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Noncoding single nucleotide polymorphisms (SNPs) and their target genes are important
components of the heritability of diseases and other polygenic traits. Identifying these SNPs
and target genes could potentially reveal new molecular mechanisms and advance precision
medicine. For polygenic traits, genome-wide association studies (GWAS) are preferred tools
for identifying trait-associated regions. However, identifying causal noncoding SNPs within
such regions is a difficult problem in computational biology. The DNA sequence context of
a noncoding SNP is well-established as an important source of information that is benefi-
cial for discriminating functional from nonfunctional noncoding SNPs. We describe the use
of a deep residual network (ResNet)-based model—entitled Res2s2aM—that fuses flanking
DNA sequence information with additional SNP annotation information to discriminate
functional from nonfunctional noncoding SNPs. On a ground-truth set of disease-associated
SNPs compiled from the Genome-wide Repository of Associations between SNPs and Phe-
notypes (GRASP) database, Res2s2aM improves the prediction accuracy of functional SNPs
significantly in comparison to models based only on sequence information as well as a leading
tool for post-GWAS noncoding SNP prioritization (RegulomeDB).
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1. Introduction

Prioritizing functional trait-associated noncoding SNPs in the human genome remains a criti-
cal and challenging problem. From thousands of genome-wide association studies, over 21,751
trait-associated SNPs have been reported.1 However, noncoding SNPs can also have significant
effects on trait variation including risks of certain diseases such as coronary artery disease or
certain cancers.2 Causal noncoding SNPs are thought affecting trait variation through gene
regulatory mechanisms. Nevertheless, identifying such causal variants within trait-associated
regions that have been implicated by GWAS is a difficult computational problem3 because
the noncoding DNA sequence and epigenomic determinants of regulatory sites are incom-
pletely studied. While some genomic annotations are known to be informative for predicting
whether or not a noncoding SNP is functional,4 many sequence determinants of functional
noncoding DNA are unknown and must be learned from training data. DNA sequence infor-
mation up to a kilobase from a noncoding SNP can be informative as to whether or not that
SNP is functional;5 however, at that distance scale, the DNA sequence context of a SNP is
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high-dimensional, posing significant challenges for traditional computational methods.
In recent years, significant advancements have been made in machine learning methods

for handling high-dimensional datasets with complex interactions among features. Deep learn-
ing approaches are particularly powerful in this context because they enable the utilization
of large-scale, high-dimensional, unstructured data as a substrate for predictive models. In
machine-learning methods for image recognition, deep convolutional neural networks (CNNs)
have emerged as a fundamental building block for deep learning approaches, due to the CNN’s
ability to learn composite data representations and the contours of objects from pixel-level
data.6 Recently, deep residual networks (ResNet)7,8 have been proposed which have the ad-
vantage of smoothing the information propagation and more representing power with deeper
network models. A key advantage of deep neural network models with differentiable activation
functions is that the backpropagation algorithm for computing the loss function gradient can
be used, which is compatible with computation on a graphical processing unit (GPU).

Deep learning methods have been used in computational biology in various contexts9 in-
cluding biomedical imaging, data-driven diagnostics, and pharmacogenomics. In the area of
noncoding genome analysis, deep learning-based computational approaches have been used for
both functional SNP prioritization and identification of regulatory sequence patterns, among
which two approaches are notable: Basset10 is a deep neural network model for predicting
chromatin accessibility for cell-specific mutations using DNA sequences; and DeepSEA5 is a
convolutional neural network based framework trained on chromatin-profiling data that di-
rectly learns regulatory patterns de novo from SNP-flanking sequences. In the context of post-
GWAS analysis to identify causal noncoding SNPs, the key computational problem relevant to
this work can be defined as: given a DNA sequence acquired around a specific trait-associated
noncoding SNP, and given a set of training (functional) SNPs, produce a score representing
the confidence that the trait-associated SNP is functional.

In this work, we collated a set of training noncoding SNPs (divided into “functional” and
“non-functional” classes) curated from GWAS studies, and obtained flanking genomic DNA se-
quences for the SNPs. We implemented 5 different neural network architectures for predicting
the SNP class labels based on their flanking DNA sequences and (optionally) additional SNP
annotation features from a database of noncoding SNP annotations (HaploReg): two CNN
models based on DeepSEA,5 a CNN model based on DeFine11 (with two sets of optimization
algorithms and loss functions), a new sequence-based deep residual network approach (which
we call Res2s2a) that we propose, and a hybrid network (which we call Res2s2aM) fusing
Res2s2a with HaploReg-derived SNP annotation features. We trained the neural network mod-
els using a stochastic gradient optimization method (Adam)12 and evaluated their performance
for discriminating functional from non-functional noncoding SNPs in hold-out examples. We
found that the deep residual network models (Res2s2a and Res2s2aM) outperformed the CNN-
based models, and that the hybrid model (Res2s2aM) outperformed the sequence-only model
(Res2s2a). This work is the first application of deep residual networks for noncoding SNP
prioritization of which we are aware, and it suggests that ResNet models can significantly
advance the state-of-the-art for computational methods for post-GWAS SNP prioritization.
All of the code for this work (including the new methods Res2s2a and Res2s2aM) is available
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3.2. Dataset generation

