
Interactive Compression to External Information

Mark Braverman∗

Princeton University
Princeton, NJ, USA

mbraverm@cs.princeton.edu

Gillat Kol2

Princeton University
Princeton, NJ, USA
gillat.kol@gmail.com

ABSTRACT

We describe a new way of compressing two-party communication

protocols to get protocols with potentially smaller communication.

We show that every communication protocol that communicates C

bits and reveals I bits of information about the participants’ private

inputs to an observer that watches the communication, can be

simulated by a new protocol that communicates at most poly(I) ·
log log(C) bits. Our result is tight up to polynomial factors, as it

matches the recent work separating communication complexity

from external information cost.

CCS CONCEPTS

· Theory of computation→ Communication complexity;

KEYWORDS

Interactive compression, Communication complexity, External in-

formation cost, Information theory, Correlated sampling

ACM Reference Format:

Mark Braverman and Gillat Kol. 2018. Interactive Compression to External

Information. In Proceedings of 50th Annual ACM SIGACT Symposium on

the Theory of Computing (STOC’18). ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3188745.3188956

1 INTRODUCTION

Seminal works by Shannon and Huffman [13, 19] considered the

data compression problem and showed how to optimally compress

one-way communication to its information content, measured by

the entropy of the sent message. The corresponding problem for in-

teractive communication, called the interactive compression problem,

has attracted a lot of attention over the past decade. Roughly speak-

ing, the interactive compression problem asks whether a protocol

with a low information content I can be simulated by a protocol

that only communicates roughly I bits [3].

∗Research supported in part by NSF Awards DMS-1128155 and CCF-1525342, a Packard
Fellowship in Science and Engineering, and the Simons Collaboration on Algorithms
and Geometry.
2Research supported by National Science Foundation grant No. CCF-1750443.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC’18, June 25ś29, 2018, Los Angeles, CA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5559-9/18/06. . . $15.00
https://doi.org/10.1145/3188745.3188956

1.1 Information Cost

The interactive compression problem is formalized in the setting of

(distributional) two-party communication complexity. In this set-

ting, each party gets a private input, where the inputs are sampled

from a joint distribution µ. The parties engage in an interactive

communication protocol in order to perform some communication

task that depends on both inputs.

To measure the information content of an interactive protocol,

we use the notion of information cost, which can be viewed as a gen-

eralization of the entropy function [1ś3, 10, 14, 17]. In this work we

focus on the external information cost measure. Roughly speaking,

the external information cost of a protocol π over the distribution

µ is the amount of information that an external observer, who wit-

nesses the execution of π , learns about the parties’ inputs, when

the inputs are sampled from µ. More formally,

Definition 1.1 (External Information Cost). The external infor-

mation cost of a two-party protocol π over random inputs (X ,Y)
that are drawn according to a joint distribution µ, is defined as

ICµ (π) = I(π (X ,Y); (X ,Y)), where I stands for mutual information

and π (X ,Y) is the transcript of π when it is run with inputs X ,Y .

1.2 Our Results

In this paper we study the problem of compressing a protocol to

its external information cost. This problem asks whether every

protocol π with external information cost I over a distribution µ

can be simulated by a protocol that only communicates roughly I

bits. By łsimulatež we mean that the new protocol performs the

same task as π , except with some small error probability, where the

probability is over µ and over the randomness used by the players.

The most relevant previous works are a compression protocol

by [3] and a separation result by [11] described next. The influential

[3] paper, shows how to compress every protocol that communi-

cates at mostC bits and has external information cost I over µ, to a

protocol that only communicates I · polylog(C) bits. The question
of whether some dependence on C is inherent is interesting, as C

may be arbitrarily larger than I , thus making the polylog(C) term
the łcostlyž term.

This question was recently answered in the affirmative by [11],

analyzing a communication task T and a distribution µ, parameter-

ized by a parameter k , suggested by [6]. It is shown that there exists

a protocol π that solves T and has ICµ (π) = O(k), while every pro-

tocol solvingT must communicate at least 2Ω(k) bits. Thus, proving
an exponential separation between communication complexity and

external information cost.

We mention that the protocol π with low external information

communicates C bits, where C is triple exponential in k . Since, in

this case, poly(I) · (log logC)o(1) is 2o(k), this result implies that

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Mark Braverman and Gillat Kol

there exists a communication protocol with external information I

and communication complexity C that cannot be compressed to a

protocol with communication complexity poly(I) · (log logC)o(1).
The problem of closing the gap between the upper and lower

bounds for interactive compression with respect to the external

information cost measure, and finding the right dependence on C ,

was left open. It was conjectured that a logarithmic dependence on

C is essential for external compression, and that no compression

to poly(I) · o(loд(C)) is possible (see Open Problem 6.2 in [21]).

Our main result shows that such a scheme is possible, and, in fact,

one can get a double-logarithmic dependence on C . Our result is

essentially tight up to polynomial factors, by [11].

Theorem 1.2. Let 0 < ε < 1/2 be given constant. Fix any public

or private coin protocol π with input space X ×Y. Let µ be a distri-

bution on X × Y. Let I = ICµ (π) and C be the maximum number

of bits communicated by π . Then, there is a public-coin protocol τ

that simulates π with error ε under µ and communicates at most

poly(I) · log logC bits.

Sketch of the proof of Theorem 1.2 can be found in Section 2.

The rest of the paper is devoted to proving Theorem 1.2, however,

due to space constraints, some of the proofs are omitted from this

version.

1.3 Additional Related Works

Internal Information Cost. A related information cost measure

studied in the literature is the internal information cost measure.

Roughly speaking, the internal information cost of a protocol π

over the distribution µ, is the amount of information that the parties

learn about each other’s input by running π , when the inputs are

sampled from µ.

The definition of internal information cost by the theoretical

computer science community was motivated by the quest for good

communication complexity lower bounds, and by fascinating rela-

tions to the direct sum problem in communication complexity [2, 3].

A similar definition appeared earlier in the information theory lit-

erature, in the context of interactive communication [14, 17].

Interactive Compression Protocols. The interactive compression

problem with respect to the internal information cost measure was

the focus of many recent works, and beautiful compression proto-

cols were suggested [3ś5, 7, 9, 12, 15, 18, 20]. The general case of

compressing any protocol over any distribution is considered in [5],

where a 2O (I) compression is given, and in [3], where a Õ(
√
C · I)

compression is given. Here I stands for the internal information

cost of the protocol.

The important special case of compressing interactive protocols

over a product distribution µ (the inputs to the players are indepen-

dent), was considered by a recent line of works [3, 15, 20], resulting

in an almost optimal O(I · polylog(I)) compression scheme. It is

not hard to show that the external information cost is always an

upper bound on the internal information cost, as the observer is

less informed than the parties to begin with, thus may only learn

more from the interaction. Over a product distribution, the internal

and external information costs coincide, because the first party is

as informed as the observer about the second party’s input, and

vise versa.

2 PROOF SKETCH

Let π be a randomized communication protocol between two play-

ers, Alice and Bob. Alice has a private input x and Bob has a private

input y, where (x ,y) is chosen according to some publicly known

joint distribution µ. We next sketch a public coin protocol τ that

simulates π , and has communication complexity poly(I) · log log(C),
where I = ICµ (π) and C is the maximum number of bits communi-

cated by π . Our simulation protocol builds over the works of [3, 15].

2.1 Communication Tree

Consider the (directed) binary tree associated with π . Each vertex

v of the binary tree corresponds to a possible transcript of π . The

two edges going out of v are labeled by 0 and 1, corresponding to

the next bit to be transmitted. We think of each non-leaf vertex as

owned by one of the parties. The protocol π proceeds as follows:

Starting from the root, when π reaches a non-leaf vertex v , the

player who owns v sends a bit to the other player. The players

follow the edge indicated by the sent bit and reach a new vertex.

Note that since π communicates at most C bits, the depth of this

tree is at most C .

We denote the set of vertices of this tree by V and the set of

leaves by L. For v,u ∈ V , we write v ≼ u if v is an ancestor of u.

We write v ≺ u if v ≼ u and v , u. We write u ≽ v if v ≼ u. We

write u ≻ v if u ≽ v and v , u. We also use ≼ as a unary operator

and denote by ≼ v the set {v ′ ∈ V : v ′ ≼ v}.
Let v,w ∈ V such that w ≽ v . Denote by Pv,x,y (w) the proba-

bility that π reachedw , conditioned on reaching v and on players’

inputs being x and y. Denote by Pv,x (w) the probability that π

reachedw , conditioned on reaching v and on Alice’s input being x .

Denote by Pv,y (w) the probability that π reachedw , conditioned

on reaching v and on Bob’s input being y. Denote by Pv (w) the
probability that π reachedw , conditioned on reaching v . When we

omit v , we mean that v is the root. We also view Px,y , Px , Py , P as

distributions over the leaves. For example, Px,y assigns the prob-

ability Px,y (u) to the leaf u ∈ L. We say that τ simulates π if τ

samples a leaf u according to the łcorrectž distribution Px,y .

2.2 Information Frontiers

A frontier or a cut in the transcript tree is any subset of the tree’s

vertices that intersects every root-to-leaf path in exactly one vertex.

For example, the leaves of the tree form a frontier.

We define the information frontier Fx to be the set of all vertices

w ∈ V for which log (Px (w)/P(w)) < (−1, 1), but forw ′, the parent
of w , it is the case that log (Px (w ′)/P(w ′)) ∈ (−1, 1). Intuitively,
w ∈ Fx if the bits communicated by Alice from the beginning of

the protocol until reachingw give roughly 1 bit of information to

an external observer about x . We mention that we define the in-

formation frontiers differently than in all previous papers, where a

divergence based definition was used. Our new definition helps sim-

plify the proof and can also result in some savings when analysing

the communication complexity of simulating protocols.

An important observation by [3] is that Alice knows the frontier

Fx , as she knows x and can compute log (Px (w)/P(w)) for every
w ∈ V . This means that Alice can measure the amount of infor-

mation she gives the observer, as he starts with no information

Interactive Compression to External Information STOC’18, June 25–29, 2018, Los Angeles, CA, USA

about x . Similarly, we can define the frontier Fy and claim that Bob

knows Fy .
For simplicity (and with loss of generality), let us assume that

the frontier Fy is always above the frontier Fx (in particular, Fx
and Fy do not łintersectž).

2.3 A General Scheme for τ

Let us consider the following rough scheme for the protocol τ

simulating π , based on [3, 15]:

(1) Correlated Sampling: Players jointly sample a leaf u ac-

cording to the probability distribution Py .

(2) Finding Separation: Alice computes a = Fx ∩ (≼ u) and
Bob computes b = Fy ∩ (≼ u). Players find a vertexw such

that b ≼ w ≼ a.

(3) Rejection Sampling: Alice acceptsw with probability

Px (w)/P(w). If Alice rejects w , players go back to the first

step.

(4) Iterate: Players simulate the protocol induced by the subtree

rooted atw by going back to the first step withw as the root

(and possibly changing the roles of Alice and Bob).

