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Abstract

We consider a Bayesian framework for estimating a high-dimensional sparse preci-
sion matrix, in which adaptive shrinkage and sparsity are induced by a mixture of
Laplace priors. Besides discussing our formulation from the Bayesian standpoint, we
investigate the MAP (maximum a posteriori) estimator from a penalized likelihood
perspective that gives rise to a new non-convex penalty approximating the £y penalty.
Optimal error rates for estimation consistency in terms of various matrix norms along
with selection consistency for sparse structure recovery are shown for the unique
MAP estimator under mild conditions. For fast and efficient computation, an EM
algorithm is proposed to compute the MAP estimator of the precision matrix and
(approximate) posterior probabilities on the edges of the underlying sparse structure.
Through extensive simulation studies and a real application to a call center data,
we have demonstrated the fine performance of our method compared with existing

alternatives.
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1 Introduction

Covariance matrix and precision matrix (inverse of the covariance matrix) are among the
most fundamental quantities in Statistics as they describe the dependence between different
variables (components) of a multivariate observation. Not surprisingly, they play pivotal
roles in many statistical problems including graphical models, classification, clustering,
and regression, which are used extensively in many application areas including biological,
engineering, and finance. Take the Gaussian graphical model (GGM) as an example. The
precision matrix provides great insight into the conditional dependence structure in a graph,
since the conditional independence of i-th and j-th variables of an undirected Gaussian
Markov random field is equivalent to the (7, j)-th entry of the precision matrix being zero,
see a recent review by Pourahmadi (2013). Such results have helped researchers to identify
complex network structures in applications such as high-throughput biological data, for
example, in Wille et al. (2004).

Estimating the precision matrix, especially under the high dimensional setting where
the variable dimension p can possibly be larger than the sample size n, is a particularly
challenging problem. Given the current prevalence of high dimensional data and the wide
utility of precision matrix, this problem has received significant attention in recent literature.
When the sample covariance matrix is positive definite, its inverse is a natural estimator
for the precision matrix. However, the inverse of sample covariance matrix as an estimator
is demonstrated to have poor performance in numerous studies (Johnstone, 2001; Paul,
2007; Pourahmadi, 2013). Moreover, when p > n, the precision matrix estimation problem
is ill-posed without further restricting assumptions. One of the most commonly used
assumptions to remedy this issue is to assume that the precision matrix is sparse, i.e., a
large majority of its entries are zero (Dempster, 1972), which turns out to be quite useful
in practice in the aforementioned GGM owing to its interpretability. Another possibility
is to assume a sparse structure on the covariance matrix through, for example, a sparse
factor model (Carvalho et al., 2008; Fan et al., 2008, 2011; Bithlmann and Van De Geer,

2011; Pourahmadi, 2013; Rockova and George, 2016), to obtain a sparse covariance matrix



estimator, and invert it to estimate the precision matrix. However, the precision matrix
estimator obtained from this strategy is not guaranteed to be sparse, which is important for
interpretability in our context.

Regularization provides a general framework for dealing with high dimensional problems.
There are two major approaches that utilize regularization to estimate the precision matrix
and its sparse structure.

The first one is regression based approach where a sparse regression model is estimated
separately for each column to identify and estimate the nonzero elements of that column
in the precision matrix © (Meinshausen et al., 2006; Peng et al., 2009; Zhou et al., 2009;
Khare et al., 2015). This approach focuses more on the sparse selection of the entries, and
the estimated precision matrix is generally not positive definite.

The other is likelthood based approach which aims to optimize the negative log-likelihood
function (1) together with an element-wise penalty term on © (Yuan and Lin, 2007; Banerjee
et al., 2008; Friedman et al., 2008; Fan et al., 2009). Among these methods, Graphical
Lasso (GLasso) (Friedman et al., 2008) is the most commonly used owing to its scalability.
GLasso estimator for the precision matrix is also not guaranteed to be positive definite.
Mazumder and Hastie (2012) proposed algorithms that modify GLasso and ensure positive
definiteness of the estimated precision matrix. Apart from these two general approaches,
regularization can be applied with other forms of loss functions, an example of which is the
CLIME estimator proposed by Cai et al. (2011).

Theoretical properties of the likelihood based methods for Gaussian graphical models
have been studied in the literature. In Rothman et al. (2008), Lam and Fan (2009) and Loh
and Wainwright (2015), estimation error rates in Frobenius norm have been established for
likelihood based estimators with Lasso and SCAD penalties. For GLasso, stronger results
in entrywise maximum norm are obtained by Ravikumar et al. (2011) under a restrictive
assumption on O, called the irrepresentable assumption, when the multivariate distribution
of the observations has an exponential tail (such as sub-Gaussian distributions). A slower
rate is shown when the distribution has a polynomial tail (such as ¢-distributions with

sufficiently large degrees of freedom). Similar results on estimation error rate in maximum



norm are shown by Loh and Wainwright (2017) for non-convex penalized estimators under
sub-Gaussian distributions but their results require beta-min conditions. Cai et al. (2011)
provide such results for CLIME estimator both under exponential and polynomial tails with
the assumption that all the absolute column sums of © are bounded.

The precision matrix estimation problem is less studied under the Bayesian framework
possibly due to the high computational cost associated with MCMC when p is large. Marlin
and Murphy (2009) proposed a Bayesian model and a variational Bayes algorithm for
GGMs with a block structure. Wang (2012) proposed a Bayesian version of GLasso and
the associated posterior computation algorithms. Carvalho and Scott (2009), Dobra et al.
(2011), Wang and Li (2012) and Mohammadi and Wit (2015) used G-Wishart priors and
proposed stochastic search methods for the computation. Banerjee and Ghosal (2015)
studied a Bayesian approach with mixture prior distributions that have a point-mass and
a Laplace distribution. They provide posterior consistency results and a computational
approach using Laplace approximation. With the exception of Banerjee and Ghosal (2015),
theoretical properties of Bayesian methods for sparse precision matrix estimation have
not been studied. The results of Banerjee and Ghosal (2015) are on estimation error rate
in Frobenius norm similar to those of Rothman et al. (2008), but assume the underlying
distribution to be Gaussian.

In this paper, we propose a new Bayesian approach for estimation and structure recovery
for GGMs. Specifically, to achieve adaptive shrinkage, we model the off-diagonal elements
of © using a continuous spike-and-slab prior with a mixture of two Laplace distributions,
which is known as the spike-and-slab Lasso prior in Roc¢kova (2018), Rockova and George
(2016) and Rockova and George (2018). Continuous spike-and-slab priors are commonly
used for high dimensional regression (George and McCulloch, 1993; Ishwaran and Rao,
2005; Narisetty and He, 2014) and a Gibbs sampling algorithm is often used for posterior
computation. However, such a Gibbs sampler for our problem has an extremely high
computational burden and instead we propose a novel EM algorithm for computation, which
is motivated by the EM algorithm for linear regression from Rockova and George (2014)

and the one for factor models from Rockova and George (2016). Our novel computational



and theoretical contributions in the paper are summarized as follows:

e We propose a new approach for precision matrix estimation, named BAGUS, short
for “BAyesian regularization for Graphical models with Unequal Shrinkage.” The
adaptive (unequal) shrinkage is due to the non-convex penalization by our Bayesian

formulation.

e Although the Gaussian likelihood is used in our Bayesian formulation, our theoretical
results hold beyond GGMs. We have shown that our procedure enjoys the optimal
estimation error rate of O, 10%) in the entrywise maximum norm and selection
consistency under both exponential and polynomial tail distributions with very mild
conditions. Our theoretical result is stronger than the best existing result by Cai et al.
(2011), as we assume boundedness of © in operator norm which is weaker than the

assumption of bounded absolute column sum of ©.

e We propose a fast EM algorithm which produces a maximum a posteriori (MAP)
estimate of the precision matrix and (approximate) posterior probabilities on all edges
that can be used to learn the graph structure. The EM algorithm has computational
complexity comparable to the state-of-the-art GLasso algorithm (Mazumder and

Hastie, 2012).

e Our algorithm is guaranteed to produce a symmetric and positive definite estimator

unlike many existing estimators including CLIME.

The remaining part of the paper is organized as follows. In Section 2, we present our
model and prior set-up in the Bayesian framework along with a discussion on its penalized
likelihood perspective. In Section 3, we provide our theoretical consistency results followed
by the details of the EM algorithm in Section 4. Section 5 presents numerical results in
extensive simulation studies and a real application for predicting telephone center call
arrivals. Proofs, technical details, and R code used for empirical results can be found in

Online Supplementary Material.