Positive dataset generation. We annotated each SNP based on its location relative to
known gene annotations using all Ensembl transcripts,19 assigning the SNP to an annotation
category out of “pcexon (protein-coding exon)”, “intron”, “3′UTR”, “5′UTR”, “nonpcexon
(non-protein-coding exon)”, “intergenic”. Following a specific strand direction, If a SNP over-
lapped a protein-coding exon in any transcript, it was annotated as coding. If a SNP was
not marked as coding by the previous step but was found to overlap a UTR in any tran-
script, it was annotated with the corresponding UTR (3′ or 5′). If a SNP was not annotated
as coding or UTR by the previous steps, but if that SNP was located in an intron for any
transcript, it was annotated as intronic. If a SNP in a transcript did not overlap with any
coding exon, it is assigned to “nonpcexon” category. Otherwise, the SNP was annotated as
intergenic. Next, we filtered to obtain a positive-example set of SNPs following criteria: (1)
SNPs residing in protein-coding exons were excluded. (2) Any SNP within 1 Mbp of a trait-
associated (P < 5× 10−8 in at least one record in GRASP) protein-coding SNP was excluded.
(3) Remaining noncoding SNPs meeting the significance criteria (P < 5× 10−8 in at least one
GWAS) that had the lowest P value within 1 Mbp were retained as positive examples. (4)
The rest noncoding SNPs with minimum P -value in the neighborhood of noncoding SNPs
are specified as positive cases. This procedure yielded a set of 128,944 positive examples of
noncoding SNPs.

Control case generation. Using HaploReg,17 we obtained SNPs that are in linkage
disequilibrium (within 250 kbp and with correlation coefficient r2 ≥ 0.8) with SNPs from
the positive set. Each positive SNP was expanded to SNPs from four population groups
(“AFR”, “AMR”, “ASN”, “EUR”) in the 1,000 Genome (1KG) Project20 and then combined.
In the set of resulting proxy SNPs, any SNPs that were listed in the GRASP database or
protein-coding were excluded, resulting in a set of 1,412,452 noncoding control SNPs that
were treated as negative examples. Additionally, we obtained annotation features about the
SNP set using HaploReg, including allele frequencies, conservation scores et al. Table 1 details
the biological features that we used in the Res2s2aM model. We obtained RegulomeDB scores
from RegulomeDB webservice directly used as a categorical feature in the Res2s2aM model
and also as a standalone predictor. We mapped the 15 RegulomeDB score categories (“1a”,
“1b”, “1c”, ... “5”, “6”, “7”) to [1.0, 2.0, ..., 15.0] for this purpose, assigning the value 16.0 to
missing RegulomeDB scores (note: a lower RegulomeDB score corresponds to greater evidence
for a noncoding SNP to be functional18). This procedure yielded 1,541,396 SNPs in total with
a class ratio of about 1:10.9 (positive SNPs : control SNPs).

SNP annotation feature evaluation. In order to quantify the discriminating power
of individual SNP annotation features (from HaploReg) on our set of 1.5 million SNPs, we
computed empirical log-likelihood ratios (positive:control) of each of the SNP annotation
features (Fig. 3). This analysis showed that, consistent with the fact that it is comprised of
multiple types of independent evidence for functional noncoding SNPs, RegulomeDB (Fig. 3e)
is the strongest predictor among the SNP annotation features. Further, the analysis shows an
strong association between the reference allele frequency and the likelihood ratio, in each of
the 1KG population groups.
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single channel input. After both encoded strands are input into the model, a convolution step
based on 16 convolutional kernels (each of size 7×7) is performed on them with a stride of 2 bp.
The output of the previous layer is batch normalized,23 ReLU activated, and a max pooling
layer is applied to reduce dimension. Next, 4 groups of residual blocks are built with various
output channels, layers, and filter strides. Each residual block consists of 3 batch-normalized
convolutional layers with ReLU activation and the residual skipping shortcut connections. An
average pooling layer with kernel size to 4 bp is applied to the output of the residual block.
The output of average pooling layers from both strands are expanded into 1-D vectors and
combined into one single vector as the final output for both strands.

4.2. Tandem inputs of forward- and reverse-strand sequences

Genomic DNA is double-stranded, and thus, to make a consistent prediction with the same
SNP sequences along both strand directions, we incorporate input DNA sequences along both
“+” and “-” strands (the latter being reverse-complemented) into our CNN- and ResNet-
based models. As it is demonstrated that reverse-complement parameter sharing contributes
to deep learning in genomics,24 the reverse-complement sequence segments are encoded in
our model (along with the forward-strand sequence) as input signals. In the training process,
each residual building block shares weights between both forward and reverse-complement
sequences.

