Interactive Distributed Proofs

Gillat Kol
Princeton University
Princeton, NJ, USA
gillat.kol@gmail.coml

ABSTRACT

Interactive proof systems allow a resource-bounded verifier to de-
cide an intractable language (or compute a hard function) by com-
municating with a powerful but untrusted prover. Such systems
guarantee that the prover can only convince the verifier of true
statements. In the context of centralized computation, a celebrated
result shows that interactive proofs are extremely powerful, allow-
ing polynomial-time verifiers to decide any language in PSPACE.

In this work we initiate the study of interactive distributed proofs:
a network of nodes interacts with a single untrusted prover, who
sees the entire network graph, to decide whether the graph satisfies
some property. We focus on the communication cost of the protocol
— the number of bits the nodes must exchange with the prover and
each other. Our model can also be viewed as a generalization of the
various models of “distributed NP” (proof labeling schemes, etc.)
which received significant attention recently: while these models
only allow the prover to present each network node with a string
of advice, our model allows for back-and-forth interaction. We
prove both upper and lower bounds for the new model. We show
that for some problems, interaction can exponentially decrease the
communication cost compared to a non-interactive prover, but on
the other hand, some problems retain non-trivial cost even with
interaction.

CCS CONCEPTS

« Theory of computation — Interactive computation; Inter-
active proof systems; Distributed algorithms;

ACM Reference Format:

Gillat Kol, Rotem Oshman, and Raghuvansh R. Saxena. 2018. Interactive
Distributed Proofs. In PODC ’18: ACM Symposium on Principles of Distributed
Computing, July 23-27, 2018, Egham, United Kingdom. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3212734.3212772

1 INTRODUCTION

Prover-assisted computation has received significant attention from
the distributed computing community [4, 10-14, 17, 20-23, 25, 26].
In this “distributed NP” setting, a powerful prover attempts to
convince a set of nodes communicating over a network graph G
that the graph and their inputs satisfy some property, by giving
each node a short proof (usually called “advice” or “label”) of this

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODC ’18, July 23-27, 2018, Egham, United Kingdom

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5795-1/18/07...$15.00
https://doi.org/10.1145/3212734.3212772

Rotem Oshman
Tel-Aviv University
Tel-Aviv, Israel
roshman@tau.ac.il

Raghuvansh R. Saxena
Princeton University
Princeton, NJ, USA
rrsaxena@princeton.edu

fact. The nodes then communicate briefly and decide whether to
accept or reject the proof given to them; the proof is accepted iff
all nodes accept it.

Several notions of “distributed NP” have been considered in
the literature. All assume that the prover knows the entire graph
topology and input, while each node sees only local information
and a small part of the proof. Some problems, such as checking
bipartiteness, admit very short proofs [23], but some problems
essentially require the prover to give each node the entire network
graph [17, 23].

One motivation for “distributed NP” is certifying the correctness
of a distributed algorithm; for example, a distributed spanning tree
algorithm might store, at each node, some additional information
beyond the tree pointers, so that the nodes can efficiently verify
that the output of the algorithm is indeed a spanning tree. In this
scenario we do not have a physical prover that is a separate entity
from the network — the advice is computed by the nodes themselves
when they run the distributed algorithm. However, another reason
to consider distributed NP is actual prover-assisted computation,
with a powerful prover that has more resources than the nodes.

The setting involving a “live” powerful prover is more relevant
today than ever, due to the rise of the internet, cloud-based com-
putation, and data-intensive applications. Cloud computing allows
computationally limited devices to delegate their costly computa-
tion to a cloud with tremendous computational power. Interactive
proof systems can thus allow devices that do not trust their cloud
service (as it may be malicious, motivated by self-interest, or simply
buggy) to verify the correctness of the computation performed. In
the same manner, interactive distributed proofs can allow central
entities holding massive amounts of data (Facebook knowing the
topology of a social network, 23andMe and other genetic companies
having large graphs describing gene propagation, etc.) to convince
their clients of some truth about the network. (For example, if the
graph has good expansion, this means that small communities do
not tend to segregate.)

With this motivation in mind, in this work we initiate the study
of interactive distributed proofs, a distributed analogue of the in-
teractive proof systems that are well-studied in complexity theory.
Instead of merely having the prover give the network nodes a proof
and “disappear”, we allow the nodes to engage in a brief interaction
with the prover, spanning multiple (but typically constant) rounds.
We ask whether such interaction can help reduce the proof size for
problems that are intractable in “distributed NP”.

We follow the usual complexity-theoretic nomenclature, where
the prover is called Merlin (because of its unbounded power) and the
verifier is called Arthur (the mortal, with bounded resources). For
example, a distributed Arthur-Merlin protocol, or a dAM-protocol
for short, proceeds as follows: first, each network node v sends

the prover some independent random bits, Ry, (a “challenge”).! The
prover responds by giving each node v a response M,,. The node
then examines the responses received by itself and its immediate
neighbors, {My, | u € N(v)}, together with its input and random-
ness Ry, and decides whether to accept or reject. The protocol
accepts if and only if all nodes accept. Similarly, a dMAM protocol
(distributed Merlin-Arthur-Merlin protocol) will start with the prover
giving each node a message. This is followed by each node respond-
ing with some random bits (challenge), and the prover replying to
the challenge with a second message to each node.

An interactive protocol is correct if for any YES-instance (i.e.,
any graph and input satisfying the property we are interested in),
there exists a prover that has probability at least 2/3 of causing all
nodes to accept; and on the other hand, for any NO-instance, no
prover has probability more than 1/3 of causing all nodes to accept.
The complexity measure we are interested in is the total amount of
communication between any individual node and the prover. For
upper bounds, we include the random bits sent to the prover in the
cost; for our lower bound we do not charge for them. Unlike the
complexity-theoretic setting, but in keeping with typical distributed
models, the network nodes and the prover are computationally
unbounded.

We note that interaction lends tremendous power to verifiers in
the computational complexity setting [2, 24, 27]: adding interaction
allows the verifier to decide all languages in PSPACE [24, 27], which
is widely believed to be muchlarger than NP. Interactive proofs were
also considered in the communication complexity setting, where
it is assumed that the two communicating parties may consult a
prover that knows both of their inputs [1, 18, 19]. Unfortunately,
proving lower bounds in the interactive communication-complexity
setting is very difficult, and for Arthur-Merlin protocols only certain
restricted lower bounds are known [16].

1.1 Our Contributions

In this paper we make some first steps towards understanding
the role of interaction in distributed proofs. We define interactive
distributed proof systems and give positive and negative results
regarding their power.

1.1.1 The Graph Symmetry Problem (Section 3). In the Graph
Symmetry Problem, Sym, studied in [17], the network must decide
whether the network graph has a non-trivial automorphism (see
Section 2 for a formal definition). It is shown in [17] that Sym
requires proofs of length ©(n?) at each node in the NP setting; we
show that interaction is very useful for this problem.

dMAM protocol (Section 3.1). We give a dMAM interactive pro-
tocol in which the communication between each network node
and the prover is O(log n) bits. In our protocol, the prover first
“commits” to a function p (that is supposedly an automorphism of
the graph) by giving each node its image under p. The next two
rounds are devoted to verifying that p is a permutation and that p
“respects” the edges of the graph. We show that this verification can
be done with low communication using distributed linear hashing.

