
W = W𝑘−1. Thus, equality holds in Eq. (24) if and only if
W = W𝑘−1. This completes the proof of Theorem 2.

Now we continue to solve our objective. Let W =
W𝑘−1, by substituting it into the objective, we have:

𝐿(W𝑘−1,W𝑘−1) = 𝐹 (W𝑘−1) = 0 . (25)

In the 𝑘-th iteration in solving the objective in Eq. (4), W★

satisfies:

𝐿(W★,W𝑘−1) ≥ 𝐿(W𝑘−1,W𝑘−1) = 0 . (26)

Then, we have:

𝐹 (W★) ≥ 𝐿(W★,W𝑘−1)

≥ 𝐿(W𝑘−1,W𝑘−1) = 𝐹 (W𝑘−1) = 0 .
(27)

Theorem 2 and Eq. (27) indicate that the solution of
the objective function in Eq. (11) can be transformed to
solve the objective function 𝐿(W,W𝑘−1) ≥ 0, which can
be easily solved by the projected subgradient method with
Armijo line search [23]. The subgradient of 𝐿(W,W𝑘−1)
at W is computed as:

∂𝐿(W,W𝑘−1) = B sign
(
B𝑇W𝑘−1

)
− 𝜆𝑘 [A1w1,A2w2, ⋅ ⋅ ⋅ ,A𝑟w𝑟] .

(28)

Note that, for any matrix W the operator 𝑃 (W) =

W
(
W𝑇W

)− 1
2 can project it onto an orthogonal cone.

Algorithm 2: Algorithm to maximize 𝐹 (W).

Input: W𝑘−1 and Armijo parameter 0 < 𝛽 < 1.
1. Calculate 𝜆𝑘 by Eq. (12) the subgradient
G𝑘−1 = ∂𝐿(W𝑘−1,W𝑘−1) by Eq. (28) and set 𝑚 = 1.
while not 𝐹 (W𝑘) > 𝐹 (W𝑘−1) = 0 do

2. Calculate W𝑘 = 𝑃 (W𝑘−1 + 𝛽𝑚G𝑘−1).
3. Calculate 𝐹 (W𝑘) by Eq. (11).
4. 𝑚 = 𝑚+ 1.

Output: W𝑘.

This guarantees the orthogonality constraint of the projec-

tion matrix, i.e.
(
W𝑘

)𝑇 (
W𝑘

)
= I. Algorithm 2 summa-

rizes the algorithm to maximize 𝐹 (W) in Eq. (11).
Finally, based on Algorithm 2, we can derive a simple

yet efficient iterative algorithm as summarized in Algorith-
m 3 to solve ratio maximization problem for the ℓ1-norm
distances, i.e., our objective in Eq. (4).

Algorithm 3: Algorithm for non-greedy ratio maxi-
mization of the ℓ1-norm distances.

1. Randomly initialize W0 satisfying
(
W0

)𝑇
W0 = I and

set 𝑘 = 1.
while not converge do

2. Calculate 𝜆𝑘 by Eq. (12).
3. Find a W𝑘 satisfying 𝐹 (W𝑘) > 𝐹 (W𝑘−1) = 0 by
Algorithm 2.
4. 𝑘 = 𝑘 + 1.

Output: W.

3.3. Convergence analysis of our algorithm

Theorem 3. If W𝑘 is the solution of the objective function

in Eq. (11) and satisfies
(
W𝑘

)𝑇 (
W𝑘

)
= I, then we have

𝒥 (W𝑘) ≥ 𝒥 (W𝑘−1).

