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Abstract. We continue our study of the reflectionless measures associated to an s-dimensional

Calderón–Zygmund operator (CZO) acting in R
d with s ∈ (0, d). Here, our focus will be the study

of CZOs that are rigid, in the sense that they have few reflectionless measures associated to them.
Our goal is to prove that the rigidity properties of a CZO T impose strong geometric conditions

upon the support of any measure µ for which T is a bounded operator in L2(µ). In this way,
we shall reduce certain well-known problems at the interface of harmonic analysis and geometric
measure theory to a description of reflectionless measures of singular integral operators. What is
more, we show that this approach yields promising new results.
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1. Introduction

We continue our study of the reflectionless measures associated to an s-dimensional

Calderón–Zygmund operator (CZO) T acting in R
d with s ∈ (0, d). These are mea-

sures µ for which T (µ) is constant (in a suitable weak sense) on the support of µ (see

Section 2.3 for the formal definition). Here, our focus will be the study of CZOs that are

rigid, in the sense that they have few reflectionless measures associated to them. Our goal

is to prove that the rigidity properties of a CZO T impose strong geometric conditions

upon the support of any measure µ for which T is a bounded operator in L2(µ). In this

way, we shall reduce certain well-known problems at the interface of harmonic analysis

and geometric measure theory to a description of reflectionless measures of singular in-

tegral operators. What is more, we show that this approach yields promising new results.

Our rigidity results split into two cases, depending on whether the dimension of the

CZO is integer or not.
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1.1. Ahlfors–David rigidity

We begin by describing a rigidity result that appeared in our previous paper [JN1].

In [JN1], we gave a new proof of the Mattila–Melnikov–Verdera theorem [MMV], which

states that the support of an Ahlfors–David (AD) regular measure µ for which the asso-

ciated Cauchy transform operator is bounded in L2(µ) is uniformly rectifiable. The key

element of the proof was showing that the Cauchy transform is AD-rigid in the sense that

the only AD-regular reflectionless measures associated to it are of the form cH1|L for a

line L and a constant c > 0.

Amongst the results we want to present here is a generalization of this idea to general

integer-dimensional CZOs acting in R
d . Fix s ∈ Z. We call an s-dimensional CZO T

AD-rigid if every AD-regular reflectionless measure associated to it takes the form cHs |L
for an s-plane L. (On the other hand, every measure of this form is reflectionless for any

s-dimensional CZO T , and so this rigidity condition is that a CZO T should have as few

AD-regular reflectionless measures associated to it as possible.)

We shall show that if T is AD-rigid, and µ is an AD-regular measure for which T is

bounded in L2(µ), then µ is s-uniformly rectifiable. More precisely, we shall show that

one of the geometric criteria for s-uniform rectifiability given by David and Semmes [DS]

is satisfied under the rigidity assumption (Proposition 3.1).

1.2. Wolff rigidity

Fix s 6∈ Z. A theorem of Vihtilä [Vih] states that the s-dimensional Riesz transform, the

CZO with kernelK(x) = x/|x|s+1, x ∈ R
d , cannot be bounded inL2(µ) ifµ has positive

lower density on a set of positive µ-measure, i.e., if

µ

({
x ∈ R

d : lim inf
r→0

µ(B(x, r))

rs
> 0

})
> 0.

Because of this, the condition of AD-regularity is too strong to develop an interest-

ing theory of measures with bounded non-integer-dimensional CZOs. We shall therefore

remove the lower bound condition in the definition of AD-regularity, and consider mea-

sures µ satisfying the growth condition

µ(B(x, r)) ≤ rs for any x ∈ R
d and r > 0. (1.1)

Remark 1.1. For a wide class of non-degenerate CZOs including the s-Riesz transform,

the condition (1.1) is in fact a necessary condition for the CZO associated to a non-atomic

measure µ to be bounded in L2(µ): see for instance [Dav2].

The question of most interest for non-integer-dimensional CZOs is to find the correct

quantitative version of Vihtilä’s theorem. Following Mateu, Prat and Verdera [MPV], we

introduce the Wolff potential of a measure. For p ∈ (0,∞), the p-Wolff potential of µ is

defined by1

Wp(µ)(x) =
∫ ∞

0

(
µ(B(x, r))

rs

)p
dr

r
. (1.2)

1 In the potential theory literature (e.g. [AH]), our p-Wolff potential of µ would be denoted by
Wp(d−s)/(p+1),(p+1)/p(µ).
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The Mateu–Prat–Verdera criterion states that if s ∈ (0, d) andµ is a measure that satisfies

the condition ∫

Q

W2(χQµ) dµ ≤ µ(Q) for every cube Q ⊂ R
d , (1.3)

then every CZO T associated to µ is bounded in L2(µ). We include a proof of this fact in

Appendix A for the benefit of the reader, as it is not readily found in the literature in the

generality stated here.