We next explain how this protocol can be implemented and why it

is working.

2.3.1 Implementing the First and Third Steps. To implement the

first step of τ wefirst note that if both players know Py then they can

sampleu from the public randomnesswith no communication. How-

ever, Alice does not know y, and therefore, does not know Py . To

still be able to jointly sample from Py with low communication cost,

the players run the CorrelatedSamplinд protocol suggested by [7].

CorrelatedSamplinд assumes that Alice knows a distribution P ′

over some domain Ω, and Bob knows (a possibly different) distribu-

tion Q ′ over Ω. After executing CorrelatedSamplinд(P ′,Q ′), both
players know an element ω ∈ Ω sampled according to P ′. The
communication required by this protocol is roughly the distance

between P ′ and Q ′ measured by the KL-divergence D(P ′∥Q ′). To
implement the first step of τ , players runCorrelatedSamplinд(P ′ =
Py ,Q

′
= P). It can be shown that D(Py ∥P) is upper bounded by

roughly I .

We discuss the implementation of the second step of τ later.

For now assume that the second step was implemented and that

a vertex b ≼ w ≼ a was found with little communication. Since u

was sampled according to Py , the vertexw is obtained with prob-

ability Py (w). During the third step of τ , Alice accepts w with

probability Px (w)/P(w). This means that w is the new root with

probability
Py (w)·Px (w)

P (w) . Due to cancelations, this probability is ac-

tually Px,y (w). This means that w was sampled according to the

correct distribution.

We can then repeat the process to correctly sample deeper and

deeper vertices w1 ≼ w2 ≼ . . . in the communication tree, until

reaching a leaf. Since the external information cost is I , it can be

shown that we only need to cross roughly I information frontiers.

Since we cross an information frontier in every iteration, τ ends

after at most I iterations.

An important issue regarding the third step, is that a-priori it

may be the case that Px (w)/P(w) is very small (w was over-sampled

by the first step), causing Alice to almost always reject, or worst,

Px (w)/P(w) may be greater than 1 (w was under-sampled). To

show that Px (w)/P(w) is close to 1, we use the fact thatw is above

the frontier Fx (as w ≼ a), which means that log(Px (w)/P(w)) ∈
(−1, 1), and thus Px (w)/P(w) ∈ (1/2, 2). Intuitively, less than one

bit of information about x was revealed when reachingw , so Px (w)
cannot be very different than P(w).

2.3.2 Implementing the Second Step. It remains to reason about

the implementation of the second step. The simplest implemen-

tation is to set w = a by having Alice send a to Bob. Since the

tree is of depth C , Alice needs to communicate roughly log(C) bits.
Unfortunately, this is exactly the log(C) factor we are trying to

avoid.

The Protocol Pred . Another possible implementation of this step

is by recalling that given integers c,d ∈ [n], players can agree on an

integer k between c and d , by communicating only log log(n) bits,
as follows: Consider the binary representations bin(c) and bin(d)
of c and d (respectively), and find the first coordinate i on which

they disagree, by running a binary search. To do that, hash the first

halves of bin(c) and bin(d) and compare the hashes. If the hashes

match, i should be in the second half of the binary representations.

Otherwise, i is in the first half. Recurse until finding i , and use i

to compute k . Note that since the binary representation of a num-

ber in [n] is loд(n) bits long, this protocol only requires roughly

log log(n) communication bits.

We can now construct the protocol Pred(a,b) that outputs the
desired w : We denote by c and d the levels of a and b in the tree

(respectively). We find k between c and d as explained above, and

return vertex number k on the path from the root to a. Note that

since the tree is of depth C , it holds that c,d ∈ [C] and the overall

communication is about log log(C).

The Double Counting (Oversampling) Problem. The main problem

with this log log(C) bits implementation of the second step (as

opposed, for example, to the log(C) implementation by settingw =

a), is that the set F of all vertices w that are produced for all

possible leaves u selected by the first step, may not be a frontier.

To show that F may not be a frontier, consider leaves u,u ′ ∈ L
with lowest common ancestor v that is between the frontier Fy
and the frontier Fx . Let a = Fx ∩ (≼ u), b = Fy ∩ (≼ u) and let

a′ = Fx ∩ (≼ u ′), b ′ = Fy ∩ (≼ u ′). Since v is below Fy , it is the
case that b = b ′. However, since v is above Fx it is possible that,

say, a′ is much higher in the tree than a. In this case, Pred(a′,b ′)
may return a vertexw ′ such thatw ′ ≺ v , while Pred(a,b) returns
a vertexw such that v ≺ w ≼ a. Sincew,w ′ ∈ F , butw ′ ≺ w , F is

not a frontier.

The problem with F not being a frontier is that it can lead to

łdouble countingž or oversampling. What is the probability that τ

reachesw? One way of reachingw is to reach it directly from the

root, as discussed above. Another way of reaching w is to reach

w ′ from the root, and then in the second iteration of τ , designated

to simulating the subtree rooted atw ′, reachw from the new root

w ′. The fact that there are various ways of getting tow distorts the

probability of reachingw .

Therefore, in order for τ to work, we either have to implement

the second step in a way that induces a frontier, or deal with the

double counting problem. When the distribution µ is a product

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Mark Braverman and Gillat Kol

distribution, the first option turned out to be possible [15, 20]. For

general distributions, it is not clear how to construct such frontiers,

and we are instead taking the second approach. As far as we know,

this work is the first to handle double counting.

2.4 Our Compression Protocol

The ProtocolMid . Let us first consider all of Bob’s information

frontiers Fi,y . Informally, the frontier Fi,y is the set of vertices

where roughly i bits of information about y are revealed to the ob-

server (in particular, F1,y = Fy). Let us again assume for simplicity

that Alice’s and Bob’s frontiers do not intersect. Observe that there

may be any number of frontier t ≤ I such that F1,y , . . . ,Ft,y are

all above Fx .
Our protocol implements the second step of τ in a way that

ensures thatw does not only separate Fy and Fx , but also separates
all the frontiers Fi,y that are above Fx from Fx . That is, letu be the

leaf obtained by the correlated sampling step. Denote bi = Fi,y ∩(≼
u) and let a = Fx ∩ (≼ u). Then w is such that b1 ≼ b2 ≼ . . . ≼
bt ≼ w ≼ a.

To find such a w , we run the following protocol Mid(u) =
Mid(b1, . . . ,bt ,a): The protocol Mid first executes Pred to find

a w1 that separates b1 from a. Let j be such that bj ≼ w ≼ bj+1.

Then, Mid executes Pred to find a w2 that separates bj+1 from a.

This process proceeds in at most I iterations.

Consistent Leaves. Assume that the first iteration of τ reaches

the vertexw . Then, the second iteration of τ is aimed at simulating

the protocol induced by the subtree rooted atw . In the case where

the second step of the first iteration produces a frontier F (with

w ∈ F), the second iteration does not need to know the transcript

of the first iteration that led to the vertex w in the first place in

order to simulate the sub-protocol. However, if the set F produced

by the first iteration is not a frontier, then, to avoid double counting,

it will be important that the second iteration of τ łremembersž the

transcript of the first iteration and only samples leaves that are

łconsistentž with it.

More formally, suppose that in the first iteration of τ , the leaf u

was sampled by the correlated sampling step, and suppose that the

transcript of the Mid(u) = Mid(b1, . . . ,bt ,a) protocol run by this

iteration ism, and its output isw . Then, in the second iteration of τ ,

simulating the subtree rooted atw , the correlated sampling step will

only sample leaves u ′ that are consistent withm. A leaf u ′ is consis-
tent withm if runningMid(u ′) yields the transcriptm. That is, we

want the transcript of the executionMid(u ′) = Mid(b ′1, . . . ,b
′
t ,a
′)

to be m, where b ′i = Fi,y ∩ (≼ u ′) and a′ = Fi,x ∩ (≼ u ′). The
intuition is thatm contains all the information that τ łknewž about

the leaf u that was sampled by the first iteration, and therefore u

and u ′ look the same to τ . Hence, we may as well replace u by u ′.
LetU be the set of all leaves u ′ that are consistent withm. We

now need to revise the correlated sampling step of the second

iteration of τ to sample leaves u ′ ∈ U according to the distribution

Px |U (the distribution Px restricted to U). Recall, however, that

the correlated sampling procedure requires one of the players to

know the correct distribution Px |U, while the other can have some

good estimate of it. In our case, since the set U may depend on

both x and y, it is not clear whether there is a player that knows

the distribution Px |U.

We will next show that Alice łalmostž knows this distribution.

To do that, we first claim that b ′1 = (Fy∩ ≼ u ′) = (Fy∩ ≼ u) = b1,
as b1 ≼ w andw ≼ u,u ′. The reason that u ≽ w is that the vertex

w obtained by the first iteration of τ is an ancestor of the leaf u

sampled by its correlated sampling step. The reason that u ′ ≽ w

is that u ′ is sampled by the second iteration of τ , thus it is in the

subtree rooted atw .

Now, assume that we have reached the second iteration of τ , and

Alice wishes to compare the transcript ofMid(u ′) tom, to decide

if u ′ ∈ U. (Note thatm is known to Alice, as both players know

the transcript of the first iteration). To do that, she runsMid(u ′) by
herself, with no help from Bob, as described next. Alice first needs

to execute Pred(b ′1,a
′). Assume that the players take alternating

turns in communicating bits while running Pred(b ′1,a
′), and that

Alice sends that first bit. Alice knows x , thus also knows a′ and can
compute the first communicated bit and compare it to the first bit

ofm. If she finds a mismatch, she concludes thatu ′ < U. Otherwise

to continues to compare the next communicated bits.

The second bit should be sent by Bob, and Alice does not know

y, so she cannot trivially compute it. Recall, however, that b ′1 = b1,
thus Bob has the same input in Pred(b ′1,a

′) and Pred(b1,a). Because
the transcript of Pred(b1,a) is induced by m, Alice knows what

Bob’s next message is (assuming that the first bits communicated

by Pred(b ′1,a
′) and Pred(b1,a) were the same). She can then use it

to compute the third bit in the transcript of Pred(b ′1,a
′), as this bit

is sent by her. Alice continues this process and compares all the

bits.

Intersecting Information Frontiers. The general case, where Al-

ice’s and Bob’s frontiers may intersect, poses additional challenges.

One is due to the fact that in this case it is possible that t , the

number of Bob’s frontiers that intersect the path to u above a, is

smaller than t ′, the number of Bob’s frontiers that intersect the path

to u ′ above a′. In this case, the number of executions of Pred by

Mid(u), denoted s , may be smaller than the number of executions

of Pred byMid(u ′). LetU ′ be the set of all leaves u ′ such that the

transcript of the first s executions of Pred byMid(u ′) ism. By the

above argument, Alice can check if u ′ ∈ U ′. However, since the
m may be a strict prefix of the transcript of Mid(u ′),U may be a

strict subset ofU ′.
To overcome this problem, we note that given u ′ ∈ U ′, the

players can check if u ′ ∈ U as follows: Let Fj,y be Bob’s first

information frontier after w and let b ′′ = Fj,y ∩ (≼ u ′). The leaf
u ′ ∈ U ′ is not in U (call u a bad leaf) if and only if b ′′ ≼ a (in

this case, more executions of Pred would have been required to

separate all of Bob’s frontiers from Alice’s frontier).