Proof. Since W𝑘 is the solution of the objective function
in Eq. (11), we have

𝐹 (W𝑘) =
𝑛∑

𝑖=1

∥∥∥(W𝑘
)𝑇

(x𝑖 − x̄)
∥∥∥
1

− 𝜆𝑘
𝑛∑

𝑖=1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}}

∥∥∥(W𝑘
)𝑇

(x𝑗 − x̄𝑖))
∥∥∥
1

≥ 0 , (29)

from which we can easily derive:

𝒥 (W𝑘) =

𝑛∑
𝑖=1

∥∥∥(W𝑘
)𝑇

(x𝑖 − x̄)
∥∥∥
1

𝑛∑
𝑖=1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}}

∥∥∥(W𝑘)
𝑇
(x𝑗 − x̄𝑖))

∥∥∥
1

≥ 𝜆𝑘 . (30)
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Now by substituting Eq. (12) into Eq. (30), we have

𝒥 (W𝑘)

=

𝑛∑
𝑖=1

∥∥∥(W𝑘
)𝑇

(x𝑖 − x̄)
∥∥∥
1

𝑛∑
𝑖=1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}}

∥∥∥(W𝑘)
𝑇
(x𝑗 − x̄𝑖))

∥∥∥
1

≥

𝑛∑
𝑖=1

∥∥(W𝑘−1)𝑇 (x𝑖 − x̄)
∥∥
1

𝑛∑
𝑖=1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}}

∥(W𝑘−1)𝑇 (x𝑗 − x̄𝑖))∥1

= 𝒥 (W𝑘−1) , (31)

which completes the proof of Theorem 3.

Theorem 4. The objective in Eq. (4) is upper bounded.

Proof. First, using Cauchy-Schwarz inequality we have the
following for the numerator of our objective in Eq. (4):

𝑛∑
𝑖=1

∥∥W𝑇 (x𝑖 − x̄)
∥∥
1
=

𝑛∑
𝑖=1

𝑟∑
𝑗=1

∥∥w𝑇
𝑗 (x𝑖 − x̄)

∥∥
1

(32)

≤
𝑛∑

𝑖=1

𝑟∑
𝑗=1

∥∥w𝑇
𝑗

∥∥
2
∥(x𝑖 − x̄)∥2 =

𝑛∑
𝑖=1

𝑟 ∥(x𝑖 − x̄)∥2 .

Obviously, given an input data set,
∑𝑛

𝑖=1 𝑟 ∥(x𝑖 − x̄)∥2 is
a constant, which indicates that the numerator of our objec-
tive in Eq. (4) is upper bounded for a given data set.

Second, it can be verified that
√∑𝑛

𝑖=1 𝑣
2
𝑖 ≤

∑𝑛
𝑖=1 ∣𝑣𝑖∣,

i.e., ∀v ∈ ℜ𝑛 ∥v∥2 ≤ ∥v∥1, by which we can derive the
following for the denominator of our objective in Eq. (4):

𝑛∑
𝑖=1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}}

∥∥W𝑇 (x𝑗 − x̄𝑖)
∥∥
1

≥
𝑛∑

𝑖=1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}}

√
∥W𝑇 (x𝑗 − x̄𝑖)∥22

≥
√√√⎷ 𝑛∑

𝑖=1

∑
x𝑗∈{𝒩𝑖∪{x𝑖}}

∥W𝑇 (x𝑗 − x̄𝑖)∥22

=
√

tr (W𝑇S𝐿W) ≥
√√√⎷ 𝑟∑

𝑖=1

𝜆𝑖 ,

(33)

where 𝜆𝑖 (𝑖 = 1, . . . , 𝑟), ordered by 𝜆1 ≤ ⋅ ⋅ ⋅ ≤ 𝜆𝑟, are
the eigenvalues of S𝐿. The last inequality in Eq. (33) is
obtained by the Ky Fan’s inequality [7], which states that
tr

(
W𝑇S𝐿W

) ≥ ∑𝑟
𝑖=1 𝜆𝑖. Again, given an input data

set, S𝐿 is an constant matrix thereby
∑𝑟

𝑖=1 𝜆𝑖 is a constant.
Thus the denominator of our objective in Eq. (4) is lower
bounded.

