Interactive Compression to External Information

Mark Braverman*
Princeton University
Princeton, NJ, USA
mbraverm@cs.princeton.edu

ABSTRACT

We describe a new way of compressing two-party communication
protocols to get protocols with potentially smaller communication.
We show that every communication protocol that communicates C
bits and reveals I bits of information about the participants’ private
inputs to an observer that watches the communication, can be
simulated by a new protocol that communicates at most poly(I) -
loglog(C) bits. Our result is tight up to polynomial factors, as it
matches the recent work separating communication complexity
from external information cost.

CCS CONCEPTS

« Theory of computation — Communication complexity;

KEYWORDS

Interactive compression, Communication complexity, External in-
formation cost, Information theory, Correlated sampling

ACM Reference Format:

Mark Braverman and Gillat Kol. 2018. Interactive Compression to External
Information. In Proceedings of 50th Annual ACM SIGACT Symposium on
the Theory of Computing (STOC’18). ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3188745.3188956

1 INTRODUCTION

Seminal works by Shannon and Huffman [13, 19] considered the
data compression problem and showed how to optimally compress
one-way communication to its information content, measured by
the entropy of the sent message. The corresponding problem for in-
teractive communication, called the interactive compression problem,
has attracted a lot of attention over the past decade. Roughly speak-
ing, the interactive compression problem asks whether a protocol
with a low information content I can be simulated by a protocol
that only communicates roughly I bits [3].

“Research supported in part by NSF Awards DMS-1128155 and CCF-1525342, a Packard
Fellowship in Science and Engineering, and the Simons Collaboration on Algorithms
and Geometry.

fResearch supported by National Science Foundation grant No. CCF-1750443.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5559-9/18/06. ... $15.00
https://doi.org/10.1145/3188745.3188956

Gillat Kol™
Princeton University
Princeton, NJ, USA
gillat kol@gmail.com

1.1 Information Cost

The interactive compression problem is formalized in the setting of
(distributional) two-party communication complexity. In this set-
ting, each party gets a private input, where the inputs are sampled
from a joint distribution p. The parties engage in an interactive
communication protocol in order to perform some communication
task that depends on both inputs.

To measure the information content of an interactive protocol,
we use the notion of information cost, which can be viewed as a gen-
eralization of the entropy function [1-3, 10, 14, 17]. In this work we
focus on the external information cost measure. Roughly speaking,
the external information cost of a protocol 7 over the distribution
1t is the amount of information that an external observer, who wit-
nesses the execution of 7, learns about the parties’ inputs, when
the inputs are sampled from p. More formally,

Definition 1.1 (External Information Cost). The external infor-
mation cost of a two-party protocol 7 over random inputs (X, Y)
that are drawn according to a joint distribution g, is defined as
IC, () = I(x(X, Y); (X, Y)), where I stands for mutual information
and 7(X,Y) is the transcript of 7 when it is run with inputs X, Y.

1.2 Our Results

In this paper we study the problem of compressing a protocol to
its external information cost. This problem asks whether every
protocol 7 with external information cost I over a distribution y
can be simulated by a protocol that only communicates roughly I
bits. By “simulate” we mean that the new protocol performs the
same task as 7, except with some small error probability, where the
probability is over p and over the randomness used by the players.

The most relevant previous works are a compression protocol
by [3] and a separation result by [11] described next. The influential
[3] paper, shows how to compress every protocol that communi-
cates at most C bits and has external information cost I over y, to a
protocol that only communicates I - polylog(C) bits. The question
of whether some dependence on C is inherent is interesting, as C
may be arbitrarily larger than I, thus making the polylog(C) term
the “costly” term.

This question was recently answered in the affirmative by [11],
analyzing a communication task T and a distribution y, parameter-
ized by a parameter k, suggested by [6]. It is shown that there exists
a protocol 7 that solves T and has IC, () = O(k), while every pro-
tocol solving T must communicate at least 2(K) bits. Thus, proving
an exponential separation between communication complexity and
external information cost.

We mention that the protocol 7 with low external information
communicates C bits, where C is triple exponential in k. Since, in
this case, poly(I) - (loglog C)°(V) is 2°K) this result implies that

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

there exists a communication protocol with external information I
and communication complexity C that cannot be compressed to a
protocol with communication complexity poly(I) - (loglog C)°(1).

The problem of closing the gap between the upper and lower
bounds for interactive compression with respect to the external
information cost measure, and finding the right dependence on C,
was left open. It was conjectured that a logarithmic dependence on
C is essential for external compression, and that no compression
to poly(I) - o(log(C)) is possible (see Open Problem 6.2 in [21]).
Our main result shows that such a scheme is possible, and, in fact,
one can get a double-logarithmic dependence on C. Our result is
essentially tight up to polynomial factors, by [11].

THEOREM 1.2. Let 0 < & < 1/2 be given constant. Fix any public
or private coin protocol & with input space X X Y. Let i be a distri-
bution on X x Y. Let I = IC () and C be the maximum number
of bits communicated by . Then, there is a public-coin protocol t
that simulates m with error ¢ under u and communicates at most
poly(I) - loglog C bits.

Sketch of the proof of Theorem 1.2 can be found in Section 2.
The rest of the paper is devoted to proving Theorem 1.2, however,
due to space constraints, some of the proofs are omitted from this
version.

1.3 Additional Related Works

Internal Information Cost. A related information cost measure
studied in the literature is the internal information cost measure.
Roughly speaking, the internal information cost of a protocol 7«
over the distribution , is the amount of information that the parties
learn about each other’s input by running z, when the inputs are
sampled from p.

The definition of internal information cost by the theoretical
computer science community was motivated by the quest for good
communication complexity lower bounds, and by fascinating rela-
tions to the direct sum problem in communication complexity [2, 3].
A similar definition appeared earlier in the information theory lit-
erature, in the context of interactive communication [14, 17].

Interactive Compression Protocols. The interactive compression
problem with respect to the internal information cost measure was
the focus of many recent works, and beautiful compression proto-
cols were suggested [3-5, 7, 9, 12, 15, 18, 20]. The general case of
compressing any protocol over any distribution is considered in [5],
where a 20(0) compression is given, and in [3], where a O(WC -1
compression is given. Here I stands for the internal information
cost of the protocol.

The important special case of compressing interactive protocols
over a product distribution y (the inputs to the players are indepen-
dent), was considered by a recent line of works [3, 15, 20], resulting
in an almost optimal O(I - polylog(I)) compression scheme. It is
not hard to show that the external information cost is always an
upper bound on the internal information cost, as the observer is
less informed than the parties to begin with, thus may only learn
more from the interaction. Over a product distribution, the internal
and external information costs coincide, because the first party is
as informed as the observer about the second party’s input, and
vise versa.

Mark Braverman and Gillat Kol

2 PROOF SKETCH

Let 7 be a randomized communication protocol between two play-
ers, Alice and Bob. Alice has a private input x and Bob has a private
input y, where (x, y) is chosen according to some publicly known
joint distribution p. We next sketch a public coin protocol 7 that
simulates 7, and has communication complexity poly(I)-loglog(C),
where I = IC, () and C is the maximum number of bits communi-
cated by . Our simulation protocol builds over the works of [3, 15].

2.1 Communication Tree

Consider the (directed) binary tree associated with . Each vertex
v of the binary tree corresponds to a possible transcript of 7. The
two edges going out of v are labeled by 0 and 1, corresponding to
the next bit to be transmitted. We think of each non-leaf vertex as
owned by one of the parties. The protocol & proceeds as follows:
Starting from the root, when 7 reaches a non-leaf vertex v, the
player who owns v sends a bit to the other player. The players
follow the edge indicated by the sent bit and reach a new vertex.
Note that since 7 communicates at most C bits, the depth of this
tree is at most C.

We denote the set of vertices of this tree by V' and the set of
leaves by L. For v,u € V, we write v < u if v is an ancestor of u.
We write v < uif v < u and v # u. We write u > vifv < u. We
write u > vif u > v and v # u. We also use < as a unary operator
and denote by < v the set {0’ € V : v’ < v}.

Let v, w € V such that w > v. Denote by Py, x,y(w) the proba-
bility that & reached w, conditioned on reaching v and on players’
inputs being x and y. Denote by Py, x(w) the probability that &
reached w, conditioned on reaching v and on Alice’s input being x.
Denote by Py, y(w) the probability that 7 reached w, conditioned
on reaching v and on Bob’s input being y. Denote by P, (w) the
probability that 7 reached w, conditioned on reaching v. When we
omit v, we mean that v is the root. We also view Px,y, Px, Py, P as
distributions over the leaves. For example, Py, assigns the prob-
ability Py, y(u) to the leaf u € L. We say that 7 simulates = if ¢
samples a leaf u according to the “correct” distribution Py, .

2.2 Information Frontiers

A frontier or a cut in the transcript tree is any subset of the tree’s
vertices that intersects every root-to-leaf path in exactly one vertex.
For example, the leaves of the tree form a frontier.

We define the information frontier F to be the set of all vertices
w € V for which log (Px(w)/P(w)) ¢ (=1, 1), but for w’, the parent
of w, it is the case that log (Px(w’)/P(w’)) € (-1, 1). Intuitively,
w € Fy if the bits communicated by Alice from the beginning of
the protocol until reaching w give roughly 1 bit of information to
an external observer about x. We mention that we define the in-
formation frontiers differently than in all previous papers, where a
divergence based definition was used. Our new definition helps sim-
plify the proof and can also result in some savings when analysing
the communication complexity of simulating protocols.