This suggests the following protocol: Players will first jointly

sample a leaf according to the distribution Px |U ′ known to Alice,

and then check ifu ′ is bad by executing Pred(a,b ′′) to check ifb ′′ ≼
a. (Recall that Pred only requires log log(C) bits of communication,

and thus is affordable.) If this is indeed the case, the leaf u ′ is bad
and will be rejected. The the players will jointly sample a new leaf

and check it. This will repeat until a good leaf is found.

Protocol Analysis. One problem that we need to deal with in order

to ensure that our simulation is indeed communication efficient,

arises if the leaf u ′ sampled from Px |U ′ turns out to almost always

be bad. In this case, we keep rejecting the sampled u ′, blowing up

Interactive Compression to External Information STOC’18, June 25–29, 2018, Los Angeles, CA, USA

the communication substantially. To handle this case we note that

u, the vertex sampled in the first iteration, is good. Thus, if good

leaves are rare, it is very unlikely that u will be sampled by the first

iteration.

Another issue that has to do with the communication cost of τ is

the fact that we are now having the players jointly sample from the

distribution Px |U ′. While we were able to claim that D(Px ∥P) ≈ I ,

the same bound may not hold for D((Px |U ′)∥P). However, it can
be shown that D((Px |U ′)∥P) ≤ D(Px ∥P) + |m | . I + I log log(C).

We also mention that we are not able to prove the accuracy of our

simulation protocol τ using the techniques developed by previous

papers. Those techniques basically show that every iteration of

τ samples correctly form some frontier F . However, we do not

construct such frontiers. Instead, we develop a new analysis method

based on the unique decomposition of leaves. This method crucially

exploits the fact that for every leaf u, there is a single way for τ to

reach u (assuming that the public randomness was fixed). That is,

if wi is the w vertex computed by iteration i of π , then there is a

single sequencew1 ≼ w2 ≼ . . . ≼ wℓ withwℓ = u.

3 OUR COMPRESSION SCHEME

In this section we present the pseudo-code for our compression

protocol. A more detailed explanation of the protocol, as well as

the protocol’s analysis, are deferred to the Appendix.

Algorithm 1: Pred(vA,vB)
1 D ← ⌈log(C)⌉ + 1
/* fdiff finds the first difference between two bit

strings */

2 Run fdiffD (level(vA), level(vB)), T = O(log(I)/ε2) times

3 i ← most common return value of fdiff

4 p ←
{

1 if vAi = 0

0 if vAi = 1

5 W ← the vertex at level (level(vA))1,i−1 ◦ 1 ◦ 0D−i on the path

from the root that goes through vA and vB

6 return (p,W)

Algorithm 2:MidA(X ,Y ,V ,U)
1 W ← V

2 repeat

3 (p,W) ← Pred(FW ,X∩ ≼ U ,FV ,Y∩ ≼ U)
4 until p = 0

5 W ← the second to last value ofW

6 M ← the transcript of all the executions of Pred by Line 3,

excluding the last one

7 return (W ,M)

Algorithm 3: τ (X ,Y)
1 V ,V ′ ← root , M ← ε, leader ← Alice, U ← L
2 repeat

3 if leader = Alice then

/* U ← random vertex distributed according

to PL(V),X |M */

4 repeat

5 PA ← the probability distribution

∀u ∈ U : PA(u) = PV ,X (u)
PV ,X (U)

6 U ← CorrelatedSamplinд(P = PA,Q = PL(V))
7 until

(
Pred(FV ′,X∩ ≼ U ,FV ,Y∩ ≼ U)

)
1 = 1

/* W ← candidate for new V */

8 R ← new shared random string

9 (W ,M) ← MidAR (X ,Y ,V ,U)
/* rejection sampling */

10 Z ← FV ,Y∩ ≼ U

11 Bob accepts w.p.
PV ,Y (Z)
8PV (Z) , in this case

12 U ← {u ∈ L(W) : (MidAR (X ,Y ,V ,u))2 ≽ M}
13 leader ← Bob

14 V ′ ← V

15 V ←W

16 else

17 Same, switching the roles of Alice and Bob and of X

and Y . In addition, Lines 9 and 12 refer to the

protocolMidB instead ofMidA. The protocolMidB

is obtained from the protocolMidA by switching the

roles of Alice and Bob and of X and Y .

18 until V is a leaf

19 return V

4 NOTATION

We note that some of our notation is borrowed from [20], including

the very nice string notation described below.

4.1 Strings

Recall that {0, 1}∗ refers to the set of all binary strings. The empty

string is denoted ε . Let v,w ∈ {0, 1}∗. We denote by |v | the length
of v . For i ≤ j ∈ [|v |], we denote vi the ith bit of v and by vi, j the

substring of v given by vivi+1 . . .vj . The concatenation of v and

w is denoted v ◦w .

Consider the standard partial order ≼ on {0, 1}∗, where v ≼ w

if and only if v ◦v ′ = w for a (possibly empty) string v ′. If v ≼ w ,

we say that v is an ancestors ofw and thatw is a descendant of v .

We write v ≺ w if v ≼ w and v , w . We write v ≽ w ifw ≼ v . We

write v ≻ w ifw ≺ v .
Let S ⊆ {0, 1}∗ and let v ∈ S. We say that v is minimal in S

if there does not exist w , v ∈ S such that w ≼ v . We say that

v is maximal in S if there does not exist w , v ∈ S such that

v ≼ w . Letm ∈ N and let S1,S2, . . .Sm ⊆ {0, 1}∗. The floor of the
sets S1,S2, . . .Sm , denoted ⌊S1,S2, . . . ,Sm⌋, is the set of minimal

elements of S1 ∪ S2 ∪ . . . ∪ Sm . Analogously, the ceiling of the

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Mark Braverman and Gillat Kol

setsS1,S2, . . .Sm , denoted ⌈S1,S2, . . . ,Sm⌉, is the set of maximal

elements of S1 ∪ S2 ∪ . . . ∪ Sm .

Let v ∈ {0, 1}∗ and let S ⊆ {0, 1}∗. We write v ≼ S if there

exists w ∈ S such that v ≼ w . Similarly, we write v ≽ S if there

existsw ∈ S such that v ≽ w .

In addition to its role as a relational operator, we use ≼ as the

unary operator given by ≼ v = {u : u ≼ v}.
Let S ⊆ {0, 1}∗. Let f : S → R+ and let S′ ⊆ S. We define

f (S′) = ∑
v ∈S′ f (v).

4.2 Frontiers

We identify the vertices of a tree with binary strings in the usual

manner, namely, the root corresponds to the empty string ε , and

inductively the left child and right child of a vertex v correspond to

the stringsv ◦0 andv ◦1, respectively. A frontier or a cut in a (finite)

binary tree is any subset of the tree’s vertices that intersects every

root-to-leaf path in exactly one vertex. For example, the leaves of

the tree form a frontier. More generally, by truncating a given tree

arbitrarily and considering the resulting set of leaves, one obtains a

frontier in the original tree. Given our identification of tree vertices

with binary strings, we view frontiers as subsets of {0, 1}n .
Let v be a vertex in a (finite) binary tree. A frontier with respect

tov is any subset of descendants ofv that intersects everyv-to-leaf

path in exactly one vertex.

4.3 The Communication Tree

Consider a randomized protocol with input space X ×Y. Assume

for simplicity that it is a private-coin protocol, meaning that Alice

and Bob do not have access to a shared source of random bits. They

communicate by sending one bit at a time. For any given history

of previously transmitted bits (a transcript), the protocol specifies

which of the participants must send the next bit, which in turn is a

function of the sender’s private random string, the sender’s input,

and the history of previously transmitted bits.

For the rest of this section, let π be an arbitrary but fixed private-

coin protocol and µ be a distribution over X × Y. We denote by

I = ICµ (π) the external information of π over µ. We denote by C

be the worst case communication complexity of π .

We identify the set of possible (partial) transcripts communicated

by π with a binary tree called the communication tree. We denote

byV the set of vertices of the communication tree, and by L the

leaves of this tree. For a vertex v ∈ V , we denote byV(v) the set
of vertices in the subtree rooted atv (the setV(v) includesv itself).

The root of the tree is denoted ε .

Distributions Over Vertices. Let (X ,Y) be a pair of random vari-

ables distributed according to µ, representing the players’ inputs.

Let Π be a random variable representing the transcript of the pro-

tocol π when it is run with the inputs (X ,Y). Let v ∈ V and let

w ∈ V(v). We define

Pv (w) = Pr[Π ≽ w | Π ≽ v],
Pv,x (w) = Pr[Π ≽ w | X = x ,Π ≽ v],
Pv,y (w) = Pr[Π ≽ w | X = y,Π ≽ v],

Pv,x,y (w) = Pr[Π ≽ w | X = x ,Y = y,Π ≽ v].

Let v ∈ V , and let F be a frontier with respect to v . Observe that

F induces v . We define the following probability distributions de-

fined over F by PF(w) = Pv (w), PF,x (w) = Pv,x (w), PF,y (w) =
Pv,y (w), PF,x,y (w) = Pv,x,y (w). When we omit the vertex v , we

mean that v is the root. E.g., Px,y (w) = Pε,x,y (w).

4.4 Information Frontiers

Let x ∈ X and y ∈ Y. We define Alice’s information frontiers Fi,x
and Bob’s information frontiers Fi,y recursively. The frontiers F0,x
and F0,y contain only the root. For i ≥ 1, we define

Fi,x =
⌊{
w ∈ V : ∃v ∈ Fi−1,x s .t . v ≼ w

and log
(
Pv,x (w)
Pv (w)

)
< (−1, 1)

}
,L

⌋
,

(1)

Fi,y =
⌊{
w ∈ V : ∃v ∈ Fi−1,y s .t . v ≼ w

and log
(
Pv,y (w)
Pv (w)

)
< (−1, 1)

}
,L

⌋
.

(2)

Note that Fi,x and Fi,y are indeed frontiers of the communication

tree. As was done by previous papers, we assume that the protocol

π is smooth (see [3, 8]). It therefore holds that

Fi,x =
⌊{
w ∈ V : ∃v ∈ Fi−1,x s .t . v ≼ w

and
Pv,x (w)
Pv (w) ∈ [1/4, 1/2] ∪ [2, 4]

}
,L

⌋
,

(3)

Fi,y =
⌊{
w ∈ V : ∃v ∈ Fi−1,y s .t . v ≼ w

and
Pv,y (w)
Pv (w) ∈ [1/4, 1/2] ∪ [2, 4]

}
,L

⌋
.

