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ABSTRACT

Interactive proof systems allow a resource-bounded verifier to de-

cide an intractable language (or compute a hard function) by com-

municating with a powerful but untrusted prover. Such systems

guarantee that the prover can only convince the verifier of true

statements. In the context of centralized computation, a celebrated

result shows that interactive proofs are extremely powerful, allow-

ing polynomial-time verifiers to decide any language in PSPACE.

In this work we initiate the study of interactive distributed proofs:

a network of nodes interacts with a single untrusted prover, who

sees the entire network graph, to decide whether the graph satisfies

some property. We focus on the communication cost of the protocol

Ð the number of bits the nodes must exchange with the prover and

each other. Our model can also be viewed as a generalization of the

various models of łdistributed NPž (proof labeling schemes, etc.)

which received significant attention recently: while these models

only allow the prover to present each network node with a string

of advice, our model allows for back-and-forth interaction. We

prove both upper and lower bounds for the new model. We show

that for some problems, interaction can exponentially decrease the

communication cost compared to a non-interactive prover, but on

the other hand, some problems retain non-trivial cost even with

interaction.
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1 INTRODUCTION

Prover-assisted computation has received significant attention from

the distributed computing community [4, 10ś14, 17, 20ś23, 25, 26].

In this łdistributed NPž setting, a powerful prover attempts to

convince a set of nodes communicating over a network graph G

that the graph and their inputs satisfy some property, by giving

each node a short proof (usually called ładvicež or łlabelž) of this
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fact. The nodes then communicate briefly and decide whether to

accept or reject the proof given to them; the proof is accepted iff

all nodes accept it.

Several notions of łdistributed NPž have been considered in

the literature. All assume that the prover knows the entire graph

topology and input, while each node sees only local information

and a small part of the proof. Some problems, such as checking

bipartiteness, admit very short proofs [23], but some problems

essentially require the prover to give each node the entire network

graph [17, 23].

One motivation for łdistributed NPž is certifying the correctness

of a distributed algorithm; for example, a distributed spanning tree

algorithm might store, at each node, some additional information

beyond the tree pointers, so that the nodes can efficiently verify

that the output of the algorithm is indeed a spanning tree. In this

scenario we do not have a physical prover that is a separate entity

from the network Ð the advice is computed by the nodes themselves

when they run the distributed algorithm. However, another reason

to consider distributed NP is actual prover-assisted computation,

with a powerful prover that has more resources than the nodes.

The setting involving a łlivež powerful prover is more relevant

today than ever, due to the rise of the internet, cloud-based com-

putation, and data-intensive applications. Cloud computing allows

computationally limited devices to delegate their costly computa-

tion to a cloud with tremendous computational power. Interactive

proof systems can thus allow devices that do not trust their cloud

service (as it may be malicious, motivated by self-interest, or simply

buggy) to verify the correctness of the computation performed. In

the same manner, interactive distributed proofs can allow central

entities holding massive amounts of data (Facebook knowing the

topology of a social network, 23andMe and other genetic companies

having large graphs describing gene propagation, etc.) to convince

their clients of some truth about the network. (For example, if the

graph has good expansion, this means that small communities do

not tend to segregate.)

With this motivation in mind, in this work we initiate the study

of interactive distributed proofs, a distributed analogue of the in-

teractive proof systems that are well-studied in complexity theory.

Instead of merely having the prover give the network nodes a proof

and łdisappearž, we allow the nodes to engage in a brief interaction

with the prover, spanning multiple (but typically constant) rounds.

We ask whether such interaction can help reduce the proof size for

problems that are intractable in łdistributed NPž.

We follow the usual complexity-theoretic nomenclature, where

the prover is calledMerlin (because of its unbounded power) and the

verifier is called Arthur (the mortal, with bounded resources). For

example, a distributed Arthur-Merlin protocol, or a dAM-protocol

for short, proceeds as follows: first, each network node v sends



the prover some independent random bits, Rv (a łchallengež).1 The

prover responds by giving each node v a responseMv . The node

then examines the responses received by itself and its immediate

neighbors, {Mu | u ∈ N (v)}, together with its input and random-

ness Rv , and decides whether to accept or reject. The protocol

accepts if and only if all nodes accept. Similarly, a dMAM protocol

(distributed Merlin-Arthur-Merlin protocol) will start with the prover

giving each node a message. This is followed by each node respond-

ing with some random bits (challenge), and the prover replying to

the challenge with a second message to each node.

An interactive protocol is correct if for any YES-instance (i.e.,

any graph and input satisfying the property we are interested in),

there exists a prover that has probability at least 2/3 of causing all

nodes to accept; and on the other hand, for any NO-instance, no

prover has probability more than 1/3 of causing all nodes to accept.

The complexity measure we are interested in is the total amount of

communication between any individual node and the prover. For

upper bounds, we include the random bits sent to the prover in the

cost; for our lower bound we do not charge for them. Unlike the

complexity-theoretic setting, but in keeping with typical distributed

models, the network nodes and the prover are computationally

unbounded.

We note that interaction lends tremendous power to verifiers in

the computational complexity setting [2, 24, 27]: adding interaction

allows the verifier to decide all languages in PSPACE [24, 27], which

is widely believed to bemuch larger thanNP. Interactive proofs were

also considered in the communication complexity setting, where

it is assumed that the two communicating parties may consult a

prover that knows both of their inputs [1, 18, 19]. Unfortunately,

proving lower bounds in the interactive communication-complexity

setting is very difficult, and for Arthur-Merlin protocols only certain

restricted lower bounds are known [16].

1.1 Our Contributions

In this paper we make some first steps towards understanding

the role of interaction in distributed proofs. We define interactive

distributed proof systems and give positive and negative results

regarding their power.

1.1.1 The Graph Symmetry Problem (Section 3). In the Graph

Symmetry Problem, Sym, studied in [17], the network must decide

whether the network graph has a non-trivial automorphism (see

Section 2 for a formal definition). It is shown in [17] that Sym

requires proofs of length Θ(n2) at each node in the NP setting; we

show that interaction is very useful for this problem.

dMAM protocol (Section 3.1). We give a dMAM interactive pro-

tocol in which the communication between each network node

and the prover is O(logn) bits. In our protocol, the prover first

łcommitsž to a function ρ (that is supposedly an automorphism of

the graph) by giving each node its image under ρ. The next two

rounds are devoted to verifying that ρ is a permutation and that ρ

łrespectsž the edges of the graph. We show that this verification can

be done with low communication using distributed linear hashing.

1 We note that the restriction to challenges that are purely random is not significant if
the verifiers do not have randomness hidden from the prover: the prover can see each
node’s input, so we can simulate more complicated challenges by asking the prover to
compute the challenge using the node’s randomness and input.

We mention that our approach crucially utilizes the interaction, as

the seed for the hash must be selected by the verifiers after the

prover is already committed to ρ.

Theorem 1.1. Sym ∈ dMAM[O(logn)].