Notation

For a p x ¢ matrix A = [a;;], we denote its Frobenius norm by [|A|lr = /> ) ai;, the
entrywise (o, norm (i.e., maximum norm) ||Al|o, = max( ;) |a,;|, and its spectral norm by
I|All2 = sup{||Ax]| : x € RY,||x|| < 1} where ||x|| denotes the I norm of vector x. For a pxp
square matrix A, let A~ denote the off-diagonal elements of A, A™ the diagonal elements of
A, and Apin(A) and Apax(A) the smallest and the largest eigenvalues, respectively. For a
square symmetric matrix A, its spectral norm is equal to its maximum eigenvalue, that is,
|All2 = Amax(A), and its maximum absolute column sum (i.e., the ¢;/¢; operator norm) is
the same as its maximum absolute row sum (i.e., the £, /f,, operator norm), denoted by
Al = maxi<j<q > 7 lai].

Let O° = [0%] and X0 = [a?j] denote the true precision matrix and covariance matrix,
respectively. Let S° = {(i,7) : 6; # 0} denote the index set of all nonzero entries in ©° and
S% s its complement. Define 69, = max;; |99j] and Mso = [|X%)] .. DefineI’'=0"'@ 0!

as the Hessian matrix of g := —logdet(©). I'(k),1m) corresponds to the second partial

2

derivative 8936—89%”, and for any two subsets T and T3 of {(i,7) : 1 < i,57 < p}, we use

I'r, 1, to denote the matrix with rows and columns of I' indexed by 77 and 75 respectively.

We further denote Mpo = ’HFO;& 50

= [[(©° ® ©%)gog0]||.. Define the column sparsity
d = max card{j : 0); # 0} and the off-diagonal sparsity s = card(S°) — p, where card
i=1,2,...,p

denotes the cardinality of the set in its argument.

2 Bayesian Regularization for Graphical Models

Our data consist of a random sample of n observations Y7,...,Y, which are assumed to
be uid p-variate random vectors following a multivariate distribution with mean zero and

precision matrix ©. In short, we use the following notation:

itd

Yi,..., Y, X N(0,07h).



Our primary goal is to estimate © and identify the sparse structure in the elements of ©.

For the Bayesian framework, we work with the Gaussian log-likelihood given by
n
0(O) =log f(Yi,...,Y,|0) = §<log det(©) — tr(S@)) (1)

where S = [s;;] = 2 3" Y;Y} denotes the sample covariance matrix of the data. We note
that in spite of working with the Gaussian likelihood, we allow the observations to have

non-Gaussian distributions including those with polynomial tails.

2.1 Bayesian Formulation

Next we describe our prior specification on the following two groups of parameters: the
diagonal entries {0;;} and the off diagonal entries, where the latter is reduced to the upper
triangular entries {6;; : ¢ < j} due to symmetry.

On the upper triangular entries 6,; (i < j), we place the following spike-and-slab prior,
known as the spike-and-slab Lasso prior developed in a series of work by Rockova (2018),
Rockova and George (2016) and Rockovéa and George (2018):
w(e,-j):iexp{—|i—if'|}+12_7jexp{—%}, (2)
which is a mixture of two Laplace distributions of different scales vg and v; with v; > vg > 0.
The mixture distribution (2), represents our prior on 6;; which could take values of relatively
large magnitude modeled by the Laplace distribution with scale parameter v; (i.e., the “slab”
component), or which could take values of very small magnitude modeled by the Laplace
distribution with scale parameter vy (i.e., the “spike” component). In the traditional spike-
and-slab prior, the “spike” component is set to be a point mass at zero, which corresponds
to our setting with vy = 0. Here we use a continuous version of the spike-and-slab prior, in
which vy is set be nonzero but relatively small compared with v;. Continuous spike-and-slab
priors with normal components were proposed by George and McCulloch (1993) in the
linear regression context and their high dimensional shrinkage properties were studied by
Ishwaran and Rao (2005) and Narisetty and He (2014). Rockova (2018) and Rockova and

George (2018) considered the spike-and-slab Lasso prior given by (2) for linear regression
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and studied the adaptive shrinkage property of such priors as well as various asymptotic
properties concerning the posterior mode. An advantage of continuous spike-and-slab priors
is that the continuous prior distributions on 6;; allow the use of efficient algorithms that do
not require switching the active dimension of the parameter.

For the diagonal entries 6;; of the precision matrix, a weakly informative Exponential

prior is specified since 6;; do not need to be shrunk to zero:

Although © can be fully parameterized by these two groups of parameters, they are not
independent as the determinant of © needs to be positive. Therefore, the support for the
joint prior distribution on elements of © is restricted such that © is positive definite, i.e.,
© > 0. In addition, we constrain the spectral norm of © to be upper bounded: ||©]2 < B.
Such a constraint is not very restrictive since it often appears in the assumptions for
theoretical studies of precision matrix estimation anyway: a large spectral norm of ©
implies high correlation among variables, a setup in which most methods fail. An important
consequence of this constraint will be discussed in Section 2.3.

So our prior distribution on © is given by

() = [[(6;) [[r(0:)1(0 = 0)1(|©]I2 < B). (3)

1<J %
2.2 The Penalized Likelihood Perspective

If estimation of © is of main interest, then a natural choice is the MAP estimator © that
maximizes the posterior distribution w(0|Y3,---,Y,). This is equivalent to minimizing the

following objective function under the constraint ||©]|s < B and © > 0:

L(©) = —logn(O|Yy, -+ ,Y,)
= —((O)— Z log w(6,5|n) — Z log 7(6;;|7) + Const.
i<j i

= g<tr(S@) — log det(@)> + Z pengg(6;;) + Z pen; (0;) + Const. (4)

1<J



where

pengg(f) = —log {<i>e_lfll + (1 — n)e_lfolﬂ (5)

2v1 2vg
and pen, (0) = 7/0|.

If viewed from the penalized likelihood perspective, the objective function L(©) employs
two penalty functions, induced by our Bayesian formulation. The penalty function on
the diagonal entries, pen, (), is the same as the Lasso penalty. The hyperparameter 7 is
suggested to be small, so the Lasso penalty mainly shrinks the estimates of #;; instead of
truncating them to be zero.

More importantly, the penalty function on the off-diagonal entries, pengg(#), coming
from the spike-and-slab prior has an interesting shrinkage property. To highlight the
difference between this penalty and the Lasso penalty, we plotted them in Figure 1. We also
compare our spike-and-slab penalty with the spike-and-slab penalty that arises by using
a mixture of two normal distributions (George and McCulloch, 1997) instead of Laplace

distributions:

n _ 2 1—n\ o
penygg(0) = —log [<m>€ o+ (\/Tv()e 2““)] )
where “NSS” in the subscript stands for normal spike-and-slab prior. In Figure 1, we set
vo = 0.1 and v; = 10 for both pengg(f) and penygg(f). Also, we subtract their values at 0
so the corresponding penalty at # = 0 is zero. We can see that the penalty function we use,
pengg(0), provides the best continuous approximation of the Ly penalty among the three.
To gain more insight about the penalty functions, we plot the derivatives/subgradient

of the spike-and-slab penalty pengg(f) in Figure 2. A simple calculation reveals that

_lel _lot

Clgmet 1 gle v w() 1 —w(d)
wpenss(e)—v—l ©(0) ™ @)  u + w (6)

which is a weighted average of 1/v; and 1/vy with the weight w(6) being the conditional
probability of € belonging to the “slab” component (Rockova and George, 2018). Recall
that the derivative of a penalty function should ideally have its maximum at zero and then
decay gradually to 0 (asymptotically), because a non-decreasing derivative with respect to

|0| leads to a bias and affects the performance in finite sample settings (Fan and Li, 2001;
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Loh and Wainwright, 2017). This is the case with pengg(f): As |0| becomes larger, the
mixing weight w gets larger, which leads to a smooth transition from a large penalty 1/vg
produced from the “spike” component, to a smaller penalty 1/v; from the “slab” component.
From Figure 2, we can see that penygq(€) does not have this desired property, and neither

does the Lasso penalty.

(a) penss(6) (b) penyss(0) (c) Lasso
5- 25-
61 4- 20-
4- 3- 15-
2- 10-
2- . .
0- t t ; : . 0- . . . . . 0- . . . . ,
2 4 0 1 2 2 4 0 1 2 540 1 2
theta theta theta

Figure 1: Plot of different penalty functions. (a): penalty induced from the spike-and-slab
prior with a mixture of Laplace distributions; (b): penalty induced from the spike-and-slab

prior with a mixture of normal distributions; (c): Lasso penalty.