! We note that the restriction to challenges that are purely random is not significant if
the verifiers do not have randomness hidden from the prover: the prover can see each
node’s input, so we can simulate more complicated challenges by asking the prover to
compute the challenge using the node’s randomness and input.

We mention that our approach crucially utilizes the interaction, as
the seed for the hash must be selected by the verifiers after the
prover is already committed to p.

THEOREM 1.1. Sym € dMAM[O(log n)].

Exponential separation of distributed NP and distributed AM (Sec-
tion 3.3). The Symmetry problem can be modified to yield an expo-
nential separation between distributed NP and AM: if we restrict
the automorphism to a fixed one instead of asking whether there
exists an automorphism, we can eliminate the first round, where
the prover commits to the automorphism. We call the restricted
problem DSym, and observe that it is still subject to the quadratic
lower bound from [17], therefore yielding:

THEOREM 1.2 (INFORMAL STATEMENT). DSym € dAM[O(log n)],
but any “distributed NP” scheme requires advice of length Q(n?).

An interesting open problem is whether this is the largest possi-
ble gap between distributed NP and AM.

dMAM protocol (Section 3.2). While for restricted versions of
Symmetry our dMAM protocol implies a dAM protocol with the
same cost, it is unclear if this is achievable in the general case.
However, we are able to show a dAM protocol for Symmetry with
nearly linear cost.

THEOREM 1.3. Sym € dAM[O(nlogn)].

We mention that in the computational complexity setting, it
is known that AM[k] = AM[2] for any constant k, meaning that
round reduction is always possible. The same is not known for our
model, and an intriguing open problem is devising general round
reduction theorems.

Lower bound (Section 3.4). In [17], an Q(n?) lower bound for Sym-
metry is proven by essentially reducing from the nondeterministic
two-party communication complexity of the Equality function.?
A lower bound of Q(n?/log(n)) for Non-3-Colorability is proven
by reduction from Set Disjointness. Unfortunately, the strategy of
reducing from a hard 2-party communication complexity problem
is not available to us here: proving any explicit non-trivial lower
bound for two-party Arthur-Merlin communication complexity is
a long-standing open problem (see for example [16]).

Instead, we leverage the distributed nature of the problem: the
fact that each node can only see a small part of the input and
the prover’s response. We show a lower bound of Q(log log n) on
Arthur-Merlin interactive protocols for Symmetry, even if the nodes
share an unbounded amount of randomness with the prover and
with each other. (Sharing unbounded randomness with the prover
amounts to allowing the nodes to send the prover messages of
unbounded length “for free”.) We note that such bounds cannot
be obtained by simple counting arguments, as the prover’s mes-
sage to each of the nodes may depend on the random challenges
communicated by all nodes.

THEOREM 1.4. If Sym € dAM[f(n)], then f(n) = Q(loglogn).

We develop a framework for proving lower bounds like the one in
Theorem 1.4, using a packing argument: we show how to associate

2The proof in [17] is not stated as a reduction, and it re-proves the hardness of Equality,
but it can easily be transformed into a formal reduction from Equality.

the execution of a protocol of length L on a graph G with an f(L)-

dimensional vector (in our case, f(L) = ZZO(L)). We prove that if the
protocol is correct, then it must be able to differentiate between
the different graphs, in the sense that the vectors associated with
different graphs must be “far apart”. Since it is not possible to pack
too many “far apart” vectors into [0, 1J/(F), but the set of possible
graphs is large, a lower bound on L is obtained. We mention that
part of our argument is general and also holds for properties other
than Sym. Adapting the full proof to other graph properties, and
closing the gap between our dAM upper and lower bounds for
Symmetry, remain interesting challenges.

1.1.2 The Graph Non-Isomorphism Problem (Section 4). Finally,
we turn our attention to the famous Graph Non-Isomorphism (GNI)
problem, which is in some sense the poster child for classical in-
teractive and zero-knowledge proofs. It seems that the “standard”
protocol for GNI cannot be adapted to the distributed setting (see
section 4 for discussion). Instead, we develop a distributed version
of the beautiful Goldwasser-Sipser protocol for GNI. This protocol
was developed in [15] in the context of proving that interactive
proofs do not require the verifier to have private randomness which
is hidden from the prover. We show that with a few rounds of in-
teraction (Arthur-Merlin-Arthur-Merlin), the Goldwasser-Sipser
protocol can be made distributed, and obtain an O(nlog n) protocol
for GNIL

THEOREM 1.5. GNI € dAAMAM[O(nlogn)].

Our main technical contribution here is a type of distributed
hash function that we call distributed almost pairwise-independent
hash. The Goldwasser-Sipser protocol crucially relies on the use
of a pairwise-independent hash function with a short seed length,
but the seed length is too long for us (©(n?) bits), and it is not
possible to “break” the seed into small parts and give each node one
part without ruining the linearity of the hash®. Instead, we show
that the requirement of pairwise-independence can be relaxed into
almost pairwise-independence, and for the weaker requirement
we construct a distributed hash function where the seed can be
distributed, with each node contributing a small part.

We mention that it can be shown that the distributed GNI prob-
lem requires Q(n?) bits of advice without interaction, using an
argument similar to the one used in [17] to prove the Q(n?) lower
bound for Symmetry.

1.2 Related Work

There is a large body of work on various notions for “distributed NP”
and their relative expressive power, e.g., [6, 8, 9, 20-23, 25, 26]; we
refer to the excellent surveys [7, 28] for a comprehensive overview.
For lack of space, we mention here only the most directly relevant
work.

Our protocols rely on the spanning-tree construction from [23],
which uses advice of length ©(log n).

Our lower bound construction for Symmetry is inspired by the
dumbbell construction from [17].

In [4], a notion of randomized proof-labeling schemes (RPLS) is
introduced, where the prover can give advice of unbounded length

3Recall that our protocols for Symmetry exploit the linearity of the hash to compute
the hash value in a distributed manner.

to each node, and the nodes then send each other randomized
messages and decide whether to accept or reject. It is shown in [4]
that any problem has an RPLS of exponentially-smaller length
compared to the deterministic length required. However, this result
is not applicable to our setting, because we do charge the prover for
its communication with the nodes; the scheme from [4] increases
the advice length by a factor corresponding to the maximum degree,
i.e., up to linear.

In [3], the authors equip the verifiers with alternating Turing
Machines, and classify decision tasks based on the levels of alter-
nation (exists/forall) required. Alternation can be viewed as a type
of interaction with two provers: one prover trying to convince the
verifiers of the “exists” statement, and the other of its negation, a
“for all” statement. However, in [3] there is no randomization, and
the provers compete with each other. In contrast, here we have a
single prover, and the interaction is randomized.

2 PRELIMINARIES

2.1 Notation

We let Ng(u) denote the neighborhood of node u in graph G, in-
cluding node u itself. We omit the subscript G when the graph is
clear from the context. We let G(V') denote the set of all graphs
on vertices V. We sometimes give each graph node an input from
some domain 7'; let 7 (V) denote the set of all assignments of inputs
from 7 to the nodes in V.