Exponential separation of distributed NP and distributed AM (Sec-

tion 3.3). The Symmetry problem can be modified to yield an expo-

nential separation between distributed NP and AM: if we restrict

the automorphism to a fixed one instead of asking whether there

exists an automorphism, we can eliminate the first round, where

the prover commits to the automorphism. We call the restricted

problem DSym, and observe that it is still subject to the quadratic

lower bound from [17], therefore yielding:

Theorem 1.2 (informal statement). DSym ∈ dAM[O(logn)],

but any łdistributed NPž scheme requires advice of length Ω(n2).

An interesting open problem is whether this is the largest possi-

ble gap between distributed NP and AM.

dMAM protocol (Section 3.2). While for restricted versions of

Symmetry our dMAM protocol implies a dAM protocol with the

same cost, it is unclear if this is achievable in the general case.

However, we are able to show a dAM protocol for Symmetry with

nearly linear cost.

Theorem 1.3. Sym ∈ dAM[O(n logn)].

We mention that in the computational complexity setting, it

is known that AM[k] = AM[2] for any constant k , meaning that

round reduction is always possible. The same is not known for our

model, and an intriguing open problem is devising general round

reduction theorems.

Lower bound (Section 3.4). In [17], an Ω(n2) lower bound for Sym-

metry is proven by essentially reducing from the nondeterministic

two-party communication complexity of the Equality function.2

A lower bound of Ω(n2/log(n)) for Non-3-Colorability is proven

by reduction from Set Disjointness. Unfortunately, the strategy of

reducing from a hard 2-party communication complexity problem

is not available to us here: proving any explicit non-trivial lower

bound for two-party Arthur-Merlin communication complexity is

a long-standing open problem (see for example [16]).

Instead, we leverage the distributed nature of the problem: the

fact that each node can only see a small part of the input and

the prover’s response. We show a lower bound of Ω(log logn) on

Arthur-Merlin interactive protocols for Symmetry, even if the nodes

share an unbounded amount of randomness with the prover and

with each other. (Sharing unbounded randomness with the prover

amounts to allowing the nodes to send the prover messages of

unbounded length łfor freež.) We note that such bounds cannot

be obtained by simple counting arguments, as the prover’s mes-

sage to each of the nodes may depend on the random challenges

communicated by all nodes.

Theorem 1.4. If Sym ∈ dAM[f (n)], then f (n) = Ω(log logn).

We develop a framework for proving lower bounds like the one in

Theorem 1.4, using a packing argument: we show how to associate

2The proof in [17] is not stated as a reduction, and it re-proves the hardness of Equality,
but it can easily be transformed into a formal reduction from Equality.



the execution of a protocol of length L on a graph G with an f (L)-

dimensional vector (in our case, f (L) = 22
O(L)

). We prove that if the

protocol is correct, then it must be able to differentiate between

the different graphs, in the sense that the vectors associated with

different graphs must be łfar apartž. Since it is not possible to pack

too many łfar apartž vectors into [0, 1]f (L), but the set of possible

graphs is large, a lower bound on L is obtained. We mention that

part of our argument is general and also holds for properties other

than Sym. Adapting the full proof to other graph properties, and

closing the gap between our dAM upper and lower bounds for

Symmetry, remain interesting challenges.

1.1.2 The Graph Non-Isomorphism Problem (Section 4). Finally,

we turn our attention to the famous Graph Non-Isomorphism (GNI)

problem, which is in some sense the poster child for classical in-

teractive and zero-knowledge proofs. It seems that the łstandardž

protocol for GNI cannot be adapted to the distributed setting (see

section 4 for discussion). Instead, we develop a distributed version

of the beautiful Goldwasser-Sipser protocol for GNI. This protocol

was developed in [15] in the context of proving that interactive

proofs do not require the verifier to have private randomness which

is hidden from the prover. We show that with a few rounds of in-

teraction (Arthur-Merlin-Arthur-Merlin), the Goldwasser-Sipser

protocol can be made distributed, and obtain an O(n logn) protocol

for GNI.

Theorem 1.5. GNI ∈ dAMAM[O(n logn)].

Our main technical contribution here is a type of distributed

hash function that we call distributed almost pairwise-independent

hash. The Goldwasser-Sipser protocol crucially relies on the use

of a pairwise-independent hash function with a short seed length,

but the seed length is too long for us (Θ(n2) bits), and it is not

possible to łbreakž the seed into small parts and give each node one

part without ruining the linearity of the hash3. Instead, we show

that the requirement of pairwise-independence can be relaxed into

almost pairwise-independence, and for the weaker requirement

we construct a distributed hash function where the seed can be

distributed, with each node contributing a small part.

We mention that it can be shown that the distributed GNI prob-

lem requires Ω(n2) bits of advice without interaction, using an

argument similar to the one used in [17] to prove the Ω(n2) lower

bound for Symmetry.

1.2 Related Work

There is a large body of work on various notions for łdistributed NPž

and their relative expressive power, e.g., [6, 8, 9, 20ś23, 25, 26]; we

refer to the excellent surveys [7, 28] for a comprehensive overview.

For lack of space, we mention here only the most directly relevant

work.

Our protocols rely on the spanning-tree construction from [23],

which uses advice of length Θ(logn).

Our lower bound construction for Symmetry is inspired by the

dumbbell construction from [17].

In [4], a notion of randomized proof-labeling schemes (RPLS) is

introduced, where the prover can give advice of unbounded length

3Recall that our protocols for Symmetry exploit the linearity of the hash to compute
the hash value in a distributed manner.

to each node, and the nodes then send each other randomized

messages and decide whether to accept or reject. It is shown in [4]

that any problem has an RPLS of exponentially-smaller length

compared to the deterministic length required. However, this result

is not applicable to our setting, because we do charge the prover for

its communication with the nodes; the scheme from [4] increases

the advice length by a factor corresponding to the maximum degree,

i.e., up to linear.

In [3], the authors equip the verifiers with alternating Turing

Machines, and classify decision tasks based on the levels of alter-

nation (exists/forall) required. Alternation can be viewed as a type

of interaction with two provers: one prover trying to convince the

verifiers of the łexistsž statement, and the other of its negation, a

łfor allž statement. However, in [3] there is no randomization, and

the provers compete with each other. In contrast, here we have a

single prover, and the interaction is randomized.

2 PRELIMINARIES

2.1 Notation

We let NG (u) denote the neighborhood of node u in graph G, in-

cluding node u itself. We omit the subscript G when the graph is

clear from the context. We let G(V ) denote the set of all graphs

on vertices V . We sometimes give each graph node an input from

some domain I; let I(V ) denote the set of all assignments of inputs

from I to the nodes in V .

When we work with a graph G = (V ,E) on n vertices, we use

{0, 1}m×V to denote the set ofn-vectors where each coordinate is in

{0, 1}m , and the coordinates are indexed byV . We let xv ∈ {0, 1}m

denote the coordinate corresponding to v in x ∈ {0, 1}m×V ; and

for a subset S = {v1, . . . ,vk } ⊆ V , we let xS denote the vector

xv1 . . . xvk corresponding to nodes in S . For example, if a prover’s

response to all nodes in the graph isM ∈ {0, 1}m×V , then a specific

node v’s response is written Mv , and the responses given to v’s

neighbors, including v , areMNG (v).