4.3. Biallelic high-level network structure

A key potential issue with using neural networks to score genomic sequence flanking a SNP
is the need to account for the two alleles of the central SNP. Convolutional operations are
the critical components in convolutional neural network based models including ResNet. Most
existing models are trained merely on reference allele sequence flanking a specific variant
position. In this paper, we aim at the contrast between the reference allele and the alternative
allele and highlight the effect of the central SNPs. The architecture of the sequence learning
module in the Res2s2aM model is illustrated in Figure 4.

4.4. Incorporating HaploReg SNP annotation features

In previous studies, SNP annotation features have proved essential for identifying functional
noncoding SNPs.25 We trained the Res2s2aM model to learn feature embeddings jointly with
the encoded sequence. This method is inspired by natural language processing models where
words are mapped to a fixed dimension of vectors. We used a fully connected layer of 100
nodes as the embedding layer to represent both continuous and categorical features (Fig. 4,
dotted rectangle). The overall data fusion algorithm for Res2s2aM is defined in Algorithm 1.

4.5. Training of models

For parameter fitting in all models except “DeFine0,” we used Adam,12 a stochastic algo-
rithm for parameter optimization, with cross-entropy as the loss function. [For the “DeFine0”
model, following Wang et al.,11 we used stochastic gradient descent as optimization algorithm
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Algorithm 1 Res2s2aM

1: procedure seqAugment(x) . Expansion of ref seq
2: x1 = x . Ref seq: + strand
3: x

′

1 = x̄1
−1 . Ref seq: - strand, reverse complement

4: x2 = alt(x1) . Alt seq: + strand
5: x

′

2 = x̄2
−1 . Alt seq: - strand, reverse complement

6: procedure seqLearn(x1, x
′

1, x2, x
′

2)
7: Initialize Conv layers convi and BatchNorm layers bni, i ∈ {1, 2}

8: x1, x
′

1, x2, x
′

2 = conv1(x1), conv1(x
′

1), conv2(x2), conv2(x
′

2) . Filters sharing
9: x1, x

′

1, x2, x
′

2 = bn1(x1), bn1(x
′

1), bn2(x2), bn2(x
′

2)
10: x1, x

′

1, x2, x
′

2 = maxpool1(x1), maxpool1(x
′

1), maxpool2(x2), maxpool2(x
′

2)
11: x1, x

′

1, x2, x
′

2 = relu1(x1), relu1(x
′

1), relu2(x2), relu2(x
′

2)
12: for i = 1 : nr do . Residual blocks
13: x1, x

′

1, x2, x
′

2 = ResBlocki
1(x1), ResBlocki

1(x
′

1), ResBlocki
2(x2), ResBlocki

2(x
′

2)

14: x1, x
′

1, x2, x
′

2 = avgpool1(x1), avgpool1(x
′

1), avgpool2(x2), avgpool2(x
′

2)
15: xref , xalt = [x1, x

′

1]1d, [x2, x
′

2]1d . Flatten and combine to 1-D vector
16: x∆ = xref - xalt . Train on difference of Ref and Alt seqs

17: procedure metaEmbed(xmeta)
18: xmeta = fcmeta(xmeta) . Metadata embedding
19: X = [x∆, xmeta]1d
20: X = fc(X)

return X

5. Results

We trained and evaluated six models: Res2s2aM, Res2s2a, DeFine0 (the DeFine network
model with the original optimization algorithm and objective function), DeFine (with Adam
optimization and cross-entropy loss), CNN 1s, and CNN 2s on 5 random data spliting assign-
ments. Additionally we compared the accuracy of the supervised models to an unsupervised
approach in which SNPs were ranked by their scores from the RegulomeDB tool. We found that
Res2s2aM significantly improves (Table. 2) over Res2s2a on testing-set area under the receiver
operating characteristic (AUROC) curve (from 0.74 to 0.76). By area under the precision-
versus-recall curve (AUPRC), Res2s2aM (0.21) also had higher performance than Res2s2a
(0.18). In addition to having superior accuracy, Res2s2a and Res2s2aM trained significantly
faster than the CNN-based models. Our model also has over 75% prediction accuracy to CVD,
gastrointestinal and blood-related diseases. Validation-set losses during training Res2s2a and
Res2s2aM terminate earlier than other models due to early stop mechanism (Fig. 6).

6. Conclusions and discussion

By introducing residual skipping connection and ResNet into functional noncoding SNP priori-
tization and multi-modal fusion of biological features with DNA sequence, Res2s2aM improves
the performance of noncoding functional SNP prioritization. Res2s2aM makes full use of both
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