When we work with a graph G = (V, E) on n vertices, we use
{0, 1} to denote the set of n-vectors where each coordinate is in
{0,1}"™, and the coordinates are indexed by V. We let x,, € {0,1}""
denote the coordinate corresponding to v in x € {0,1}™*V; and
for a subset S = {v1,...,vr} € V, we let xs denote the vector
Xy, - - - Xy corresponding to nodes in S. For example, if a prover’s
response to all nodes in the graph is M € {0, 1}™V thena specific
node v’s response is written My, and the responses given to v’s
neighbors, including v, are My (o).

We often conflate a set S € X with its characteristic vector y :
X — {0,1}, where yx = 1iff x € S. We abuse notation by using
the same letter to denote both the set and its characteristic vector.

2.2 Interactive Distributed Proofs

We define here one-round Arthur-Merlin proofs, the class dAM,
somewhat informally.

Definition 1 (1-Round Arthur-Merlin Protocol, Informal). In a
1-round Arthur-Merlin protocol of length €, each vertex v sends the
prover a uniformly random challenge r,, € {0, 1}, The prover P
sends back a response M, € {0, 1}¢, which is a function of the graph
G, the input I, and the random challenges {r, | v € V}.

The protocol specifies a decision function out, for eachv € V,
which takes node v’s neighborhood and input, the random challenges
of node v and its neighbors, and the response issued to node v and its
neighbors, and outputs a Boolean value. We denote:

. outg(G, Lr,M)= outg(N(;(v),I(v), "'Ng(v)s MNg(v)): the de-
cision value at node v when the graph is G, the input is I, the
random challenge is r and the prover’s response is M;

e II(P,G,I,v), the random variable representing v’s decision
when it interacts with a prover P.

We remark that our upper bounds do not need the nodes to
see the randomness of their neighbors, ry(¢), only their own
randomness ry,. Our lower bound does give ry () to each node v.

Definition 2 (The class dAM[{]). A language L C G(V) X I(V)
is in the class dAAM[{], for £ € N, if there is a protocol I1 of length {

satisfying:
(G,I) e L = 3P, Pr(all nodes accept) > 2/3
(G,I) ¢ L = VP,Pr(all nodes accept) < 1/3.

Sometimes we are interested in “pure graph properties”, where
there is no input other than the network graph. In this case we omit
the input I from all our notation.

In Section 3.1 we give a Merlin-Arthur-Merlin (A{MAM) protocol.
Here, the prover goes first, and gives each node v a response M_,.
The nodes then send a random challenge r;,, and the prover sends
back a second response M2, Finally, each node outputs a decision,
depending on its input, and the randomness and responses of itself
and its neighbors. Our correctness requirement is the same as for
dAM.

We assume for simplicity that we have a fixed set of nodes
V, known in advance to all the participants. However, our upper
bounds generalize in a straightforward manner to the case where
we have some polynomially-large namespace N, and we draw n
nodes from N.

Describing interactive protocols. When we specify an interactive
protocol, we specify two types of interaction: messages sent by
the prover to the nodes, and messages sent by the nodes to the
prover. Messages from nodes to the prover are indicated by v — P,
followed by the contents of the message. Here, v is the identifier of
the sending node.

For convenience, we use two types of prover responses:

e Broadcast messages, where the prover is required to provide
all nodes with the same value, and the nodes verify that
indeed they all got the same value. This type of message is
indicated by P — v (Broadcast), followed by the contents
of the message. We assume implicitly that each node com-
pares the response it received to the responses its neighbors
received, and rejects if some neighbor received a different
response.

o Unicast messages, where the prover can give a different value
to each node. This type of message is indicated by P — v
(Unicast), followed again by the contents.

2.3 Problem Definitions

We consider the following problems:

Definition 3 (Graph Symmetry). The language Sym is the set of
all symmetric graphs, that is, graphs that have a non-trivial automor-
phism.

(A permutation p : V — V is an automorphism of G = (V,E) if
for every u,v € V we have {u,v} € E iff {p(u), p(v)} € E. A non-
trivial automorphism is an automorphism that is not the identity
function.)

We formulate a distributed version of Graph Non-Isomorphism,
as follows:

Definition 4 (Graph Non-Isomorphism). The language GNI is the
set of all pairs of graphs (Go, G1) such that Gy is not isomorphic to G;.

Here, the network graph is the graph Gy, and the second graph G;
is given as inputs to the nodes, with each node v receiving its neigh-
borhood Ng, (v). An alternative definition, which our algorithm
also solves, is the following: we have only one graph, the network
graph G. Each node in the graph is marked with an input from
{0,1, L}, and the goal is to determine whether the subgraph in-
duced by the nodes marked 0 is not isomorphic to the subgraph
induced by the nodes marked 1. The version we formulated in Def-
inition 4 is a little stronger than this second version, because it
does not allow nodes to communicate over the edges of the second
graph Gj.

3 INTERACTIVE DISTRIBUTED PROOFS FOR
THE SYMMETRY PROBLEM

3.1 An O(logn)-Bit d(MAM Protocol

Recall that Sym is the class of all graphs that have a non-trivial
automorphism. To verify that G € Sym, we ask the prover to pro-
vide a non-trivial automorphism p : V.— V of the graph, by giving
each node v € V its image p(v) under the automorphism. We then
verify that p is indeed a non-trivial automorphism, that is, p is not
the identity function, and p is an automorphism of G.

Verifying that p is not the identity function is easy: we ask the
prover to broadcast (i.e., tell all the nodes) a node v € V such that
p(v) # v, and node v then checks that indeed p(v) # v.

To check that p is an automorphism of G we use the adjacency
matrix of G, a matrix Ag whose rows and columns are indexed by
nodes v € V, and where Ag(u,v) = 1iff {u, v} € E. Intuitively, p is
an automorphism of G iff when we permute the rows and columns
of Ag according to p, we get the same matrix we started with:
(u,v) € E iff (p(u), p(v)) € E. Let p(Ag) denote the p-permuted
version of Ag, where the v-th row is replaced by the p(v)-th row
for each v € V, and similarly for the columns.

No single node of G knows the entire adjacency matrix Ag, but
each node v knows its row in Ag. Moreover, since v sees all the
images p(u) of its neighbors u € Ng(v), it can compute row p(v)
of the p-permuted matrix, p(Ag). We exploit this to check whether
Ag = p(Ag).

3.1.1 The Permuted Adjacency Matrix. For a vector r € {0,1}",
we denote by [i, r] the n X n boolean matrix where the i-th row is r,
and the rest of the matrix is 0. This is a convenient representation:
for any n X n boolean matrix A, if the rows of Aare ry,...,r, €
{0,1}", then A = 37" | [i, r;]. In particular, for a graph G, the adja-
cency matrix of G can be written as Ag = ., ey [v, N(v)], where
here we think of the neighborhood N(v) as represented by a vector
N(v) € {0,1}" (with self-loops for all vertices).

Given a function p : V. — V and a subset S C V, let p(S) =
{p(s) | s € S}. Equivalently, when S is represented as the character-
istic vector S € {0,1}V, then p(S) is the characteristic vector where
p(S)y = 1iff there exists u such that p(u) = v and S, = 1.

Our protocol requires the prover to commit to an automorphism
of G. To verify that the prover-provided mapping is an automor-
phism, we rely on the following observation:

Observation 1. A permutation p : V. — V is an automorphism of G
iff for all v € V we have N(p(v)) = p(N(v)).