(a) Derivative of peng(0) (b) Derivative of penygs(0)
10 -
4_
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0 0-
5- 4
-10 L ] ] ] ] ] ] ] ] ] ]
-5.0 -2.5 0.0 2.5 5.0 -5.0 -2.5 0.0 2.5 5.0
theta theta

Figure 2: Plot of the derivative/subgradient of the penalty functions
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2.3 Posterior Maximization and Local Convexity

The non-convexity of our spike-and-slab penalty pengg(6) leads to desired shrinkage and
selection behavior, but it could bring additional computation challenges as the posterior
objective function L(©) is no longer convex and may have multiple local optima. However,
this is not a problem in our case with the upper bound on the spectral norm of © (3). More
specifically, the following theorem ensures that the optimization of L(©) with the spectral
norm constraint is a convex optimization problem, that is, locally within the spectral norm
ball, we are dealing with convex optimization resulting in a unique MAP estimate. This

result is motivated by Lemma 6 from Loh and Wainwright (2017).
Theorem 1. If B < (2nvy)2, then mine, o 0|,<5 L(O) is a strictly convex problem.

Proof. Decompose L(©) as the sum of the following two terms: —¢(©) — %H@H% and
> icjPengg(0ij) + > peny (0ii) + L |©||%2. We prove the theorem by checking that the

8vg

second-order subgradient of each term in the decomposition of L(©) is positive which would
imply that both the terms are strictly convex.

The second-order subgradient of the first term is given by —V?((0) — ﬁ, where
—V?(0) = 2(© ® ©)~'. The smallest eigenvalue of —V?{(0) can be bounded as:

n._ n._ 1
)\min (—V2€(6)) - = 5)\111211)((@ ® 6) = 5)\m§,x(@) > E?

where the last inequality is because ||O]|s < B < (2nwv,)? implies that A2, (0) < 2nvy and

max

leads to §A,2.(©) > 5. Therefore, —V?((0) — g is strictly convex.

max
We now consider the second-order subgradient of pengg(;;):

05 0

1 1N Mo oy T vy
"o\ — (UO vl)(l—ngvle o 1 i_i _1
[pengs” (0i)| = I < < ;
((17717)7(3 eﬁ—rf_i_l)z 4 \vg n 4y
Vol

where the first inequality is because for any =z, ol _ < 1 This implies that the second

1
(I+fz))? = 4°

term in the decomposition of L(©) is also strictly convex and the theorem is proved. [

11



2.4 Uncovering the Sparse Structure

In many applications, identifying the zero entries in © (referred to as structure estimation
or graph selection) is also of major interest along with the estimation of ©. Inference on the
latent sparse structure of © or equivalently the sparse structure of a graph can be directly
induced from our spike-and-slab prior. We can re-express the spike-and-slab prior (2) as

the following two-level hierarchical prior:

91']‘ ’ Ty = 0 ~ DE(O,U())

(7)
Qij ’ Tij = 1 ~ DE(O,?}l)

where 7;; follows
rij | m ~ Bern(n). (8)
Here DE(0, v) denotes the double exponential (Laplace) distribution with scale v and and
Bern(n) denotes the Bernoulli distribution with probability 7 .
We can view the binary variable r;; as the indicator for the sparsity pattern: r;; =1
implies 6,; being the “signal” (i.e., from the slab component), and r;; = 0 implies 6;; being
the “noise” (i.e., from the spike component). In the fully Bayesian approach, the posterior

inclusion probability for an edge connecting ¢ and j is given by
]P)(Tij = 1|Yi, . ,Yn) = /P(T’Z’j = 1|9ij)7r(‘9ijlyla Ce ,Yn)inj,

which is the integrated probability of ;; being from the slab component (corresponding to
7v:; = 1) with respect to the posterior distribution of 6;;. In our analysis, we approximate
this probability by using the MAP estimator © as follows:

16,1
j (2) ¢ 0

pij = P(ri; = 116;;) = 16,1 18451 °
() ¢ ()
U1 0]

We can then threshold p;; to identify the edges: if p;; is greater than a pre-specified threshold

such as 0.5, then the (7, j) pair is identified as an edge.
Denote P(r;; = 1|6;; = 0) by p*(0). The quantity p*;(()) — 1 =wv(1—-mn)/(ven) represents

the interplay of all the parameters (vg, v1,7) and it plays an important role both in our
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asymptotic analysis for precision matrix estimation that will be presented in the next
section, and also in the analysis of Rockova and George (2018) and Rockové (2018) for

high-dimensional linear regression.

3 Theoretical Results

Let © denote the MAP estimator, the unique minimizer of the loss function (4). In this
Section, we provide theoretical results on the estimation accuracy of ©. We also show that
the structure selected based on thresholding the posterior probabilities p;; matches the true

sparse structure with probability going to one.

3.1 Conditions
3.1.1 Tail Conditions on the Distribution of YV

In our analysis, we do not restrict to the situation where the true distribution of Y is
Gaussian. Instead, we provide analysis for two cases according to the tail conditions on the

true distribution of a p-variate random vector Y = (Y, Y@ | y®),

(C1) Exponential tail condition: Suppose that there exists some 0 < 7, < 1/4 such that
10% < n; and

B < K forall [t <y, forall j=1,....p (10)

where K is a bounded constant.

(C2) Polynomial tail condition: Suppose that for some v, ¢; > 0, p < ¢1n?, and for some
0o > 0,
ElYW st < K forall j=1,...,p. (11)

Note that when Y follows a Gaussian or a sub-Gaussian distribution, condition (C1) is
satisfied. When p = n, condition (C2) is satisfied for t-distributions with degrees of freedom
greater than 8. When p = n?, condition (C2) is satisfied for ¢-distributions with degrees of

13



freedom greater than 12. The same tail conditions are also considered by Cai et al. (2011)

and Ravikumar et al. (2011).

3.1.2 Conditions on ©°

We make the following assumption on the true precision matrix ©° for studying estimation

accuracy.

(A1) Amax(©°) < 1/k; < 00 or equivalently 0 < k; < Apin(X°), where k; is some constant

greater than 0.

Note that because the largest eigenvalue of ©° is bounded, all the elements of ©° are
bounded, and cannot grow with p and n.
In addition, we make the minimum signal assumption below for studying sparse structure

recovery.

(A2) The minimal “signal” entry satisfies min |0%] > Koy/'22, where Ky > 0 is a
n

bl

sufficiently large constant not depending on n.
Similar and in some cases stronger assumptions are imposed in other theoretical analysis
of precision matrix estimation and sparse structure recovery (Rothman et al., 2008; Lam
and Fan, 2009; Ravikumar et al., 2011; Cai et al., 2011; Loh and Wainwright, 2017). For a

comparison of various theoretical results, see the discussion in Section 3.3.

3.2 Theoretical Results

The following theorem gives estimation accuracy under the entrywise /., norm. In particular,

the following theorem implies that with an appropriate choice of (vg, v1,7,7) and B, we could

achieve the O, ( 1o§p ) error rate for distributions with an exponential or a polynomial

tail.

Theorem 2. (Estimation accuracy in entrywise lo, norm)

Assume condition (A1) holds. For any pre-defined constants C3 > 0, 19 > 0, define

14



C1 = 0" (2 + 70 + 0y ' K?) when the exponential tail condition (C1) holds, and C; =

V(00 + 1) (4 + 70) when the polynomial tail condition (C2) holds. Assume that

max

i) the prior hyper-parameters vy, v1,n, and T satisfy

N logpq _ 1 logp
nvy C?’ n (1 gl)’ ) > Cy n

2
vi(l-n) € n [logp
o <p°, and T < C3%4/=2

for some constants e1 > 0, Cy > C5 and some sufficiently small €,
ii) the spectral norm B satisfies k_11 + 2d(Cy + C3) Mo 10% < B < (2nwy)z, and
iii) the sample size n satisfies /n > M+/log p,
where M = max {20[(01 + C3) Mromax (3]\/[20, 3 Mo Ms?, %), %}
1 1
Then, the MAP estimator © satisfies

) 1
16 — €%l < 2(Cy + Ca)Mroy/ in. (13)

with probability greater than 1 — &y, where § = 2p~™ when condition (C1) holds, and
51 = O(n=%/8 4 p=/2) when condition (C2) holds.

Theorem 2 shows that the estimation error of our MAP estimator © can be controlled
through an interplay between the parameters (vg, v1,7, 7) and B. To help readers understand
this result, we provide an explanation of the required conditions.