An important observation by [3] is that Alice knows the frontier
Fx, as she knows x and can compute log (Pyx(w)/P(w)) for every
w € V. This means that Alice can measure the amount of infor-
mation she gives the observer, as he starts with no information

Interactive Compression to External Information

about x. Similarly, we can define the frontier Fy and claim that Bob
knows ¥y

For simplicity (and with loss of generality), let us assume that
the frontier ¥ is always above the frontier Fy (in particular, Fy
and ¥ do not “intersect”).

2.3 A General Scheme for 7

Let us consider the following rough scheme for the protocol 7
simulating 7, based on [3, 15]:

(1) Correlated Sampling: Players jointly sample a leaf u ac-
cording to the probability distribution Py,.

(2) Finding Separation: Alice computes a = ¥ N (< u) and
Bob computes b = £, N (= u). Players find a vertex w such
thatb <w < a.

(3) Rejection Sampling: Alice accepts w with probability
Py (w)/P(w). If Alice rejects w, players go back to the first
step.

(4) Iterate: Players simulate the protocol induced by the subtree
rooted at w by going back to the first step with w as the root
(and possibly changing the roles of Alice and Bob).

We next explain how this protocol can be implemented and why it
is working.

2.3.1 Implementing the First and Third Steps. To implement the
first step of 7 we first note that if both players know Py, then they can
sample u from the public randomness with no communication. How-
ever, Alice does not know y, and therefore, does not know Py. To
still be able to jointly sample from Py, with low communication cost,
the players run the CorrelatedSampling protocol suggested by [7].
CorrelatedSampling assumes that Alice knows a distribution P’
over some domain Q, and Bob knows (a possibly different) distribu-
tion Q” over Q. After executing CorrelatedSampling(P’, Q’), both
players know an element w € Q sampled according to P’. The
communication required by this protocol is roughly the distance
between P’ and Q’ measured by the KL-divergence D(P’||Q’). To
implement the first step of 7, players run CorrelatedSampling(P’ =
Py,Q’ = P). It can be shown that D(Py||P) is upper bounded by
roughly I.

We discuss the implementation of the second step of 7 later.
For now assume that the second step was implemented and that
avertex b < w < a was found with little communication. Since u
was sampled according to Py, the vertex w is obtained with prob-
ability Py(w). During the third step of 7, Alice accepts w with
probability Py(w)/P(w). This means that w is the new root with
P, y(W)'P (W)

P(w)
tually Py, y(w). This means that w was sampled according to the
correct distribution.

We can then repeat the process to correctly sample deeper and
deeper vertices w; < wy < ... in the communication tree, until
reaching a leaf. Since the external information cost is I, it can be
shown that we only need to cross roughly I information frontiers.
Since we cross an information frontier in every iteration, 7 ends
after at most I iterations.

An important issue regarding the third step, is that a-priori it
may be the case that Py(w)/P(w) is very small (w was over-sampled
by the first step), causing Alice to almost always reject, or worst,

probability . Due to cancelations, this probability is ac-

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

Pyx(w)/P(w) may be greater than 1 (w was under-sampled). To
show that Py (w)/P(w) is close to 1, we use the fact that w is above
the frontier ¥ (as w < a), which means that log(Px(w)/P(w)) €
(—1,1), and thus Px(w)/P(w) € (1/2, 2). Intuitively, less than one
bit of information about x was revealed when reaching w, so Px(w)
cannot be very different than P(w).

2.3.2 Implementing the Second Step. It remains to reason about
the implementation of the second step. The simplest implemen-
tation is to set w = a by having Alice send a to Bob. Since the
tree is of depth C, Alice needs to communicate roughly log(C) bits.
Unfortunately, this is exactly the log(C) factor we are trying to
avoid.

The Protocol Pred. Another possible implementation of this step
is by recalling that given integers c, d € [n], players can agree on an
integer k between c and d, by communicating only log log(n) bits,
as follows: Consider the binary representations bin(c) and bin(d)
of ¢ and d (respectively), and find the first coordinate i on which
they disagree, by running a binary search. To do that, hash the first
halves of bin(c) and bin(d) and compare the hashes. If the hashes
match, i should be in the second half of the binary representations.
Otherwise, i is in the first half. Recurse until finding i, and use i
to compute k. Note that since the binary representation of a num-
ber in [n] is log(n) bits long, this protocol only requires roughly
loglog(n) communication bits.

We can now construct the protocol Pred(a, b) that outputs the
desired w: We denote by c and d the levels of a and b in the tree
(respectively). We find k between ¢ and d as explained above, and
return vertex number k on the path from the root to a. Note that
since the tree is of depth C, it holds that ¢, d € [C] and the overall
communication is about loglog(C).

The Double Counting (Oversampling) Problem. The main problem
with this loglog(C) bits implementation of the second step (as
opposed, for example, to the log(C) implementation by setting w =
a), is that the set ¥ of all vertices w that are produced for all
possible leaves u selected by the first step, may not be a frontier.
To show that # may not be a frontier, consider leaves u,u’ € £
with lowest common ancestor v that is between the frontier 7
and the frontier Fx. Let a = Fx N (2 u), b = Fy N (2 u) and let
a’ = Fx N(2u'), b’ = Fy N (2 u). Since v is below Fy, it is the
case that b = b’. However, since v is above ¥ it is possible that,
say, a’ is much higher in the tree than a. In this case, Pred(a’, b”")
may return a vertex w’ such that w’ < v, while Pred(a, b) returns
a vertex w such that v < w < a. Since w,w’ € F,but w’ < w, ¥ is
not a frontier.

The problem with ¥ not being a frontier is that it can lead to
“double counting” or oversampling. What is the probability that ¢
reaches w? One way of reaching w is to reach it directly from the
root, as discussed above. Another way of reaching w is to reach
w’ from the root, and then in the second iteration of 7, designated
to simulating the subtree rooted at w’, reach w from the new root
w’. The fact that there are various ways of getting to w distorts the
probability of reaching w.

Therefore, in order for 7 to work, we either have to implement
the second step in a way that induces a frontier, or deal with the
double counting problem. When the distribution p is a product

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

distribution, the first option turned out to be possible [15, 20]. For
general distributions, it is not clear how to construct such frontiers,
and we are instead taking the second approach. As far as we know,
this work is the first to handle double counting.

2.4 Our Compression Protocol

The Protocol Mid. Let us first consider all of Bob’s information
frontiers ¥;, 4. Informally, the frontier ¥ ; is the set of vertices
where roughly i bits of information about y are revealed to the ob-
server (in particular, 1, = ¥y). Let us again assume for simplicity
that Alice’s and Bob’s frontiers do not intersect. Observe that there
may be any number of frontier ¢ < I such that 71 4, ..., %7,y are
all above F.

Our protocol implements the second step of 7 in a way that
ensures that w does not only separate ¥ and ¥, but also separates
all the frontiers F;, that are above F from . That is, let u be the
leaf obtained by the correlated sampling step. Denote b; = ¥4, N(=
u) and let a = F5 N (= u). Then wis such that by < by < ... <
by <w<a.

To find such a w, we run the following protocol Mid(u) =
Mid(by, . ..,bs,a): The protocol Mid first executes Pred to find
a wy that separates b from a. Let j be such that b; < w < bj41.
Then, Mid executes Pred to find a wy that separates bj;; from a.
This process proceeds in at most I iterations.

Consistent Leaves. Assume that the first iteration of 7 reaches
the vertex w. Then, the second iteration of 7 is aimed at simulating
the protocol induced by the subtree rooted at w. In the case where
the second step of the first iteration produces a frontier ¥ (with
w € F), the second iteration does not need to know the transcript
of the first iteration that led to the vertex w in the first place in
order to simulate the sub-protocol. However, if the set ¥ produced
by the first iteration is not a frontier, then, to avoid double counting,
it will be important that the second iteration of 7 “remembers” the
transcript of the first iteration and only samples leaves that are
“consistent” with it.

More formally, suppose that in the first iteration of 7, the leaf u
was sampled by the correlated sampling step, and suppose that the
transcript of the Mid(u) = Mid(b, ..., b, a) protocol run by this
iteration is m, and its output is w. Then, in the second iteration of 7,
simulating the subtree rooted at w, the correlated sampling step will
only sample leaves u” that are consistent with m. A leaf u’ is consis-
tent with m if running Mid(u’) yields the transcript m. That is, we
want the transcript of the execution Mid(u’) = Mid(b],...,b;,a’)
to be m, where b] = ¥4, N (2 v’) and @’ = F x N (= u’). The
intuition is that m contains all the information that 7 “knew” about
the leaf u that was sampled by the first iteration, and therefore u
and u’ look the same to 7. Hence, we may as well replace u by u’.

Let U be the set of all leaves u’ that are consistent with m. We
now need to revise the correlated sampling step of the second
iteration of 7 to sample leaves u’ € U according to the distribution
Py |U (the distribution Py restricted to U). Recall, however, that
the correlated sampling procedure requires one of the players to
know the correct distribution Py |U, while the other can have some
good estimate of it. In our case, since the set ¢ may depend on
both x and y, it is not clear whether there is a player that knows
the distribution Py |U.

Mark Braverman and Gillat Kol

We will next show that Alice “almost” knows this distribution.
To do that, we first claim that b] = (FyN < u’) = (FyN < u) = by,
as by < wand w < u,u’. The reason that u > w is that the vertex
w obtained by the first iteration of 7 is an ancestor of the leaf u
sampled by its correlated sampling step. The reason that u’ > w
is that u’ is sampled by the second iteration of 7, thus it is in the
subtree rooted at w.