Proor. By definition, p is an automorphismiff for everyu,v € V,
it holds that u € N(v) iff p(u) € N(p(v)). Since p is a permutation,
this is equivalent to saying that for every u,v € V, p~!(u) € N(v)
iff u € N(p(v)), that is, p(N(v)) = N(p(v)). O

As a corollary, we can show:

LEMMA3.1. Letp : V. — V bea function such that), ey [v, N(v)] =
Yvevlp(@), p(N(v))]. Then p is an automorphism of G.

Proor. First, we prove that p is a permutation on V. Assume for
contradiction that p is not a permutation. In this case, there exists a
v* € V such that v* is not in the range of p, i.e, p(v) # v* for any
v € V. Thus, in the sum), cy[v, N(v)], the row corresponding
to v* is non-zero, as N(v*), = 1. On the other hand, the row
corresponding to v* in the sum Y, cy [p(v), p(N(v))] is the all zero
row, a contradiction.

Having established that p is a permutation on V, it is easy to
see that p is an automorphism of G: for each u € V, the row cor-
responding to p(u) in the sum), cy[v, N(v)] is N(p(u)), and in
the sum 3,y [p(v), p(N(u))] the row corresponding to p(u) is
Pp(N(u)). Therefore these two rows must be equal for every u € V.
By Observation 1, this means that p is an automorphism of G. O

We see that to check if p is an automorphism, it suffices to verify
that 3, cy[v, N(v)] = 2 pevip(®), p(N(v))]. However, we can not
afford to have nodes send their entire rows, because this would
require O(n) bits per node in the worst case. Instead, we use linear
hash functions to hash the rows of Ag and p(Ag), sum up the hashes
for the rows of each matrix, and verify that the sums are equal.

3.1.2 Hashing the Adjacency Matrix. A linear hash function
allows us to hash a composite object, x1 +x2, by hashing its building
blocks, x; and x7; in our case, we can hash the entire adjacency
matrix by having each node hash its own row.

A small linear hash function family is known to exist:

THEOREM 3.2. Let m,p € N, where p is prime. There exists a
family H of functions h : {0,1}™ — {0,...,p — 1} of size |H| = p
such that for x,x” € {0, 1}™, we have the following properties:

(1) Linearity: h(x + x”) = h(x) + h(x").

(2) Small collision probability: If x + x’ then

_ ’ m
hng (h(x) = h(x")) < >

Note that in (1) above, the sum on the right-hand is modulo p,
and the sum on the left-hand side is defined as x + x” = (x; +
x; (mod p), ..., xm + Xp, (mod p)).

We always use Theorem 3.2 to hash n X n boolean matrices, so
we always take m = n?. Note that since |H| = p, picking a random
hash function from H only requires O(log p) random bits.

Unless stated otherwise, let H be the hash function family given
by Theorem 3.2, for some prime p € [10n3,100n3]. (Such a prime
exists by Bertrand’s Postulate / Chebyshev’s Theorem.) Picking a
random hash function from H only requires O(log n) random bits
(“the seed”).

3.1.3 The Protocol. Now we are ready to describe our dIMAM
protocol for Symmetry; see the formal description in Protocol 1. As
a building-block, we use the spanning tree proof labeling scheme
from [23], and the prover helps the nodes “sum their hash values
up the tree”.

In the first round, the prover presents each node v € V with: the
value p,, € V, the parent t, € V of v in the spanning tree, the root
r € V of the tree, and v’s distance d,, € [n] from the root, in (what
the prover claims is) a spanning tree rooted at a node r such that
pr #r.

The nodes verify that indeed they received a spanning tree, in the
standard way [23], and that they agree on the root of the tree. The
root r verifies that p, # r, to ensure that the claimed automorphism
is not trivial.

Let p : V. — V be defined by p(v) = p,, (Where p,, is the value
the prover gave to v). Next, we want to verify that }’, ¢y [v, N(v)] =
Yvevlp(v), p(N(v))], by having the nodes agree on a hash function
and apply it to both sides. However, the hash function needs to be
random, and all nodes need to know it; since the nodes do not have
shared randomness, we use the prover to “simulate” it. The root of
the tree selects a random hash function h; € H and sends its index
to the prover; the prover then gives h; to all the nodes, and they
verify that they all received the same h;. The prover also assists the
nodes in applying the linear hash function “up the tree”: to each
node v, if Ty, is the subtree rooted at v (in the spanning tree the
prover provided), the prover gives v two values ay, by, € [p], which
it claims are the two hash values:

a0 =hi(). [NG, bo=hi(Y [pw. p(N@)D. (1)

ueT, ueT,

To verify that the prover computed the hash correctly, each node
sums its children’s hash values and adds the hash of its neighbor-
hood, and verifies that the sum matches the value it got from the
prover.

In Protocol 1, each of the nodes exchanges a total of O(log n) bits
with the prover. The rest of this subsection is devoted to proving
the correctness of the protocol.

LEMMA 3.3. Suppose that all vertices in the graph decided to accept.
Then, ar = hi (Xypev[v,N(v)]) and by = hi (X ev[p(v), p(N(0))]).

ProOF. Due to Line 1, there is an edge between v and t,, for all
v # r. Let T be the subgraph formed by these edges. Then T is
a spanning tree rooted at r; this part is standard, so we omit the
proof.

We show by induction on the height of node v in T that a,, =
Yuet, hi([u, NW)]), and by, = X e, hillp(), p(N(w))]).

The base case is immediate: leaves have no children, so their
verification step (Line 3) verifies the claim. As for the step, suppose
that the claim holds for all children of v: for each u € C(v), a, =
Ywet, hi([w, N(w)]), and similarly for b,. Then in v’s verification

Protocol 1 A dMAM protocol for Sym

P — v (Broadcast): The prover sends a vertex r (claimed
spanning tree root).
P — v (Unicast): The prover sends:
the identifier p,, (claimed image under the automorphism);
the identifier ¢, (claimed parent);
and a number d,, € [n] (claimed distance from the root).
v — P: Each node sends a random index i,, € [|H]].
P — v (Broadcast): The prover sends an index i € [|H]]
(claimed hash index sent by the root).
P — v (Unicast): The prover sends hash values a, b, € [p].
The verification procedure:
1 If v # r, verify that t, € N(v) and d;, = dy — 1.
If v = r, verify that d, = 0.
: Let C(v) = {u € N(v) | t, = v}.
3: v verifies that

ay = hi([o, NOD + D au,

ueC(v)
bo = hillpos No@D + D bu.
ueC(v)
th

N

Here, N, (v) is the vector whose v*" coordinate is 1 iff there
exists ¢ € C(v) such that p, = v.

4: If v = r, verify that a, = by, p, # r,and i = i,.

step, it verifies that

ay = hi([o. N@D+ D au

ueC(v)

=hi([w.N@D+ D, > hillw.N(w)))

ueC(v) weTy

= > hlw. NG = hi| > [w.Nw|,

weT, weT,

where the last step is by linearity of h;. The verification for b, is
similar. O

THEOREM 3.4. Algorithm 1 satisfies the followings:

G is symmetric = 3P, Pr (all nodes accept) > 2/3
G is not symmetric = VP, Pr(all nodes accept) < 1/3.