We often conflate a set S ⊆ X with its characteristic vector χ :

X → {0, 1}, where χx = 1 iff x ∈ S . We abuse notation by using

the same letter to denote both the set and its characteristic vector.

2.2 Interactive Distributed Proofs

We define here one-round Arthur-Merlin proofs, the class dAM,

somewhat informally.

Definition 1 (1-Round Arthur-Merlin Protocol, Informal). In a

1-round Arthur-Merlin protocol of length ℓ, each vertex v sends the

prover a uniformly random challenge rv ∈ {0, 1}ℓ . The prover P

sends back a responseMv ∈ {0, 1}ℓ , which is a function of the graph

G, the input I , and the random challenges {rv | v ∈ V }.

The protocol specifies a decision function outv for each v ∈ V ,

which takes node v’s neighborhood and input, the random challenges

of node v and its neighbors, and the response issued to node v and its

neighbors, and outputs a Boolean value. We denote:

• outΠv (G, I , r ,M) = outΠv (NG (v), I (v), rNG (v),MNG (v)), the de-

cision value at node v when the graph is G, the input is I , the

random challenge is r and the prover’s response isM ;

• Π(P ,G, I ,v), the random variable representing v’s decision

when it interacts with a prover P .



We remark that our upper bounds do not need the nodes to

see the randomness of their neighbors, rNG (v), only their own

randomness rv . Our lower bound does give rNG (v) to each node v .

Definition 2 (The class dAM[ℓ]). A language L ⊆ G(V ) × I(V )

is in the class dAM[ℓ], for ℓ ∈ N, if there is a protocol Π of length ℓ

satisfying:

(G, I ) ∈ L =⇒ ∃P , Pr (all nodes accept) > 2/3

(G, I ) < L =⇒ ∀P , Pr (all nodes accept) < 1/3.

Sometimes we are interested in łpure graph propertiesž, where

there is no input other than the network graph. In this case we omit

the input I from all our notation.

In Section 3.1 we give a Merlin-Arthur-Merlin (dMAM) protocol.

Here, the prover goes first, and gives each node v a responseM1
v .

The nodes then send a random challenge rv , and the prover sends

back a second responseM2
v . Finally, each node outputs a decision,

depending on its input, and the randomness and responses of itself

and its neighbors. Our correctness requirement is the same as for

dAM.

We assume for simplicity that we have a fixed set of nodes

V , known in advance to all the participants. However, our upper

bounds generalize in a straightforward manner to the case where

we have some polynomially-large namespace N , and we draw n

nodes from N .

Describing interactive protocols. When we specify an interactive

protocol, we specify two types of interaction: messages sent by

the prover to the nodes, and messages sent by the nodes to the

prover. Messages from nodes to the prover are indicated byv → P ,

followed by the contents of the message. Here, v is the identifier of

the sending node.

For convenience, we use two types of prover responses:

• Broadcast messages, where the prover is required to provide

all nodes with the same value, and the nodes verify that

indeed they all got the same value. This type of message is

indicated by P → v (Broadcast), followed by the contents

of the message. We assume implicitly that each node com-

pares the response it received to the responses its neighbors

received, and rejects if some neighbor received a different

response.

• Unicast messages, where the prover can give a different value

to each node. This type of message is indicated by P → v

(Unicast), followed again by the contents.

2.3 Problem Definitions

We consider the following problems:

Definition 3 (Graph Symmetry). The language Sym is the set of

all symmetric graphs, that is, graphs that have a non-trivial automor-

phism.

(A permutation ρ : V → V is an automorphism of G = (V ,E) if

for every u,v ∈ V we have {u,v} ∈ E iff {ρ(u), ρ(v)} ∈ E. A non-

trivial automorphism is an automorphism that is not the identity

function.)

We formulate a distributed version of Graph Non-Isomorphism,

as follows:

Definition 4 (Graph Non-Isomorphism). The language GNI is the

set of all pairs of graphs (G0,G1) such thatG0 is not isomorphic toG1.

Here, the network graph is the graphG0, and the second graphG1

is given as inputs to the nodes, with each nodev receiving its neigh-

borhood NG1
(v). An alternative definition, which our algorithm

also solves, is the following: we have only one graph, the network

graph G. Each node in the graph is marked with an input from

{0, 1,⊥}, and the goal is to determine whether the subgraph in-

duced by the nodes marked 0 is not isomorphic to the subgraph

induced by the nodes marked 1. The version we formulated in Def-

inition 4 is a little stronger than this second version, because it

does not allow nodes to communicate over the edges of the second

graph G1.

3 INTERACTIVE DISTRIBUTED PROOFS FOR
THE SYMMETRY PROBLEM

3.1 An O(logn)-Bit dMAM Protocol

Recall that Sym is the class of all graphs that have a non-trivial

automorphism. To verify that G ∈ Sym, we ask the prover to pro-

vide a non-trivial automorphism ρ : V → V of the graph, by giving

each node v ∈ V its image ρ(v) under the automorphism. We then

verify that ρ is indeed a non-trivial automorphism, that is, ρ is not

the identity function, and ρ is an automorphism of G.

Verifying that ρ is not the identity function is easy: we ask the

prover to broadcast (i.e., tell all the nodes) a node v ∈ V such that

ρ(v) , v , and node v then checks that indeed ρ(v) , v .

To check that ρ is an automorphism of G we use the adjacency

matrix of G, a matrix AG whose rows and columns are indexed by

nodes v ∈ V , and where AG (u,v) = 1 iff {u,v} ∈ E. Intuitively, ρ is

an automorphism of G iff when we permute the rows and columns

of AG according to ρ, we get the same matrix we started with:

(u,v) ∈ E iff (ρ(u), ρ(v)) ∈ E. Let ρ(AG ) denote the ρ-permuted

version of AG , where the v-th row is replaced by the ρ(v)-th row

for each v ∈ V , and similarly for the columns.

No single node of G knows the entire adjacency matrix AG , but

each node v knows its row in AG . Moreover, since v sees all the

images ρ(u) of its neighbors u ∈ NG (v), it can compute row ρ(v)

of the ρ-permuted matrix, ρ(AG ). We exploit this to check whether

AG = ρ(AG ).

3.1.1 The Permuted Adjacency Matrix. For a vector r ∈ {0, 1}n ,

we denote by [i, r ] the n ×n boolean matrix where the i-th row is r ,

and the rest of the matrix is 0. This is a convenient representation:

for any n × n boolean matrix A, if the rows of A are r1, . . . , rn ∈

{0, 1}n , then A =
∑n
i=1[i, ri ]. In particular, for a graph G, the adja-

cency matrix of G can be written as AG =
∑
v ∈V [v,N (v)], where

here we think of the neighborhood N (v) as represented by a vector

N (v) ∈ {0, 1}V (with self-loops for all vertices).