(4)

For x ∈ X, y ∈ Y, and v ∈ V we define

Fv,x = V(v) ∩ Fmin{i≥0: v≼Fi,x },x ,

Fv,y = V(v) ∩ Fmin{i≥1: v≼Fi,y },y .

Observe that for any u ∈ L it is the case that (Fε,x∩ ≼ u) ≺
(Fε,y∩ ≼ u). That is, Alice’s first frontier is above Bob’s first fron-
tier.

The following claim bounds the amount of information about x

revealed between a vertex v and the closest frontier.

Claim 1. Let v ∈ V and v ≼ w ≼ Fv,x . Then Pv,x (w)
Pv (w) ∈ (1/8, 8).

A similar claim holds when we switch the roles of x by y.

Proof. If v ∈ Fj,x for some j ∈ N, then, Fv,x = V(v) ∩ Fj,x .
Sincev ≼ w ≼ Fv,x it is also the case thatw = v , thus

Pv,x (w)
Pv (w) = 1,

and the assertion follows. Now assume that v < Fj,x , for every j.

Let i = max{j ∈ N : Fj,x ≼ v}. Let v ′ = Fi,x ∩ (≼ v). Since v ≼
w ≼ Fv,x , it means that w ≼ Fi+1,x . By Equation (3),

Pv′,x (w)
Pv′ (w) ∈

[1/4, 4]. If Pv′,x (v)
Pv′ (v) ∈ (−∞, 1/2] ∪ [2,∞), then, by Equation (2),

v ≽ Fi+1,x . Since v ≼ w ≼ Fi+1,x , we get that v ∈ Fi+1,x . But this
is impossible, as we assume thatv < Fj,x for every j ∈ N. Conclude
that

Pv′,x (v)
Pv′ (v) ∈ (1/2, 2). Therefore,

Pv,x (w)
Pv (w) =

Pv′,x (w)·Pv′ (v)
Pv′,x (v)·Pv′ (w) ∈

(1/4 · 1/2, 4 · 2) = (1/8, 8), and the assertion follows. �

Let x ∈ X, y ∈ Y, and u ∈ L. The number of Alice’s frontiers

crossed by the path from the root to u is denoted Fx (u), and the

Interactive Compression to External Information STOC’18, June 25–29, 2018, Los Angeles, CA, USA

number of Bob’s frontiers crossed by the path from the root to u is

denoted Fy (u). Formally, Fx (u) and Fy (u), are defined by:

Fx (u) = min{i : Fi,x ∩ (≼ u) = u}, (5)

Fy (u) = min{i : Fi,y ∩ (≼ u) = u}. (6)

The following useful lemma shows that the expected number of

frontier crossed by a path to a leaf is roughly bounded by the

external information cost.

Lemma 4.1. It holds that

E
U←PL,X ,Y

[FX (U) + FY (U)] ≤ 10I .

4.5 The Chopped Protocol π ′

Let N = 100I/ε . Given a communication protocol π , we define

the chopped protocol π ′. Informally speaking, until reaching the

N th frontier, the parties running π ′ follow the protocol π . After

the N th frontier was reached, the parties ignore their inputs and

communicate according to the distribution of an external observer.

Formally, let Π′ be the transcript of π ′. Let x ∈ X, y ∈ Y, v ∈ V ,

and b ∈ {0, 1}. Assume that when reaching v , Alice communicates

a bit. Define

Pr[Π′ ≽ v ◦ b | X = x ,Π′ ≽ v]

=

{
Pr[Π ≽ v ◦ b | X = x ,Π ≽ v] if v ≼ FN ,x

Pr[Π ≽ v ◦ b | Π ≽ v] if v ≻ FN ,x .

The definition for the case that Bob is communicating a bit when

reaching v is obtained from the above by switching the roles of

X ,x and Y ,y.

Observe that for every distribution µ, it holds that

ICµ (π ′) = O(ICµ (π)) = O(I).
In this section we will use the superscript π or π ′ to indicate the

underlying protocol assumed. E.g., F π ′
i,x is Alice’s ith frontier when

the protocol π ′ is run.
The following claim shows that in π ′, the number of frontier

crossed by a path to a leaf is at most N + 1.

Claim 2. Letx ∈ X,y ∈ Y, andu ∈ L. It holds that Fπ ′x (u), Fπ
′

y (u) ≤
N + 1.

The next claim shows that π and π ′ are close. It follows directly
from Markov’s inequality and Lemma 4.1.

Claim 3. It holds that

E
X ,Y

[
|π (X ,Y) − π ′(X ,Y)|

]
≤ 0.1ε .

5 DESCRIPTION OF OUR COMPRESSION

SCHEME

Our simulation protocol, τ ′, is presented in Section 5.4. We first

survey the (sub)protocols Pred,MidA,MidB ,τ that are used to con-

struct τ ′.
We assume to be given a protocol π and denote by π ′ the chopped

version of π (see Section 4.5). The protocol τ ′ aims to simulate π ′,
and thus, due to Claim 3, also simulateπ . The protocolsMidA,MidB ,

τ ,τ ′ work with the underlying protocol π ′. That is, in all that fol-

lows, when we use Pv,x , Pv,y , Pv,x,y ,Fi,x ,Fi,y ,Fv,x ,Fv,y , Fx , Fy
etc. we mean Pπ

′
v,x , P

π ′
v,y , P

π ′
v,x,y ,F π ′

i,x ,F
π ′
i,y ,F

π ′
v,x ,F π ′

v,y , F
π ′
x , F

π ′
y etc.

5.1 The Protocol Pred

The protocol Pred(vA,vB) is given in Algorithm 1. The protocol

Pred assumes that Alice has a vertex vA ∈ V and Bob has a vertex

vB ∈ V , such that vA and vB are on some path from the root to a

leaf. That is, vA ≼ vB or vA ≽ vB . It is assumed that vA , vB .

The protocol Pred uses the protocol fdiffD (first difference) sug-

gested in the solution to Exercise 3.18 in [16]. The protocol fdiffD
communicates at most O(log(D)) bits and computes the function

f : {0, 1}D × {0, 1}D → [D] given by f (a,b) = min{i ∈ [D] :
ai , bi }, with constant error probability. For any v ∈ V denote by

level(v) ∈ {0, 1} ⌈log(C)⌉+1, the binary representation of the level in

the tree that contains v (the root is in level 0).

An execution of Pred(vA,vB) returns a pair (p,W) ∈ {0, 1} ×V ,

where:

• If vA ≼ vB then p = 1, otherwise p = 0.

• W is between vA and vB . Formally, if vA ≼ vB then vA ≺
W ≼ vB . Otherwise, vB ≺W ≼ vA.

The protocol Pred communicates at mostO(log log(C)·log(I)/ε2)
bits, and errs with probability at most ε2 · I−10. The protocol Pred is

randomized. However, whenever Pred returns a correct vertexW

satisfying the above condition, it returns the same vertexW (when

it is run with the same inputs).

5.2 The ProtocolMidA

The protocol MidA(x ,y,v,u) is given in Algorithm 2. It assumes

that Alice has an input x ∈ X, Bob has an input y ∈ Y, and that

both players agree on a vertex v ∈ V and a leaf u ∈ L(v). The
protocol returns a vertexw on the path from v to u. The vertexw

separates Alice’s and Bob’s frontiers, in the sense that no frontier of

Bob’s intersects the path fromv tow , and the first of Bob’s frontiers

to intersect the path from w to u, intersects it above Alice’s next

frontier. It holds that

w ≼ (Fv,y∩ ≼ u) ≼ (Fw,x∩ ≼ u). (7)

By Claim 2, MidA runs Pred at most O(N) = O(I) times. This

holds as each time Pred is called (with the exception of the first

call),W crosses at least one Alice’s frontiers Fi,X . Therefore the
following holds:

Claim 4. The protocolMidA communicates atmostT = O(I log(I)·
log log(C)/ε2) bits, and errs with probability at most ε · I−5.

Remark 1. The protocolMidA is randomized. However, whenever

MidA returns a correct vertexW satisfying the above condition, it

returns the same vertexW .

When we want to emphasis that the random string used by a

specific execution is ofMidA is R, we writeMidAR .

The protocolMidB is obtained fromMidA by switching the roles

of X and Y . Claims analogous to the above hold forMidB .

5.3 The Protocol τ

The protocol τ is given in Algorithm 3. The protocol τ executes

the correlated sampling protocol, CorrelatedSamplinд, suggested

in [7]. The protocolCorrelatedSamplinд assumes that Alice knows

a distribution P over L, and Bob knows (a possibly different) distri-

bution Q over L. After executing CorrelatedSamplinд(P ,Q), Alice

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Mark Braverman and Gillat Kol

gets a leaf u ∈ L sampled according to P . Bob gets a leaf u ′ ∈ L
such that u ′ = u, except with probability ε2 · I−10.

We next show that τ can be implemented by Alice and Bob. In

particular, we claim the correlated sampling step (Line 6) and the

rejection step (Line 11) can be carried out.

The rejection step assumes that whenever Line 11 is called, it

holds that
PV ,Y (Z)
8PV (Z) ≤ 1. This is indeed the case by Claim 1, as

Z ∈ FV ,Y .

To show that correlated sampling step can be carried out, we first

observe that Bob knows the distribution PL(V). Alice knows the
distribution PA, as, as shown by the next lemma, she can calculate

the setU (although she does not know Y).

For a possible (partial) transcriptM ofMidA orMidB , we denote

by ∥M ∥ the number of iterations of the loop in Line 2 ofMid in the

execution that resulted in the transcriptM .

Claim 5. Whenever Line 12 of the protocol π is called, Alice can

compute the setU by herself.

Proof. Assume that we have reached a specific iteration of the

loop in Line 2 of τ . LetV ,V ′,U ,W ,M,U,R, leader be the values of
the variables V ,V ′,W ,U ,M,U,R, leader after V was updated for

the last time before this iteration. Assume without loss of generality

that leader = Alice .

Fix u ∈ L(V). Consider the first ∥M ∥ iterations of the loop in

Line 2 ofMid when runningMidBR (X ,Y ,V
′,u) (if indeedMidBR runs

for at least this many iterations). By Line 12 of τ , u ∈ U if and

only if the transcript of these ∥M ∥ iterations is M . We will show

that Alice can simulate Bob’s part in these iterations, and thus can

computeU. Let j ∈ [∥M ∥]. LetW ′j be the value of the variableW

at the beginning of iteration j. Let (M ′)Aj and (M ′)Bj be Alice’s and

Bob’s messages (respectively) in iteration j.

Now consider the first ∥M ∥ iterations of the loop in Line 2 of

Mid when running MidBR (X ,Y ,V
′,U). LetWj be the value of the

variableW at the beginning of iteration j . LetMA
j andMB

j be Alice’s

and Bob’s messages (respectively) for iteration j. By Line 9 of τ ,

M = (MA
j ,M

B
j)j ∈[∥M ∥]. Define (M

′)A0 = MA
0 = (M

′)B0 = MB
0 = ε .