Proor. Consider first the case where G is symmetric, and let p
be a non-trivial automorphism of G. Let r € V be some vertex such
that p(r) # r. An “honest” prover can convince all nodes to accept,
by specifying:

e Any spanning tree T rooted at r. The prover gives each
vertex v its image under p, its parent in T, its distance from r,
and the name of .

o After receiving the random indices from each vertex, the
prover responds with the index i = i, sent by the root. It then
gives each vertex v the values a,, b, computed according
to (1).

It is easy to verify that these responses pass the verification proce-
dure.

Now suppose that G is not symmetric, and fix a prover P. We
show that the probability that P convinces all nodes to accept is less
than 1/3. Specifically, we show that for any choice of root ry, if the
prover specifies rg as the root, then the probability it can convince
all nodes to accept is less than 1/3;

To that end, consider a fixed root ry € V. By Lemma 3.3, if all
vertices decided to accept we have

ar, = hi (Z [0, N(v)]) and by, = by (Z [p(v),p(Nw))]) :
veV veV
If G is not symmetric, then in particular, the mapping p provided by
the prover in the first round is not a non-trivial automorphism. We
know that p is not the identity mapping, because p(ro) # ro (oth-
erwise the root rejects). Therefore, it is not an automorphism, and by
Theorem 3.1, we must have), cy-[v, N(v)] # X, evp(®), p(N(v))].
However, the root only accepts if ay, = by,,. Due to Theorem 3.2 and
by the selection of the parameters of H, it holds thatif), ¢y [v, N(v)]
2vevlp(v), p(N(v))], then the probability of the event a,, = by,
is at most 1/3. The reason is that the hash indices i,, were sent to the
prover after the prover already committed to r and p,,. Therefore,
i = iy is a random hash index that is only known to the prover after
the prover is already committed to the values ¢y [v, N(v)] and
Zoevlp(@), p(N(@))].

[m]

3.2 An O(nlogn)-Bit dAM Protocol

Let us now leverage the ideas from the previous section to obtain a
dAM protocol for Symmetry. The prover in dAM has more power
than it does in dMAM: in dAM, we cannot force the prover to
commit to the permutation p before the random challenge is issued.
To deal with the extra difficulty, our dAM protocol is longer, and
uses O(nlog n) bits. We use the extra bits first, we ask the prover
to give each vertex v the full automorphism p : V.— V, not just its
own value p(v). Second, we use a much longer hash, to make the
probability of collision so small that we can union-bound over all
possible mappings V — V.

Other than these two changes, the protocol is similar to the
dMAM protocol, but the random challenge is now issued before the
prover provides the spanning tree and the permutation (see formal
description in Protocol 2). The protocol uses the hash function
family given by Theorem 3.2 for some prime p € [10n™+2,100n"+2].
Picking a random hash function from H requires O(nlog n) random
bits.

In Protocol 2, each of the nodes exchanges O(nlog n) bits with
the prover. The rest of this subsection is devoted to proving the
correctness of the protocol.

Observe that Lemma 3.3 continues to hold: its correctness does
not depend on when the random challenge i, is issued, whether
it is before or after the prover specifies the spanning tree and the
permutation.

THEOREM 3.5. Algorithm 2 satisfies the followings:
G is symmetric = 3P, Pr (all nodes accept) > 2/3
G is not symmetric = VP, Pr(all nodes accept) < 1/3.

Proor. If G is symmetric, an honest prover can convince all
nodes to accept, much the same as it did in the dMAM protocol.

Protocol 2 A dAM protocol for Sym

v — P: Each node sends a random index iy, € [|H]].
P — v (Broadcast): a permutation p : V — V, an index
i € [|H]|] and a vertexr € V.
P — v (Unicast): an identifier ¢, € V, a number d,, € [n], and
two hash values ay,, by, € [p].
The verification procedure:
1: If v # r, verify that t,, € N(v) and d;, = dy — 1.
If v = r, verify that d,, = 0.
: Let C(v) = {u e N(v) | t, = v}.
3: v verifies that

ay = hi(lo. N@D+ Y au,

ueC(v)

bo = hi(lp@), A(N@DD +)" bu.

ueC(v)

)

4: Ifv = r, verify that a, = b, and p(r) # r and i = i,.

Suppose that G is not symmetric, and fix a root ry. Since G is
not symmetric, by Lemma 3.1, for any mapping o : V — V that is
not the identity, we have), cy[v, N(v)] # X yev[o(@), o(N(v))].
However, by Lemma 3.3, the root only accepts if

hi (Z [0, N(vn) = h; (Z [p(v),p(N(v))]) :
veV veV

We show that for a random h; € H, the probability that there exists

a mapping o : V — V that is not the identity and will make the

verifiers accept is small:

3 te. N(v)]) = (Z [o(@). a(N(v))])) <3

Pr (EIO': h;
hieH veV veV

Since by Line 4, p(r) # r , thus p is not the identity, it follows that
the prover can only convince all nodes to accept with probability
less than 1/3.

Consider a specific mapping ¢ : V. — V that is not the identity.
By universality,

hinr(H (hi (Z [v,N(v)]) =h; (Z [o(v), G(N(v))])) < #

veV veV

A union bound across all n” mappings yields the claim. O

3.3 An Exponential Separation between
Distributed NP and Distributed AM

In the previous sections, we gave a dMAM protocol for Symme-
try using O(log n) bits, and an dAM protocol using O(nlog n) bits.
Symmetry is known to require Q(n?) bits with no interaction [17]
even in the relatively powerful Locally Checkable Proof model. We
now define a simple variant, which we call Dumbbell Symmetry,
for which we can give an O(log n)-bit AM protocol. The variant is
still subject to the Q(n?) lower bound from [17], so this shows an
exponential separation between one-round distributed interactive
proofs and LCPs. In fact, the definition of Dumbbell Symmetry is
directly inspired by the lower bound of [17]: it is the Symmetry

problem, but restricted to symmetric dumbbell graphs with a fixed
isomorphism mapping one side of the dumbbell to the other.

For the sake of concreteness, let us restrict attention to the case of
LCPs with local horizon 1, that is, each node sees only the advice of
itself and its immediate neighborhood. (Extending to any constant
local horizon, even one which is not known in advance, is easy.)

THEOREM 3.6. There is a language DSym of O(n)-vertex graphs,
which is in dAM[O(log n)], but does not have a Locally Checkable
Proof with local horizon 1 and length Q(n?).

Definition 5 (Dumbbell Symmetry). The language DSym is the set
of 2n + 2r + 1)-vertex graphs G = ({0, ..., 2n + 2r}, E) which have
the following structure:

o LetFy, Fy be the subgraphs induced by G on vertices {0, ...,n — 1}
and {n,...,2n — 1}, respectively. Then the mapping o’ (x) =
x + n is an isomorphism from Fy to Fy.

o The subgraphs Fy, F1 are connected to each other by a path
using the remaining vertices,

0-(2n)—Cn+1)—...—...2n+2r)—n.

o G contains no edges other than the internal edges of Fo, F1 and
the path.

In [17] it is shown that DSym requires Q(n?) bits for Locally
Checkable Proofs, even if each node can see the advice of its entire
r-neighborhood.