Now, assume that we have reached the second iteration of 7, and
Alice wishes to compare the transcript of Mid(u’) to m, to decide
ifu’ € U. (Note that m is known to Alice, as both players know
the transcript of the first iteration). To do that, she runs Mid(u’) by
herself, with no help from Bob, as described next. Alice first needs
to execute Pred(b], a’). Assume that the players take alternating
turns in communicating bits while running Pred(b], a’), and that
Alice sends that first bit. Alice knows x, thus also knows a” and can
compute the first communicated bit and compare it to the first bit
of m. If she finds a mismatch, she concludes that u” ¢ U. Otherwise
to continues to compare the next communicated bits.

The second bit should be sent by Bob, and Alice does not know
y, so she cannot trivially compute it. Recall, however, that b{ = by,
thus Bob has the same input in Pred(b?, a’) and Pred(b1, a). Because
the transcript of Pred(b1, a) is induced by m, Alice knows what
Bob’s next message is (assuming that the first bits communicated
by Pred(b!,a’) and Pred(b;, a) were the same). She can then use it
to compute the third bit in the transcript of Pred(b, a’), as this bit
is sent by her. Alice continues this process and compares all the
bits.

Intersecting Information Frontiers. The general case, where Al-
ice’s and Bob’s frontiers may intersect, poses additional challenges.
One is due to the fact that in this case it is possible that ¢, the
number of Bob’s frontiers that intersect the path to u above a, is
smaller than ¢, the number of Bob’s frontiers that intersect the path
to u’ above a’. In this case, the number of executions of Pred by
Mid(u), denoted s, may be smaller than the number of executions
of Pred by Mid(u’). Let U’ be the set of all leaves u’ such that the
transcript of the first s executions of Pred by Mid(u’) is m. By the
above argument, Alice can check if u’ € U’. However, since the
m may be a strict prefix of the transcript of Mid(u"), U may be a
strict subset of U’.

To overcome this problem, we note that given u’ € U’, the
players can check if u’ € U as follows: Let 77, be Bob’s first
information frontier after w and let b’ = 77, N (< u’). The leaf
u’ € U’ is not in U (call u a bad leaf) if and only if b’ < a (in
this case, more executions of Pred would have been required to
separate all of Bob’s frontiers from Alice’s frontier).

This suggests the following protocol: Players will first jointly
sample a leaf according to the distribution Py |’ known to Alice,
and then check if u” is bad by executing Pred(a, b’’) to check if b”" <
a. (Recall that Pred only requires log log(C) bits of communication,
and thus is affordable.) If this is indeed the case, the leaf u’ is bad
and will be rejected. The the players will jointly sample a new leaf
and check it. This will repeat until a good leaf is found.

Protocol Analysis. One problem that we need to deal with in order
to ensure that our simulation is indeed communication efficient,
arises if the leaf u” sampled from Py |’ turns out to almost always
be bad. In this case, we keep rejecting the sampled u’, blowing up

Interactive Compression to External Information

the communication substantially. To handle this case we note that
u, the vertex sampled in the first iteration, is good. Thus, if good
leaves are rare, it is very unlikely that u will be sampled by the first
iteration.

Another issue that has to do with the communication cost of 7 is
the fact that we are now having the players jointly sample from the
distribution Py |U’. While we were able to claim that D(Px||P) ~ I,
the same bound may not hold for D((Px|U”)||P). However, it can
be shown that D((Px|U’)||P) < D(Px||P) + |m| s I+ Iloglog(C).

We also mention that we are not able to prove the accuracy of our
simulation protocol 7 using the techniques developed by previous
papers. Those techniques basically show that every iteration of
7 samples correctly form some frontier #. However, we do not
construct such frontiers. Instead, we develop a new analysis method
based on the unique decomposition of leaves. This method crucially
exploits the fact that for every leaf u, there is a single way for 7 to
reach u (assuming that the public randomness was fixed). That is,
if w; is the w vertex computed by iteration i of , then there is a
single sequence w; < wz < ... < wp with we = u.

3 OUR COMPRESSION SCHEME

In this section we present the pseudo-code for our compression
protocol. A more detailed explanation of the protocol, as well as
the protocol’s analysis, are deferred to the Appendix.

Algorithm 1: Pred(v4, vB)
1 D« [log(C)] +1
/* fdiff finds the first difference between two bit
strings */
2 Run fdiff p (level(v?), level(vB)), T = O(log(I)/&%) times
3 i < most common return value of fdiff
i pe { 1 ifot=0
0 if v;‘\ =1
5 W <« the vertex at level (level(vA))l, i_1 0100P7% on the path
from the root that goes through v4 and v®
6 return (p, W)

Algorithm 2: Mid4(X,Y,V,U)
WV

1

2 repeat

3 ‘ (p, W) & Pred(Fw,xN 2 U, Fy,yn < U)

4 untilp =0

5 W « the second to last value of W

6 M « the transcript of all the executions of Pred by Line 3,
excluding the last one

7 return (W, M)

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

Algorithm 3: 7(X, Y)
1 V,V' « root, M «— ¢, leader «— Alice, U «— L
2 repeat

3 if leader = Alice then
/* U < random vertex distributed according
to PL(V),X|M */
4 repeat
5 PA « the probability distribution
YueU: PAu) = II’JX;(((’Z())
6 U « CorrelatedSampling(P = PA,Q = Provy)
7 until (Pred(Fy, xN < U,Fy,yn <U)), =1
/* W « candidate for new V */
8 R « new shared random string
9 (W, M) « Mid4(X,Y,V,U)
/* rejection sampling */
10 Z—FyyNn=s=U
11 Bob accepts w.p. —Z‘{,’ Y(Z), in this case
v(Z)
12 U — {ue LW) : (Midg(X,Y,V,u)), = M}
13 leader <« Bob
14 VeV
15 Vew
16 else
17 Same, switching the roles of Alice and Bob and of X
and Y. In addition, Lines 9 and 12 refer to the
protocol Mid® instead of Mid*. The protocol Mid®
is obtained from the protocol Mid by switching the
L roles of Alice and Bob and of X and Y.

18 until V is a leaf
19 returnV

4 NOTATION

We note that some of our notation is borrowed from [20], including
the very nice string notation described below.

4.1 Strings

Recall that {0, 1}* refers to the set of all binary strings. The empty
string is denoted ¢. Let v, w € {0, 1}*. We denote by |v| the length
of v. For i < j € [|v]], we denote v; the i*" bit of v and by v; j the
substring of v given by v;v;+1 ... v;. The concatenation of v and
w is denoted v o w.

Consider the standard partial order < on {0, 1}*, where v < w
if and only if v 0 v’ = w for a (possibly empty) string v”. If v < w,
we say that v is an ancestors of w and that w is a descendant of v.
We write v < wifv < wand v # w. We write v > wif w < v. We
write v > wif w < v.

Let S C {0,1}* and let v € S. We say that v is minimal in S
if there does not exist w # v € § such that w < v. We say that
v is maximal in § if there does not exist w # v € S such that
v <w.Letm € Nandlet S1,Ss,...Sm, C {0,1}*. The floor of the
sets S1, Sy, ... Sm, denoted | S1, Sy, . .., Sm], is the set of minimal
elements of S U Sy U ... U Sp;. Analogously, the ceiling of the

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

sets S1, Sy, . .. Sm, denoted [S1, So, . . .
elements of S US, U ... US,,.

Let v € {0,1}* and let S C {0, 1}*. We write v < S if there
exists w € S such that v < w. Similarly, we write v > § if there
exists w € S such that v > w.

In addition to its role as a relational operator, we use < as the
unary operator given by < v = {u: u <v}.

Let S € {0,1}*. Let f : 8§ — R* and let S’
FS) = Soes fO).

,Sm], is the set of maximal

C S. We define

4.2 Frontiers

We identify the vertices of a tree with binary strings in the usual
manner, namely, the root corresponds to the empty string ¢, and
inductively the left child and right child of a vertex v correspond to
the strings vo 0 and vo 1, respectively. A frontier or a cut in a (finite)
binary tree is any subset of the tree’s vertices that intersects every
root-to-leaf path in exactly one vertex. For example, the leaves of
the tree form a frontier. More generally, by truncating a given tree
arbitrarily and considering the resulting set of leaves, one obtains a
frontier in the original tree. Given our identification of tree vertices
with binary strings, we view frontiers as subsets of {0, 1}".

Let v be a vertex in a (finite) binary tree. A frontier with respect
to v is any subset of descendants of v that intersects every v-to-leaf
path in exactly one vertex.

4.3 The Communication Tree

Consider a randomized protocol with input space X x Y. Assume
for simplicity that it is a private-coin protocol, meaning that Alice
and Bob do not have access to a shared source of random bits. They
communicate by sending one bit at a time. For any given history
of previously transmitted bits (a transcript), the protocol specifies
which of the participants must send the next bit, which in turn is a
function of the sender’s private random string, the sender’s input,
and the history of previously transmitted bits.

For the rest of this section, let 7 be an arbitrary but fixed private-
coin protocol and p be a distribution over X X Y. We denote by
I = 1C(rr) the external information of 7 over u. We denote by C
be the worst case communication complexity of .

We identify the set of possible (partial) transcripts communicated
by 7 with a binary tree called the communication tree. We denote
by V the set of vertices of the communication tree, and by £ the
leaves of this tree. For a vertex v € V, we denote by V(v) the set
of vertices in the subtree rooted at v (the set V' (v) includes v itself).
The root of the tree is denoted ¢.

Distributions Over Vertices. Let (X, Y) be a pair of random vari-
ables distributed according to y, representing the players’ inputs.
Let IT be a random variable representing the transcript of the pro-
tocol 7 when it is run with the inputs (X, Y). Let v € V and let
w € V(v). We define

Py(w) =Pr[Il = w | II > o],
Py x(w)=Pr[ll = w| X =x,1I > v],
Pyy(w) =Pr[l =z w| X =y, 1T > 0],
Pox,y(w) =Pr[Il = w | X =x,Y =y, 11 > v].