In our proof, the term Lpen’ss(d), which decreases from 1/(nwvg) to 1/(nvi) when |6
increases from zero to infinity, serves as an adaptive thresholding value. The conditions in
(12) ensure the following properties of this adaptive thresholding rule: 1) to eliminate noise,
1/(nwvg) is set to be bigger than \/W, the typical noise level in high-dimensional
analysis; 2) to reduce bias due to thresholding, 1/(nv;) is set to be of a constant order of
\/W, or much smaller by varying 1; 3) the thresholding level should be close to
1/(nv;) when 6 is of a certain order bigger than the noise level 1/(log p)/n, which is ensured
by the upper bound on %

The upper bound on B in condition i) is to ensure that our objective function L(©)

is strictly convex. However, B cannot be too small, otherwise, even if L(©) is convex,
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the constrained local mode cannot achieve the desired estimation accuracy [|© — 09|, =
0y (Viogp/n).

When Mro, Mso remain constant as a function of (n,p,d), Theorem 2 guarantees that
with proper tuning, an estimation error bound of O(\/W) in ¢, norm can be achieved
for the MAP estimator © with high probability. Similar results can be found in Ravikumar
et al. (2011) and Loh and Wainwright (2017) when Mro, Myo are constants. If Mo, Mo
are of the order O(p), then we require the sample size n to grow faster than the order O(p).

Theorem 2 follows from a more general result stated as Theorem 6 in Appendix A from
the Online Supporting Material. The specific definition for C; and the one for € are also
provided in Theorem 6 in the Online Supporting Material.

We now present the following result on estimation accuracy of © in terms of Frobenius
norm, spectral norm and ¢, /¢, operator norm. This result is based on Theorem 2 and

Lemma 2 from Appendix A.

Theorem 3. (Estimation accuracy in other norms)
Under the same conditions of Theorem 2,

(i) if the exponential tail condition (C1) holds, then

- 1
16— €0l < 2(n 2+ i K6%) + Cy) M| LELEP.
N - 1
|6 = €[] .16 =€l < 2(n" 2+ 7+ £62) + Cu) Mro min{d, Vo F 5} <2E.
(14)

with probability greater than 1 — 2p~™;
(i) if the polynomial tail condition (C2) holds, then

16~ Ol < 2/ DT 70) + Co) ey LT, (15)

H@—@WLWé—@m<%¢@@+DM+mH%MMme¢%ﬂz}lfg

with probability greater than 1 — O(n=%/8 4 p=70/2),

Next, we discuss selection consistency for the sparse structure before providing a

comparison of our results with the existing results in Section 3.3.
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As discussed in Section 2.4, we propose to estimate S, the set of nonzero elements of ©,
by thresholding the inclusions probability p;; that is defined at (9). The following theorem
shows that S0 = {(4,7) : pij > T}, the set of edges with posterior probability greater than

T, is a consistent estimator of S° for any 0 < T < 1.

Theorem 4. (Selection consistency) Assume the same conditions in Theorem 2 and condi-

tion (A2) with the following restriction:

€ <

log p

10g (%ﬁ) < (04 — 03) (K() — 2(01 + Cg)MFO) (16)

for some arbitrary small constant eg > 0. Then, for any T such that 0 <T < 1, we have

]M@:S%%L

A proof of Theorem 4 is provided in Appendix B.
In our model, sparsity is induced by an interplay between the parameters vy, v; and 7
through log (v1 (1 — 1) /(ven)). When log (vy (1 —n) /(von)) falls in the gap mentioned in

Equation (16), the selection consistency can be achieved.

3.3 Comparison with Existing Results

We compare our results with those of GLasso (Ravikumar et al., 2011), CLIME (Cai et al.,
2011) and the non-convex regularization based method by Loh and Wainwright (2017).

In Ravikumar et al. (2011), the irrepresentable condition, |

T soesolgogol|| . <1 —a, is
needed to establish the rate of convergence in entrywise f/,, norm. Such an assumption
is quite restrictive, and is not needed for our results. In addition, under the polynomial

tail condition, the rate of convergence established in Ravikumar et al. (2011) is O, (w / %C),

log p
n

The theoretical results for CLIME (Cai et al., 2011) are similar to ours in terms of

slower than our rate O,

estimation accuracy. However, the main difference is the assumption on ©°. We assume

boundedness of the largest eigenvalue of ©°, which is strictly weaker than the boundedness
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of 0%, (the fs/lo operator norm), the assumption imposed for CLIME. The weakness
of our assumption follows from Holder’s inequality. To illustrate the strict difference between

these assumptions, we consider the following precision matrix as an example:
1
0% =1,Vi; 0),=0,, = 7 ifi#1; 6, =0ifi+#jandi# 1. (17)
' p

The precision matrix above has the so-called star structure, which is frequently observed in
networks with a hub. In Figure 3, we plot the maximum eigenvalue and the maximum of
the absolute row sum of this matrix with varying dimension p. We can see that it is easy to
satisfy the upper bound on maximum eigenvalue, but not the upper bound on the .,/

operator norm, since the latter is diverging with p.

Star Graph
20-
o 15-
3 i} Matrix Norm
g Lo 0
10 - /-"‘ }"max(@ )
: 116
5_
0 100 200 300 400 500

Variable Size p

Figure 3: Plots of the maximum eigenvalue (solid line) and the (/¢ operator norm
(dashed line) for precision matrices with the star structure (17). Our model assumption
corresponds to an upper bound on the solid line, while the one for CLIME corresponds to

an upper bound on the dashed line.

The major difference between our results and those from Loh and Wainwright (2017) is
also in the weakness of the assumptions. The beta-min condition (minimal signal strength)
is needed for the rate of estimation accuracy established in Loh and Wainwright (2017),

while we do not require this assumption for estimation consistency. In addition, their results
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are only available for sub-Gaussian distributions, while we consider a much broader class of

distributions, i.e., distributions with exponential or polynomial tails.

4 Computation with EM Algorithm

We now describe how to compute the MAP estimate ©. Directly optimizing the negative
log of the posterior distribution (4) is not easy. One numerical complication comes from
the penalty term (5): it has a summation inside the logarithm due to the mixture prior
distribution on 6;;. The expectation-maximization (EM) algorithm is a popular tool in
handling such a complication.

Recall the two-level hierarchical representation of the prior on 6;; introduced in Section
2.4. Define R as the p x p matrix with binary entries r;;. Then the full posterior distribution
(0, R|Y1, -+ ,Y,) is proportional to

(Y, Yl0) - [ TT (sl (et - [Hn 0ul)| 16 - 0)1(lBll < B).  (18)

i<j
We treat R as latent and derive an EM algorithm to obtain the MAP estimate of © from
the M-step and the posterior distribution of R from the E-step upon convergence. The
E-step of our algorithm is inspired by the EM algorithm for linear regression from Rockova
and George (2014) and the one for factor models from Rockova and George (2016), and the
M-step of our algorithm is inspired by the optimization procedure used by GLasso (Banerjee

et al., 2008; Friedman et al., 2008; Mazumder and Hastie, 2012).

4.1 The E-step

At the E-step, we first compute the distribution of R given the parameter value from the
previous iteration ©®. Note that the binary indicator ri; does not appear in the likelihood
function, and only appears in (7) and (8) in the prior specification. It is easy to show that

ri; | ©W,Y1,...,Y, follows Bern(p;;) with

Q) Q)
log—p log—+log n —|”‘—|—‘”‘.
— Dij U1 1—mn U1 Vo

(19)
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Next we evaluate the expectation of log 7(0, R|Y;, - - - , ;) with respect to m(R|O®, Y, . ..

which gives rise to the so-called @) function:

Q(ele®) = {g log det(©) — gtr(S@) + ) (logT — 70:)

+ sz‘j [ — log(2v7) — % + logn] (20)
+2 (1= py) [ — log(2vg) — % +1log(1 — n)] }1(@ = 0)1(]|©]» < B).

4.2 The M-step

At the M-step of the (¢ + 1)th iteration, we sequentially update © in a column by column
fashion to maximize Q(©|0©®). Without loss of generality, we describe the updating rule
for the last column of ©® while fixing the others.