We next show that DSym can be decided by a dAM protocol
using O(log n) bits. By definition of DSym, we have G € DSym iff
all the following conditions hold:

(1) The following mapping is an automorphism of G:

x+n ifxe{0,...,n—1},

x—-n ifxe{n,...,2n—-1},
o(x) = .

2n+2r—(x-2n) ifxe{2n,...,2n+r},

2n+(2n+2r—x) ifxe{2n+r+1,...,2n+2r}.
(the bottom two cases map 2n — 2n+2r,2n+1 — 2n+2r—1,...)

(2) Thepath0—(2n)— (2n+1)—...—...(2n+ 2r) — nis present

in G.

(3) G contains no edges other than the internal edgesin {0, ...,n — 1}
and in {n,...,2n — 1}, and the path edges.

The second and third conditions can be verified locally without the
prover’s assistance: each path node verifies that it indeed has edges
to both its neighbors on the path, and all nodes verify that they
have no edges that are not path edges or internal to {0,...,n — 1}
orto{n,...,2n — 1}. To verify the first condition, we use Protocol 1
from Section 3.1, but now the prover does not need to commit up-
front to the mapping p, because we need only consider one specific
automorphism, o. This eliminates the first Merlin round, and yields
an Arthur-Merlin protocol for DSym.

3.4 Lower Bound

In this section we show a lower bound of Q(log log n) on the com-
munication cost of every dAM protocol for Sym. For our lower
bound, we require a large family # of graphs on vertices {1, ..., n},
with the property that all graphs in ¥ are asymmetric (i.e., they
have no non-trivial automorphisms), and no two graphs in ¥ are

isomorphic to each other. It is known that for sufficiently large n,
there is such a class ¥ of size Q(Z"Z/n!) = Q(Z”Z’"k’g”) = Q(Z"Z).

Our lower bound for the Symmetry problem uses a graph fam-
ily G which is similar to the family used for the Symmetry lower
bound in [17]. Each graph in G € G is defined by G = G(F4, Fp),
where Fy, Fg € ¥ are not necessarily distinct. We fix three dis-
joint sets: V4 = {uf, . ,u,‘;‘}, Vg = {uf, . ,uf}, and a bridge,
consisting of two nodes x4, xp ¢ V4 U V. We also fix two nodes
vg € V4, vp € Vp. The nodes x4, xp are referred to as bridge nodes.

Each graph G = G(Fu,Fg) € G is defined as follows: on the
nodes in V4 and Vp respectively, we construct copies of F4, Fp
(resp.) by replacing node i of V4 (resp. Vg) with u{\ (resp. u?). We
also add edges {va,xa},{xa,xB},{xB,vp}. This yields a “dumb-
bell graph”, with copies of F4 and Fp on either side, connected by a
short “bridge”. Crucially, G(F4, Fp) has a non-trivial automorphism
iff Fy = Fg.

Fix a dAM protocol II, and let L be the maximum length of the
prover’s response to any node. We prove the lower bound in two
steps. First we show that any dAM protocol can be transformed
into what we call a simple protocol, where the two bridge nodes
always expect to get the same message, and their decision whether
to accept or reject is based only on this (shared) message and the
randomness. This makes it easier to focus on the view of these
bridge nodes. Then we show that the distribution of the message
the bridge nodes receive must “encapsulate” all the information
about the two sides F4 and Fp of the graph. This distribution, which

20(L) . . «
can be represented as a d = 2 -dimensional vector, must be “far
apart” for different graphs G(F4, Fg). Since it is not possible to pack

too many “far apart” vectors into [0, 1]22 L), but the class G does
contain many different graphs (|G| = 29(”2)), we get that L must
be at least Q(loglogn).

We begin by defining simple protocols, where we restrict the
output function for the bridge nodes, so that they only accept if they
both receive the same response from the prover. In this definition
and the rest of this section, we implicitly assume that all graphs are
from the family G.

Definition 6 (Simple protocols). A dAM protocol I1 is said to be
simple if there exist fx ., fxg : {0, 1} x {0, 1}L - {0, 1} such that

(1) For all graphs G, challenges R and responses M,
out, (G, RM) =1 & [fry(Rn(xy)» Mxy) = 1 and My, = My] .
(2) Similarly for xp.

We use the short-hand notation fx , (R, M) for fx , (Rn(x 4)» Mx)-
It is not hard to see that any dAM[1] protocol for the class G can
be transformed into a simple protocol at little extra cost:

LemMma 3.7. If a graph property P is decided by a 1-round dis-
tributed AM protocol I1 with length L, then there exists a simple
1-round distributed AM protocol 11’ that decides P for G and has
length 4L.

In IT’, we “ask” the prover to give each bridge node 4L bits, com-
prising the four responses it would have given nodes v4, x4, xB, vB
under II. Nodes v4, x4, xB, vp verify that the prover gave them the
same response, extract their part of the response (i.e., the L bits

they expected to receive under IT), and apply their decision function
from II.

From now on we restrict attention to simple protocols, and we
focus on the view of the two bridge nodes, x4 and xg. We claim that
for graphs of the form G(F, F), the distribution of messages these
nodes receive must capture everything there is to know about F:
intuitively, if there exist F; # Fo € ¥ such that x4 and xp receive
similar responses on G(Fy, F1) and on G(F3, F3), then the adversary
can convince all nodes to accept the graph G(Fy, F2), which is not
symmetric. Let us now formalize this intuition.

Define M 4(F, r) to be the set of responses m to bridge node x4,
such that when the challenge is r and the graph is G = G(F, F), the
response m can be extended into a response M for all nodes of V4
and x4 that makes them accept. That is, m € Mu(F,r) iff there
exists M € {0, I}LXVAU{XA} with My, = m, such that (a) for each
v € V4 we have outy,(G,r, M) = 1, and (b) fy,(r, M) = 1. Similarly,
let Mp(F, r) be the set of responses m to xp, such that on challenge
r and the graph is G(F, F), the response m can be extended into a
response M that causes all nodes in Vg U {xp} to accept.

In a graph G(Fy4, Fp), for a given challenge r and response M, the
decisions of nodes in V4 U {x4} whether to accept or reject does
not depend on Fg, and similarly for Vg U {xp} and F4. Therefore
we get:

LEMMA 3.8. For any F,F’ € ¥ and random challenge r, we have:
m € Ma(F,r) N Mp(F’,r) iff there is a prover response M with
My, = Myy = m, such that outy,(G(F,F’),r,M) =1 forallv e V.

Because of this behavior, the prover’s probability to convince all
nodes to accept is exactly characterized by the probability that the
challenge it received has Ma(Fa,r) N Mp(Fp,r) # 0:

LEMMA 3.9. For any G(Fa,FB) € G,
m}gx (I;r(\?’v :II(G, P,v) = 1)) = Prr (Ma(Fa,r) " Mp(Fp,1)).

From the correctness of II, together with Lemma 3.9 above, we
get:
COROLLARY 3.10. For any Fa,Fg € F, if Fo = Fp, then
Iir (Ma(Fa,r) N Mp(Fp,1)) = 2/3.
On the other hand, if F4 # Fp, then
Prr (Ma(Fa,r) N Mp(Fp,r)) < 1/3.