Mark Braverman and Gillat Kol

Let v € V, and let ¥ be a frontier with respect to v. Observe that
¥ induces v. We define the following probability distributions de-
fined over ¥ by Pg(w) = Py(w), Py, x(w) = Py x(w), Py (w) =
Py, y(W), Pgx y(W) = Py, x,y(w). When we omit the vertex v, we
mean that v is the root. E.g., Py, y(w) = P x,y(w).

4.4 Information Frontiers

Let x € X and y € Y. We define Alice’s information frontiers 7;, x
and Bob’s information frontiers % y recursively. The frontiers %o, x
and %,y contain only the root. For i > 1, we define

ﬁ,x:[{weq/: FveFixst.v=w
and log(”"(w)) ¢ (-1, 1)} J
Fiy=|{weV: veFiyst.ow

and log (Pv ”(W)) ¢ (-1, 1)} J @

Note that ¥ x and 7, are indeed frontiers of the communication
tree. As was done by previous papers, we assume that the protocol
7 is smooth (see [3, 8]). It therefore holds that

Fix=|[{weV: veFiyxst.vw
va
and B0 e (14,1721 02,41} £
Fiy=|{weV: veFiyst.ow

and ”E()) [1/4,1/2]u[2,4]},£J.

®)

4)

Forx € X,y € Y,and v € V we define

Fo,x = V()N Tmin{izoz V=Fix}x
Tv,y =V@)nN Tmin{izl: v=Fiyhy-

Observe that for any u € L it is the case that (F;,xN < u) <
(Fe,yN =< u). That is, Alice’s first frontier is above Bob’s first fron-
tier.

The following claim bounds the amount of information about x
revealed between a vertex v and the closest frontier.

Cramm 1. Letv € V andv < w < Fy . Then PS»EEMM)’)

A similar claim holds when we switch the roles of x by y.

€ (1/8,38).

Proor. If v € Fj x for some j € N, then, 75, x = V(v) N Fj .

Since v < w < Fy, x it is also the case that w = v, thus P;,“ZS:;) =1,

and the assertion follows. Now assume that v ¢ Fi,xs for every j.
Leti =max{j € N: ¥, <v}. Letv’ = Ff x N (< v). Since v <

w < Fou.x, it means that w < 41 . By Equation (3), Pt x(w)

P, I(W)
[1/4,4]. If P;’fg(vz)’) € (~00,1/2] U [2, 00), then, by Equation (2),

v = Fis1,x. Since v < w < Fiqq x, we get that v € Fi4q, . But this
is impossible as we assume that v ¢ F; x for every j € N. Conclude

Py x(v) P‘U,X(W) _ Pv’,x(w)‘Pv’(U)
that Po(o) € (1/2,2). Therefore, Potw) = Py (@) Por(w)

(1/4- 1/2 4-2)=(1/8,8), and the assertion follows. O

Letx € X,y € Y, and u € L. The number of Alice’s frontiers
crossed by the path from the root to u is denoted Fy(u), and the

Interactive Compression to External Information

number of Bob’s frontiers crossed by the path from the root to u is
denoted Fy(u). Formally, Fy(u) and Fy(u), are defined by:

Fy(u) =min{i : Fix N (L u) =u}, (5)
Fiy N (2 u) = u}l. (6)

The following useful lemma shows that the expected number of
frontier crossed by a path to a leaf is roughly bounded by the
external information cost.

Fy(u) = min{i :

LEMMA 4.1. It holds that
E [Fx(U) + Fy(U)] < 101.

UEP.C,X, Y

4.5 The Chopped Protocol r’

Let N = 100[/e. Given a communication protocol 7, we define
the chopped protocol ’. Informally speaking, until reaching the
N frontier, the parties running 7’ follow the protocol 7. After
the N*" frontier was reached, the parties ignore their inputs and
communicate according to the distribution of an external observer.
Formally, let IT” be the transcript of 7’. Letx € X,y € Y, v € V,
and b € {0, 1}. Assume that when reaching v, Alice communicates
a bit. Define

Pr[ll’ > vob | X =x1I" > v]

| Prl=zvob|X=x1TIx>v]
- Prlll = vob | > v]

ifv < Fn,x
ifvo>FN x-
The definition for the case that Bob is communicating a bit when
reaching v is obtained from the above by switching the roles of
X,xand Y, y.

Observe that for every distribution g, it holds that

IC,(x") = O(IC,()) = O(1).

In this section we will use the superscript 7 or 7’ to indicate the
- 7 i Aliewr ith -
underlying protocol assumed. E.g., ?;’x is Alice’s i*" frontier when
the protocol z” is run.
The following claim shows that in 7', the number of frontier
crossed by a path to a leaf is at most N + 1.

Cramm2. Letx € X,y € Y, andu € L.It holds thatF,’Cf/(u),Féf/(u)
N +1.

The next claim shows that 7 and n” are close. It follows directly
from Markov’s inequality and Lemma 4.1.

CraiM 3. It holds that
E T X,’ —JIIX,) < 0.1e.
X,Y [| (X1 ()l] ¢

5 DESCRIPTION OF OUR COMPRESSION
SCHEME

Our simulation protocol, 7/, is presented in Section 5.4. We first
survey the (sub)protocols Pred, M id®, MidB, r that are used to con-
struct 7.

We assume to be given a protocol 7 and denote by 7’ the chopped
version of 7 (see Section 4.5). The protocol " aims to simulate 7”,
and thus, due to Claim 3, also simulate 7. The protocols M idA, MidB s
7,7/ work with the underlying protocol 7’. That is, in all that fol-
lows, when we use Py, x, Po, y, Po,x,y» Fi, x> Fi,y» Fo,xs Fo,y» Fx, Fy
etc. we mean Pz’i,X,PZ’ily,Pglx’y, (an);’ '?:”y’, ‘Fv’f;, '7’;,”;/, F,’(Z’,Fér' etc.

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

5.1 The Protocol Pred

The protocol Pred(v4,vP) is given in Algorithm 1. The protocol
Pred assumes that Alice has a vertex v4 € V and Bob has a vertex
vB € V, such that v and vB are on some path from the root to a
leaf. That is, 04 < B or v4 > vB. It is assumed that 04 # oB.

The protocol Pred uses the protocol fdiff p (first difference) sug-
gested in the solution to Exercise 3.18 in [16]. The protocol fdiff p
communicates at most O(log(D)) bits and computes the function
f: {0,1}P x {0,1}P — [D] given by f(a,b) = min{i € [D] :
a; # b;}, with constant error probability. For any v € V denote by
level(v) € {0, 1} M108(C)1+1 the binary representation of the level in
the tree that contains v (the root is in level 0).

An execution of Pred(v?, vB) returns a pair (p, W) € {0, 1} xV,
where:

o If o4 < B then p = 1, otherwise p = 0.
e W is between v and vB. Formally, if v4 < vP then v4 <
W < ovB. Otherwise, vB < W < 04,

The protocol Pred communicates at most O(log log(C)-log(I)/?)
bits, and errs with probability at most ¢2 - I1°, The protocol Pred is
randomized. However, whenever Pred returns a correct vertex W
satisfying the above condition, it returns the same vertex W (when
it is run with the same inputs).

5.2 The Protocol Mid*

The protocol Mid*(x,y, v, u) is given in Algorithm 2. It assumes
that Alice has an input x € X, Bob has an input y € Y, and that
both players agree on a vertex v € V and a leaf u € L(v). The
protocol returns a vertex w on the path from v to u. The vertex w
separates Alice’s and Bob’s frontiers, in the sense that no frontier of
Bob’s intersects the path from v to w, and the first of Bob’s frontiers
to intersect the path from w to u, intersects it above Alice’s next
frontier. It holds that

w = (Fo,yN 2 u) < (Fw,xN =2 w). (7)

By Claim 2, Mid® runs Pred at most O(N) = O(I) times. This
holds as each time Pred is called (with the exception of the first
call), W crosses at least one Alice’s frontiers ; x. Therefore the
following holds:

Cramm 4. TheprotocolMidA communicates at most T = O(I log(I)-
loglog(C)/?) bits, and errs with probability at most ¢ - 7.

REMARK 1. The protocol M id? is randomized. However, whenever
Mid? returns a correct vertex W satisfying the above condition, it
returns the same vertex W.

When we want to emphasis that the random string used by a
specific execution is of Mid? is R, we write M idé.

The protocol Mid® is obtained from Mid* by switching the roles
of X and Y. Claims analogous to the above hold for MidB.

5.3 The Protocol 7

The protocol 7 is given in Algorithm 3. The protocol 7 executes
the correlated sampling protocol, CorrelatedSampling, suggested
in [7]. The protocol CorrelatedSampling assumes that Alice knows
a distribution P over £, and Bob knows (a possibly different) distri-
bution Q over L. After executing CorrelatedSampling(P, Q), Alice

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

gets a leaf u € £ sampled according to P. Bob gets a leaf u’ € £
such that u’ = u, except with probability £ - 1710,

We next show that 7 can be implemented by Alice and Bob. In
particular, we claim the correlated sampling step (Line 6) and the
rejection step (Line 11) can be carried out.

The rejection step assumes that whenever Line 11 is called, it
holds that I;‘Pf’vy((ZZ)) < 1. This is indeed the case by Claim 1, as
ZeFyy.

To show that correlated sampling step can be carried out, we first
observe that Bob knows the distribution P £ (y. Alice knows the

distribution P4, as, as shown by the next lemma, she can calculate
the set U (although she does not know Y).