Given a function ρ : V → V and a subset S ⊆ V , let ρ(S) =

{ρ(s) | s ∈ S}. Equivalently, when S is represented as the character-

istic vector S ∈ {0, 1}V , then ρ(S) is the characteristic vector where

ρ(S)v = 1 iff there exists u such that ρ(u) = v and Su = 1.

Our protocol requires the prover to commit to an automorphism

of G. To verify that the prover-provided mapping is an automor-

phism, we rely on the following observation:



Observation 1. A permutation ρ : V → V is an automorphism ofG

iff for all v ∈ V we have N (ρ(v)) = ρ(N (v)).

Proof. By definition, ρ is an automorphism iff for everyu,v ∈ V ,

it holds that u ∈ N (v) iff ρ(u) ∈ N (ρ(v)). Since ρ is a permutation,

this is equivalent to saying that for every u,v ∈ V , ρ−1(u) ∈ N (v)

iff u ∈ N (ρ(v)), that is, ρ(N (v)) = N (ρ(v)). �

As a corollary, we can show:

Lemma 3.1. Let ρ : V → V be a function such that
∑
v ∈V [v,N (v)] =∑

v ∈V [ρ(v), ρ(N (v))]. Then ρ is an automorphism of G.

Proof. First, we prove that ρ is a permutation onV . Assume for

contradiction that ρ is not a permutation. In this case, there exists a

v∗ ∈ V such that v∗ is not in the range of ρ, i.e., ρ(v) , v∗ for any

v ∈ V . Thus, in the sum
∑
v ∈V [v,N (v)], the row corresponding

to v∗ is non-zero, as N (v∗)v∗ = 1. On the other hand, the row

corresponding to v∗ in the sum
∑
v ∈V [ρ(v), ρ(N (v))] is the all zero

row, a contradiction.

Having established that ρ is a permutation on V , it is easy to

see that ρ is an automorphism of G: for each u ∈ V , the row cor-

responding to ρ(u) in the sum
∑
v ∈V [v,N (v)] is N (ρ(u)), and in

the sum
∑
v ∈V [ρ(v), ρ(N (u))] the row corresponding to ρ(u) is

ρ(N (u)). Therefore these two rows must be equal for every u ∈ V .

By Observation 1, this means that ρ is an automorphism of G. �

We see that to check if ρ is an automorphism, it suffices to verify

that
∑
v ∈V [v,N (v)] =

∑
v ∈V [ρ(v), ρ(N (v))]. However, we can not

afford to have nodes send their entire rows, because this would

require O(n) bits per node in the worst case. Instead, we use linear

hash functions to hash the rows ofAG and ρ(AG ), sum up the hashes

for the rows of each matrix, and verify that the sums are equal.

3.1.2 Hashing the Adjacency Matrix. A linear hash function

allows us to hash a composite object, x1+x2, by hashing its building

blocks, x1 and x2; in our case, we can hash the entire adjacency

matrix by having each node hash its own row.

A small linear hash function family is known to exist:

Theorem 3.2. Let m,p ∈ N, where p is prime. There exists a

familyH of functions h : {0, 1}m → {0, . . . ,p − 1} of size |H | = p

such that for x ,x ′ ∈ {0, 1}m , we have the following properties:

(1) Linearity: h(x + x ′) = h(x) + h(x ′).

(2) Small collision probability: If x , x ′ then

Pr
h∈H

(
h(x) = h(x ′)

)
≤ m

p .

Note that in (1) above, the sum on the right-hand is modulo p,

and the sum on the left-hand side is defined as x + x ′ = (x1 +

x ′1 (mod p), . . . ,xm + x
′
m (mod p)).

We always use Theorem 3.2 to hash n × n boolean matrices, so

we always takem = n2. Note that since |H | = p, picking a random

hash function fromH only requires O(logp) random bits.

Unless stated otherwise, letH be the hash function family given

by Theorem 3.2, for some prime p ∈ [10n3, 100n3]. (Such a prime

exists by Bertrand’s Postulate / Chebyshev’s Theorem.) Picking a

random hash function from H only requires O(logn) random bits

(łthe seedž).

3.1.3 The Protocol. Now we are ready to describe our dMAM

protocol for Symmetry; see the formal description in Protocol 1. As

a building-block, we use the spanning tree proof labeling scheme

from [23], and the prover helps the nodes łsum their hash values

up the treež.

In the first round, the prover presents each node v ∈ V with: the

value ρv ∈ V , the parent tv ∈ V of v in the spanning tree, the root

r ∈ V of the tree, and v’s distance dv ∈ [n] from the root, in (what

the prover claims is) a spanning tree rooted at a node r such that

ρr , r .

The nodes verify that indeed they received a spanning tree, in the

standard way [23], and that they agree on the root of the tree. The

root r verifies that ρr , r , to ensure that the claimed automorphism

is not trivial.

Let ρ : V → V be defined by ρ(v) = ρv (where ρv is the value

the prover gave tov). Next, we want to verify that
∑
v ∈V [v,N (v)] =∑

v ∈V [ρ(v), ρ(N (v))], by having the nodes agree on a hash function

and apply it to both sides. However, the hash function needs to be

random, and all nodes need to know it; since the nodes do not have

shared randomness, we use the prover to łsimulatež it. The root of

the tree selects a random hash function hi ∈ H and sends its index

to the prover; the prover then gives hi to all the nodes, and they

verify that they all received the same hi . The prover also assists the

nodes in applying the linear hash function łup the treež: to each

node v , if Tv is the subtree rooted at v (in the spanning tree the

prover provided), the prover gives v two values av ,bv ∈ [p], which

it claims are the two hash values:

av = hi (
∑
u ∈Tv

[u,N (u)]), bv = hi (
∑
u ∈Tv

[ρ(u), ρ(N (u))]). (1)

To verify that the prover computed the hash correctly, each node

sums its children’s hash values and adds the hash of its neighbor-

hood, and verifies that the sum matches the value it got from the

prover.

In Protocol 1, each of the nodes exchanges a total of O(logn) bits

with the prover. The rest of this subsection is devoted to proving

the correctness of the protocol.

Lemma 3.3. Suppose that all vertices in the graph decided to accept.

Then, ar = hi (
∑
v ∈V [v,N (v)]) and br = hi (

∑
v ∈V [ρ(v), ρ(N (v))]).

Proof. Due to Line 1, there is an edge between v and tv for all

v , r . Let T be the subgraph formed by these edges. Then T is

a spanning tree rooted at r ; this part is standard, so we omit the

proof.

We show by induction on the height of node v in T that av =∑
u ∈Tv hi ([u,N (u)]), and bv =

∑
u ∈Tv hi ([ρ(u), ρ(N (u))]).

The base case is immediate: leaves have no children, so their

verification step (Line 3) verifies the claim. As for the step, suppose

that the claim holds for all children of v: for each u ∈ C(v), au =∑
w ∈Tu hi ([w,N (w)]), and similarly for bu . Then in v’s verification



Protocol 1 A dMAM protocol for Sym

P → v (Broadcast): The prover sends a vertex r (claimed

spanning tree root).

