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Lattice Point Visibility on Generalized
Lines of Sight

Edray H. Goins, Pamela E. Harris, Bethany Kubik,
and Aba Mbirika

Abstract. Forafixedb € N = {1, 2, 3, ...} we say that a point (7, s) in the integer lattice Z x Z
is b-visible from the origin if it lies on the graph of a power function f(x) = ax” witha € Q and
no other integer lattice point lies on this curve (i.e., line of sight) between (0, 0) and (r, s). We
prove that the proportion of b-visible integer lattice points is given by 1/¢(b + 1), where ¢ (s)
denotes the Riemann zeta function. We also show that even though the proportion of b-visible
lattice points approaches 1 as b approaches infinity, there exist arbitrarily large rectangular
arrays of b-invisible lattice points for any fixed b. This work specialized to b = 1 recovers
original results from the classical lattice point visibility setting where the lines of sight are
given by linear functions with rational slope through the origin.

1. INTRODUCTION. A point (7, s) in the integer lattice Z x Z is said to be visible
from the origin if it lies on a straight line through the origin (0, 0) and no other lattice
point lies on this line of sight between (0, 0) and (r, s). Given this definition, it is natural
to ask what proportion of lattice points are visible from the origin, which is equivalent to
computing the probability that two integers are relatively prime. This problem was first
addressed in the 1800s by numerous people including: Dirichlet, who proved a weaker
form of the problem in 1849 [13]; Cesaro, who is often attributed as having posed this
problem in 1881 [8]; and Sylvester, who along with Cesaro gave independent proofs
of this result in 1883 [9, 26]. Cesaro proved that the probability that two randomly
chosen integersin {1, 2, ..., n} are coprime is given by 1/¢(2) as n approaches infinity,
where ¢(s) = Y 2, 1/n* denotes the Riemann zeta function [8]. Thus, the proportion
of visible integer lattice points is given by 1/¢(2) = 6/7> ~ .608.

In 1971, Herzog and Stewart characterized patterns of visible (respectively, invisi-
ble) points within the approximately 60% (respectively, 40%) of the lattice containing
visible (respectively, invisible) points [16] and their seminal work continues to moti-
vate research in this area [2, 3, 10, 15, 17, 18, 19]. Additionally, it has been shown that
the set of lattice points in the plane visible from the origin contains arbitrarily large
square arrays of adjacent invisible lattice points [S, Theorem 5.29, p. 119]. This is con-
nected to a celebrated result in number theory regarding the existence of two mutually
pairwise coprime sets of consecutive integers. Since then, others have further studied
properties of strings of consecutive composite numbers and their connection to integer
lattice point visibility [12, 14, 25].

In this work, we fix b € N and say that a point (r, s) in the integer lattice Z x Z is
b-visible from the origin if it lies on the graph of a power function f(x) = ax’ with
a € Q and no other integer lattice point lies on this curve (i.e., line of sight) between
(0,0) and (r, s). Hence, our work specialized to b = 1 recovers the classical setting
of lattice point visibility whose lines of sight are given by linear functions f(x) = ax
with a € Q. We remark that throughout this work, following the wording introduced
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by Pélya, we often refer to lattice points as trees and collections of adjacent trees as
forests [4, 24].
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Figure 1. Lines of sight f(x) = 10x and g(x) = 2x? with visible and invisible points.

Figure 1 shows two examples of lines of sight on which we mark the lattice points
that are visible with white nodes and those that are invisible with black nodes. Figure 2
marks the b-invisible lattice points in the square [0, 50] x [0, 50] for b =1, 2, 3, 4.
Note that the number of b-visible points increases substantially relative to a small
growth in b even in this small portion of the integer lattice. This observation, presented
in Table 1, leads us naturally to our first result.

Table 1. Proportion of b-visible and b-invisible points for b = 1, 2, 3, 4 with all values approximated to three
decimal places.

b ch+1) e 1~ Proportion of b-invisible points in 50 x 50 grid
1 1.644 .608 392 953/2500 ~ .381
2 1.202 .832 .168 399/2500 =~ .160
3 1.082 .924 076 166/2500 =~ .066
4 1.036 964 .035 75/2500 =~ .030

Theorem 1. Fix an integer b € N. Then the proportion of points (r, s) € N x N that

are b-visible is ———.
cb+1)

Theorem 1 implies that the proportion of b-visible lattice points approaches 1 as b
approaches infinity. However, as our next result shows, for any fixed b € N there exist
arbitrarily large b-invisible rectangular forests, that is, rectangular arrays of adjacent
b-invisible integer lattice points.

Theorem 2. Let b € N. For any integers n, m > 0, there exists a lattice point (r, s) such
that every point (r + i, s + j), where 0 <i < nand 0 < j < m, is b-invisible from the
origin.