For a possible (partial) transcript M of Mid* or Mid®, we denote
by ||M]| the number of iterations of the loop in Line 2 of Mid in the
execution that resulted in the transcript M.

CrLamv 5. Whenever Line 12 of the protocol 7t is called, Alice can
compute the set U by herself.

PRroOF. Assume that we have reached a specific iteration of the
loop in Line 2 of 7. Let V, V', U, W, M, U, R, leader be the values of
the variables V, V', W,U, M, U, R, leader after V was updated for
the last time before this iteration. Assume without loss of generality
that leader = Alice.

Fix u € L(V). Consider the first || M| iterations of the loop in
Line 2 of Mid when running Midg (X,Y,V’,u) (ifindeed MidIB; runs
for at least this many iterations). By Line 12 of 7, u € U if and
only if the transcript of these ||M]|| iterations is M. We will show
that Alice can simulate Bob’s part in these iterations, and thus can
compute U. Let j € [||M]|]. Let Wj’ be the value of the variable W
at the beginning of iteration j. Let (M’)JA and (M’);3 be Alice’s and
Bob’s messages (respectively) in iteration j.

Now consider the first ||M]| iterations of the loop in Line 2 of
Mid when running Midg(X, Y,V’,U). Let W;j be the value of the
variable W at the beginning of iteration j. Let M}‘\ and M]B be Alice’s
and Bob’s messages (respectively) for iteration j. By Line 9 of z,
M = (M, MP)jepm)- Define (M')g = Mgt = (M) = Mg = «.
We next prove the following claim

CramM 6. Letj’ € {0,...,||M|}. If(M');.\ = M;‘ foreveryj < j’,
then also (M’)]ﬁ = Mf foreveryj <j’.

ProoF oF CLAIM 6. We prove by induction. For j’ = 0, the claim
holds trivially. To prove the claim for j* > 1, we observe that by
the induction hypothesis, since (M’);‘ = MJA for j < j’ — 1, then
also (M')f = MJB for j < j’ — 1, which implies that Wj’ =W
Since j* < ||M]|, it holds that j” is not the last iteration of the loop in
Line 2 of Mid® when running Midg(X, Y,V’,U) (by Line 6 of Mid®,
the last iteration is not recorded to M). Therefore, (TWJ.,,yﬂ <
U) < Wyyp 2 (Fy,xN = U). Since Wy < W =V, we get
(Fwy,yn = U) = V. Asu,U € L(V), it holds that (Fy,,yN <
u) = (ij,,yﬂ V)= (TWJ_/hyﬂ < U), thus Bob’s input is the

same when running Pred. Since we assume that (M ’)}4 = M]A for

every j < j’, it also holds that (M’)}% = MJI.?, as Bob messages are a
function of his input and the messages communicated by Alice. O

Mark Braverman and Gillat Kol

The assertion follows from the claim for the following reason:
Alice knows M]B for every j € [||M]|], as they are induced by M. To
decide whether u € U, Alice does the following: Alice compares
(M ’)f to Mf‘. If they are not the same, then clearly u ¢ U and
she halts. If (M ’)f = Mf‘, then by Claim 6 it is also the case that
(M /))13 = MlB Thus, Alice knows that the transcript of the first
iteration of the loop in Line 2 when running Midg(X, Y,V u)is
consistent with M. Alice can repeat the process (compare (M ’)‘24
and M? etc.) to check that transcript of the first || M|| iterations of
the loop in Line 2 of Mid when running Midg (X,Y,V’,u)is indeed
M. O

5.4 The Protocol 7’

Our final simulation protocol 7’ is obtained from 7 by making the
following changes:

(1) The loop in Line 2 of the protocol 7 is never executed more
than N’ = 101°N /e = O(I) times. If the loop does not halt
after this many iterations, 7’ returns failure.

(2) The total number of times that the loop in Line 7 of the
protocol 7 is executed during an execution of 7’ is at most
N” = 101N’ - N/e = O(I%). If 7 attempts to execute this
loop more than N”’ times, 7’ returns failure.

The proof of Theorem 1.2, showing that 7’ simulates 7 with
low communication cost, is given by Lemma 8.1 (accuracy lemma
proved in Section 8) and by Lemma 13 (communication cost lemma
proved in Section 9).

6 DEFINITIONS FOR PROTOCOL ANALYSIS
Fixing. For the rest of the text, fix the inputs x, y.

Notation. Let v € V. Let F(v) be the set containing all intersec-
tions between the path from the root to v and one of the information
frontiers. Formally,

F(v) = (Uien(Fi,xN = 0)) U (Uien(Fi,yN < 0)) .

Let t(v) = |F(v)| be the number of information frontiers intersect-
ing the path from the root to v. Let t € [t(v)]. Let f;(v) € F(v) be
the intersection between the path from the root to v and the ¢t"
information frontier. Formally, f;(v) is a vertex in F(v) for which
there are exactly ¢ distinct vertices v’ in F(v) satisfying v’ < v.

Let v € V. Note that f;(,,)(v) is the last intersection between
the path from the root to v and the information frontiers. Define
leader(v) = Aif fi(,)(v) = (Fi,yN < v) for some i € [t(v)]. Define
leader(v) = Bif f}(,)(v) = (Fj,xN < v) for some j € [t(v)].

For all that follows, T € N is the upper bound on the length of
the transcript of the protocols Mid“ and Mid® obtained in Claim 4.
Observe that T is also an upper bound on the binary representation
size of the M variable returned by M id® and Mid®B. We will assume
that M € {0,1}7. Let T € N be an upper bound on the number
of random bits used by Mid* and MidB. Let R be the set of all
sequences 7 = rq,rz, . .., such that r; € {0, l}T’.

Useful Sets. Let S C {0, 137 x V2 x {0, 1}7 be the set of all
(r, v, w, m) such that

FueV): Midieuder(v)(x, y,0,u) = (w, m).

Interactive Compression to External Information

For (r,v, w,m) € S, we define the sets U(r, v, w, m), U*(r,v, w, m),
L*(r,u,w,m), V*(r,v,w, m) as follows: If leader(v) = B,

Ur,v,w,m)={ue Lw): (Midf(x,y,v, u))2 = m},
U (r,v,w,m)={ue L(w): (Midfj(x, y,0,u))z = m},

L(r,v,w,m) = {u e U(r,v,w,m) : (Fo,xN 2 u) < (Fa,yN < u)}
V*(r,o,w,m) = {v" = (Fo,xN 2u): ue Ur,v,w,m),v" < Fryy}

If leader(v) = A, the definitions of U(r,v, w,m), U*(r,v, w, m),
L*(r,v,w,m), V*(r,v, w, m) are obtained from the above defini-
tions by switch the roles of A and B and of x and y.

Random Variables. In all that follows, we denote by V;, Vt', M, P;“,
Uy, Ry, W; the last values attained by the variables V, V’, M, PA U,
R, W (respectively) in the iteration of the loop in Line 2 of 7 in which
V is updated for the ¢ h time (the initialization of V in Line 1 of 7
is the 0! update of V).

Unique Decomposition. Let u € L and let 7 € R. We define the
unique decomposition {(vy, m;)}; of u with respect to x,y,7 in a
recursive manner: Let (v, mg) = (¢, €). For t > 1, define

eader(vy)
: (x, y,vs,u).

.l
(Ve+1, mes1) = Mid;,

Letu,u’ € L, andlet v € V be the lowest common ancestor of u
andu’. Let {(vs, m¢)}s and {(v;, m})}; be the unique decomposition
of u and u’ (respectively) with respect to x, y, 7. Let i be the maximal
such that v; < v. Then, (vs, my) = (v;, m}) for every t < i.

Let v € V. Letu € L such that u > v. Let {(vs, ms)}; be
the unique decomposition of u with respect to x, y, 7. Let i be the
maximal such that v; < v. We define the unique decomposition
of v with respect to x,y, 7 to be {(v;, ms)}s<i. Observe that the
unique decomposition of v is well defined.

7 ACCURACY OF

We next show that 7 simulates the chopped protocol 7’. For the
rest of the section we will be assuming that the implementations
of the Pred and CorrelatedSampling protocols are error free.

AssumPTION 1. The Pred and CorrelatedSampling protocols never
err or fail.

Consider the randomness used by an execution of 7. We denote
by R the randomness used for the executions of Mid* and Mid®B
by 7. We denote by R’ the rest of the randomness used by 7. Let
7 € R and recall that x, y are fixed. Let 77(x, y) be the distribution
of 7’s outputs when it is run on inputs x, y with randomness R = 7.
Note that we did not fix R’. Let 7’(x, y) be the distribution over
the leaves of the communication tree of 7’ obtained by running =’
with inputs x, y.

LEMMA 7.1. Under Assumption 1, for every ¥ € R, the distribution
77(x, y) is identical to the distribution n’(x, y).

The rest of the section is devoted to proving Lemma 7.1.

LEMMA 7.2. Letv € V, v’ € L(v), andr € {0,1}T. Assume
that leader(v) = B. Assume that Midlrg(x, y,v,u’) = (w',m’) for
some w € V(©) andm’ € {0,1}T. Letu € L(w’) and assume
that Midf(x, y,v,u) = (w,m), for somew € V(v) andm > m’ €
{0,1}T.

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

Leti € [|lm’|| + 1]. Define W/ to be the value of the variable W at
the beginning of the ith iteration of Line 2 of Mid® when running
Mid?(x, y,v,u’). Define W; to be the value of the variable W at
the beginning of the ith iteration of Line 2 of Mid® when running
Mid?(x, Y, 0, U).