P → v (Unicast): The prover sends:

the identifier ρv (claimed image under the automorphism);

the identifier tv (claimed parent);

and a number dv ∈ [n] (claimed distance from the root).

v → P : Each node sends a random index iv ∈ [|H |].

P → v (Broadcast): The prover sends an index i ∈ [|H |]

(claimed hash index sent by the root).

P → v (Unicast): The prover sends hash values av ,bv ∈ [p].

The verification procedure:

1: If v , r , verify that tv ∈ N (v) and dtv = dv − 1.

If v = r , verify that dv = 0.

2: Let C(v) = {u ∈ N (v) | tu = v}.

3: v verifies that

av = hi ([v,N (v)]) +
∑

u ∈C(v)

au ,

bv = hi ([ρv ,Nρ (v)]) +
∑

u ∈C(v)

bu .

Here, Nρ (v) is the vector whose v
th coordinate is 1 iff there

exists c ∈ C(v) such that ρc = v .

4: If v = r , verify that ar = br , ρr , r , and i = ir .

step, it verifies that

av = hi ([v,N (v)]) +
∑

u ∈C(v)

au

= hi ([v,N (v)]) +
∑

u ∈C(v)

∑
w ∈Tu

hi ([w,N (w)])

=

∑
w ∈Tv

hi ([w,N (w)]) = hi
©­«

∑
w ∈Tv

[w,N (w)]
ª®¬
,

where the last step is by linearity of hi . The verification for bv is

similar. �

Theorem 3.4. Algorithm 1 satisfies the followings:

G is symmetric =⇒ ∃P , Pr (all nodes accept) > 2/3

G is not symmetric =⇒ ∀P , Pr (all nodes accept) < 1/3.

Proof. Consider first the case where G is symmetric, and let ρ

be a non-trivial automorphism ofG . Let r ∈ V be some vertex such

that ρ(r ) , r . An łhonestž prover can convince all nodes to accept,

by specifying:

• Any spanning tree T rooted at r . The prover gives each

vertexv its image under ρ, its parent inT , its distance from r ,

and the name of r .

• After receiving the random indices from each vertex, the

prover responds with the index i = ir sent by the root. It then

gives each vertex v the values av ,bv computed according

to (1).

It is easy to verify that these responses pass the verification proce-

dure.

Now suppose that G is not symmetric, and fix a prover P . We

show that the probability that P convinces all nodes to accept is less

than 1/3. Specifically, we show that for any choice of root r0, if the

prover specifies r0 as the root, then the probability it can convince

all nodes to accept is less than 1/3;

To that end, consider a fixed root r0 ∈ V . By Lemma 3.3, if all

vertices decided to accept we have

ar0 = hi

( ∑
v ∈V

[v,N (v)]

)
and br0 = hi

( ∑
v ∈V

[ρ(v), ρ(N (v))]

)
.

IfG is not symmetric, then in particular, the mapping ρ provided by

the prover in the first round is not a non-trivial automorphism. We

know that ρ is not the identity mapping, because ρ(r0) , r0 (oth-

erwise the root rejects). Therefore, it is not an automorphism, and by

Theorem 3.1, wemust have
∑
v ∈V [v,N (v)] ,

∑
v ∈V [ρ(v), ρ(N (v))].

However, the root only accepts if ar0 = br0 . Due to Theorem 3.2 and

by the selection of the parameters ofH , it holds that if
∑
v ∈V [v,N (v)]

,
∑
v ∈V [ρ(v), ρ(N (v))], then the probability of the event ar0 = br0

is at most 1/3. The reason is that the hash indices iv were sent to the

prover after the prover already committed to r and ρv . Therefore,

i = ir is a random hash index that is only known to the prover after

the prover is already committed to the values
∑
v ∈V [v,N (v)] and∑

v ∈V [ρ(v), ρ(N (v))].

�

3.2 An O(n logn)-Bit dAM Protocol

Let us now leverage the ideas from the previous section to obtain a

dAM protocol for Symmetry. The prover in dAM has more power

than it does in dMAM: in dAM, we cannot force the prover to

commit to the permutation ρ before the random challenge is issued.

To deal with the extra difficulty, our dAM protocol is longer, and

uses O(n logn) bits. We use the extra bits first, we ask the prover

to give each vertex v the full automorphism ρ : V → V , not just its

own value ρ(v). Second, we use a much longer hash, to make the

probability of collision so small that we can union-bound over all

possible mappings V → V .

Other than these two changes, the protocol is similar to the

dMAM protocol, but the random challenge is now issued before the

prover provides the spanning tree and the permutation (see formal

description in Protocol 2). The protocol uses the hash function

family given by Theorem 3.2 for some prime p ∈ [10nn+2, 100nn+2].

Picking a random hash function fromH requiresO(n logn) random

bits.

In Protocol 2, each of the nodes exchanges O(n logn) bits with

the prover. The rest of this subsection is devoted to proving the

correctness of the protocol.

Observe that Lemma 3.3 continues to hold: its correctness does

not depend on when the random challenge ir is issued, whether

it is before or after the prover specifies the spanning tree and the

permutation.

Theorem 3.5. Algorithm 2 satisfies the followings:

G is symmetric =⇒ ∃P , Pr (all nodes accept) > 2/3

G is not symmetric =⇒ ∀P , Pr (all nodes accept) < 1/3.

Proof. If G is symmetric, an honest prover can convince all

nodes to accept, much the same as it did in the dMAM protocol.



Protocol 2 A dAM protocol for Sym

v → P : Each node sends a random index iv ∈ [|H |].

P → v (Broadcast): a permutation ρ : V → V , an index

i ∈ [|H |] and a vertex r ∈ V .

P → v (Unicast): an identifier tv ∈ V , a number dv ∈ [n], and

two hash values av ,bv ∈ [p].

The verification procedure:

1: If v , r , verify that tv ∈ N (v) and dtv = dv − 1.

If v = r , verify that dv = 0.

2: Let C(v) = {u ∈ N (v) | tu = v}.

3: v verifies that

av = hi ([v,N (v)]) +
∑

u ∈C(v)

au ,

bv = hi ([ρ(v), ρ(N (v))]) +
∑

u ∈C(v)

bu .

4: If v = r , verify that ar = br and ρ(r ) , r and i = ir .

Suppose that G is not symmetric, and fix a root r0. Since G is

not symmetric, by Lemma 3.1, for any mapping σ : V → V that is

not the identity, we have
∑
v ∈V [v,N (v)] ,

∑
v ∈V [σ (v),σ (N (v))].

However, by Lemma 3.3, the root only accepts if

hi

( ∑
v ∈V

[v,N (v)]

)
= hi

( ∑
v ∈V

[ρ(v), ρ(N (v))]

)
.