Now let py(F4) be the distribution of M4 (Fy4,r), where the
challenge r is uniformly random. From the previous corollary, for
any Fi, F» € 7, there is an event — having a non-empty intersection
with Mp(Fj, r) — that has large probability under p4(F;), but small
probability under p4(F2). Therefore the distributions are far apart:

LEMMA 3.11. For any two F1,F, € F, if F1 # Fy, then ||pa(F1) —
pa(F2)ll = 2/3.

Here, ||-||; is the L1 norm, ||x|; = Zf\il |xi|, where N is the
dimension of x. It is known that if 51, 72 are two distributions
on some domain Q, and there exists an event Q C Q such that
[71(Q) — n2(Q)| = p, then [I1 — n2lli = 2p.

Finally, the following standard argument shows that it is not
possible to pack too many distributions that are far apart in L;-
distance into a domain of small size:

LEmMA 3.12. Fixd € N, and let U be a set of distributions on the
domain [d] such that for all p # n € U, we have ||u—n|| > 1/2. Then
|U| < 59.

ProOF. We represent each distribution in U as a vector in [0, 114
For a distribution g € U C [0, 1]4 and a radius r € [0, 1], define an
open ball

Bur) = {r e [0.11% | Iju =l <r}.

Then we must have B(y,1/4) N B(n,1/4) = O for any p # n € U:
suppose not, and let x € B(u, 1/4) N B(n, 1/4). Then by the triangle
inequality,

g =nlly < llp=xlly + llx =nlly < 1/4+1/4=1/2.

This contradicts our assumption about U.
Now let B(0, 5/4) be the open ball

B(0,5/4) = {x e 0,119 | |Ix]l; < 5/4})

(Here, 0 is the d-dimensional zero vector.)

Since each p € U is a distribution, it has ||z||; = 1, and therefore
B(u,1/4) € B(0,5/4): if x € B(y,1/4), then ||y — x||; < 1/4, and
hence ||x||; < ||pll +1/4 < 5/4.

So, we have shown that the set ¢ induces |U/| mutually-disjoint
balls of radius 1/4, and all are contained within the ball B(0, 5/4).
The d-dimensional volume (for natural d > 1) of the ball B(x,r)
with respect to L1 is given by

4r)?
vol (B(x,r)) = ((g +)1)’.
Therefore,
> .5y
vol (B(o, 5/4)) %)
[U| < . = = =5
vol (B(o, 1/4)) ((Z fl))'

O

Now we can put all the ingredients together to prove the main
theorem:

Proor oF THEOREM 1.4. Fix a simple protocol IT of length L, and
let U = {M4(F) | F € ¥} be the set of distributions that IT induces
for the different graphs in F. Each p € U is a distribution on sets
of prover’s responses to node x4, so the domain of the distribution
in U has size at most 22"

By Lemma 3.11, for any two F # F/ € ¥ we must have || M4 (F)—
MAa(F)|l1 = 2/3. In particular, no two distributions in U are the

oL
same, so |U| = |F|. By Lemma 3.12, we have |U| < 52" On the

other hand, the number of graphs in ¥ is 29("2), and therefore we
must have L = Q(loglogn).]

4 INTERACTIVE DISTRIBUTED PROOFS FOR
GRAPH NON-ISOMORPHISM

The “standard” GNI protocol. We first attempt to explain why the
standard “pepsi vs. cola” protocol for the Graph Non-Isomorphism
problem in the centralized setting cannot be adapted to the dis-
tributed setting. Recall that in the “pepsi vs. cola” protocol for GNI,
the verifier’s input is a pair of graphs (Gy, G1) (“pepsi and cola”) on

the same vertex set V. The prover claims that Gy is not isomorphic
to Gy. The verifier tests the prover by subjecting it to a “blind taste
test”: it chooses a random bit a € {0, 1}, scrambles the graph G,
by applying a random permutation o to it, and sends o(G,) to the
prover. If pepsi and cola are not “the same drink with a different
name” — that is, if Gp and G; are not isomorphic — then the prover
can tell which scrambled graph was sent to it, 6(Gp) or o(G1), be-
cause no permutation will turn one graph into the other. It responds
to the verifier with a bit b, and the prover accepts iff a = b. If Gy is
isomorphic to Gy, however, the prover has only probability 1/2 of
guessing which graph was presented to it.

Now consider, for example, the following distributed version of
GNI (described in subsection 2.3): in addition to getting its neighbor
set N C V in network graph G over which the nodes communicate,
each node is given two additional subsets of N as inputs, denoted Ny
and Nj. These sets naturally define two subgraphs Gy and G; of G.
We ask the nodes whether Gy and G; are not isomorphic.

Unfortunately, developing a distributed version of the “pepsi vs.
cola” GNI protocol seems like a non-starter: in a distributed inter-
active proof, each network node only sees a small part of the graph,
and the nodes have no shared randomness. Even if the nodes did
have shared randomness, it seems impossible for the nodes to apply
a permutation to the entire graph without enlisting the prover’s
assistance; but asking the prover for help would reveal which graph
the nodes chose to scramble, thus “removing the blindfold” and
allowing the prover to always succeed.

The Goldwasser-Sipser GNI protocol. Finally, we describe our
dAMAM protocol for the GNI problem. This protocol is a distributed
version of the Goldwasser-Sipser protocol for GNI [15]. The proto-
col from [15] is based on the following fact: fix graphs Gy and G,
and consider the set S of graphs which are isomorphic to either Gy
or Gp (or both). If Gy, G; are not isomorphic, then applying any
permutation o to Gy yields a different graph than we would get if
we apply o to Gj. Intuitively (but incorrectly — see below), since
there are n! permutations, then:

(1) if Go and G; are isomorphic, we should have |S| = n!; but

(2) if Go and G; are not isomorphic, then we should have |S| =
2n!, as each permutation of Gy yields a graph that is not a
permutation of Gj.

Thus, to tell whether (Gg, G1) € GNI, the verifier estimates the size
of S: it challenges the prover with a pairwise-independent hash
function A : {0, 1}"2 — {0,1}% (for large enough L), and a random
value r € {0,1}. The prover is supposed to respond with a graph
G € S which is in the pre-image of r under h, that is, h(G) = r. The
probability that there exists such a graph G is proportional to the
size of S, so there is a gap between the acceptance probability when
(Go,G1) € GNI compared to when (Gy, G1) € GNI.

Specifying a graph on n vertices requires ©(n?) bits. However,
the prover is supposed to respond with a graph G that is isomorphic
to either Go or Gy. Thus, it specifies G by giving a permutation o
and abit b € {0, 1}, with the implicit understanding that G = o(Gyp,).
The verifier then checks that h(c(Gp)) = r.

As we mentioned, it is not really true that if (Gy, G1) € GNI then
|S| = 2n!, and if (Gg, G1) ¢ GNI then |S| = n!: if one of the graphs
is symmetric, applying different permutations to it could yield the

same result, reducing the size of S. This is fixed cleverly in [15]
by changing the definition of S: in addition to the graph Gy, the
prover is asked to provide an automorphism of Gy, to “compensate”
for symmetries (if there are any). With this new definition of S, it
is indeed true that if (Go, G1) € GNI then |S| = 2n!. To simplify
the presentation here, we avoid this issue altogether, and restrict
attention to asymmetric graphs. To solve the unrestricted GNI
problem, we utilize the dAM protocol for Symmetry constructed in
Section 3.2.