The two bounds in Eq. (32) and Eq. (33) together indi-
cate that our objective in Eq. (4) is upper bounded.

Theorem 3 indicates that our proposed Algorithm 3
monotonically increase the objective function value in each
iteration. Theorem 4 indicates that the objective function is
upper bounded, which, together with Theorem 3, indicates
that Algorithm 3 converges to a local optimum.

4. Experiments

In this section, we experimentally evaluate the proposed
image representation method in an automatic image anno-
tation task, where we use the following three multi-instance
image data sets: the PASCAL VOC 2010 data set [6], the
Corel5K data set [5], and the Scene data set [40]. We per-
form our evaluations using standard 5-fold cross-validation
and report the average performances over the 5 trials.

The proposed image representation learning method has
two parameters, the number of neighborhoods 𝐾 of an
instance and the dimensionality 𝑟 of the projected sub-
space. In our experiments, the performance of the proposed
method is very stable with respect to these two parameters
in considerably large value ranges. Empirically, in all our
experiments we select 𝐾 = min {3, 𝑛} where 𝑛 is the num-
ber of instances in an image bag and 𝑟 = 𝑑/10 where 𝑑 is
the dimensionality of the instance vectors.

Experimental settings. We first compare our method to t-
wo baseline classification methods including support vector
machine (SVM) method and the transductive support vec-
tor machine (TSVM) [13] method. The former is the most
broadly used supervised classification method in statistical
learning, while the latter is an extension of the former one
and is a semi-supervised classification method. Because
both of these two methods are designed for single-instance
data, they are not able to deal with data with representations
of varied sizes. Therefore, we train and classify images us-
ing the holistic representations of the experimental images.
Specifically, for each class we train a one-vs.-others classier
using the images in the training data set, and classify the im-
ages in the test data set. Gaussian kernel is used in the both

methods, i.e., 𝒦 (x𝑖,x𝑗) = exp
(
−𝛽 ∥x𝑖 − x𝑗∥2

)
, where

𝛽 and the regularization box parameter 𝐶 are fine tuned by
searching the grid of

{
10−5, . . . , 10−1, 1, 10, . . . , 105

}
vi-

a an internal 5-fold cross-validation using the training data
of each of the 5 trails. The both methods are implemented
using SVM𝑙𝑖𝑔ℎ𝑡 software package [1].

We also compare our method against two very recent
MIL methods including the miGraph [39] method and the
MIMLSVM+ [17] method. Because miGraph method is a
single-label classification method, one-vs.-others strategy is
used to conduct classification, one class at a time. We im-
plement these two methods using the codes published by
the respective authors. Because the both methods are multi-
instance classification methods, we perform classification
using the semantic instances of the input images.
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Table 1. Comparison of the performances (mean ± std) of the compared methods in the image annotation tasks.

Method Hamming loss ↓ One-error ↓ Coverage ↓ Rank loss ↓ Average precision ↑

PASCAL

SVM 0.183± 0.016 0.336± 0.018 1.025± 0.014 0.186± 0.015 0.476± 0.022
TSVM 0.180± 0.015 0.331± 0.016 1.022± 0.012 0.183± 0.016 0.478± 0.025
miGraph 0.173± 0.011 0.306± 0.018 1.013± 0.018 0.178± 0.013 0.483± 0.023
MIMLSVM+ 0.176± 0.014 0.323± 0.024 0.999± 0.015 0.177± 0.010 0.485± 0.022

Our method (3NN) 0.165± 0.009 0.289± 0.011 0.975± 0.010 0.151± 0.002 0.481± 0.013
Our method (SVM) 0.155± 0.014 0.272± 0.011 0.962± 0.016 0.139± 0.012 0.507± 0.015