We show that for a random hi ∈ H , the probability that there exists

a mapping σ : V → V that is not the identity and will make the

verifiers accept is small:

Pr
hi ∈H

(
∃σ : hi

( ∑
v ∈V

[v,N (v)]

)
= hi

( ∑
v ∈V

[σ (v),σ (N (v))]

))
<

1

3
.

Since by Line 4, ρ(r ) , r , thus ρ is not the identity, it follows that

the prover can only convince all nodes to accept with probability

less than 1/3.

Consider a specific mapping σ : V → V that is not the identity.

By universality,

Pr
hi ∈H

(
hi

( ∑
v ∈V

[v,N (v)]

)
= hi

( ∑
v ∈V

[σ (v),σ (N (v))]

))
≤

1

3nn
.

A union bound across all nn mappings yields the claim. �

3.3 An Exponential Separation between
Distributed NP and Distributed AM

In the previous sections, we gave a dMAM protocol for Symme-

try using O(logn) bits, and an dAM protocol using O(n logn) bits.

Symmetry is known to require Ω(n2) bits with no interaction [17]

even in the relatively powerful Locally Checkable Proof model. We

now define a simple variant, which we call Dumbbell Symmetry,

for which we can give an O(logn)-bit AM protocol. The variant is

still subject to the Ω(n2) lower bound from [17], so this shows an

exponential separation between one-round distributed interactive

proofs and LCPs. In fact, the definition of Dumbbell Symmetry is

directly inspired by the lower bound of [17]: it is the Symmetry

problem, but restricted to symmetric dumbbell graphs with a fixed

isomorphism mapping one side of the dumbbell to the other.

For the sake of concreteness, let us restrict attention to the case of

LCPs with local horizon 1, that is, each node sees only the advice of

itself and its immediate neighborhood. (Extending to any constant

local horizon, even one which is not known in advance, is easy.)

Theorem 3.6. There is a language DSym of O(n)-vertex graphs,

which is in dAM[O(logn)], but does not have a Locally Checkable

Proof with local horizon 1 and length Ω(n2).

Definition 5 (Dumbbell Symmetry). The language DSym is the set

of (2n + 2r + 1)-vertex graphs G = ({0, . . . , 2n + 2r },E) which have

the following structure:

• Let F0, F1 be the subgraphs induced byG on vertices {0, . . . ,n − 1}

and {n, . . . , 2n − 1}, respectively. Then the mapping σ ′(x) =

x + n is an isomorphism from F0 to F1.

• The subgraphs F0, F1 are connected to each other by a path

using the remaining vertices,

0 − (2n) − (2n + 1) − . . . − . . . (2n + 2r ) − n.

• G contains no edges other than the internal edges of F0, F1 and

the path.

In [17] it is shown that DSym requires Ω(n2) bits for Locally

Checkable Proofs, even if each node can see the advice of its entire

r -neighborhood.

We next show that DSym can be decided by a dAM protocol

using O(logn) bits. By definition of DSym, we have G ∈ DSym iff

all the following conditions hold:

(1) The following mapping is an automorphism of G:

σ (x) =




x + n if x ∈ {0, . . . ,n − 1},

x − n if x ∈ {n, . . . , 2n − 1},

2n + 2r − (x − 2n) if x ∈ {2n, . . . , 2n + r },

2n + (2n + 2r − x) if x ∈ {2n + r + 1, . . . , 2n + 2r }.

(the bottom two casesmap 2n → 2n+2r , 2n+1 → 2n+2r−1, . . .)

(2) The path 0 − (2n) − (2n + 1) − . . . − . . . (2n + 2r ) − n is present

in G.

(3) G contains no edges other than the internal edges in {0, . . . ,n − 1}

and in {n, . . . , 2n − 1}, and the path edges.

The second and third conditions can be verified locally without the

prover’s assistance: each path node verifies that it indeed has edges

to both its neighbors on the path, and all nodes verify that they

have no edges that are not path edges or internal to {0, . . . ,n − 1}

or to {n, . . . , 2n − 1}. To verify the first condition, we use Protocol 1

from Section 3.1, but now the prover does not need to commit up-

front to the mapping ρ, because we need only consider one specific

automorphism, σ . This eliminates the first Merlin round, and yields

an Arthur-Merlin protocol for DSym.

3.4 Lower Bound

In this section we show a lower bound of Ω(log logn) on the com-

munication cost of every dAM protocol for Sym. For our lower

bound, we require a large family F of graphs on vertices {1, . . . ,n},

with the property that all graphs in F are asymmetric (i.e., they

have no non-trivial automorphisms), and no two graphs in F are



isomorphic to each other. It is known that for sufficiently large n,

there is such a class F of size Ω(2n
2
/n!) = Ω(2n

2−n logn ) = Ω(2n
2
).

Our lower bound for the Symmetry problem uses a graph fam-

ily G which is similar to the family used for the Symmetry lower

bound in [17]. Each graph in G ∈ G is defined by G = G(FA, FB ),

where FA, FB ∈ F are not necessarily distinct. We fix three dis-

joint sets: VA =
{
uA1 , . . . ,u

A
n

}
, VB =

{
uB1 , . . . ,u

B
n

}
, and a bridge,

consisting of two nodes xA,xB < VA ∪VB . We also fix two nodes

vA ∈ VA,vB ∈ VB . The nodes xA,xB are referred to as bridge nodes.

Each graph G = G(FA, FB ) ∈ G is defined as follows: on the

nodes in VA and VB respectively, we construct copies of FA, FB
(resp.) by replacing node i of VA (resp. VB ) with u

A
i (resp. uBi ). We

also add edges {vA,xA} , {xA,xB } , {xB ,vB }. This yields a łdumb-

bell graphž, with copies of FA and FB on either side, connected by a

short łbridgež. Crucially,G(FA, FB ) has a non-trivial automorphism

iff FA = FB .

Fix a dAM protocol Π, and let L be the maximum length of the

prover’s response to any node. We prove the lower bound in two

steps. First we show that any dAM protocol can be transformed

into what we call a simple protocol, where the two bridge nodes

always expect to get the same message, and their decision whether

to accept or reject is based only on this (shared) message and the

randomness. This makes it easier to focus on the view of these

bridge nodes. Then we show that the distribution of the message

the bridge nodes receive must łencapsulatež all the information

about the two sides FA and FB of the graph. This distribution, which

can be represented as a d = 22
O(L)

-dimensional vector, must be łfar

apartž for different graphsG(FA, FB ). Since it is not possible to pack

too many łfar apartž vectors into [0, 1]2
2O(L)

, but the class G does

contain many different graphs (|G| = 2Ω(n
2)), we get that L must

be at least Ω(log logn).

We begin by defining simple protocols, where we restrict the

output function for the bridge nodes, so that they only accept if they

both receive the same response from the prover. In this definition

and the rest of this section, we implicitly assume that all graphs are

from the family G.

Definition 6 (Simple protocols). A dAM protocol Π is said to be

simple if there exist fxA , fxB : {0, 1}L × {0, 1}L → {0, 1} such that

(1) For all graphs G, challenges R and responsesM ,

outxA (G,R,M) = 1 ⇔
[
fxA (RN (xA),MxA ) = 1 andMxA = MxB

]
.