For convenience, partition the covariance matrix W and the precision matrix © as

follows:
Wi w O, 0
W 11 12 o 11 V12
w{g Wa2 9{2 622

where Wiy is the (p—1) x (p— 1) sub-matrix, w5 is the (p—1) x 1 vector at the last column
of W and wsys is the diagonal entry at the bottom-right corner. The sample covariance
matrix S, the binary indicator matrix R = [r;;], and the conditional probability matrix
P = [p;;] where p;; is defined in (19) are also partitioned similarly. We list the following

equalities from WO = I, which will be used in our algorithm:

_ 07,'0120T,07 07,612
) 1+ 11 12911 o 11 %12
Wit wiy _ 1 022—07,07, 012 022—07,07, 012 ) (21)
W22 -

022-01,61 012
Given O3, to update the last column (612, 642), we set the subgradient of ) with respect
to (612, 092) to zero. First, take the subgradient of () with respect to as:
1
57?2 = gem o 10, g (592 4+7) = 0. (22)
Due to Equations (21) and (22), we have
1 2
T O 0h00, 2Tl

Wa2

20
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which leads to the following update for s:

1
022 — — + 0?2@1_11012. (23)
Wa2

Next take the subgradient of () with respect to 05:

94 _2< —267; 612
9015 2 \ By — 07,071,012

1 1 )
— 2$12> - <—p12 + —(1 - p12)> © sign(612)
U1 Y (24)

1 1 .
:n(—@ﬂlelzwm — S12) — (U_p12 + v_(l - p12)> © sign(6h2) = 0,
1 0

where A ® B denotes the element-wise multiplication of two matrices. Here the second line
of (24) is due to the identities in (21). To update 615, we then solve the following stationary

equation for 615 with coordinate descent, under the constraint ||©|» < B:

1 1 .
nsSio + nw22@il€12 =+ (U_P12 + U_(l — Pw)) ® s1gn(912) = 0. (25)
1 0

The coordinate descent algorithm for updating 62 is summarized in Algorithm 1. Since
only one column is changed, checking the bound ||©|]2 < B is computationally feasible (see
Appendix C in the Supplementary Material for more details). In practice, we could also
proxy the constraint on ||©||2 with a constraint on the largest absolute value of the elements

in ©. In our empirical studies, this relaxation performs quite well.

Algorithm 1 Coordinate Descent for 65
Initialize 6, from the previous iteration as the starting point.

repeat
forjinl:(p—1)do
Solve the following equation for 6;5;:

J

1 1 .
nsig; + nw22@1_11j’\j912\j + nwm@l_llj’jelgj + [(U—lplg + U_O(l — P12)> ® Slgn(elg)] = 0.

end for
until Converge or Max Iterations Reached.

If ||©]]2 > B : Return 6,5 from the previous iteration

Else: Return 6,

21



When updating (612, 02), we need ©7;'. Instead of directly computing the inverse of
©11, we compute it from

-1
11 — Wi — w12w21/w22,

which is derived from (21). After the update of (62, 622) is completed, we ensure that
WO = 1, holds by updating Wy, and ws via identities from (21). Therefore, we always
keep a copy of the most updated covariance matrix W in our algorithm. Note we don’t
update wsyy here, only because the relationship related to wqe within WO = 1, is already

ensured. That is, if wqy is updated using (21), it remains unchanged.

4.3 The Output

The entire algorithm, BAGUS, is summarized and displayed as Algorithm 2. After conver-
gence, we extract the following output from our algorithm: the P matrix, the posterior
probability on the sparse structure, from the E-step and the MAP estimator © from the
M-step.

Algorithm 2 BAGUS
Initialize W = 0=I

repeat
®) (®)
|9¢]‘ | ‘eij ‘)

V1 V0

Update P with each entry p;; updated as log %};j — <log o +log %} _
for jin1:pdo
Move the j-th column and j-th row to the end (implicitly), namely ©1; := ©\;\;,
012 == 0\ jj, Oz := 0;;
Update wsyy using wag <— Soo + %7’
Update 612 by solving (25) with Coordinate Descent for ;.
Update 0ay using 6oy < u%” + 67,01 015.
Update Wiy, wip using (21)
end for
until Converge

Return ©, P
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To obtain an estimate of the sparse structure in R, we threshold the entries of P, namely:
ri; = 1, if P;; > 0.5; 7 =0, otherwise.

As shown in Theorem 4, thresholding entries of P with any number 7" such that 0 < T < 1
could recover the true sparse structure with probability converging to 1.

For many existing algorithms, the positive definiteness of the estimate of © is not
guaranteed. For example, GLasso (Friedman et al., 2008) can only ensure the positive
definiteness of the estimate of the covariance matrix W, but not of the estimate of the
precision matrix ©, as shown in Mazumder and Hastie (2012). The following theorem shows
that MAP estimate © returned by our algorithm is ensured to be symmetric and positive

definite.

Theorem 5. (Symmetry and positive definite) The estimate of © returned by BAGUS is

always symmetric, and it is also positive definite if the initial value ©©) is positive definite.

A proof is given in the Supplementary Material.

4.4 Remarks

Computation Cost. In BAGUS, the computation cost is O(p*) for updating one
column. There are p columns in © to update, so the overall computational complexity

of our algorithm is O(p*), which matches the computation cost for GLasso.

Parameter Tuning. BAGUS involves the following hyperparameters: n, 7, vy, and
v1. We always set 7 = 0.5 and 7 = vy so that there are only two parameters vy and v
to be tuned. parameter tuning has an empirical Bayes flavor. In our simulations, we
use the theoretical results to set the rough range of the hyper-parameters, and then

use a BIC-like criterion to tune the hyper-parameters:
BIC = n(tr(S@) — log det(é)) +log(n) x #{(i,j): 1 <i<j<p,by#0} (26)

The same BIC criterion is used by Yuan and Lin (2007) while a similar BIC criterion
with a regression based working likelihood is used by Peng et al. (2009).
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5 Empirical Results

In this section, we compare our method with the competitive alternatives in both simulated

and real datasets and study the performance of our approach.

5.1 Twelve Simulation Settings

Following the simulation studies from related work (Yuan and Lin, 2007; Friedman et al.,
2008; Peng et al., 2009; Cai et al., 2011), we generate data Y from a multivariate Gaussian
distribution with mean 0 and precision matrix ©° = (67;).

We consider four different models, i.e., four different forms of @°. The first three have
been considered in Yuan and Lin (2007) and the fourth one is similar to the set-up in Peng
et al. (2009).

1. Model 1 (star model): 6% =1, 6%, = 6% = \/iﬁ.

2. Model 2 (AR(2) model): 65, = 1,67, | =6 ,, =0.5and 6, , =6 ,, = 0.25.

i—1,2

3. Model 3 (circle model): 6% =2, 69, _, =67, =1, and 6, = 62,=0.9.

i,0—1

4. Model 4 (random graph): The true precision matrix ©° is set as follows.

(a) Set 69 = 1.

(b) Randomly select 1.5 x p of the off-diagonal entries 6; (i # j) and set their values
to be uniform from [0.4, 1] U [-1, —0.4]; set the remaining off-diagonal entries to

be zero.

(c) Calculate the sum of absolute values of the off-diagonal entries for each column,
and then divide each off-diagonal entry by 1.1 fold of the corresponding column
sum. Average this rescaled matrix with its transpose to obtain a symmetric and

positive definite matrix.

(d) Multiple each entry by %, which is set to be 3.
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For each model, we consider three cases with different values for p:
1) p=50; 2)p=100; 3)p=200.

So, we consider a total of 12 simulation settings. In each setting, n = 100 observations are
generated, and results are aggregated based on 50 replications.

For estimation accuracy of ©°, we use Frobenius norm (denoted as Fnorm). For selection
accuracy, we consider three criteria: sensitivity, specificity and MCC (Matthews correlation

coefficient):

TN TP
—_ Sensitivity = ————,
TN+FP TP+FN

TP x TN-FP x FN

V/(TP 4 FP)(TP + FN)(TN + FP)(TN + FN)’
where TP (true positive), FP (false positive), TN (true negative), and FN (false negative)

Specificity = and

MCC =

are based on detection of edges in the graph corresponding to the true precision matrix ©°.
MCC returns a value between —1 and +1, and the higher the MCC, the better the structure
recovery is. A coefficient of +1 in MCC represents a perfect structure recovery, and we note
that recovering all the edges simultaneously is very challenging and none of the existing
methods are able to ensure that. In addition, we note that it may not be meaningful to
compare the results across graphs with different values of p because the level of sparsity
changes with p which makes it difficult to assess the difficulty of the setting based on p
alone. For instance, for most models considered in our simulation study, the level of sparsity
increases along with p, because of which all the methods have their specificity increasing
when p gets larger (see Tables 2-5). So we recommend against comparing the results as
p changes and instead to compare the results across different methods within the same
setting.

In the simulation study, we compare our method, denoted as BAGUS, with the following
alternatives: GLasso from Friedman et al. (2008), SPACE from Peng et al. (2009) and
CLIME from Cai et al. (2011). They are all shown to have estimation consistency under
various conditions as discussed in Section 3.3. We also considered the regression based

method from Meinshausen et al. (2006), but the results are not presented here because
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tuning the parameters as suggested in Meinshausen et al. (2006) gave us “NA” for MCC in
multiple scenarios considered here.