A distributed GNI protocol. To develop a distributed version of
Goldwasser-Sipser, after the prover specifies o and b, the nodes
enlist the prover’s help in verifying that h(c(Gp)) = r. This requires
an additional Arthur-Merlin exchange.

The main difficulty is that in [15], the hash function h is pairwise-
independent (PI); this is needed to ensure that the size of the image
h(S) is proportional to the true size of S. Unfortunately, PI hash
functions require a long random seed [29]. (The family from Theo-
rem 3.2, which we used for Symmetry, is not PL.) We could try to
“break up” the seed and have each node send a small part of it to the
prover, but we could not find a way to do this that also allowed the
nodes to later verify that the prover computed the hash correctly.

Instead, we relax the pairwise-independence requirement, and
use e-almost pairwise-independence (¢-API) [5, 29]. if the hash is
from n bits to m bits, we only require that for each x; # x3 € {0, 1}"
and y1,y2 € {0,1}™, we have

(1) Pryeq (h(x1) = y1 A h(xz) = y2) < (1 +€)/2°™.

(2) Prpeqq (h(x1) = y1) = 1/2™.

When we plug in an ¢-API hash function h in the GNI protocol, the
size of the image h(S) is distorted, but not by too much. We show
that we can still recover good success probability for the verifiers.

We give a construction for a distributed e-API hash, which can be
computed “up a spanning tree” in a recursive manner. Each node of
the tree has a small part of the input to be hashed, and a short private
seed that is not known to the other nodes. The hash for a subtree Ty,
of node v with children uj, . . ., u. is computed by taking the “partial
hashes” h(Ty,), . . ., (T,) sent up by the children of v, and applying
a local operation, h(Ty) = f(h(Ty,),. .., Ty,),1(v)), where I(v)
is the input of v. Our construction has the useful property that a
claimed hash value can be efficiently verified by the nodes with the
assistance of the prover.

We use this hash in our GNI protocol: each node v sends the
prover its seed, and the prover must respond with the hash value
h(a(Gp)lt,). Here, 0(Gp)|, denotes the “partial adjacency matrix”
e, [, a(N(u))], which includes only rows corresponding to
nodes in v’s subtree. Node v verifies that the hash was computed cor-
rectly by checking that indeed h(T,) = f(W(Ty,), . .., h(Ty,), I(v)).
At the root r, we have o(Gp)|1, = 0(Gp), so the hash is complete;
the root then verifies that indeed h(a(Gp,)) = r.

REFERENCES

[1] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity
theory. ACM Transactions on Computation Theory (TOCT), 1(1):2, 2009.

[2] Lészl6 Babai and Shlomo Moran. Arthur-merlin games: a randomized proof
system, and a hierarchy of complexity classes. Journal of Computer and System
Sciences, 36(2):254-276, 1988.

[3] Alkida Balliu, Gianlorenzo D’Angelo, Pierre Fraigniaud, and Dennis Olivetti.
What can be verified locally? In STACS, volume 66, pages 8:1-8:13, 2017.

[4] Mor Baruch, Pierre Fraigniaud, and Boaz Patt-Shamir. Randomized proof-labeling
schemes. In ACM Symposium on Principles of Distributed Computing (PODC),
pages 315-324. ACM, 2015.

[5] Jurgen Bierbrauer, Thomas Johansson, Gregory Kabatianskii, and Ben Smeets.
On families of hash functions via geometric codes and concatenation. In Annual
International Cryptology Conference, pages 331-342. Springer, 1993.

[6] Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-labeling
schemes. In International Colloquium on Structural Information and Communica-
tion Complexity, pages 71-89. Springer, 2017.

[7] Laurent Feuilloley and Pierre Fraigniaud. Survey of distributed decision. Bulletin
of the (EATCS), 119, 2016.

[8] Laurent Feuilloley and Pierre Fraigniaud. Error-sensitive proof-labeling schemes.
In Symposium on Distributed Computing (DISC), pages 16:1-16:15, 2017.

[9] Laurent Feuilloley, Pierre Fraigniaud, and Juho Hirvonen. A hierarchy of lo-

cal decision. In 43rd International Colloquium on Automata, Languages, and

Programming, (ICALP), pages 118:1-118:15, 2016.

Pierre Fraigniaud, Mika G66s, Amos Korman, Merav Parter, and David Peleg.

Randomized distributed decision. Distributed Computing, 27(6):419-434, 2014.

[11] Pierre Fraigniaud, Mika Géos, Amos Korman, and Jukka Suomela. What can be
decided locally without identifiers? In ACM symposium on Principles of distributed
computing (PODC), pages 157-165. ACM, 2013.

[12] Pierre Fraigniaud, Magntis M Halldérsson, and Amos Korman. On the impact
of identifiers on local decision. In International Conference On Principles Of
Distributed Systems, pages 224-238. Springer, 2012.

[13] Pierre Fraigniaud, Amos Korman, and David Peleg. Local distributed decision.
In Foundations of Computer Science (FOCS), pages 708-717. IEEE, 2011.

[14] Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity theory
for local distributed computing. Journal of the ACM (FJACM), 60(5):35, 2013.

[15] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in inter-
active proof systems. Advances in Computing Research, 5:73-90, 1989.

[16] Mika G66s, Toniann Pitassi, and Thomas Watson. Zero-information protocols
and unambiguity in arthur-merlin communication. Algorithmica, 76(3):684-719,
2016.

[17] Mika G66s and Jukka Suomela. Locally checkable proofs in distributed computing.

Theory of Computing, 12(1):1-33, 2016.

Hartmut Klauck. Rectangle size bounds and threshold covers in communication

complexity. In Conference on Computational Complexity (CCC), pages 118-134.

IEEE, 2003.

Hartmut Klauck. On arthur merlin games in communication complexity. In

Conference on Computational Complexity (CCC), pages 189-199. IEEE, 2011.

Liah Kor, Amos Korman, and David Peleg. Tight bounds for distributed minimum-

weight spanning tree verification. Theory of Computing Systems, 53(2):318-340,

2013.

[21] Janne H Korhonen and Jukka Suomela. Towards a complexity theory for the
congested clique. In Symposium on Distributed Computing (DISC), pages 55:1-55:3,
2017.

[22] Amos Korman and Shay Kutten. Distributed verification of minimum spanning
trees. Distributed Computing, 20(4):253-266, 2007.

[23] Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed

Computing, 22:215-233, 2010.

Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic

methods for interactive proof systems. . ACM, 39(4):859-868, October 1992.

Boaz Patt-Shamir and Mor Perry. Proof-labeling schemes: broadcast, unicast and

in between. In International Symposium on Stabilization, Safety, and Security of

Distributed Systems, pages 1-17. Springer, 2017.

[26] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,
Gopal Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verifica-
tion and hardness of distributed approximation. SIAM Journal on Computing,
41(5):1235-1265, 2012.

[27] Adi Shamir. IP= PSPACE. Journal of the ACM (JACM), 39(4):869-877, 1992.

[28] Jukka Suomela. Survey of local algorithms. ACM Computing Surveys (CSUR),
45(2):24, 2013.

[29] Salil P Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science, 7(1-3):1-336, 2012.

=
2

oy
&

=
X2

™
=

[24

[25