Then, W/ = W; for every i € [||m’|| + 1]. In particular, if m" = m
then w’ = w.

Proor. The execution of Midf(x, y,v,u’) results in (w’, m’),
which means that the execution of Pred r(TW‘/ N =u',FpxN =<

llm 1Y
u’) by MidB(x,y,v,u’) returned (p = 1,w’). This implies that
(TWH'm,”,yﬂ < u') < w'. Since Wi = W/ = v, sincev = W/ <
Wy <...< W”'m,”, and since u € £L(w’), it holds that (7:W{,yﬂ <
u') = (Fw;,yN = u). Therefore, Bob’s input for the first execu-
tion of Pred by both Mid?(x, y,v,u’) and Mid?(x, y,v,u) are the
same. Since the output of Pred is known to both parties, it is de-
termined by Bob’s input and the transcript. Since m’ < m and
since Bob’s inputs are the same, the output is also the same and
Wz = W,. We continue this process and show that W; = W/ for
every i € [||m’|| + 1]. O

LEMMA 7.3. Let (r,v,w,m) € S. It holds that

U (r,v,w,m) = L*(r,0,w,m).

Proor. Let U* = U*(r,v,w,m), U = U(r,v,w,m),and L* =
L*(r,v, w,m). Assume without loss of generality that leader(v) =
B. Recall that (r,v, w,m) € S implies

' € V(): Midg(x, y,v,u’) = (w,m). (8)

The direction £* C U*. Let u € U*. Thus, u € L(w) and
(Midf(x, y,v,u))2 = m. By Lemma 7.2 and Equation (8), it is also
the case that (Midf‘(x, y,v,u)); = w. This means that the loop in
Line 2 of Mid® ended with p = 0, where p = (Predy(Fw,yN <
u, Fu,xN =< u))1. That is, it ended because the last execution of
Pred indicated that (Fy,xN < u) < (Fy,yN =< u). Since it is also
the case that u € U™ C U, conclude that u € L*.

The direction £* € U*.Letu € L*. Asu € L* C U, it holds
that u € £L(w) and that (Midf(x, y,v,u))2 = m. By Lemma 7.2
and Equation (8), the value of the variable W at the beginning
of the (||m|| + 1)%! iteration of Line 2 of Mid® when running
Midf(x, y,v,u’) and Midf‘(x, y,v, u) is the same. The value of the
variable W at the beginning of the (||m|| + 1)* iteration of Line 2 of
Mid® when running M id]rB (x,y,v,u’) is w, thus value of the vari-
able W at the beginning of the (||m|| + 1)? iteration of Line 2 of
Mid® when running Mid3(x, y, v, u) is also w. Since u € £* it holds
that (Fo,xN < u) = (F,yN = u). Therefore, (Pred,(Fr,yN =<
u, Fu,xN < 1)1 = 0. This implies that iteration ||m|| + 1 is the last
iteration of the execution M. idf3 (x,y,v,u), and that u € U*. O

Cramm 7. Let (r,v,w,m) € S. It holds that

L(V*(r,v,w,m)) = U*(r,v, w, m).

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

Proor. Denote U* = U*(r,v,w,m), U = U(r,v,w,m) and
V* = V*(r,v, w, m). Assume without loss of generality that leader(v)
= B. By Lemma 7.3, it holds that

U =L (r,v,w,m))]
={ueUr,v,wm) : (FoxN 2u) 2 (Fwyn 2u)}. (10)

The direction U* C L(V*). Let u € U* and denote v* =
Fo,xN = u. Then, since u € U* it holds that u € U and v* =
(Fo,xN = u) 2 (Fw,yN = u). Conclude that v* € V*, thus
u € L(V¥).
The direction L(V*) C U*. Let v* € V* and let u € L(v*). We
will show that u € U*. Since v* € V*, there exists u’ € U such
that 0™ = (Fo,xN < u’) < (Fa,y). Since u € L(v*), it holds that
(Fo,xU 2 u) = v* = (Fo,xU = u'). Since v* < Fuy 4y, we get that
(Fo,xU 2 u) 2 (Faw,yU < u). It remains to show that u € U.
Since (Fy,xVU = u) = (Fu,xU < u’), all but the last execution
of Pred by Midlrg(x, y,v,u’) and Mid£3 (x,y,v,u) are done with the
same parameters, thus the two executions give the same result.
Sinceu’ € U, it holds that (Mid?(x, Y,0,u))2 = (Mid?(x, y,v,u’))2
> m, thus u € U. Conclude that u € U*. m}

Cram 8. Let (r,v,w,m) € S. Let fy(1,)(w) < W’ < w. Assume
leader(v) = B. It holds that

PW',X,y((L[*(r1 v, W, m)) < SPW’,X((I’I*(V9 v, W, m))

Proor. Denote U* = U*(r,v,w,m), U = U(r,v,w,m) and
V* = V*(r,v,w,m). By Claim 7, L(V*) = U*. Let v* € V*.
There exists u” € U C L(w) such that v* = (F, xN < u’). By
Equation (7), w < (Fo,xN < u’). Hence, w < v*. By the definition of
V* it holds that v* < 7, 4. Recall the assumption that f;(,,)(w) <
w’ < w, and get that fy(w) < w’ < w < v* < F, 4. Since there
are no information frontiers between f;(,,)(w) and w, there are no
frontiers between w’ and w. This implies that w’ < v* < Fy 4,

and by Claim 1 and the fact that V* is contained in a frontier,

P, *

% < 8. Therefore,

Pw’,x((V*) ' Pw’,y((v*)
P,y ((V*)

By Claim 7, Py, x, y(U*) < 8Py x(U*). O

Pw',x,y((v*) =

< 8Py x (V7).

LEMMA 7.4. Fixt. Let U* = U*(Ry, Vi—1, Vi, Mt). Assume that
leader(V;) = A. Then, foru € U*,

Py, x(u)
Pr [Upg = u] = —2
R,Ir%'[t+1 = u] PV,,x((H*)

Thus, it is also the case that foru € L\ U*, Pr[Up4+1 = u] = 0.

ProoF. LetU = (L{(Rt, Vt—ly V[,M;), L* = L*(Rt, Vt—l, Vt, M[)
Let K be a random variable that counts the number of iterations
of loop in Line 7 of 7, during the (¢ + 1) execution of the loop in
Line 2 of 7. Let u € L*. Since £L* € U = U,, it holds that u € U;.
It also holds that Pr[(Us+1 = u) A (K = 1)] = Pﬁ‘H(u), as the corre-
lated sampling step in Line 6 of 7 returns u with probability PfH ()
(as u € U;), and the condition of the loop in Line 7 of 7 is always
satisfied. For u € £\ L¥, it holds that Pr[(U; = u) A (K = 1)] = 0,
as either u ¢ U = U;, thus Pﬁrl(u) = 0, or the condition of the
loop is not satisfied.

Mark Braverman and Gillat Kol

Observe that U+ is independent of K, since for any k, k’ € N, it
holds that Uy4+1|(K = k) has the same distribution as U;+1|(K = k’).
Thus, for u € L*,

Pr[Ups1 = u] = Pr[Up+1 =ulK = 1] = PriCes1 =) AK = 1]

Pr[K = 1]
A PV;,X(“)
_ P Py (U) Py
 Buer PR Zur Pt Py a(LY)
_ Py, x(u)
- PVt,x((u*)’

where the last equality is because (R, Vi1, V¢, M;) € S, thus by
Lemma 7.3, L* = U*. O

LEMMA 7.5. Letv € V and let 7 € R. Let {(vs, my)}s be the
unique decomposition of v with respect to x,y, 7. Then, for every t it
holds that

((Ve,M) | V=0,X=x,Y =y,R=7) = (v, my).

Proor. The proof is by induction on ¢: For t = 0, it holds that
My = mg = ¢. We assume that (Vi—1,M;—1) |V =0,X =x,Y =
y,R = 7) = (vs—1,ms—1), and show that (V;,M;) | V = v, X =
x,Y = y,R = 7) = (v, my). Assume V = v. Assume without
loss of generality that leader(V;—1) = B. By Lemma 7.4, Uy 41 €
U*(Rt, Vi-1, Vi, My). Therefore, (Midgt(x, U, Vi1, Ur1))2 = My,

The paths from the root to v and from the root to U;41 agree
until Vi4q, as Viyy <V = v and Upy1 > Viyq. By the induc-
tion hypothesis, Vi—1 = v;-1. Since Fo,_;,x = Fv,_;,x = Vi+1,
we get that (Fy,_, xN < Ut+1) = (Fu,_;,xN =). This implies
that all but the last execution of Pred by Midl% (x,y,v¢-1,v) and
Midgt (%, y, Vt—1, Ut +1) are done with the same parameters, thus
the two executions give the same result. Thus,

(01, me) = Midf (x,y,v1-1,0) = Midg, (x,y, Ve-1,Urs1) = (Ve, M),

and the assertion follows. m]

LEMMA 7.6. Letv € V and let 7 € R. Let {(vs, my)}; be the
unique decomposition of v with respect to x, y, 7. We define

U™ (fo, v-1,v0, mg) = L.
Then, for everyt,
RI,)}IQ/[(VHI,MHI) = (Vr+1, Me+1) |
Ve, My) = (vg,my), ..., (V1, M1) = (v1,m1), X =x,Y =y,R=7]

_ Pox,y (U (Frar, 01, U1, mi41))

Po,x,y(U*(Ft, 041, 0¢, mt))

PrOOF OF LEMMA 7.1. Let v € V and let 7 € R. Let {(vs, ms)} s
be the unique decomposition of v with respect to x,y, 7. Let £ € N

Interactive Compression to External Information

be such that vy_; = v (note that also vy = v). Let V be the vertex

V returned by 7. It holds that

PrlV=v|X=x,Y=y,R=7]

= Pr[(Ve, M¢) = (ve,me), . .., (V1, M1) = (v1,m1) |
X=x,Y=y,R=F] (by Lemma 7.5)

=[] PriVen, Mes) = @t mesn) |
te{0,1,...,0-1}

Ve, My) = (vg,my), ..., (Vi,My) = (v1,m1),X =x,Y =y,R=F|

Po,x,y(U* (Fr41, V1, Vrs1, Mit1))

Py, x,y (U*(Ft, vp-1,0¢-1,my))

te{0,1,...,6-1}
(by Lemma 7.6)

Po,x,y(@e+1) - Poy o,y (U (Frat, 01, Op a1, Mes1))

o
tefo,1,...0-1} Pv,,x,y((u (rtivt—lavtam[))

(as U (Fr+1, 08, Vp41, Mer1) € L(vp41))

_ Popy (U (Fe, 001,00, mp) 1—[
Pvg,x,y(ﬂ*(fo, -1, 00, mO)))
= on,x,y(vf—l)
(as U™ (Fe,ve—1, v, me) = {ve} and U (7o, v-1,v0, mo) = L)
= Py, y(0).