For each simulated data set, tuning for our model uses the aforementioned BIC criterion

1
nlogp

with a parameter set of n = 0.5, vo = 7 = (0.4,2,4,20) X and v; ranges from
vo X (1.5, 3,5,10). The tuning parameters for GLasso are chosen with 10-fold CV, the tuning
parameters for SPACE are chosen from the BIC-like criterion proposed in Peng et al. (2009)
and the tuning and estimation for CLIME estimator is done using the R package flare (Li
et al., 2015) as suggested on the homepage! of Cai et al. (2011). For cross validation, the
number of \ values is set to be 40. Results for all the simulated cases are summarized in
Tables 2-5.

In almost all the settings considered, our method BAGUS performs the best in terms of
both selection accuracy, i.e., MCC, and estimation accuracy, i.e., Fnorm. We believe that it
is due to the adaptive nature of the Bayesian penalization and the weaker conditions under
which the consistency results hold true for BAGUS. Other than BAGUS, SPACE usually
performs well in terms of sparse selection and GLasso performs well in terms of estimation
accuracy. However, SPACE has a large estimation error in most cases and GLasso tends to
have smaller MCC. In our simulation study, CLIME estimator did not perform very well. It
is particularly worth noting that for the star graph, where the assumption for CLIME fails
(see discussion in Section 3.3), the performance of CLIME is particularly worse.

In Figure 8, we plot the receiver operating characteristic (ROC) curves for all the
methods considered under different models by varying hyper (tuning) parameters for the
case with p = 50. This is to see the performance of different methods by removing the effect
of tuning. Our method BAGUS remains at the top in all the settings considered in terms
of area under the ROC curve (AUC). This plot suggests that except for the star graph,
performance of CLIME is not as poor as indicated by the selected graph, which suggests
that the performance of CLIME could be improved by better tuning. However, for the star
graph, CLIME is still observed to be particularly worse even in view of the ROC curve.

We also recorded the average of the estimated structures from the 50 replicates and

lhttp://www-stat.wharton.upenn.edu/~tcai/paper/html/Precision-Matrix.html
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compare it with the truth to get a visual understanding of the performance of different
methods, shown in Figures 4-7. It is noticeable that GLasso and CLIME provide noisier
estimates than BAGUS by including many zero entries in the selection; BAGUS and SPACE
are sparser and appear closer to the true precision matrix. However, SPACE usually
produces noisier estimates than BAGUS (for Models 1-3) and misses a lot of true signals
for Model 4. In summary, BAGUS provides a highly competitive performance across the

models considered.

5.2 Real Application: Telephone Call Center Data

We now apply our method to the analysis of data from a telephone call center in a major
U.S. northeastern financial organization. The data consists of the arrival time of each phone
call in 2002 every day from 7 AM till midnight, except for six days when the data collecting
machine is out of order. More details about this data can be found in Shen and Huang
(2005).

Following the pre-processing as suggested by Huang et al. (2006) and Fan et al. (2009)
for this data set, we divide each day into 102 10-minute intervals and count the number of
call arrivals for each interval, denoted as N;; where t =1 : 102 and 7 = 1 : 239. Only 239
days of data are considered here, after we remove holidays and days when the data collecting
machine was faulty. Represent the observations on the i-th day as Y; = (Y1, Yie,...)T, a
102 x 1 vector with Y;; = 1/ Ny + }1, a variance stabilizing transformation of the number of
calls. Let p and © denote the mean vector and precision matrix of the 102-dimensional
vector Y.

We apply all the methods considered on the first 205 days of data to estimate O, as well
as (1, and use the remaining 34 days of data to evaluate the performance. The performance
evaluation is carried out as follows. First divide the 102 observations for each day into two
parts (Z;; and Z;5), where Z;; is a 51 x 1 vector containing data from the first 51 intervals
on the ¢-th day and Z;, is also a 51 x 1 vector containing the remaining 51 observations, then

partition the mean vector y and the precision matrix © accordingly. Under the multivariate
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p = 50.
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Figure 9: Prediction error for the call center cata: AAFE; on Y axis and ¢ on X axis.

Gaussian assumption, the best mean squared error forecast of Z;5 given Z;; is given by
E(Zia|Zin) = uz — ©33 091 (Ziy — wy), (27)

which is also the best linear unbiased predictor for non-Gaussian data. So plugging the
estimates of 1 and © based on the first 205 days into (27), we evaluate the prediction
accuracy for Z;5 for the remaining 34 days. We adopt the same criterion used by Fan et al.
(2009), the average absolute forecast error (AAFE), to measure the prediction performance:

1 239 R
AAFE, = o > [V = Yil. (28)

1=206

where ﬁt and Y;; denote the predicted and observed values, respectively.

We compare the prediction performance based on estimates from our method BAGUS,
the inverse of the sample covariance matrix (denoted as “Sample”), GLasso and CLIME.
The prediction errors for these methods at all 51 time points are shown in Figure 9. Their
average AAFE values are displayed in Table 1, along with the average AAFE values for
Adaptive Lasso and SCAD taken from Fan et al. (2009).

From the results, we see that BAGUS and CLIME have a significantly improved
performance in prediction accuracy when compared with the other methods. To look further

into the estimates provided by these methods, we present the sparsity structures estimated

31



Table 1: Average Prediction error for different methods
Sample GLasso Adaptive Lasso SCAD CLIME BAGUS

Average AAFE 1.46 1.38 1.34 1.31 1.14 1.00

from GLasso, CLIME, and BAGUS in Figure 10. In this figure, yellow points (appear
in light tone when converted to grayscale) indicate signals and blue points (dark tone in
grayscale) indicate noise. In the Gaussian graphical model context, a yellow point suggests
that the call arrivals in the corresponding two time intervals are conditionally dependent.
It is interesting to find that a strong autoregressive type of dependence structure is present
in estimators from all methods. However, the methods differ in terms of the degree of
autoregression suggested by their corresponding estimates. The estimated structure from
BAGUS is the most sparse one and suggests a small degree of autoregression compared to
those of GLasso and CLIME. That is, BAGUS indicates that the telephone call arrivals
majorly depend only on recent history, while others indicate dependence over a long history.
Based on the prediction accuracies of different methods, the sparser dependence structure
suggested by BAGUS seems sufficient to provide good prediction although it is difficult
to know which structure, in reality, is closer to the underlying precision matrix. In terms
of practical utility, this provides support in favor of storing and managing less amount of

historical data that could potentially reduce cost of data management.
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Figure 10: Sparsity structures estimated for different methods for the call center data

6 Conclusion

In high dimensional data analysis, there is a large literature on penalization from a frequentist
viewpoint majorly focusing on Lasso based convex penalties and some non-convex penalties
such as SCAD. On the other hand, in the Bayesian framework, a variety of shrinkage and
sparsity inducing prior distributions have been proposed. In the context of graphical models,
our work demonstrates that spike-and-slab priors with Laplace distributions provide adaptive
penalization that leads to better theoretical and empirical performance compared to state-
of-the-art methods. Since some recent papers (Rockova and George, 2016; Deshpande et al.,
2017) have also found spike-and-slab Lasso priors to be useful in other high dimensional
contexts, we believe that our strategy of Bayesian regularization will be advantageous in a
broad range of high dimensional problems and that its success demonstrated in our work

will motivate further interest in this direction.
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SUPPLEMENTARY MATERIAL

Appendix A: Proofs of the Main Theorems

For convenience, we introduce the following additional notation that will be used throughout

the Appendix.

i. Let W denote the difference between the sample covariance matrix S and the true

11

iii.

covariance matrix XY = (@0)_1 and A the difference between an estimate © and the

true precision matrix ©°. That is,

Let R(A) denote the difference between n©~'/2, the gradient of nlogdet(©)/2, and

W:
A:

its first-order Taylor expansion at ©°:

R(A)

Recall our objective function

L(©) = g(tr(S@) ~log det(@)> + % 3

where

pengg(f;;) = —log [(i)e_

22]1

n
2

1,J

|6

2’00

ijl — 16351
UIJ 1 (1 T])e_ J

(éfl 0 ZOAEO> .
pengs(0;;) + > pen, (0;),

}, and pen, (6;) = 7|0y

denote the penalty terms on 6;; (i # j) and 6;;, respectively.

Let Z;; denote the subgradient of the penalty term with respect to 6;;:

Zij = Zij(0:) =

;

\

T

%pen/SS<0ij)
L_;’_ 1-n
L] % S

o1 T g
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1v.

where o o
ij ij
— 1— _
2126 v _I_ _;76 vQ
/ 0 _ 2vy 2vg

pen SS( ij) - 16441 1 16451

l o vy Ny
201 e Lt 2vg € 0

Let Z = [Z;;], then the subgradient of the objective function L(©) is

AL(©) = g (S—0+2

We denote the index set of diagonal entries as D := {(i,j) : ¢ = j}. For any subset S
of {(i,7) : 1 <i,7 < p} and p X p matrix A, we use As to denote the submatrix of A

with entries indexed by S.