We are interested in the extent to which conditions such as the Mateu–Prat–Verdera

condition (1.3) are necessary for the L2(µ) boundedness of a particular CZO T .

We declare that an s-dimensional CZO T is Wolff -rigid if the only reflectionless mea-

sure associated to it satisfying the growth condition (1.1) is the zero measure.

In Proposition 3.2 below, we shall show that if a CZO T is Wolff-rigid, then there

exists p ∈ (0,∞), depending on s, d , and the regularity of the kernel of T , such that for

every measure µ satisfying (1.1) for which T is bounded in L2(µ), we have
∫

Q

Wp(χQµ) dµ ≤ Cµ(Q) for every cube Q ⊂ R
d ,

where C > 0 depends on s, d, and the operator norm of T .

1.3. The Riesz transform

Our interest in Propositions 3.1 and 3.2 comes from certain well known questions regard-

ing the s-Riesz transform, the CZO with kernel K(x) = x/|x|s+1, x ∈ R
d . Throughout

this section, µ will denote a measure for which the associated s-Riesz transform operator

is bounded in L2(µ).

David and Semmes [DS] asked whether, in the case when s ∈ Z and µ is AD-regular

measure, µ is s-uniformly rectifiable. This was settled when s = 1 by Mattila, Melnikov,

and Verdera [MMV], and when s = d − 1 by Nazarov, Tolsa and Volberg [NTV1]. At

the same time as [NTV1], a series of papers by Hofmann, Martel, Mayboroda and Uriate-

Tuero [HM, HMM, HMU] proved the result under an additional hypothesis on the support

of µ. The cases s = 2, . . . , d − 2 remain open.

Regarding the non-integer-dimensional case, Mateu, Prat and Verdera [MPV] proved

that if s ∈ (0, 1) then µ satisfies (1.3). Thus, if s ∈ (0, 1), then the s-Riesz transform

associated to µ is bounded in L2(µ) if and only if (1.3) holds.

This result is rather surprising due to the fact that the Riesz kernel is a sign-changing

vector field whereas the Wolff potential has a positive kernel. In particular, the estimate

implies that the Calderón–Zygmund capacity defined by the Riesz transform is equivalent

to a certain positive non-linear capacity from potential theory.

In [MPV] (and elsewhere, for instance [ENV1, Tol2]) it was conjectured that (1.3)

should hold true for s > 1, s 6∈ Z. This conjecture is open for s > 1.2 For s ∈ (d − 1, d),

2 While this paper was in preparation, Reguera, Tolsa and the two present authors proved this
conjecture for s ∈ (d − 1, d) by combining the ideas developed here with those developed in the
paper [RT] mentioned below.
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Eiderman, Nazarov and Volberg [ENV1] showed that the support of µ cannot have finite

s-dimensional Hausdorff measure. This is a qualitative version of (1.3). For s ∈ (1, d−1)

with s 6∈ Z even showing that this qualitative property holds remains an open problem.

The sharp estimate (1.3) was recently verified for s ∈ (d − 1, d) for measures sup-

ported on uniformly disconnected sets by Reguera and Tolsa [RT]. The problem is under-

stood for all s ∈ (0, d) if the measure is precisely the s-dimensional Hausdorff measure

restricted to a Cantor-type set [Tol2, EV].

In short, the results that are known for general measures split into two cases: s ∈
(0, 1] and s ∈ [d − 1, d). In the first case, the powerful Menger curvature formula, first

introduced to the area by Melnikov, is available. In the latter case, one can make use of a

strong maximum principle for the operator (−1)α when α ≤ 1.

The main challenge is to come up with techniques that can apply to intermediate

cases in which neither the Menger curvature formula nor the strong maximum principle

is readily available. It is our hope that reflectionless measures may provide such a tool.

Therefore, we pose the following question regarding the rigidity of the s-Riesz transform.

Question 1.2. Is the s-Riesz transform sufficiently rigid? In other words, suppose that µ

is a reflectionless measure for the s-Riesz transform satisfying (1.1).

(a) If s 6∈ Z, is then µ necessarily the zero measure?

(b) If s ∈ Z, and µ is s-AD regular, does then µ coincide with a constant multiple of the

s-dimensional Hausdorff measure restricted to an s-plane?

Of the two parts of this question, we are more confident that part (a) should have a “yes”

answer, and in this paper we verify that this is the case when s ∈ (d − 1, d) (Propo-

sition 3.3). Combining this with the non-integer rigidity result mentioned above (Pro-

position 3.2) yields the following theorem.