We next prove the following claim

Claim 6. Let j ′ ∈ {0, . . . , ∥M ∥}. If (M ′)Aj = MA
j for every j ≤ j ′,

then also (M ′)Bj = MB
j for every j ≤ j ′.

Proof of Claim 6. We prove by induction. For j ′ = 0, the claim

holds trivially. To prove the claim for j ′ ≥ 1, we observe that by

the induction hypothesis, since (M ′)Aj = MA
j for j ≤ j ′ − 1, then

also (M ′)Bj = MB
j for j ≤ j ′ − 1, which implies thatW ′j = Wj .

Since j ′ ≤ ∥M ∥, it holds that j ′ is not the last iteration of the loop in

Line 2 ofMidB when runningMidBR (X ,Y ,V
′,U) (by Line 6 ofMidB ,

the last iteration is not recorded to M). Therefore, (FWj′,Y∩ ≼
U) ≺ Wj′+1 ≼ (FV ,X∩ ≼ U). Since Wj′+1 ≼ W = V , we get

(FWj′,Y∩ ≼ U) ≼ V . As u,U ∈ L(V), it holds that (FWj′,Y∩ ≼
u) = (FWj′,Y∩ ≼ V) = (FW ′

j′,Y
∩ ≼ U), thus Bob’s input is the

same when running Pred . Since we assume that (M ′)Aj = MA
j for

every j ≤ j ′, it also holds that (M ′)Bj′ = MB
j′ , as Bob messages are a

function of his input and the messages communicated by Alice. �

The assertion follows from the claim for the following reason:

Alice knowsMB
j for every j ∈ [∥M ∥], as they are induced byM . To

decide whether u ∈ U, Alice does the following: Alice compares

(M ′)A1 to MA
1 . If they are not the same, then clearly u < U and

she halts. If (M ′)A1 = MA
1 , then by Claim 6 it is also the case that

(M ′)B1 = MB
1 . Thus, Alice knows that the transcript of the first

iteration of the loop in Line 2 when running MidBR (X ,Y ,V
′,u) is

consistent with M . Alice can repeat the process (compare (M ′)A2
andMA

2 etc.) to check that transcript of the first ∥M ∥ iterations of
the loop in Line 2 ofMid when runningMidBR (X ,Y ,V

′,u) is indeed
M . �

5.4 The Protocol τ ′

Our final simulation protocol τ ′ is obtained from τ by making the

following changes:

(1) The loop in Line 2 of the protocol τ is never executed more

than N ′ = 1010N /ε = O(I) times. If the loop does not halt

after this many iterations, τ ′ returns failure.
(2) The total number of times that the loop in Line 7 of the

protocol τ is executed during an execution of τ ′ is at most

N ′′ = 1010N ′ · N /ε = O(I2). If τ attempts to execute this

loop more than N ′′ times, τ ′ returns failure.

The proof of Theorem 1.2, showing that τ ′ simulates π with

low communication cost, is given by Lemma 8.1 (accuracy lemma

proved in Section 8) and by Lemma 13 (communication cost lemma

proved in Section 9).

6 DEFINITIONS FOR PROTOCOL ANALYSIS

Fixing. For the rest of the text, fix the inputs x ,y.

Notation. Let v ∈ V . Let F (v) be the set containing all intersec-
tions between the path from the root tov and one of the information

frontiers. Formally,

F (v) =
(
∪i ∈N(Fi,x∩ ≼ v)

)
∪

(
∪i ∈N(Fi,y∩ ≼ v)

)
.

Let t(v) = |F (v)| be the number of information frontiers intersect-

ing the path from the root to v . Let t ∈ [t(v)]. Let ft (v) ∈ F (v) be
the intersection between the path from the root to v and the t th

information frontier. Formally, ft (v) is a vertex in F (v) for which
there are exactly t distinct vertices v ′ in F (v) satisfying v ′ ≼ v .

Let v ∈ V . Note that ft (v)(v) is the last intersection between

the path from the root to v and the information frontiers. Define

leader (v) = A if ft (v)(v) = (Fi,y∩ ≼ v) for some i ∈ [t(v)]. Define
leader (v) = B if ft (v)(v) = (Fj,x∩ ≼ v) for some j ∈ [t(v)].

For all that follows, T ∈ N is the upper bound on the length of

the transcript of the protocolsMidA andMidB obtained in Claim 4.

Observe thatT is also an upper bound on the binary representation

size of theM variable returned byMidA andMidB . We will assume

that M ∈ {0, 1}T . Let T ′ ∈ N be an upper bound on the number

of random bits used by MidA and MidB . Let R be the set of all

sequences r̄ = r1, r2, . . ., such that rt ∈ {0, 1}T
′
.

Useful Sets. Let S ⊆ {0, 1}T ′ × V2 × {0, 1}T be the set of all

(r ,v,w,m) such that

∃u ∈ V(v) : Mid
leader (v)
r (x ,y,v,u) = (w,m).

Interactive Compression to External Information STOC’18, June 25–29, 2018, Los Angeles, CA, USA

For (r ,v,w,m) ∈ S, we define the setsU(r ,v,w,m),U∗(r ,v,w,m),
L∗(r ,v,w,m),V∗(r ,v,w,m) as follows: If leader (v) = B,

U(r ,v,w,m) = {u ∈ L(w) : (MidBr (x ,y,v,u))2 ≽ m},
U∗(r ,v,w,m) = {u ∈ L(w) : (MidBr (x ,y,v,u))2 =m},
L∗(r ,v,w,m) =

{
u ∈ U(r ,v,w,m) : (Fv,x∩ ≼ u) ≼ (Fw,y∩ ≼ u)

}
,

V∗(r ,v,w,m) = {v∗ = (Fv,x∩ ≼ u) : u ∈ U(r ,v,w,m),v∗ ≼ Fw,y }.
If leader (v) = A, the definitions of U(r ,v,w,m), U∗(r ,v,w,m),
L∗(r ,v,w,m), V∗(r ,v,w,m) are obtained from the above defini-

tions by switch the roles of A and B and of x and y.

RandomVariables. In all that follows, we denote byVt ,V
′
t ,Mt , P

A
t ,

Ut ,Rt ,Wt the last values attained by the variablesV ,V
′,M, PA,U,

R,W (respectively) in the iteration of the loop in Line 2 of τ in which

V is updated for the t th time (the initialization of V in Line 1 of τ

is the 0th update of V).

Unique Decomposition. Let u ∈ L and let r̄ ∈ R. We define the

unique decomposition {(vt ,mt)}t of u with respect to x ,y, r̄ in a

recursive manner: Let (v0,m0) = (ε, ε). For t ≥ 1, define

(vt+1,mt+1) = Mid
leader (vt)
r̄t

(x ,y,vt ,u).
Letu,u ′ ∈ L, and letv ∈ V be the lowest common ancestor ofu

andu ′. Let {(vt ,mt)}t and {(v ′t ,m′t)}t be the unique decomposition

ofu andu ′ (respectively) with respect to x ,y, r̄ . Let i be the maximal

such that vi ≼ v . Then, (vt ,mt) = (v ′t ,m′t) for every t ≤ i .

Let v ∈ V . Let u ∈ L such that u ≽ v . Let {(vt ,mt)}t be

the unique decomposition of u with respect to x ,y, r̄ . Let i be the

maximal such that vi ≼ v . We define the unique decomposition

of v with respect to x ,y, r̄ to be {(vt ,mt)}t ≤i . Observe that the

unique decomposition of v is well defined.

7 ACCURACY OF τ

We next show that τ simulates the chopped protocol π ′. For the
rest of the section we will be assuming that the implementations

of the Pred and CorrelatedSamplinд protocols are error free.

Assumption 1. The Pred andCorrelatedSamplinд protocols never

err or fail.

Consider the randomness used by an execution of τ . We denote

by R the randomness used for the executions of MidA and MidB

by τ . We denote by R′ the rest of the randomness used by τ . Let

r̄ ∈ R and recall that x ,y are fixed. Let τr̄ (x ,y) be the distribution
of τ ’s outputs when it is run on inputs x ,y with randomness R = r̄ .

Note that we did not fix R′. Let π ′(x ,y) be the distribution over

the leaves of the communication tree of π ′ obtained by running π ′

with inputs x ,y.

Lemma 7.1. Under Assumption 1, for every r̄ ∈ R, the distribution
τr̄ (x ,y) is identical to the distribution π ′(x ,y).

The rest of the section is devoted to proving Lemma 7.1.

Lemma 7.2. Let v ∈ V , u ′ ∈ L(v), and r ∈ {0, 1}T ′ . Assume

that leader (v) = B. Assume that MidBr (x ,y,v,u ′) = (w ′,m′) for
some w ′ ∈ V(v) and m′ ∈ {0, 1}T . Let u ∈ L(w ′) and assume

that MidBr (x ,y,v,u) = (w,m), for some w ∈ V(v) andm ≽ m′ ∈
{0, 1}T .

Let i ∈ [∥m′∥ + 1]. DefineW ′i to be the value of the variableW at

the beginning of the ith iteration of Line 2 of MidB when running

MidBr (x ,y,v,u ′). Define Wi to be the value of the variable W at

the beginning of the ith iteration of Line 2 of MidB when running

MidBr (x ,y,v,u).
Then,W ′i =Wi for every i ∈ [∥m′∥ + 1]. In particular, ifm′ =m

thenw ′ = w .

Proof. The execution of MidBr (x ,y,v,u ′) results in (w ′,m′),
whichmeans that the execution of Predr (FW ′

∥m′∥,y
∩ ≼ u ′,Fv,x∩ ≼

u ′) by MidBr (x ,y,v,u ′) returned (p = 1,w ′). This implies that

(FW ′
∥m′∥,y

∩ ≼ u ′) ≼ w ′. SinceW1 = W ′1 = v , since v = W ′1 ≼
W ′2 ≼ . . . ≼W

′
∥m′ ∥ , and since u ∈ L(w ′), it holds that (FW ′

1 ,y
∩ ≼

u ′) = (FW1,y∩ ≼ u). Therefore, Bob’s input for the first execu-

tion of Pred by both MidBr (x ,y,v,u ′) and MidBr (x ,y,v,u) are the
same. Since the output of Pred is known to both parties, it is de-

termined by Bob’s input and the transcript. Since m′ ≼ m and

since Bob’s inputs are the same, the output is also the same and

W2 = W ′2 . We continue this process and show thatWi = W ′i for

every i ∈ [∥m′∥ + 1]. �

Lemma 7.3. Let (r ,v,w,m) ∈ S. It holds that

U∗(r ,v,w,m) = L∗(r ,v,w,m).