Corel5K

SVM 0.283± 0.011 0.584± 0.011 5.972± 0.011 0.291± 0.011 0.465± 0.012
TSVM 0.276± 0.005 0.579± 0.012 5.993± 0.052 0.291± 0.006 0.476± 0.015
miGraph 0.246± 0.015 0.571± 0.009 5.510± 0.013 0.233± 0.011 0.545± 0.013
MIMLSVM+ 0.238± 0.004 0.568± 0.013 5.104± 0.009 0.241± 0.015 0.559± 0.018

Our method (3NN) 0.211± 0.011 0.526± 0.013 4.611± 0.021 0.216± 0.012 0.611± 0.016
Our method (SVM) 0.204± 0.015 0.507± 0.009 4.751± 0.021 0.207± 0.008 0.604± 0.010

Scene

SVM 0.228± 0.011 0.374± 0.011 1.041± 0.018 0.209± 0.011 0.695± 0.021
TSVM 0.231± 0.005 0.381± 0.011 1.078± 0.009 0.211± 0.012 0.701± 0.018
miGraph 0.221± 0.012 0.384± 0.012 1.071± 0.014 0.241± 0.022 0.715± 0.033
MIMLSVM+ 0.215± 0.011 0.370± 0.012 1.015± 0.003 0.238± 0.012 0.709± 0.022

Our method (3NN) 0.187± 0.011 0.350± 0.017 0.995± 0.012 0.182± 0.014 0.795± 0.026
Our method (SVM) 0.175± 0.004 0.355± 0.016 0.980± 0.026 0.174± 0.007 0.794± 0.011

For our method, once the multi-instance enriched rep-
resentations of the input images are learned, they can be
directly fed into any traditional single-instance classifiers.
Thus we evaluate our new image representation learning
method using two most broadly used classifiers: the 𝐾-
nearest neighbour (KNN) classifier and the SVM. In our
experiments, we select 𝐾 = 3 in KNN classifiers and use
the same settings as detailed above the SVM classifiers.

Experimental results. Because the three experimental im-
age data sets are all multi-label data sets, we evaluate the
classification performances of the compared methods using
five broadly used multi-label evaluation metrics as in Ta-
ble 1, where “↓” indicates “the smaller is the better”, while
“↑” indicates “the bigger is the better”. We refer readers to
[22] for detailed definitions of these evaluation metrics.

The average classification performances (mean ± stan-
dard deviation) of the compared methods over the 5 trials
of the experiments are reported in Table 1, from which we
can see a number of interesting observations as following.
First, the proposed method is consistently better than the
other four competing methods, sometimes very significant-
ly. Second, the MIL methods are generally better than the
two baseline classification methods that only use the holis-
tic image representations. This observation is reasonable in
that the two baseline methods are both single-instance clas-
sification methods, which only use the holistic image repre-
sentations. As a result, the important structural information
contained in image patches with semantic meanings are not
exploited, which leads to inferior performance. Last, but
not least, the SVMs using the raw holistic image representa-

tions perform drastically worse than those using the learned
image representations by our new method, i.e., the holistic
image representation with multi-instance enrichments. This
observation firmly confirms that our proposed method can
improve the image representations in terms of image anno-
tation. To summarize, the experimental results in Table 1
clearly demonstrate the effectiveness of the proposed meth-
ods in multi-instance multi-label image classification.

5. Conclusions

In this paper, we have presented a novel image represen-
tation learning method that is able integrates the informa-
tion conveyed by both local image patches and the holistic
representation of the entire image. Our new method first
learns a projection to preserve both global and local con-
sistencies of the instances of the input image in a project-
ed subspace, then it projects the holistic representation of
the entire image into the learned subspace for information
enrichment. Taking into account the content and charac-
terization variations in pictures for nature scenes and pho-
tos, we developed an objective that simultaneously maxi-
mizes and minimizes the summations of a number of ℓ1-
norm distances, which is difficult to solve in general. Thus,
we derived an efficient iterative solution algorithm that is
non-greedy and theoretically proved to converge. Our new
method has been validated in extensive experiments to sim-
ulate the real-world applications.
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