Theorem 1.3. Let s ∈ (d − 1, d). There exists p ∈ (0,∞), depending on s and d, such

that if µ is a non-atomic measure for which the associated s-Riesz transform operator is

bounded in L2(µ), then
∫

Q

Wp(χQµ) dµ ≤ Cµ(Q) for every cube Q ⊂ R
d ,

for a constant C > 0 depending on s, d, and the operator norm of the Riesz transform.

As already mentioned, in a subsequent paper written in collaboration with Reguera and

Tolsa, the sharp exponent p = 2 is proved. We emphasize that the proof in that paper

builds upon, and so does not supersede, what is done here. We also mention that Ques-

tion 1.2 has been answered for s ∈ (0, 1) by Prat and Tolsa [PT].

We are a long way from answering Question 1.2 either positively or negatively, but at

least we can say that reflectionless measures for the Riesz transform have some special

structure. More precisely, we show that for any s ∈ (0, d), a reflectionless measure for

the s-Riesz transform satisfying (1.1) has

• nowhere dense support (Section 9.2), and

• infinite energy in the sense that
∫∫

Rd×Rd
1

|x−y|s−1 dµ(x) dµ(y) = ∞ (Section 10).
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Neither property is true for a general CZO. For instance, the 2-dimensional Lebesgue

measure on the unit disc is a reflectionless measure for the 1-dimensional CZO with

kernel z/z2 in C (see [JN2] or Part III of this series).

2. Preliminaries

2.1. General notation

• By a measure, we shall always mean a non-negative locally finite Borel measure. For a

measure µ, supp(µ) denotes its closed support. The d-dimensional Lebesgue measure

is denoted by md .

• For 3 > 0, we say that a measure µ is 3-nice if µ(B(x, r)) ≤ 3rs for every ball

B(x, r) ⊂ R
d . A measure is nice if it is 3-nice for some 3 > 0.3

• A measure µ is called3-AD-regular if it is3-nice and also µ(B(x, r)) ≥ (1/3)rs for

every x ∈ supp(µ) and r > 0. A measure is AD-regular if it is 3-AD regular for some

3 > 0.

• For two complex-valued functions f, g ∈ L2(µ), we define

〈f, g〉µ =
∫

Rd

fg dµ.

In the event that one of the two functions (say f ) is Cd
′
-valued, we shall write 〈f, g〉µ

to mean the vector with components 〈fj , g〉µ, where fj are the components of f .

• A function f (either scalar- or vector-valued) is called Lipschitz continuous if

‖f ‖Lip = sup
x,y∈Rd , x 6=y

|f (x)− f (y)|
|x − y|

< ∞.

• For an open set U ⊂ R
d , Lip0(U) denotes the set of Lipschitz continuous functions

that are compactly supported in U .

• The oscillation of a function f on a set E is defined as supx,y∈E |f (x)− f (y)|.
• We denote by D a lattice of open dyadic cubes in R

d . (Our approach involves several

limiting operations in which lattices will be shifted and rescaled, so we shall always be

dealing with some dyadic lattice, rather than the standard one.) We set Q0 = (0, 1)d .

• We introduce a graph structure Ŵ(D) on a dyadic lattice D by connecting each dyadic

cube with an edge to its children, and to all neighbouring cubes of the same sidelength.

The graph distance on D, denoted by d(Q,Q′), is the shortest path from Q to Q′ in

the graph Ŵ(D). This graph has vertex degree (that is, the maximal number of edges

emanating from a cube) bounded by 2d + 2d + 1.

3 Of course, we could always renormalize a measure so that if it is nice, then the growth condition
(1.1) holds, but we will be renormalizing measures in a variety of ways, and so it makes some sense
to keep track of this parameter.
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• The density of a measure µ at a cube Q (not necessary dyadic) is denoted by

Dµ(Q) =
µ(Q)

ℓ(Q)s
.

We shall just write D(Q) if the underlying measure is clear from the context.

2.2. s-dimensional Calderón–Zygmund operators

We recall that an s-dimensional CZ kernel is a function K : Rd \ {0} → C
d ′

satisfying

(i) |K(x)| ≤ 1/|x|s for x ∈ R
d \ {0},

(ii) K(−x) = −K(x) for x ∈ R
d \ {0}, and

(iii) for some α ∈ (0, 1], the function x 7→ |x|s+αK(x) is Hölder continuous of order α.

Throughout the paper, we shall be interested in homogeneous CZ kernels, and so we

impose the following additional condition:

(iv) K(λx) = λ−sK(x) for λ > 0.

Fix a CZ-kernel K . For δ > 0, the regularized CZ kernel is defined by

Kδ(x) = K(x)

(
|x|

max(|x|, δ)

)s+α
, x ∈ R

d \ {0},

and Kδ(0) = 0.

Notice that |Kδ(x)| ≤ 1/δs for all x ∈ R
d .