Proof. LetU∗ = U∗(r ,v,w,m),U = U(r ,v,w,m), and L∗ =
L∗(r ,v,w,m). Assume without loss of generality that leader (v) =
B. Recall that (r ,v,w,m) ∈ S implies

∃u ′ ∈ V(v) : MidBr (x ,y,v,u ′) = (w,m). (8)

The direction L∗ ⊆ U∗. Let u ∈ U∗. Thus, u ∈ L(w) and
(MidBr (x ,y,v,u))2 =m. By Lemma 7.2 and Equation (8), it is also

the case that (MidBr (x ,y,v,u))1 = w . This means that the loop in

Line 2 of MidB ended with p = 0, where p = (Predr (Fw,y∩ ≼
u,Fv,x∩ ≼ u))1. That is, it ended because the last execution of

Pred indicated that (Fv,x∩ ≼ u) ≼ (Fw,y∩ ≼ u). Since it is also
the case that u ∈ U∗ ⊆ U, conclude that u ∈ L∗.
The direction L∗ ⊆ U∗. Let u ∈ L∗. As u ∈ L∗ ⊆ U, it holds

that u ∈ L(w) and that (MidBr (x ,y,v,u))2 ≽ m. By Lemma 7.2

and Equation (8), the value of the variable W at the beginning

of the (∥m∥ + 1)st iteration of Line 2 of MidB when running

MidBr (x ,y,v,u ′) andMidBr (x ,y,v,u) is the same. The value of the

variableW at the beginning of the (∥m∥ + 1)st iteration of Line 2 of

MidB when running MidBr (x ,y,v,u ′) isw , thus value of the vari-

ableW at the beginning of the (∥m∥ + 1)st iteration of Line 2 of

MidB when runningMidBr (x ,y,v,u) is alsow . Sinceu ∈ L∗ it holds
that (Fv,x∩ ≼ u) ≼ (Fw,y∩ ≼ u). Therefore, (Predr (Fw,y∩ ≼
u,Fv,x∩ ≼ u))1 = 0. This implies that iteration ∥m∥ + 1 is the last
iteration of the executionMidBr (x ,y,v,u), and that u ∈ U∗. �

Claim 7. Let (r ,v,w,m) ∈ S. It holds that

L(V∗(r ,v,w,m)) = U∗(r ,v,w,m).

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Mark Braverman and Gillat Kol

Proof. Denote U∗ = U∗(r ,v,w,m), U = U(r ,v,w,m) and
V∗ = V∗(r ,v,w,m). Assumewithout loss of generality that leader (v)
= B. By Lemma 7.3, it holds that

U∗ = L∗(r ,v,w,m) (9)

=

{
u ∈ U(r ,v,w,m) : (Fv,x∩ ≼ u) ≼ (Fw,y∩ ≼ u)

}
. (10)

The direction U∗ ⊆ L(V∗). Let u ∈ U∗ and denote v∗ =
Fv,x∩ ≼ u. Then, since u ∈ U∗ it holds that u ∈ U and v∗ =
(Fv,x∩ ≼ u) ≼ (Fw,y∩ ≼ u). Conclude that v∗ ∈ V∗, thus
u ∈ L(V∗).
The direction L(V∗) ⊆ U∗. Let v∗ ∈ V∗ and let u ∈ L(v∗). We

will show that u ∈ U∗. Since v∗ ∈ V∗, there exists u ′ ∈ U such

that v∗ = (Fv,x∩ ≼ u ′) ≼ (Fw,y). Since u ∈ L(v∗), it holds that
(Fv,x∪ ≼ u) = v∗ = (Fv,x∪ ≼ u ′). Since v∗ ≼ Fw,y , we get that

(Fv,x∪ ≼ u) ≼ (Fw,y∪ ≼ u). It remains to show that u ∈ U.

Since (Fv,x∪ ≼ u) = (Fv,x∪ ≼ u ′), all but the last execution
of Pred byMidBr (x ,y,v,u ′) andMidBr (x ,y,v,u) are done with the

same parameters, thus the two executions give the same result.

Sinceu ′ ∈ U, it holds that (MidBr (x ,y,v,u))2 = (MidBr (x ,y,v,u ′))2
≽ m, thus u ∈ U. Conclude that u ∈ U∗. �

Claim 8. Let (r ,v,w,m) ∈ S. Let ft (w)(w) ≼ w ′ ≼ w . Assume

leader (v) = B. It holds that

Pw ′,x,y (U∗(r ,v,w,m)) ≤ 8Pw ′,x (U∗(r ,v,w,m)).

Proof. Denote U∗ = U∗(r ,v,w,m), U = U(r ,v,w,m) and
V∗ = V∗(r ,v,w,m). By Claim 7, L(V∗) = U∗. Let v∗ ∈ V∗.
There exists u ′ ∈ U ⊆ L(w) such that v∗ = (Fv,x∩ ≼ u ′). By
Equation (7),w ≼ (Fv,x∩ ≼ u ′). Hence,w ≼ v∗. By the definition of
V∗ it holds that v∗ ≼ Fw,y . Recall the assumption that ft (w)(w) ≼
w ′ ≼ w , and get that ft (w) ≼ w ′ ≼ w ≼ v∗ ≼ Fw,y . Since there

are no information frontiers between ft (w)(w) andw , there are no

frontiers between w ′ and w . This implies that w ′ ≼ v∗ ≼ Fw ′,y ,
and by Claim 1 and the fact that V∗ is contained in a frontier,
Pw′,y (V∗)
Pw′ (V∗) < 8. Therefore,

Pw ′,x,y (V∗) =
Pw ′,x (V∗) · Pw ′,y (V∗)

Pw ′(V∗)
≤ 8Pw ′,x (V∗).

By Claim 7, Pw ′,x,y (U∗) ≤ 8Pw ′,x (U∗). �

Lemma 7.4. Fix t . Let U∗ = U∗(Rt ,Vt−1,Vt ,Mt). Assume that

leader (Vt) = A. Then, for u ∈ U∗,

Pr
R,R′
[Ut+1 = u] =

PVt ,x (u)
PVt ,x (U∗)

.

Thus, it is also the case that for u ∈ L \ U∗, Pr[Ut+1 = u] = 0.

Proof. LetU = U(Rt ,Vt−1,Vt ,Mt),L∗ = L∗(Rt ,Vt−1,Vt ,Mt).
Let K be a random variable that counts the number of iterations

of loop in Line 7 of τ , during the (t + 1)st execution of the loop in

Line 2 of τ . Let u ∈ L∗. Since L∗ ⊆ U = Ut , it holds that u ∈ Ut .

It also holds that Pr[(Ut+1 = u) ∧ (K = 1)] = PAt+1(u), as the corre-
lated sampling step in Line 6 of τ returnsu with probability PAt+1(u)
(as u ∈ Ut), and the condition of the loop in Line 7 of τ is always

satisfied. For u ∈ L \ L∗, it holds that Pr [(Ut = u) ∧ (K = 1)] = 0,

as either u < U = Ut , thus P
A
t+1(u) = 0, or the condition of the

loop is not satisfied.

Observe thatUt+1 is independent of K , since for any k,k
′ ∈ N, it

holds thatUt+1 |(K = k) has the same distribution asUt+1 |(K = k ′).
Thus, for u ∈ L∗,

Pr[Ut+1 = u] = Pr[Ut+1 = u |K = 1] = Pr[(Ut+1 = u) ∧ (K = 1)]
Pr[K = 1]

=

PAt+1(u)∑
u ∈L∗ PAt+1(u)

=

PVt ,x (u)
PVt ,x (Ut)∑
u∈L∗ PVt ,x (u)
PVt ,x (Ut)

=

PVt ,x (u)
PVt ,x (L∗)

=

PVt ,x (u)
PVt ,x (U∗)

,

where the last equality is because (Rt ,Vt−1,Vt ,Mt) ∈ S, thus by
Lemma 7.3, L∗ = U∗. �

Lemma 7.5. Let v ∈ V and let r̄ ∈ R. Let {(vt ,mt)}t be the

unique decomposition of v with respect to x ,y, r̄ . Then, for every t it

holds that

((Vt ,Mt) | V = v,X = x ,Y = y,R = r̄) = (vt ,mt).

Proof. The proof is by induction on t : For t = 0, it holds that

M0 = m0 = ε . We assume that ((Vt−1,Mt−1) | V = v,X = x ,Y =

y,R = r̄) = (vt−1,mt−1), and show that ((Vt ,Mt) | V = v,X =

x ,Y = y,R = r̄) = (vt ,mt). Assume V = v . Assume without

loss of generality that leader (Vt−1) = B. By Lemma 7.4, Ut+1 ∈
U∗(Rt ,Vt−1,Vt ,Mt). Therefore, (MidBRt

(x ,y,Vt−1,Ut+1))2 = Mt .

The paths from the root to v and from the root to Ut+1 agree

until Vt+1, as Vt+1 ≼ V = v and Ut+1 ≽ Vt+1. By the induc-

tion hypothesis, Vt−1 = vt−1. Since Fvt−1,x = FVt−1,x ≼ Vt+1,

we get that (FVt−1,x∩ ≼ Ut+1) = (Fvt−1,x∩ ≼ v). This implies

that all but the last execution of Pred by MidBr̄t (x ,y,vt−1,v) and
MidBRt

(x ,y,Vt−1,Ut+1) are done with the same parameters, thus

the two executions give the same result. Thus,

(vt ,mt) = MidBr̄t (x ,y,vt−1,v) = MidBRt (x ,y,Vt−1,Ut+1) = (Vt ,Mt),

and the assertion follows. �

Lemma 7.6. Let v ∈ V and let r̄ ∈ R. Let {(vt ,mt)}t be the

unique decomposition of v with respect to x ,y, r̄ . We define

U∗(r̄0,v−1,v0,m0) = L.

Then, for every t ,

Pr
R,R′
[(Vt+1,Mt+1) = (vt+1,mt+1) |

(Vt ,Mt) = (vt ,mt), . . . , (V1,M1) = (v1,m1),X = x ,Y = y,R = r̄]

=

Pvt ,x,y (U∗(r̄t+1,vt ,vt+1,mt+1))
Pvt ,x,y (U∗(r̄t ,vt−1,vt ,mt))

.

Proof of Lemma 7.1. Let v ∈ V and let r̄ ∈ R. Let {(vt ,mt)}t
be the unique decomposition of v with respect to x ,y, r̄ . Let ℓ ∈ N

Interactive Compression to External Information STOC’18, June 25–29, 2018, Los Angeles, CA, USA

be such that vℓ−1 = v (note that also vℓ = v). Let V be the vertex

V returned by τ . It holds that

Pr[V = v | X = x ,Y = y,R = r̄]
= Pr[(Vℓ ,Mℓ) = (vℓ ,mℓ), . . . , (V1,M1) = (v1,m1) |

X = x ,Y = y,R = r̄] (by Lemma 7.5)

=

∏
t ∈{0,1, ..., ℓ−1}

Pr [(Vt+1,Mt+1) = (vt+1,mt+1) |

(Vt ,Mt) = (vt ,mt), . . . , (V1,M1) = (v1,m1),X = x ,Y = y,R = r̄]

=

∏
t ∈{0,1, ..., ℓ−1}

Pvt ,x,y (U∗(r̄t+1,vt ,vt+1,mt+1))
Pvt ,x,y (U∗(r̄t ,vt−1,vt−1,mt))

(by Lemma 7.6)

=

∏
t ∈{0,1, ..., ℓ−1}

Pvt ,x,y (vt+1) · Pvt+1,x,y (U∗(r̄t+1,vt ,vt+1,mt+1))
Pvt ,x,y (U∗(r̄t ,vt−1,vt ,mt))

(asU∗(r̄t+1,vt ,vt+1,mt+1) ⊆ L(vt+1))

=

Pvℓ,x,y (U∗(r̄ℓ ,vℓ−1,vℓ ,mℓ))
Pv0,x,y (U∗(r̄0,v−1,v0,m0)))

·
∏

t ∈{0,1, ..., ℓ−1}
Pvt ,x,y (vt+1)

= Pv0,x,y (vℓ−1)
(asU∗(r̄ℓ ,vℓ−1,vℓ ,mℓ) = {vℓ} andU∗(r̄0,v−1,v0,m0) = L)

= Px,y (v).