In this Appendix, we first prove the following main result.

Theorem 6. Assume condition (A1) and ||W s = max;; |s;; — oy < Ciy/logp/n. If

(i) the prior hyper-parameters vy, vi,n and T satisfy:

(

n%}l = 03,/1057’(1 —&1), where C3 < Cy,e1 > 0,

’ (29)

2(1—
’U1(12n77) S &.po(CQ—C’:;)]WF()[C4—C3]7

Yo
n [logp
\T S 032 n

where C4 = (Cl + M§02(Cl + Cg)MpO + 6(01 + Cg)QdMgoMgo/M),
(ii) the spectral norm B satisfies 1/ky + 2d(Cy + C3)Mroy/log p/n < B < (2nvo)2, and
(111) the sample size n satisfies \/n > M+/log p, where

M = max {2d(c1 + Cy) Mpomax (3M20, 3 Mo M3, 2/kf> 2042, /k;f},

then the MAP estimator © satisfies

) 1
16 — 09| < 2(C. + C3) Myoy/ Oflp.
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Before presenting our proof, we list two preliminary results as lemmas and list some

properties of the penalty function pengg(d), which will be useful. Proofs of these lemmas

)

are in Appendix B.

Lemma 1. Define r := max {ZMFO <||I/T/||OO + 2 max(3pengg(9), 7')) 2(Cy + C3) Mro
and A:={0:3(S—071);+2Z5=0,0>0,0ly < B} with B={(i,j) : |0%] > 2(C1 +
C3)Mroy/logp/n} UD. If parameters r and B satisfy:

4

: 1 1
r < min
= {3M20d’ 3dMpo M, } )

min [03pe| > 7 + 4,

1/]€1—|—d7’<B,

for some & > 0, where ky is the lower bound on Auin(X°), then the set A is non-empty.

Moreover, there exists a © € A such that |Alls == ||© — %5 < 7

Lemma 2. Suppose that ||© — ©°||, < r, then
16— °%r <rVp+s, (30)
)HC:)—@OHLO,H(:)—@OHQ < rmin{d, vp + s}, and (31)
167" — 2| < MEor + nggor? (32)

Properties of pengg(0)

We now provide some useful results on the penalty function pengg(d).

e Bound on the magnitude of the first derivative of pengg(9):

n v 1-n v
] e Y1+ e Y0
202

g|pen ss(0)] = n(

v%(éfn)
< n%l (1 + ﬁ) . (33)
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Choose 1/ (nvg) > Cyy/logp/n and 1/ (nv,) < Cs3y/logp/n as in Theorem 6, and if
further let v? (1 —n) / (v3n) = &p¥1¢=%l when 6 > 1)+/log p/n, then we have

vi(1—n)
1)277 £p¢[c4—03]
6%07% = pY[Ca=Cil = (34)

Let £ to be sufficiently small, i.e., £ < &1, then we have

1 , lo
= |pen’ss ()] < Cyy/ —22.
n n

e Bound on the magnitude of the second derivative of pengg(d):

With the same choice of vy and v; as in Theorem 6, when § > 14/logp/n, we have

(L _ L) o i

i‘ en// (5)‘ _ 0 v1 ) (1-n)v1

on PONSS 2n< oo e;;—flﬂf
(I=n)v1

1 _ 1
on) V1

< nvo L2
2n <(1—U)v1€vo A 1)
(1 —n)v 3
< < 35
-2 7 2nuy (35)

2nvinero

Cs, [logp Cs [logp
<2§ < e (36)

where (35) is due to (34). In addition, when n satisfies the condition (4i¢) in Theorem

6, (36) is always upper bounded by k1.

Proof of Theorem 6. Our proof is inspired by the techniques from Rothman et al. (2008)
and Ravikumar et al. (2011).

Here is the outline of the proof.

e Step 1: Construct a solution set A for the constraint problem:
i L(©®
arge>o,||eﬁ?£3,@3c:o (©),
by defining
n _
A= {@:5(5—@ 1)B+ZB:0,@>O,||@||2§B},

38



where B = {(4, ) : 163;] > 2(Cy + Cs)Mpo+/log p/n}UD. For 6); € BND and , define

min (|0%]) as 2(Cy 4 C2) Mroy/log p/n. We then have |0%| > 2(Cy + Ca) Mro+/log p/n
when 6, € BND and |0);| < 2(Cy + Cs)Mroy/log p/n when 6); € B°ND°.
e Step 2: Prove A is not empty and further show that there exists © € A satisifying

16 - €%l = O, (Viogp/n).

e Step 3: Finally prove that ©, which is positive definite by construction, is a local

minimizer of the loss function L(©) by showing L(©) > L(©) for any © in a small
neighborhood of ©. Since L(©) is strictly convex when B < (2nuy)2, we then conclude
that © is the unique minimizer such that ||© — ||, = O, <\/10g p/n>

At Step 2, we apply Lemma 1. First we check its conditions.

1. Consider r = 2(Cy + Cs)Mpoy/logp/n. For 6); € BN D, we have 6); > r 4 2(C5 —
C3)Mro/logp/n. That is, the § defined in Lemma 1 is greater or equal to 2(Cy —

C3)Mro+/log p/n.

2. Recall the properties of pengg(d). We have |pen’ss(d)|/n < Csy/logp/n. With the

bound of |||« and the condition on sample size n, we have

1,2 1
2 Mo (HWHOO + max (Epenss(é), ET» < 2(Cy + Cs)Myoy/ in

1 1
< i .
= mm{3M@dngwM§}

Thus, conditions for Lemma 1 are all satisfied. By Lemma 1, we conclude that there

exists a solution © € A satisfying

~ lo
16 = 000 = | Alloe < 2(Cy + C5) Mroy | —2L.

n

That is, the solution © we constructed is O, <\/10g p/ n) from the truth in entrywise [,
norm.
At Step 3, we need to show that the solution © we constructed is indeed a local minimizer

of the objective function L(©). It suffices to show that
G(A) =LO+A)-LO)>0
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for any A; with ||A;|le < €. Re-organize G(A;) as follows:

G(A) = g(” (A1 <S — é_1>> - <10g 1O + Ay| — log |(:)|> +tr <A1(:)_1) )

105+ 1 — 105+
— 10g ie : vy ! + ne . v .
2?]1 21}0

i<j
n _Iiij\ 1_77 _\iz‘jl ~ ~
+;10g(2—2}16 L+ 00 € " +7'zi:<9ii+ﬁ1—9u'>
= (I) + (II) + (I11),
where
() = g(tr <A1 (S — (:)_1>> — <10g ](:) + Ay| —log \(:)]) + tr <A1C:)_l) ),
1 n o _ 1055 +A1,51 1—n 1055+
I = —= 1 — v v
(1) 2zog<2v1€ ot )
1<)
’r] _‘ezjl 1 J— _lé’L]‘
— 1 R Ul v
—|—2; og<2vle + 200 e v |,

(III) = 7 Z (é” + Ay — ézz) = T4
Bound (I) as follows.

log [© + A| — log O]
1
= tr (Alé_1> — vec (Al)T/ (1—0v) ((é_l +0A) @ (07 + UAl)_ldU> vec(Aq)
0

~ 1
< o (8067) = gk

where the last inequality can be shown with the same proof for Theorem 1 in Rothman

et al. (2008) with v/n > 4(C} + C3)dMyo/k?+/log p. Thus,

0 > 2 (A (5-67)) + pRA2)

= 2 (2 (s - 65)) + R,

2y
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Next consider (II). For any (i,7) ¢ B, 6;; =0, |6;; + Ay = |Aq], and therefore

n 104 +A1 451 1— n 18i A1 n 16451 1— 77 16451
—lo v1 e v +log | —e 1 + Vo
& (2’01 + 21)0 & 21)1 2?]0
N -1~
(e )+ (b5 )
1Al 1 [Aq451
(e )+ (e )
181451 181441

= 2l o (Uone o = +Ul(1—77)>
von + vi (1 —n) .