(2) Similarly for xB .

We use the short-hand notation fxA (R,M) for fxA (RN (xA),MxA ).

It is not hard to see that any dAM[1] protocol for the class G can

be transformed into a simple protocol at little extra cost:

Lemma 3.7. If a graph property P is decided by a 1-round dis-

tributed AM protocol Π with length L, then there exists a simple

1-round distributed AM protocol Π′ that decides P for G and has

length 4L.

In Π
′, we łaskž the prover to give each bridge node 4L bits, com-

prising the four responses it would have given nodesvA,xA,xB ,vB
under Π. Nodes vA,xA,xB ,vB verify that the prover gave them the

same response, extract their part of the response (i.e., the L bits

they expected to receive under Π), and apply their decision function

from Π.

From now on we restrict attention to simple protocols, and we

focus on the view of the two bridge nodes, xA and xB . We claim that

for graphs of the form G(F , F ), the distribution of messages these

nodes receive must capture everything there is to know about F :

intuitively, if there exist F1 , F2 ∈ F such that xA and xB receive

similar responses onG(F1, F1) and onG(F2, F2), then the adversary

can convince all nodes to accept the graph G(F1, F2), which is not

symmetric. Let us now formalize this intuition.

Define MA(F , r ) to be the set of responsesm to bridge node xA,

such that when the challenge is r and the graph isG = G(F , F ), the

responsem can be extended into a responseM for all nodes of VA
and xA that makes them accept. That is, m ∈ MA(F , r ) iff there

existsM ∈ {0, 1}L×VA∪{xA } withMxA =m, such that (a) for each

v ∈ VA we have outv (G, r ,M) = 1, and (b) fxA (r ,M) = 1. Similarly,

letMB (F , r ) be the set of responsesm to xB , such that on challenge

r and the graph is G(F , F ), the responsem can be extended into a

responseM that causes all nodes in VB ∪ {xB } to accept.

In a graphG(FA, FB ), for a given challenge r and responseM , the

decisions of nodes in VA ∪ {xA} whether to accept or reject does

not depend on FB , and similarly for VB ∪ {xB } and FA. Therefore

we get:

Lemma 3.8. For any F , F ′ ∈ F and random challenge r , we have:

m ∈ MA(F , r ) ∩ MB (F
′, r ) iff there is a prover response M with

MxA = MxB =m, such that outv (G(F , F
′), r ,M) = 1 for all v ∈ V .

Because of this behavior, the prover’s probability to convince all

nodes to accept is exactly characterized by the probability that the

challenge it received has MA(FA, r ) ∩MB (FB , r ) , ∅:

Lemma 3.9. For any G(FA, FB ) ∈ G,

max
P

(
Pr
r
(∀v : Π(G, P ,v) = 1)

)
= Pr

r
(MA(FA, r ) ∩MB (FB , r )) .

From the correctness of Π, together with Lemma 3.9 above, we

get:

Corollary 3.10. For any FA, FB ∈ F , if FA = FB , then

Pr
r
(MA(FA, r ) ∩MB (FB , r )) ≥ 2/3.

On the other hand, if FA , FB , then

Pr
r
(MA(FA, r ) ∩MB (FB , r )) ≤ 1/3.

Now let µA(FA) be the distribution of MA(FA, r ), where the

challenge r is uniformly random. From the previous corollary, for

any F1, F2 ∈ F , there is an event Ð having a non-empty intersection

withMB (F1, r )Ð that has large probability under µA(F1), but small

probability under µA(F2). Therefore the distributions are far apart:

Lemma 3.11. For any two F1, F2 ∈ F , if F1 , F2, then ∥µA(F1) −

µA(F2)∥1 ≥ 2/3.

Here, ∥·∥1 is the L1 norm, ∥x ∥1 =
∑N
i=1 |xi |, where N is the

dimension of x . It is known that if η1,η2 are two distributions

on some domain Ω, and there exists an event Q ⊆ Ω such that

|η1(Q) − η2(Q)| ≥ p, then ∥η1 − η2∥1 ≥ 2p.

Finally, the following standard argument shows that it is not

possible to pack too many distributions that are far apart in L1-

distance into a domain of small size:



Lemma 3.12. Fix d ∈ N, and let U be a set of distributions on the

domain [d] such that for all µ , η ∈ U, we have ∥µ −η∥ > 1/2. Then

|U| < 5
d .

Proof. We represent each distribution inU as a vector in [0, 1]d .

For a distribution µ ∈ U ⊆ [0, 1]d and a radius r ∈ [0, 1], define an

open ball

B(µ, r ) =
{
x ∈ [0, 1]d | ∥µ − η∥1 < r

}
.

Then we must have B(µ, 1/4) ∩ B(η, 1/4) = ∅ for any µ , η ∈ U:

suppose not, and let x ∈ B(µ, 1/4) ∩ B(η, 1/4). Then by the triangle

inequality,

∥µ − η∥1 ≤ ∥µ − x ∥1 + ∥x − η∥1 ≤ 1/4 + 1/4 = 1/2.

This contradicts our assumption aboutU.

Now let B(®0, 5/4) be the open ball

B(®0, 5/4) =
{
x ∈ [0, 1]d | ∥x ∥1 < 5/4

}
.

(Here, ®0 is the d-dimensional zero vector.)

Since each µ ∈ U is a distribution, it has ∥µ∥1 = 1, and therefore

B(µ, 1/4) ⊆ B(®0, 5/4): if x ∈ B(µ, 1/4), then ∥µ − x ∥1 < 1/4, and

hence ∥x ∥1 ≤ ∥µ∥ + 1/4 < 5/4.

So, we have shown that the setU induces |U| mutually-disjoint

balls of radius 1/4, and all are contained within the ball B(®0, 5/4).

The d-dimensional volume (for natural d ≥ 1) of the ball B(x , r )

with respect to L1 is given by

vol (B(x , r )) =
(4r )d

(d + 1)!
.

Therefore,

|U| ≤
vol

(
B(®0, 5/4)

)
vol

(
B(®0, 1/4)

) =
(4· 54 )

d

(d+1)!

(4· 14 )
d

(d+1)!

= 5d .

�

Now we can put all the ingredients together to prove the main

theorem:

Proof of Theorem 1.4. Fix a simple protocol Π of length L, and

letU = {MA(F ) | F ∈ F } be the set of distributions that Π induces

for the different graphs in F . Each µ ∈ U is a distribution on sets

of prover’s responses to node xA, so the domain of the distribution

inU has size at most 22
L

.