The assertion follows as Px,y (v) is the probability that π ′ outputsv
on inputs x ,y. �

8 ACCURACY OF τ ′

This section is devoted to showing that τ ′ simulates the original

protocol π . Let (X ,Y) be a pair of random variables distributed

according to µ. Let τ ′(x ,y) be the distribution of the output of τ ′

when it is run on inputs x ,y. Let π (x ,y) be the distribution over

the leaves of the communication tree of π obtained by running π

with inputs x ,y.

Lemma 8.1. It holds that

E
X ,Y

[
|τ ′(X ,Y) − π (X ,Y)|

]
≤ ε/2.

The rest of the section is devoted to proving Lemma 8.1.

Claim 9. An execution of τ ends after at most N ′ iterations of the
loop in Line 2, except with probability at most 2−N

′/10.

Proof. Consider an iteration of the loop in Line 2 of τ . Let V

be the value of the variable V at the beginning of this iteration,

and let Z be the value of the variable Z after it is updated by this

iteration. Assume without loss of generality that leader (V) = A.

By Lemma 2, V needs to be updated at most 2N + 2 times in the

duration of τ ’s the execution. In the rejection sampling step of τ

(Line 11), Bob accepts with probability
PV ,y (Z)
8PV (Z) , and in this event V

is updated. By Line 10, it holds that Z ∈ FV ,y . By Equation (4),
PV ,y (Z)
8PV (Z) ≥

1
8 ·

1
4 =

1
32 . Since V is updated with probability at least

1
32 by any iteration of Line 2 of τ , and since the total number of

updates is at most 2N + 2, the assertion follows by the Chernoff

bound. �

We next show that τ and τ ′ give the same output with high

probability. Recall that x ,y are fixed.

Lemma 8.2. Under Assumption 1, |τ (x ,y) − τ ′(x ,y)| ≤ ε/5.

Proof. Let (r ,v,w,m) ∈ S. Define

psucc (r ,v,w,m) =
Pw,x (U∗(r ,v,w,m))
Pw,x (U(r ,v,w,m))

.

Note that psucc is well defined as for every u ∈ U(r ,v,w,m) it
holds thatw ≼ u.

Fixδ ∈ (0, 1].We say that (r ,v,w,m) ∈ S is bad ifpsucc (r ,v,w,m)
< δ . Let B ⊆ S be the set of all bad tuples (r ,v,w,m). Consider
an iteration of the loop in Line 2 of τ , such that at the beginning

of this iteration, V ′ = v , V = w and M = m, and the value of the

variable R when V was last updated was r . Then, by Lemma 7.4,

psucc (r ,v,w,m) is the probability that the loop in Line 7 of τ ends

after its first iteration. Note that conditioned on reaching iteration i

of the loop in Line 7 of τ , the probability of iteration i being the last

iteration is the same for every i . Therefore, if (r ,v,w,m) ∈ S \ B,
the expected number of iterations of this loop is at most 1/δ .

Let u ∈ L and let r̄ ∈ R. Let {(vt ,mt)}t be the unique decompo-

sition of u with respect to x ,y, r̄ . We say that u is bad with respect r̄

to if there exists a t such that (rt ,vt−1,vt ,mt) is bad. LetLB, r̄ ⊆ L
be the set of all bad leaves with respect to r̄ .

Let τ ′′ be the protocol obtained from τ by limiting the number

of iteration of the loop in Line 2 to at most N ′ iterations. Assume

that τ ′′ is run with inputs x ,y. Let U be the output of τ ′′. Let K be

a random variable counting the total number of repetitions of the

loop in Line 7 of τ ′′ during the execution of τ ′′. By the Chernoff

bound, for every r̄ ∈ R,

Pr
R,R′

[
K > 1000N ′

δ
| R = r̄ ,U ∈ L \ LB, r̄

]
≤ 2−N

′/δ
,

where R is the randomness used for the executions of MidA and

MidB by τ ′′, and R′ is the rest of the randomness used by τ ′′. The
reason is that the number of iteration of the loop in Line 2 of τ ′′ is
at most N ′. This implies that

Pr
R,R′

[
K > 1000N ′

δ
| U ∈ L \ LB,R

]
≤ 2−N

′/δ
.

We get that

Pr
R,R′

[
K > 1000N ′

δ

]
= Pr

R,R′

[
K > 1000N ′

δ
| U ∈ LB,R

]
· Pr
R,R′

[
U ∈ LB,R

]
+ Pr
R,R′

[
K > 1000N ′

δ
| U ∈ L \ LB,R

]
· Pr
R,R′

[
U ∈ L \ LB,R

]
≤ Pr

R,R′

[
U ∈ LB,R

]
+ 2−N

′/δ
.

The rest of the proof is devoted to showing that for every r̄ ∈ R,
Px,y (LB, r̄) ≤ 20δN . Thus, by the accuracy claim, Lemma 7.1,

it also holds that for every r̄ ′ ∈ R, PrR′
[
U ∈ LB, r̄ |R = r̄ ′

]
≤

20δN . In particular, PrR′
[
U ∈ LB, r̄ |R = r̄

]
≤ 20δN , implying

PrR,R′
[
U ∈ LB,R

]
≤ 20δN . This suggests that Pr

[
K > 1000N ′

δ

]
≤

20δN + 2−N
′/δ . By setting δ = ε/200N , we get that

Pr
[
K > N ′′

]
≤ Pr

[
K > 200000N ′ ·N

ε

]
≤ ε/10+2−200N ·N ′/ε ≤ ε/9.

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Mark Braverman and Gillat Kol

The assertion then follows as by Claim 9,

|τ (x ,y) − τ ′(x ,y)| ≤ |τ (x ,y) − τ ′′(x ,y)| + |τ ′′(x ,y) − τ ′(x ,y)|

≤ 2−N
′/10
+ ε/9 ≤ ε/5.

Let u ∈ V and t ∈ {0, 1, . . . , 2N + 2}. Let µt be a probability

distribution over L given by

µt (u) =
{

Px,y (ft (u)) · Pft (u),x (u) if ft (u) = (Fi,y∩ ≼ u) for some i

Px,y (ft (u)) · Pft (u),y (u) if ft (u) = (Fi,x∩ ≼ u) for some i .

Claim 10. Let (r ,v,w,m) ∈ B and denote t = t(w). It holds that
Px,y (U∗(r ,v,w,m)) ≤ 8δµt (U(r ,v,w,m)).

Proof. Denote U∗ = U∗(r ,v,w,m) and U = U(r ,v,w,m).
Assume without loss of generality that leader (v) = B. There exists

i such that v ≼ Fi,y ≼ w , but there is no j such that v ≼ Fj,x ≼ w ,

therefore ft (w) = (Fi′,y∩ ≼ w) for some i ′.
It holds that

δ > psucc (r ,v,w,m) (as (r ,v,w,m) ∈ B)

=

Pw,x (U∗)
Pw,x (U)

=

Px,y (ft (w)) · Pft (w),x (w) · Pw,x (U∗)
Px,y (ft (w)) · Pft (w),x (w) · Pw,x (U)

(as ft (w) ≼ w)

=

Px,y (ft (w)) · Pft (w),x (U∗)
µt (U)

(as ft (w) = (Fi′,y∩ ≼ w) for some i ′)

≥
Px,y (ft (w)) · Pft (w),x,y (U∗)

8µt (U)
(by Claim 8)

=

Px,y (U∗)
8µt (U)

.

�

Let r̄ ∈ R. Let Sr̄ be the set of all (r ,v,w,m) ∈ {0, 1}T
′ ×V2 ×

{0, 1}T such that there exists v ∈ V with a unique decomposition

{(vt ,mt)}t with respect to x ,y, r̄ , such that r = r̄t ,v = vt−1,w = vt
andm =mt , for some t . Observe that Sr̄ ⊆ S.

Claim 11. Let r̄ ∈ R. Let (r1,v1,w1,m1) , (r2,v2,w2,m2) ∈ Sr̄
such that t(w1) = t(w2). Then,

U(r1,v1,w1,m1) ∩ U(r2,v2,w2,m2) = ϕ .

Proof. Since U(rb ,vb ,wb ,mb) ⊆ L(wb) for b ∈ {0, 1}, it can
only be the case that U(r1,v1,w1,m1) ∩ U(r2,v2,w2,m2) , ϕ if

w1 andw2 are on the same path, that is,w1 ≼ w2 orw2 ≼ w1. Let

b ∈ {0, 1}. Since (rb ,vb ,wb ,mb) ∈ Sr̄ , it holds thatvb is a vertex in

the unique decomposition of some vertexw ′ with respect to x ,y, r̄ .

Since vb is an ancestors of both wb and w ′, the vertices in the

unique decomposition ofwb andw (with respect to x ,y, r̄), that are

ancestors ofvb are the same. Therefore,vb is a vertex in the unique

decomposition ofwb with respect to x ,y, r̄ . Furthermore, vb must

be the last vertex (excludingwb itself) in the unique decomposition

of wb with respect to x ,y, r̄ . Therefore, since t(w1) = t(w2) and
sincew1 andw2 are on the same path, it must be the case that v1 =

v2. If v1 is the t
th vertex in the unique decomposition ofw ′, then it

is the case that r1 = r2 = r̄t+1. This implies that for everyu ∈ L(v1)
it holds that Mid

leader (v1)
r1 (x ,y,v1,u) = Mid

leader (v2)
r2 (x ,y,v2,u).

Therefore, u ∈ U(r1,v1,w1,m1) ∩ U(r2,v2,w2,m2) implies that

w1 = w2 and m1 = m2. A contradiction to the assumption that

(r1,v1,w1,m1) , (r2,v2,w2,m2). �

Let r̄ ∈ R. To conclude the proof, we compute the following

bound

Px,y (LB, r̄)

≤
∑

(r,v,w,m)∈B∩Sr̄
Px,y (U∗(r ,v,w,m))

≤ 8δ
∑

(r,v,w,m)∈B∩Sr̄
µt (w)(U(r ,v,w,m)) (by Claim 10)

≤ 8δ
∑

t ∈{0,1, ...,2N+2}

∑
(r,v,w,m)∈B∩Sr̄ : t (w)=t

µt (U(r ,v,w,m))

≤ 8δ (2N + 3)
(by Claim 11 and as µt is a probability distribution)

≤ 20δN .