For any (i,7) € B and i # j, applying Taylor expansion, for some v € (0, 1), we have

105 +A1 451 1— 185 +A ] 7|9~i'\ 1— 10351
—log R n -t +log n - I M=
2U1 2U0 2U1

2U0
1 ~
= penssl(ﬁij)Auj + §penss” (913 + /UAlij) Alfj

Combining the results above, we have

n ~_ 1
G(A) 25(2 (Ausglo = O0) + FRIAE) + D 7
i=j,cB
1 " ~
+ = Z (penSS i) A+ 2pen35(9ij —i—vAlij)Al?j)
z;ﬁj eB

(A1 1A14]

——Z 11]| Og (U()T]e vg 01 +U1(1—77)>

von + v1(1 —n)

where
2
< E Alz] Szg ij EZU>>7
(i,7)eB

| | 2151 1A1441 ( )
n ~_ 1 ANPY vone o 1o 4ou(l—n
B)=—= E Ayi(sij — 05! ——(— 2+ log )
= (i) ¢B wilts =0T, Yo vor) + vi (1 =)

n 1 7
(C) :gk;fHAlH% + Z ZpenSS" <9ij + UAIZ‘J’) Al?j'
i#j,eB

Next, we show that all three terms, (A), (B), and (C), are non-negative.

e (A) = 0 because of the way © is constructed.
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e (C) > 0 by the property of pengg”(d) stated before.

e For term (B), we will first bound s;; — (:);jlz

s — O, < |sij — ol + 105" — oy

2
1 1 3 1
< Oy /% + M2,2(C + C5) Myoy/ in + SdM (2(01 + C3)Myoy / O§p>

1
< (C1 4+ M2o2 (Cy + C3) Mro + 6 (Ch + Cy)* dMpo Mo /M) Ofbp’

where the second line is due to Lemma 2.

Next, we bound the fraction after the log function in (B). For simplicity, denote it by
f(Ay;;). Since 1/vg — 1/v1 > 0, f(Ay;;) is a monotone function of Ay;; and f(Ay;;)
goes to 1 as Ay;; goes to 0. That is, f(Ay;;) can be arbitrary close to 0, when Ay;; is
sufficiently small. Therefore the second term after summation can be arbitrary close
to Ay;;/(nvo).

So if choosing 1/(nvg) > Cy + M2,2(Cy + C3)Mro + 6(Cy + Cs)*dMz, M2, /M and

e > 0 sufficiently small, we have (B)>0 when [|A;|l« <.

Combining the results above, we have shown that there always exists a small € > 0, such
that G(A;) > 0 for any ||A | < e. That is, © is a local minimizer. So we have proved
Theorem 6. [

Proof of Theorem 2. Cai et al. (2011) have shown that the sample noise W can be

bounded by /%2 times a constant with high probability for both exponential tail and

n

polynomial tail (see the proofs of their Theorem 1 and 4). That is,

e When condition (C1) holds,

~ _ _ [logp
||W||oo <m 1(2 + 7o+ 1K2) n

with probability greater than 1 — 2p~".
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e When condition (C2) holds,

max max

~ 1
e < [0+ D+ 70 B2 8, = s,
n 2]
with probability greater than 1 — O(n=%/8 4 p=70/2),

With the results above on ||[W||s and Theorem 6, we have proven Theorem 2. O

Appendix B: Other Proofs
Proof of Lemma 1. Show both |Ag||o and |[Ape||s are bounded by r. Thus, ||Alls < 7.

1. By construction,

|1Age|loo < 2(Cy 4 C5)Mron/logp/n <.

2. The proof for ||Ag|le < 7 is inspired by Ravikumar et al. (2011). Define G(03) =
n (—@gl + SB) /2 + Zp. By definition, the set of O that satisfies G(©g) = 0 is the
set A. Consider a mapping F from R8I — RIBI:

F (vee (As) = =~ Tggvec (G (6% + Ag)) ) + vee (As). (37)

By construction, F (vec (Ag)) = vec (Ap) if and only if G (0% + Ag) = G (05) = 0.

Let B (r) denote the /., ball in R8I, If we could show that F (B (r)) C B (r), then

because F' is continuous and B (r) is convex and compact, by Brouwer’s fixed point
theorem, there exists a fixed point vec(Ag) € B(r). Thus ||Aglle < 7.
Let A € RP*P denote the zero-padded matrix, equal to Ag on B and zero on B°.

1

F (vec(Ag)) = %( — IMggvec (G (O + Ag)) ) + vec (Ap)

_ 2
- _FOBé< (—(©° +A)z" + 95) + EZB> + vec (Ap)

. 4 e 2
= T — (0" +A), + 64~ — 0% +S5) + - Zs ) + vec (Ap)

. g . 2
= I vec (@0 'AGY ATO" >3 B <vec (WB + EZB>) .
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Denote

I = Fogévec (@OilA@OilAJ@ml)

. 2
I = I, (Vec (WB + —ZB)> .
n

Then F (vec (Ag)) < ||I]joc + [|11]|co- So it suffices to show ||I||oc + [|I1]|ce < 7.

B

For the first relationship, we have
IWoe < |[[T5 | _llvee(@”” 240%™ 2767 )5

< Mrol| R(A) ]l
3
< SdMpo M| Al%,
where the last inequality is due to [|A|lec < r < 1/(3Msxod) and Lemma 5 from
Ravikumar et al. (2011). Since r < 1/(3dMroM3,), we further have ||I]| < 7/2.

By assumption, min |0 .| > 7 + 4, thus when ||Al|. < 7, min|fz~pe| > 4, since

pengg (|0]) is monotonic decreasing, we have || Zznpe

o < ipengg(d). Thus, for the

second relationship, we have
- 2 1
0L oo < T (I [l + = macx ( Spen’ss(6),7 ) )
2 1 /
< Mro | [[W]|oo + — max §P9n55(5)77 <r/2
n
by assumption.

Thus, there exists a point © such that |© — ©°||, < 7.
Because || < [|© — ©°[|, + [|0°]|; and ||© — @], < H]é . eom < dr, we have
19|l < < $Anin(6Y), we have Amin(©) > 0.S0 it is

inside A by assumption. That is, A is non empty. H

Proof of Lemma 2. Since there are only p 4+ s nonzero entries, we prove (30):

10— = | > (6, —0%)°<rVp+s.

(4,)€Sg
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Since there are at most d nonzero entries in each column of © and © is symmetric,
16-6: < ||6-e| <ra
oo

In addition, since the (/¢ operator norm is bounded by Frobenius norm, we prove (31).
We skip the proof for (32), which is nearly identical to Corollary 4 in Ravikumar et al.
(2008). O

Proof of Theorem 4. (Selection consistency)

Recall

Dij ( von [Znn )
lo lo — +
s 1-— Dij & Ul(l - 77) U1 Vo
<_ log vl =mn) _ 105 !%I)O

VoM U1 Vo

e When 6}; = 0, by constructor, f;; = 0. Then with our choice of vi(1 — 1)/ (von),

logl_ ij—) 0
e When 6}; # 0, we have
g 0. 0. .
log Pij  _ <log o 16051 X | z]l)
1 — pij U1<]. — 7]) U1 Vo

> (—og 200 (L) (- 1y -0 )

Vo

vi(l —
> — lOg I(Tnn) + (04 — Cg) (KO — 2(01 + Cg)MFO) logp

Then with our choice of v1(1 —n)/(von),

Dij
— Pij

log — +00.

[]

Proof of Theorem 5. The estimate of the precision matrix is symmetric due to construc-

tion.
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Next we show that the estimate is ensured to be positive definite. Assume ©®), the t-th
update of the estimate is positive definite. Apparently, this assumption is satisfied with
t = 0 since the initial estimate ©©) is positive definite.

Then it suffices to show that det(©¢*+1) = 0. WLOG, assume we update the last column

of © in the (¢ + 1)-th iteration. Using Schur complements, we have
det (01+1) = det (0 ) (6™ — 5™ 0] 05

Because det(©®) = 0, we have det <@Y1) ) > (. Further, the updating rule of our algorithm

ensures that

t+1 t+1)T ~ ()7L 5(t+1 1
(6857 — 0 O 0™ = —y > 0
Wao

Thus, det (©¢+V) > 0. O

Appendix C: Checking ||O]|; < B.

Algorithm 1 involves checking the spectral norm constraint ||©||s < B after every column
update of ©. Computing ||©]|2 can be computationally intensive, however, since we only
change one column (and corresponding one row) at a time, the constraint can be checked
without calculating ||©||y every time. Suppose we know [|©@® ||, (or an upper bound) at the
previous step, and denote A®) := @t+D) — QM) to be the difference between the estimates
after one column update. In order to check the bound, it is sufficient to make sure that
10W]|; + |A® ||y < B. Tt is easy to check this constraint because ||A®]], is a rank two
matrix with its maximum eigenvalue available in closed form. Only when ||©® ||y + ||A]l2

exceeds B, we will need to recalculate |[©¢+V]|, again.
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