Although we present a proof that arbitrarily large b-invisible rectangular forests ex-
ist for all values b € N, our work does not construct forests close to the origin. In the
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classical b = 1 case, the work of Herzog and Stewart used prime matrices and the Chi-
nese remainder theorem to compute invisible square forests and they presented 2 x 2
and 3 x 3 invisible forests shown in Figure 3 [16].
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Figure 2. The b-invisible lattice points in [0, 50] x [0, 50] when b = 1, 2, 3, 4.
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Figure 3. The 2 x 2 and 3 x 3 invisible forests lying closest to the origin.

It is easily verified that every point (7, s) in the forests of Figure 3 satisfies the con-
dition gcd(r, s) > 1. It turns out that, up to symmetry, these are the closest invisible
square forests of size n = 2 and n = 3. In a brief remark, Wolfram claims to have found
the closest4 x 4 invisible forest, being located approximately 12 million units from the
origin [27, p. 1093]. However, this has yet to be confirmed in the literature. Although to
date no one knows the closest n x n invisible square forests for n > 5, recently bounds
have been given on where invisible square forests might exist in the integer lattice
[17, 22]. Finding such bounds in our generalized setting remains an open problem.
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Our paper is organized as follows. Section 2 contains the necessary definitions
to make our approach precise. Section 3 provides a proof of Theorem 1. Section 4
gives a construction of arbitrarily large rectangular b-invisible forests, thereby proving
Theorem 2.

2. BACKGROUND. The results presented in this paper are limited to the first quad-
rant of the plane, and, due to the symmetry of the plane, our results can be easily ex-
tended to apply to all of Z x Z.

Definition 1. Fix b € N. A point (r, s) € N x Nis said to be b-invisible if the following
two conditions hold:

1. The point (7, s) lies on the graph of f(x) = ax” for some a € Q. Thatis, s = ar’.
2. There exists an integer k > 1 such that k divides  and k” divides s.

The point is said to be b-visible if it satisfies Condition 1, but fails to satisfy Condition 2.

When we say that a point is b-invisible or b-visible, it is always with respect to
the origin. If (r, s) € N x N is b-invisible and Condition 1 is satisfied by the func-
tion f(x) = ax’, then (—r, s), (—r, —s), and (r, —s) are b-invisible under the functions
a(—x)b, —a(—x)?, and —ax’, respectively, and likewise for b-visible points. Thus, in our
study, it suffices to determine the b-visibility (meaning, whether the point is b-visible
or b-invisible) of the lattice points in N x N.

To speak about the b-visibility of a lattice point in this new setting, we develop a
generalization of the greatest common divisor.

Definition 2. Fix b € N. The generalized greatest common divisor of r and s with
respect to b is denoted gcd,, and is defined as

gcdy(r, s) := max{k € N | k divides r and kb divides s}.

Observe that gcd, coincides with the classical greatest common divisor when b
equals 1. Moreover, from the lattice point visibility language, the new generalized
greatest common divisor implies that for a fixed b € N the point (r, s) is b-visible if
there exists a function f(x) = ax” with a € Q such that (r, s) is on the graph of f and
is the first integral point on the graph of f from the origin. The following result gives
a necessary and sufficient condition to determine b-visibility.

Proposition 3. A point (r, s) € N x N is b-visible if and only if gcdy(r, s) = 1.

Proof. By Definition 1, a point (r, s) € N x N is b-visible if s = ar” for some a € Q
and there does not exist an integer k > 1 such that k divides r and k” divides s. Hence,
the largest positive integer that satisfies the visibility criterion is 1. Thus, ged,(r, s) = 1.

For the other direction, suppose that gcd,(r, s) = 1. Then k = 1 is the largest integer
such that k divides r and k” divides s and the point (r, s) does not satisfy Condition 2
of Definition 1. Also, note that for every pair (7, 5), there exists a unique a = s/r” € Q
such that s = ar”. Hence, (r, s) is b-visible. [ |

Note that in the classical b = 1 setting of lattice point visibility, a point (7, s) is
visible if and only if ged(r, s) = 1. Hence, Proposition 3 generalizes the condition for
a lattice point to be b-visible via the generalized greatest common divisor gcd,, as stated
in Definition 2. We also remark that the same integer lattice point can be b-visible and
b'-invisible for distinct b and &'. We illustrate this in the following example.
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Figure 4. Invisible and visible points under different lines of sights.

Example 4. In Figure 4 the dotted curve is f(x) = 7x, the dashed curve is g(x) = x?,
and the solid curve is h(x) = %x3. A white node denotes a visible point, while a black
node denotes an invisible point. In particular, the white—black point at (7, 49) is not
1-visible since gcd(7,49) = 7 and is not 2-visible since gcd,(7,49) = 7. However it
is 3-visible since geds(7, 49) = 1.

3. PROPORTION OF b»-VISIBLE LATTICE POINTS. The literature on lattice
point visibility presents rigorous proofs of the » = 1 case of Theorem 1, in particular
in MONTHLY articles by Casey and Sadler [7, Theorem 1] and Christopher [11,
Theorem 1]. Other recent proofs (see [1, 6]) give illuminating plausibility arguments
but are merely heuristic sketches as there is no uniform probability distribution on the
natural numbers and these arguments gloss over this important fact. However, these
proofs can be made rigorous by the methods presented by Pinsky [23]. Following an
analogous method, we now present a proof of our result regarding the proportion of
b-visible points in the lattice, for b > 1.