By Lemma 3.11, for any two F , F ′ ∈ F wemust have ∥MA(F )−

MA(F
′)∥1 ≥ 2/3. In particular, no two distributions inU are the

same, so |U| = |F |. By Lemma 3.12, we have |U| < 52
2L

. On the

other hand, the number of graphs in F is 2Ω(n
2), and therefore we

must have L = Ω(log logn). �

4 INTERACTIVE DISTRIBUTED PROOFS FOR
GRAPH NON-ISOMORPHISM

The łstandardž GNI protocol. We first attempt to explain why the

standard łpepsi vs. colaž protocol for the Graph Non-Isomorphism

problem in the centralized setting cannot be adapted to the dis-

tributed setting. Recall that in the łpepsi vs. colaž protocol for GNI,

the verifier’s input is a pair of graphs (G0,G1) (łpepsi and colaž) on

the same vertex set V . The prover claims that G0 is not isomorphic

to G1. The verifier tests the prover by subjecting it to a łblind taste

testž: it chooses a random bit a ∈ {0, 1}, scrambles the graph Ga

by applying a random permutation σ to it, and sends σ (Ga ) to the

prover. If pepsi and cola are not łthe same drink with a different

namež Ð that is, ifG0 andG1 are not isomorphic Ð then the prover

can tell which scrambled graph was sent to it, σ (G0) or σ (G1), be-

cause no permutation will turn one graph into the other. It responds

to the verifier with a bit b, and the prover accepts iff a = b. If G0 is

isomorphic to G1, however, the prover has only probability 1/2 of

guessing which graph was presented to it.

Now consider, for example, the following distributed version of

GNI (described in subsection 2.3): in addition to getting its neighbor

set N ⊆ V in network graphG over which the nodes communicate,

each node is given two additional subsets ofN as inputs, denotedN0

and N1. These sets naturally define two subgraphs G0 and G1 of G.

We ask the nodes whether G0 and G1 are not isomorphic.

Unfortunately, developing a distributed version of the łpepsi vs.

colaž GNI protocol seems like a non-starter: in a distributed inter-

active proof, each network node only sees a small part of the graph,

and the nodes have no shared randomness. Even if the nodes did

have shared randomness, it seems impossible for the nodes to apply

a permutation to the entire graph without enlisting the prover’s

assistance; but asking the prover for help would reveal which graph

the nodes chose to scramble, thus łremoving the blindfoldž and

allowing the prover to always succeed.

The Goldwasser-Sipser GNI protocol. Finally, we describe our

dAMAM protocol for the GNI problem. This protocol is a distributed

version of the Goldwasser-Sipser protocol for GNI [15]. The proto-

col from [15] is based on the following fact: fix graphs G0 and G1,

and consider the set S of graphs which are isomorphic to either G0

or G1 (or both). If G0,G1 are not isomorphic, then applying any

permutation σ to G0 yields a different graph than we would get if

we apply σ to G1. Intuitively (but incorrectly Ð see below), since

there are n! permutations, then:

(1) if G0 and G1 are isomorphic, we should have |S | = n!; but

(2) if G0 and G1 are not isomorphic, then we should have |S | =

2n!, as each permutation of G0 yields a graph that is not a

permutation of G1.

Thus, to tell whether (G0,G1) ∈ GNI, the verifier estimates the size

of S : it challenges the prover with a pairwise-independent hash

function h : {0, 1}n
2
→ {0, 1}L (for large enough L), and a random

value r ∈ {0, 1}L . The prover is supposed to respond with a graph

G ∈ S which is in the pre-image of r under h, that is, h(G) = r . The

probability that there exists such a graph G is proportional to the

size of S , so there is a gap between the acceptance probability when

(G0,G1) ∈ GNI compared to when (G0,G1) ∈ GNI.

Specifying a graph on n vertices requires Θ(n2) bits. However,

the prover is supposed to respond with a graphG that is isomorphic

to either G0 or G1. Thus, it specifies G by giving a permutation σ

and a bitb ∈ {0, 1}, with the implicit understanding thatG = σ (Gb ).

The verifier then checks that h(σ (Gb )) = r .

As we mentioned, it is not really true that if (G0,G1) ∈ GNI then

|S | = 2n!, and if (G0,G1) < GNI then |S | = n!: if one of the graphs

is symmetric, applying different permutations to it could yield the



same result, reducing the size of S . This is fixed cleverly in [15]

by changing the definition of S : in addition to the graph Gb , the

prover is asked to provide an automorphism ofGb , to łcompensatež

for symmetries (if there are any). With this new definition of S , it

is indeed true that if (G0,G1) ∈ GNI then |S | = 2n!. To simplify

the presentation here, we avoid this issue altogether, and restrict

attention to asymmetric graphs. To solve the unrestricted GNI

problem, we utilize the dAM protocol for Symmetry constructed in

Section 3.2.

A distributed GNI protocol. To develop a distributed version of

Goldwasser-Sipser, after the prover specifies σ and b, the nodes

enlist the prover’s help in verifying thath(σ (Gb )) = r . This requires

an additional Arthur-Merlin exchange.

The main difficulty is that in [15], the hash functionh is pairwise-

independent (PI); this is needed to ensure that the size of the image

h(S) is proportional to the true size of S . Unfortunately, PI hash

functions require a long random seed [29]. (The family from Theo-

rem 3.2, which we used for Symmetry, is not PI.) We could try to

łbreak upž the seed and have each node send a small part of it to the

prover, but we could not find a way to do this that also allowed the

nodes to later verify that the prover computed the hash correctly.

Instead, we relax the pairwise-independence requirement, and

use ε-almost pairwise-independence (ε-API) [5, 29]. if the hash is

fromn bits tom bits, we only require that for each x1 , x2 ∈ {0, 1}n

and y1,y2 ∈ {0, 1}m , we have

(1) Prh∈H (h(x1) = y1 ∧ h(x2) = y2) ≤ (1 + ϵ)/22m .

(2) Prh∈H (h(x1) = y1) = 1/2m .

When we plug in an ε-API hash function h in the GNI protocol, the

size of the image h(S) is distorted, but not by too much. We show

that we can still recover good success probability for the verifiers.

We give a construction for a distributed ε-API hash, which can be

computed łup a spanning treež in a recursive manner. Each node of

the tree has a small part of the input to be hashed, and a short private

seed that is not known to the other nodes. The hash for a subtreeTv
of nodev with childrenu1, . . . ,uc is computed by taking the łpartial

hashesžh(Tu1 ), . . . ,h(Tuc ) sent up by the children ofv , and applying

a local operation, h(Tv ) = f (h(Tu1 ), . . . ,h(Tuc ), I (v)), where I (v)

is the input of v . Our construction has the useful property that a

claimed hash value can be efficiently verified by the nodes with the

assistance of the prover.

We use this hash in our GNI protocol: each node v sends the

prover its seed, and the prover must respond with the hash value

h(σ (Gb )|Tv ). Here, σ (Gb )|Tv denotes the łpartial adjacency matrixž∑
u ∈Tv [u,σ (N (u))], which includes only rows corresponding to

nodes inv’s subtree. Nodev verifies that the hashwas computed cor-

rectly by checking that indeed h(Tv ) = f (h(Tu1 ), . . . ,h(Tuc ), I (v)).

At the root r , we have σ (Gb )|Tr = σ (Gb ), so the hash is complete;

the root then verifies that indeed h(σ (Gb )) = r .
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