Pvt,x,y(vt+1)
te{0,1,...,0-1}

The assertion follows as Py, ;(v) is the probability that 7" outputs v
on inputs x, y. O

8 ACCURACY OF 7’

This section is devoted to showing that 7’ simulates the original
protocol 7. Let (X,Y) be a pair of random variables distributed
according to p. Let 7’(x, y) be the distribution of the output of 7’
when it is run on inputs x, y. Let 7(x, y) be the distribution over
the leaves of the communication tree of 7 obtained by running 7
with inputs x, y.

LEMMA 8.1. It holds that
E "X,Y) - n(X,Y)|| <e/2.
E 70y = nx)] < e/
The rest of the section is devoted to proving Lemma 8.1.

CLAIM 9. An execution of T ends after at most N’ iterations of the
loop in Line 2, except with probability at most 2~N'/10,

Proor. Consider an iteration of the loop in Line 2 of 7. Let V
be the value of the variable V at the beginning of this iteration,
and let Z be the value of the variable Z after it is updated by this
iteration. Assume without loss of generality that leader(V) = A.
By Lemma 2, V needs to be updated at most 2N + 2 times in the

duration of 7’s the execution. In the rejection sampling step of ¢

(Line 11), Bob accepts with probability 1;;“/5’((ZZ)) ,

is updated. By Line 10, it holds that Z € ¥y, ,. By Equation (4),

1;;;"((22)) > % . % = % Since V is updated with probability at least

and in this event V'

31—2 by any iteration of Line 2 of 7, and since the total number of
updates is at most 2N + 2, the assertion follows by the Chernoff
bound. |

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

We next show that 7 and 7’ give the same output with high
probability. Recall that x, y are fixed.

LEMMA 8.2. Under Assumption 1, |t(x,y) — t/(x,y)| < €/5.

Proor. Let (r,v,w,m) € S. Define

Py x (U (r,v, w, m))

Py x(U(r,v,w,m))

Note that psycc is well defined as for every u € U(r,v, w, m) it
holds that w < u.

Fix § € (0, 1]. We say that (r, v, w,m) € Sis bad if psycc(r, v, w, m)
< §.Let B C 8§ be the set of all bad tuples (r, v, w, m). Consider
an iteration of the loop in Line 2 of 7, such that at the beginning
of this iteration, V/ = v, V = w and M = m, and the value of the
variable R when V was last updated was r. Then, by Lemma 7.4,
Psuce(r,v, w, m) is the probability that the loop in Line 7 of 7 ends
after its first iteration. Note that conditioned on reaching iteration i
of the loop in Line 7 of 7, the probability of iteration i being the last
iteration is the same for every i. Therefore, if (r,v,w,m) € S\ B,
the expected number of iterations of this loop is at most 1/.

Letu € £ and let 7 € R. Let {(v;, m;)} be the unique decompo-
sition of u with respect to x, y, 7. We say that u is bad with respect 7
to if there exists a ¢t such that (r¢, v;—1, v¢, my) is bad. Let r8rcr
be the set of all bad leaves with respect to 7.

Let 7"’ be the protocol obtained from 7 by limiting the number
of iteration of the loop in Line 2 to at most N’ iterations. Assume
that 7/ is run with inputs x, y. Let U be the output of 7”’. Let K be
a random variable counting the total number of repetitions of the
loop in Line 7 of 7’/ during the execution of 7”’. By the Chernoff
bound, for every 7 € R,

Psucc(rs u, W, m) =

Pr (K> QN [R=7U e L)\ £5] 2N,

R,R’

where R is the randomness used for the executions of Mid“ and
MidB by 7”7, and R’ is the rest of the randomness used by r’”. The
reason is that the number of iteration of the loop in Line 2 of 7’ is
at most N’. This implies that

RPIE/ [K > %ON' |U e L\LB’R] < Z—N'/S'
We get that

Pr [K > 1000N']
R,R' S

= Pr. [K > 10N |y e LBvR] : [U € LﬂR]

Pr
R,R’
+ Pr [K> L000N” | UeL\LB’R]

U e 58] 2,

Bploe e

<

< Pr
R,R’

The rest of the proof is devoted to showing that for every 7 € R,
Px,y(LB’i) < 206N. Thus, by the accuracy claim, Lemma 7.1,
it also holds that for every #' € R, Prp [U € LBFR= 7] <
208N. In particular, Prg/ [U e LBT|R = f] < 208N, implying
Prp g [U € LB’R] < 208N. This suggests that Pr [K > %ON/] <
205N +2N'/9 By setting § = £/200N, we get that

Pr[K > N"] <Pr [K > W] < e/10+27 00NN/ < g9,

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

The assertion then follows as by Claim 9,
7Ge,y) = 7')l < JrCey) — 77 Ceay)l + 177 (e y) = 7/ (x,)
<27 N0 4 e19 < ¢/5.

Letu € Vandt € {0,1,...,2N + 2}. Let y; be a probability
distribution over £ given by

_ Px,y(ft(u)) . Pft(u),x(u)
He(u) = { Pr,y(fr () - P, (u),y(w)

Cram 10. Let (r,v,w, m) € B and denote t = t(w). It holds that
Py y(U*(r,v,w,m)) < 86 (U(r, v, w, m)).

if fi(u) = (Fi,yN < u) for some i
if f3(u) = (Fi,xN < u) for some i.

Proor. Denote U* = U*(r,v,w,m) and U = U(r,v,w, m).
Assume without loss of generality that leader(v) = B. There exists
i such that v < Fi,y = w, but there is no j such that v < Fj x < w,
therefore f;(w) = (Fir,yN < w) for some i’.

It holds that

& > psuce(r,v, w,m) (as (r,v,w,m) € B)
_ PW,X(W*)

P, x(U)
_ Pry(fr(W)) - P, (), x(W) - P x (U7)
T Pry(fr(W)) - P (a0, x (W) - P, x(U)
Py (o) - P (W)
- He(U)

(as fi(w) < w)

(as fr(w) = (Fir,yN = w) for some i’)
. P, y(fe(W) * P, (a0, %,y (U™)
B 8ur(U)
Pr,y(U")
8ur (U)

(by Claim 8)

]

Let 7 € R. Let Si be the set of all (r, v, w,m) € {0, 1}T/ x V2 x
{0,1}T such that there exists v € V with a unique decomposition
{(vs, me)}r withrespect to x, y, 7, such thatr = 7, v = v, w = vy
and m = m;, for some t. Observe that S C S.

Cramm 11. Let7 € R. Let (r1, v1, w1, my) # (rz2,v2, wo, mz) € S
such that t(wy) = t(wy). Then,

U(ry,v1, wi, mp) N U(rz, v2, wa, mz) = ¢.

Proor. Since U(ry, vy, wp, mp) € L(wp) for b € {0,1}, it can
only be the case that U(r1, v1, w1, m1) N U(ra, va, wo, m2) # ¢ if
wi and wy are on the same path, that is, w; < wy or wp < wy. Let
b € {0, 1}. Since (rp, vp, wp, mp) € S, it holds that vy, is a vertex in
the unique decomposition of some vertex w’ with respect to x, y, .
Since vy, is an ancestors of both w;, and w’, the vertices in the
unique decomposition of wy, and w (with respect to x, y, 7), that are
ancestors of vy, are the same. Therefore, vy, is a vertex in the unique
decomposition of wy, with respect to x, y, 7. Furthermore, v}, must
be the last vertex (excluding wy, itself) in the unique decomposition
of wy, with respect to x, y, 7. Therefore, since t(w1) = t(wz) and
since w1 and wy are on the same path, it must be the case that v; =
vy. If vy is the t*" vertex in the unique decomposition of w’, then it
is the case that r; = ry = F;41. This implies that for every u € £L(v1)

it holds that Midlrfader(vl)(x, y,v1,u) = Midlrjader(w)(x, Y, U, U).

Mark Braverman and Gillat Kol

Therefore, u € U(r1,v1, w1, m1) N U(ry, va, wo, mp) implies that
w1 = wp and m; = my. A contradiction to the assumption that
(r1,v1, w1, m1) # (r2, vz, wa, m). o

Let 7 € R. To conclude the proof, we compute the following
bound

Py y(L57)
< Z P,y (U (r, v, w, m))

(r,u,w,m)eBNS;

<85 Z

(r,u,w,m)eBNS;
<85 pe(U(r, v, w,m))
tef{0,1,....,2N+2} (r,0,w,m)e BNS;: t(w)=t
< 88(2N +3)
(by Claim 11 and as y; is a probability distribution)
< 200N.