�

Proof of Lemma 8.1. Denote by τ ∗ the protocol obtained from

τ by implementing the Pred and the CorrelatedSamplinд proto-

cols in a way that ensures that they never err or fail. In the same

way, we obtain the protocol (τ ′)∗ from τ ′. Recall that Pred and

CorrelatedSamplinд err with probability at most ε · I−5.
We first claim that E [|τ ′(X ,Y) − (τ ′)∗(X ,Y)|] < 0.1ε . Since the

loop in Line 7 iterates at most N ′′ times when running τ ′, the
CorrelatedSamplinд protocol is executed at mostN ′′ = O(I2) times

by τ ′, and thus the probability of an error in at least one of these

execution in at most I−2. Since the loop in Line 2 of τ ′ iterates at
most N ′ times when running τ ′, the protocols MidA and MidB

are called at most N ′ = O(I) times. Each such execution of MidA

or MidB executes the Pred protocol at most O(N) = O(I) times.

Therefore, Pred is executed at most O(I2) times by τ ′, and thus

the probability of an error in at least one of these execution in at

most I−2.
To prove the claim we use the triangle inequality,

E
[
|τ ′(X ,Y) − π (X ,Y)|

]
≤ E

[
|τ ′(X ,Y) − (τ ′)∗(X ,Y)|

]
+ E

[
|(τ ′)∗(X ,Y) − τ ∗(X ,Y)|

]
+ E

[
|τ ∗(X ,Y) − π ′(X ,Y)|

]
+ E

[
|π ′(X ,Y) − π (X ,Y)|

]
.

As explained above, the first term on the right hand side is upper

bounded by 0.1ε . The second term is upper bounded by 0.2ε by

Lemma 8.2. The third term is zero by Lemma 7.1. The last term is

upper bounded by 0.1ε by Claim 3. �

9 COMMUNICATION COST OF τ ′

Claim 12. Let x be an input. Let i ′ ≤ i ∈ N. Let Fi′−1,x ≼ v ≼
Fi′,x andw ∈ V(v) ∩ Fi,x . It holds that

log

(
Pv,x (w)
Pv (w)

)
≤ O(I).

Interactive Compression to External Information STOC’18, June 25–29, 2018, Los Angeles, CA, USA

Proof. By Claim 2, i − i ′ ≤ O(I). For j ∈ {i ′, . . . , i}, let vj =
(Fj,x∩ ≼ w). By Equation (3), for j ∈ {i ′, . . . , i − 1}, it holds that
Pvj ,x (vj+1)
Pvj (vj+1)

≤ 4. Using Claim 1,
Pv,x (vi′)
Pv (vi′) ≤ 8. Conclude that

log

(
Pv,x (w)
Pv (w)

)

= log
©­«
Pv,x (vi′)
Pv (vi′)

·
∏

j ∈{i′, ...,i−1}

Pvj ,x (vj+1)
Pvj (vj+1)

ª®¬
= log

(
Pv,x (vi′)
Pv (vi′)

)
+

∑
j ∈{i′, ...,i−1}

log

(
Pvj ,x (vj+1)
Pvj (vj+1)

)
≤ O(I).

�

Lemma 9.1. The correlated sampling step in Line 6 of τ ′ commu-

nicates O(T) bits in expectation.

Proof. Let t ∈ N. Assumewithout loss of generality that leader (Vt) =
A. Consider any execution of the correlated sampling step in Line 6

of τ , that is after the t th update of the value of V , but before the

(t + 1)st update. It holds that

D

(
PAt+1∥PL(Vt)

)
= E

u←PAt+1

[
log

(
PAt+1(u)
PVt (u)

)]
(11)

= E
u←PAt+1

[
log

(
PVt ,x (u)

PVt ,x (Ut) · PVt (u)

)]

= E
u←PAt+1

[
log

(
PVt ,x (u)
PVt (u)

)
+ log

(
1

PVt ,x (Ut)

)]

≤ O(I) + log
(

1

PVt ,x (Ut)

)
(by Claim 12)

Recall that we have fixed x ,y. Consider an execution of τ where

r̄ ∈ R is the randomness used for the executions ofMidA andMidB

by τ . We bound the second term on the right hand side of the last

inequality as follows

E

[
log

(
1

PVt ,x (Ut)

)]
(12)

= E
Vt−1,Vt ,Mt

[
log

(
1

PVt ,x (U(r̄t ,Vt−1,Vt ,Mt))

)]

= E
Vt−1

[∑
m∈{0,1}T ,w ∈V(Vt−1)

Pr[Vt = w,Mt =m |Vt−1]·

log

(
1

Pw,x (U(r̄t ,Vt−1,w,m))

)]

= E
Vt−1

[∑
m∈{0,1}T ,w ∈V(Vt−1)

Pr[U ∈ U∗(r̄t ,Vt−1,w,m)|Vt−1]·

log

(
1

Pw,x (U(r̄t ,Vt−1,w,m))

)]

≤ E
Vt−1

[∑
m∈{0,1}T ,w ∈V(Vt−1)

PVt−1,x,y (U∗(r̄t ,Vt−1,w,m))·

log

(
1

Pw,x (U(r̄t ,Vt−1,w,m))

)]

(by Lemma 7.1)

≤ 8 E
Vt−1

[∑
m∈{0,1}T ,w ∈V(Vt−1)

PVt−1,x (U∗(r̄t ,Vt−1,w,m))·

log

(
1

PVt−1,x (U(r̄t ,Vt−1,w,m))

)]

(by Claim 8)

≤ 8 E
Vt−1

[∑
m∈{0,1}T ,w ∈V(Vt−1)

PVt−1,x (U∗(r̄t ,Vt−1,w,m))·

log

(
1

PVt−1,x (U∗(r̄t ,Vt−1,w,m))

)]

(asU∗(r̄t ,Vt−1,w,m) ⊆ U(r̄t ,Vt−1,w,m))
≤ O(T),

where the last inequality holds becausem ,m′ implies that

U∗(r̄t ,Vt−1,w,m) ∩ U∗(r̄t ,Vt−1,w,m′) = ϕ,

and as for any random variable Z over k bits it holds that H(Z) ≤ k .

By [7], the expected number of bit communicated by the corre-

lated sampling step in Line 6 of τ ′ is upper bounded by

O(E
[
D

(
PAt ∥PL(Vt−1)

)]
+ I).

Equations (11) and (12) give a bound of O(I +T + I) = O(T). �

Claim 13. The protocol τ ′ communicates at most O(I2 · T) =
O(I3 log(I) log log(C)) bits in expectation.

Proof. During an execution of τ ′, the loop in Line 2 iterates at

most N ′ times. Each such iteration executes MidA or MidB once

(Line 9). By Lemma 4,MidA andMidB communicate at most O(T)
bits in expectation. Therefore, the total expected number of bits

communicated by the executions of MidA and MidB during an

execution of τ ′ is O(N ′ ·T) = O(I ·T).
During an execution of τ ′, the loop in Line 7 iterates at most

N ′′ times. Each such iteration executes the CorrelatedSamplinд

protocol once (Line 6). By Lemma 9.1, the correlated sampling

protocol communicates at mostO(T) bits in expectation. Therefore,

the total expected number of bits communicated by the executions

of CorrelatedSamplinд during an execution of τ ′ is O(N ′′ · T) =
O(I2 ·T). �

REFERENCES
[1] Reuven Bar-Yehuda, Benny Chor, Eyal Kushilevitz, and Alon Orlitsky. 1993.

Privacy, Additional Information, and Communication. IEEE Transactions on
Information Theory 39 (1993), 55ś65.

[2] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. 2004. An information
statistics approach to data stream and communication complexity. J. Comput.
Syst. Sci. 68, 4 (2004), 702ś732.

[3] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. 2010. How to compress
interactive communication. In STOC. 67ś76.

[4] Balthazar Bauer, Shay Moran, and Amir Yehudayoff. 2015. Internal Compression
of Protocols to Entropy. In APPROX/RANDOM. 481ś496.

[5] Mark Braverman. 2012. Interactive information complexity. In STOC. 505ś524.

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Mark Braverman and Gillat Kol

[6] Mark Braverman. 2013. A hard-to-compress interactive task? In 51th Annual
Allerton Conference on Communication, Control, and Computing (2013).

[7] Mark Braverman and Anup Rao. 2011. Information Equals Amortized Communi-
cation. In FOCS. 748ś757.

[8] Mark Braverman andOmriWeinstein. 2015. An Interactive InformationOdometer
and Applications. In STOC. 341ś350.

[9] Joshua Brody, Harry Buhrman, Michal Koucký, Bruno Loff, Florian Speelman,
and Nikolay K. Vereshchagin. 2013. Towards a Reverse Newman’s Theorem in
Interactive Information Complexity. In CCC. 24ś33.

[10] Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Chi-Chih Yao. 2001.
Informational Complexity and the Direct Sum Problem for Simultaneous Message
Complexity. In FOCS. 270ś278.

[11] Anat Ganor, Gillat Kol, and Ran Raz. 2016. Exponential separation of communi-
cation and external information. In STOC. 977ś986.

[12] Prahladh Harsha, Rahul Jain, David A. McAllester, and Jaikumar Radhakrishnan.
2010. The communication complexity of correlation. IEEE Transactions on
Information Theory 56, 1 (2010), 438ś449.

[13] David A. Huffman. 1952. A method for the construction of minimum redundancy
codes. proc. IRE 40, 9 (1952), 1098ś1101.

[14] Amiram H. Kaspi. 1985. Two-way Source Coding with a Fidelity Criterion. IEEE
Transactions on Information Theory 31, 6 (1985), 735ś740.

[15] Gillat Kol. 2016. Interactive compression for product distributions. In STOC.
987ś998.

[16] Eyal Kushilevitz and Noam Nisan. 1997. Communication complexity. Cambridge
University Press (1997).

[17] Alon Orlitsky and James R. Roche. 2001 (Preliminary version at the IEEE Interna-
tional Symposium on Information Theory (ISIT) 1995, FOCS 1995). Coding for
Computing. IEEE Transactions on Information Theory 47, 3 (2001 (Preliminary
version at the IEEE International Symposium on Information Theory (ISIT) 1995,
FOCS 1995)), 903ś917.

[18] Sivaramakrishnan Natarajan Ramamoorthy and Anup Rao. 2015. How to Com-
press Asymmetric Communication. In CCC. 102ś123.

[19] Claude E. Shannon. 1948. A mathematical theory of communication. The Bell
Systems Technical Journal 27 (1948), July 379ś423, October 623ś656.

[20] Alexander A. Sherstov. 2016. Compressing interactive communication under
product distributions. FOCS (2016).

[21] Omri Weinstein. 2015. Information Complexity and the Quest for Interactive
Compression. SIGACT News 46, 2 (2015), 41ś64.