Proof of Theorem 1. Fix N,b € N. Let [N] := {1, 2, ..., N}. Let r, s be two numbers
picked independently with uniform probability in [N] and fix a prime p in [N]. By
Proposition 3, a point (r, s) € N x N is b-visible if and only if gcd,(r, s) = 1. Let Py

denote the probability that p divides r and p” divides s. There are L%’J integers in [N]

that are divisible by p, namely p, 2p, ..., LMJ p. Thus, the probability that p divides

ris ﬁ L—J Similarly, the probability that p® divides s is ]l\, L[%J By mutual inde-

pendence, the probability that p divides r and that p® divides s is Py = 1% L%J L%J

Therefore, the probability that p does not divide r or that p” does not divide s is 1 — Py.
Since Py — pﬁ as N — oo, by multiplying over all of the primes we have that the

probability that p does not divide r or that p” does not divide s given that p is prime is

. 1 1
ym 11 a=ro= H( pb+'>=<;<b+1>’

p prime p prime
P=N

where £(s) = [, prime(1 — 1/p)~" =
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4. ARBITRARILY LARGE b-INVISIBLE FORESTS. We exploit the Chinese re-
mainder theorem to prove that arbitrarily large m x n arrays of adjacent b-invisible in-
teger lattice points in the plane exist for every b € N. We call such arrays of points
b-invisible rectangular forests of size m X n.

Proof of Theorem 2. 1t suffices to show that there exists a pair (7, s) € N x N such that
gedy(r 44,5+ j)# 1forall0 <i <nand0 < j < m. To obtain a pair (r, s), we first
choose mn distinct primes and label them p; ; where 0 <i < nand 0 < j < m. Place
the primes in a matrix as follows:

Po,m—1 Plm—1 o Pn—1,m—1
men = ' : : :
Po.1 P11 Pn—1,1
Po,o P10 s Pn—1,0

The choice of the nonstandard indexing of the entries in the matrix P, will become
clear at the proof’s conclusion. Set C; = ]_[T:_O1 pi,jand R; = ]_[:-:01 pi,j and consider

the following systems of linear congruences:

r+0 =0 (mod(y) s+0 =0 (modR})
r+1 =0 (modC)) s+1 =0 (modR’l’)
. and .
r+m—1 =0 (modC, 1) s+m—1) =0 (modR>_)).

The integers in the set {Ci};’:_()' are pairwise relatively prime. Thus, by the Chinese re-
mainder theorem, there exists a unique solution r (mod ]_[l'.‘:_o1 C;). Similarly the integers
in the set {R j}'J’.:()l are pairwise relatively prime and hence there is a unique solution
s (mod [Ty RY).

For each 0 <i <n and 0 < j <m, we have by construction that C; divides
r+i and R’]’. divides s+ j, and thus p;; divides r+i and pﬁ j divides s+ j.
Hence p; ; divides gcd,(r + 1, s + j) and so gedy,(r + i, s + j) # 1. Hence every point
(r+i,s+j)eNxNwith0 <i<nand0 < j < mis b-invisible, as desired. |

The proof of Theorem 2 constructs b-invisible forests of any dimension. We illustrate
this process below by constructing a 2-invisible forest of size 2 x 3.

Example 5. Consider the prime matrix
7 11 13
Prs = (2 305 ) '
Using the technique described in Theorem 2, we compute the unique solution

ro (mod N) and sy (mod N?), where N =2-3-5-7-11 - 13, to the required system of
linear congruences

ro=r+0=27818=2.7-1987
rn=r+1=27819=32.11-281
rm=r+2=27820=2%*.5.13-107

so = s + 0 = 602202600 = 23 - 3° - 5% . 12391
s1 = s+ 1 = 602202601 =77 - 11> - 13% - 601.
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The forest we have constructed is shown in Figure 5 with each corresponding value
geda (74, ;) noted in red. One can easily verify that each of the six lattice points is
2-invisible; indeed as the proof of Theorem 2 states, each prime p; ; in the prime
matrix P»,3 divides the corresponding point (7, ;).

7 11 13

(ro, s1) (1, 8)  (r2.51)

("> 80)  (r.s0)  (7,89)
2 32 2+*3

Figure 5. A 2-invisible forest of size 2 x 3.

Although Theorem 2 provides a way to find b-invisible forests of an arbitrary size, it
does not necessarily indicate which ones will be close to the origin. Finding the closest
known invisible square forests (when b = 1) was explored by Goodrich, Mbirika, and
Nielsen [15]. In fact, using techniques from [15], we find a closer hidden forest with
(r, s) = (440, 38024). An exhaustive computer implementation confirms that this is
the closest 2-invisible forest of size 2 x 3 in the first quadrant. We end by posing the
following b-visibility problem: For fixed values b, n, m € N, find the nearest b-invisible
forest of dimension n x m.
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