He(w)(U(r, v, w,m)) (by Claim 10)

Proor oF LEMMA 8.1. Denote by 7* the protocol obtained from
7 by implementing the Pred and the CorrelatedSampling proto-
cols in a way that ensures that they never err or fail. In the same
way, we obtain the protocol (z’)* from 7’. Recall that Pred and
CorrelatedSampling err with probability at most ¢ - 7.

We first claim that E[|z/(X,Y) — (r/)*(X, Y)|] < 0.1e. Since the
loop in Line 7 iterates at most N’/ times when running 7/, the
CorrelatedSampling protocol is executed at most N’/ = O(I?) times
by 7’, and thus the probability of an error in at least one of these
execution in at most I2. Since the loop in Line 2 of 7’ iterates at
most N’ times when running 7’, the protocols Mid4 and Mid®
are called at most N’ = O(I) times. Each such execution of Mid4
or MidB executes the Pred protocol at most O(N) = O(I) times.
Therefore, Pred is executed at most O(I%) times by 7’, and thus
the probability of an error in at least one of these execution in at
most [72,

To prove the claim we use the triangle inequality,

E[lz'(X.Y) - n(X, Y)|]
SE[I70CY) = (@)] +E[|() (X, Y) - (X,)]
+E[|I7"X.Y) -2’ X, V)] +E[I7'(X,Y) - (X, V)I] .
As explained above, the first term on the right hand side is upper
bounded by 0.1¢. The second term is upper bounded by 0.2¢ by

Lemma 8.2. The third term is zero by Lemma 7.1. The last term is
upper bounded by 0.1¢ by Claim 3. O

9 COMMUNICATION COST OF ¢’

CrAm 12. Let x be an input. Let i’ < i € N. Let Fir_1,x < v <
7.x andw € V(v) N Fj . It holds that

] Pv,x(W)
o8 (Py(w)

) < o(D).

Interactive Compression to External Information

Proor. By Claim 2, i — i’ < O(I). Forj € {i/,..

.,i}, let vj =

(Fi.xN < w). By Equation (3), for j € {i’,...,i — 1}, it holds that
s y Eq

Py. x(vjs o
—Pi;» (:,)'11;) < 4. Using Claim 1, P;:ES;,I)) < 8. Conclude that
log (Pv,x(w>)
Py(w)
- log Py, () l_[Py, x(vjr1)
Pv(vif) jelin. -1} ij(vj+1)
i} Py x(0;
:k,g(M) oy (M) < o(I).
Py (vir) ey Py, (vj+1)

LEMMA 9.1. The correlated sampling step in Line 6 of t’ commu-
nicates O(T) bits in expectation.

Proor. Lett € N. Assume without loss of generality that leader(V;) =
A. Consider any execution of the correlated sampling step in Line 6
of 7, that is after the tth update of the value of V, but before the
(t + 1)t update. It holds that

[(PA ()
R B Lo
D (Pt+1||PL(Vt)) = b IOg(Py, (u))}

(Py, x(u))]
E log| ———*——
u<—P;‘:_1 L PV,,x((L{t) . PV,(“)

E log(—PV"X(u))+log(—l)]
uHPtA;l | PV, (“) PV,,x((ut)

<O(I) + log (

(11)

1
_— by Claim 12
PVt,x(q'{t)) (Y)

Recall that we have fixed x, y. Consider an execution of 7 where
7 € R is the randomness used for the executions of Mid* and MidB
by 7. We bound the second term on the right hand side of the last
inequality as follows

); Vt,x((l/lt)
1

E lo
Vi1, Vi, M [& (PVt,x((L((fty Vt—l, Vt, Mt)))]

(12)

E PI‘[Vt =W, Mt = m|Vt_1]~
—

me(o,)7, weV (Vi)

1
tog (Pw,x(ﬂ(ft, Viet, w,m)))]

Pr[U € U (7s, Vo1, w, m)| V1]

E
Nime{0,1}T, weV(Vyy)

Vi

1
g (Pw,x(fu(ft,vt_l,w, m)))}

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

IN

£ Py, x,y (U (Fe, Vi1, w, m))-
-

lme{o, 1}, weV (V)

1
1
% (Pw,x(wft, Vit m)))}
(by Lemma 7.1)

IN

Py, (U (P, Vio1, w, m))-

8 E
1 me{0,1}T,weV(V;_y)

1
lo
& (PV,,I,x((u(fts Vi-1,w, m)))
(by Claim 8)

<8 E
\ =

PVt_l,x(W*(f[’ Vt—ly w, m))
me{0,1}T, weV(V,_)

1
oe (Pv,,l,x«u*(n, Vit w, m»”
(as U*(F¢, Vi—1, w,m) € U(F¢, Vi—1, w, m))
< O(T),
where the last inequality holds because m # m’ implies that
U (7, Vim1, w,m) N U (Fy, Vimg, w,m’) = @,

and as for any random variable Z over k bits it holds that H(Z) < k.
By [7], the expected number of bit communicated by the corre-
lated sampling step in Line 6 of ¢’ is upper bounded by

O(E [D (P;“||P£(VH))] +1).
Equations (11) and (12) give abound of O+ T +1)=O(T). O

CraIM 13. The protocol 7’ communicates at most O(I? - T) =
O(I® log(I) log log(C)) bits in expectation.

Proor. During an execution of 7/, the loop in Line 2 iterates at
most N’ times. Each such iteration executes Mid* or Mid® once
(Line 9). By Lemma 4, M id? and Mid® communicate at most O(T)
bits in expectation. Therefore, the total expected number of bits
communicated by the executions of Mid* and MidB during an
execution of 7’ is O(N’ - T) = O(I - T).

During an execution of 7/, the loop in Line 7 iterates at most
N’ times. Each such iteration executes the CorrelatedSampling
protocol once (Line 6). By Lemma 9.1, the correlated sampling
protocol communicates at most O(T) bits in expectation. Therefore,
the total expected number of bits communicated by the executions
of CorrelatedSampling during an execution of 7’ is O(N"" - T) =
o(I% - 7). o

REFERENCES

[1] Reuven Bar-Yehuda, Benny Chor, Eyal Kushilevitz, and Alon Orlitsky. 1993.
Privacy, Additional Information, and Communication. IEEE Transactions on
Information Theory 39 (1993), 55-65.

[2] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. 2004. An information
statistics approach to data stream and communication complexity. J. Comput.
Syst. Sci. 68, 4 (2004), 702-732.

[3] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. 2010. How to compress
interactive communication. In STOC. 67-76.

[4] Balthazar Bauer, Shay Moran, and Amir Yehudayoff. 2015. Internal Compression
of Protocols to Entropy. In APPROX/RANDOM. 481-496.

[5] Mark Braverman. 2012. Interactive information complexity. In STOC. 505-524.

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

(6]
(71
(8]

Mark Braverman. 2013. A hard-to-compress interactive task? In 51th Annual
Allerton Conference on Communication, Control, and Computing (2013).

Mark Braverman and Anup Rao. 2011. Information Equals Amortized Communi-
cation. In FOCS. 748-757.

Mark Braverman and Omri Weinstein. 2015. An Interactive Information Odometer
and Applications. In STOC. 341-350.

[9] Joshua Brody, Harry Buhrman, Michal Koucky, Bruno Loff, Florian Speelman,

[10]

and Nikolay K. Vereshchagin. 2013. Towards a Reverse Newman’s Theorem in
Interactive Information Complexity. In CCC. 24-33.

Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Chi-Chih Yao. 2001.
Informational Complexity and the Direct Sum Problem for Simultaneous Message
Complexity. In FOCS. 270-278.

Anat Ganor, Gillat Kol, and Ran Raz. 2016. Exponential separation of communi-
cation and external information. In STOC. 977-986.

Prahladh Harsha, Rahul Jain, David A. McAllester, and Jaikumar Radhakrishnan.
2010. The communication complexity of correlation. IEEE Transactions on
Information Theory 56, 1 (2010), 438-449.

David A. Huffman. 1952. A method for the construction of minimum redundancy
codes. proc. IRE 40, 9 (1952), 1098-1101.

[14

[15

[16

[17

oy
&

[19

[20

[21]

Mark Braverman and Gillat Kol

Amiram H. Kaspi. 1985. Two-way Source Coding with a Fidelity Criterion. IEEE
Transactions on Information Theory 31, 6 (1985), 735-740.

Gillat Kol. 2016. Interactive compression for product distributions. In STOC.
987-998.

Eyal Kushilevitz and Noam Nisan. 1997. Communication complexity. Cambridge
University Press (1997).

Alon Orlitsky and James R. Roche. 2001 (Preliminary version at the IEEE Interna-
tional Symposium on Information Theory (ISIT) 1995, FOCS 1995). Coding for
Computing. IEEE Transactions on Information Theory 47, 3 (2001 (Preliminary
version at the IEEE International Symposium on Information Theory (ISIT) 1995,
FOCS 1995)), 903-917.

Sivaramakrishnan Natarajan Ramamoorthy and Anup Rao. 2015. How to Com-
press Asymmetric Communication. In CCC. 102-123.

Claude E. Shannon. 1948. A mathematical theory of communication. The Bell
Systems Technical Journal 27 (1948), July 379-423, October 623-656.

Alexander A. Sherstov. 2016. Compressing interactive communication under
product distributions. FOCS (2016).

Omri Weinstein. 2015. Information Complexity and the Quest for Interactive
Compression. SIGACT News 46, 2 (2015), 41-64.