If µ is a 3-nice measure, then the Cauchy–Schwarz inequality ensures that the regu-

larized CZO transform

Tµ,δ(f )(x) =
∫

Rd

Kδ(x − y)f (y) dµ(y), x ∈ R
d ,

is uniformly bounded pointwise in absolute value in terms of δ, 3, and ‖f ‖L2(µ). In

particular, Tµ,δ : L2(µ) → L2
loc(µ) for any δ > 0.

We say that a nice measure µ has associated CZO T bounded in L2(µ) if

‖T ‖µ := sup
δ>0

‖Tµ,δ‖L2(µ)→L2(µ) < ∞. (2.1)

2.3. Reflectionless measures

We briefly recall the definition of a reflectionless measure. A more thorough description

is given in Section 3 of Part I.

Fix a CZO T . We recall that a measure µ is said to be diffuse if the function (x, y) 7→
1/|x − y|s−1 is in L1

loc(µ × µ). For a diffuse measure µ, and for f, ϕ ∈ Lip0(R
d), we

may define

〈T (fµ), ϕ〉µ =
∫∫

Rd×Rd

K(x − y)Hf,ϕ(x, y) dµ(x) dµ(y),

where

Hf,ϕ = 1
2
[f (y)ϕ(x)− ϕ(y)f (x)].
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If in addition µ has restricted growth at infinity, in the sense that
∫
|x|≥1

1
|x|s+α dµ(x) < ∞,

then we may define the pairing 〈T (fµ), ϕ〉µ when f ∈ Lip0(R
d) satisfies

∫
Rd
f dµ = 0,

and ϕ is merely a bounded Lipschitz function. To do this, fix ψ ∈ Lip0(R
d) that is

identically equal to 1 on a neighbourhood of the support of f , and set

〈T (fµ), ϕ〉µ = 〈T (fµ), ψϕ〉µ +
∫

Rd

T (fµ)(x)[1 − ψ(x)]ϕ(x) dµ(x).

The mean zero property of f ensures that |T (fµ)(x)| ≤ Cf,ψ
(1+|x|)s+α for x ∈ supp(1 − ψ),

from which the restricted growth at infinity ensures that the integral above converges

absolutely.

We say that a diffuse measure µ with restricted growth at infinity is reflectionless

for T if

〈T (fµ), 1〉µ = 0 for every f ∈ Lip0(R
d) satisfying

∫

Rd

f dµ = 0.

2.4. The linear operator Tµ

Suppose that µ is a3-nice measure for which the associated CZO T is bounded in L2(µ).

For f, ϕ ∈ Lip0(R
d), we have Hf,ϕ ∈ Lip0(R

d × R
d), and Hf,ϕ(x, x) = 0. Thus, for

any δ > 0,

|Kδ(x − y)Hf,ϕ(x, y)| ≤
C(f, ϕ)

|x − y|s−1
χS×S(x, y),

where S ⊃ supp(f ) × supp(ϕ). Now, note that Kδ(x − y)Hf,ϕ(x, y) converges to

K(x−y)Hf,ϕ(x, y) outside the set {(x, y) ∈ R
d ×R

d : x = y}. Insofar as the measure µ

is nice, this set has zero µ×µ measure, and also
χS (x)χS (y)

|x−y|s−1 ∈ L1(µ×µ). Consequently,

the dominated convergence theorem ensures that

〈Tµ,δ(f ), ϕ〉µ =
∫∫

Rd×Rd

Kδ(x − y)Hf,ϕ(x, y) dµ(x) dµ(y)

converges as δ → 0 to

∫∫

Rd×Rd

K(x − y)Hf,ϕ(x, y) dµ(x) dµ(y) = 〈T (fµ), ϕ〉µ.

Furthermore, since |〈Tµ,δ(f ), ϕ〉µ| ≤ C0‖f ‖L2(µ)‖ϕ‖L2(µ) for every δ > 0,

|〈T (fµ), ϕ〉µ| ≤ C0‖f ‖L2(µ)‖ϕ‖L2(µ).

Consequently, by the Riesz–Fischer theorem, there exists a unique bounded linear opera-

tor Tµ : L2(µ) → L2(µ) such that

〈Tµ(f ), ϕ〉µ = 〈T (fµ), ϕ〉µ whenever f, ϕ ∈ Lip0(R
d).
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2.5. Uniform rectifiability and the local convexity condition

Now fix s ∈ Z. In this section we recall some of the language and results from David and

Semmes [DS].

We say that an AD-regular measure µ is uniformly rectifiable if there exists M > 0

such that for every cube Q ∈ D, there is a Lipschitz mapping FQ : R
s → R

d with

‖FQ‖ ≤ Mℓ(Q) and µ(FQ(R
s) ∩Q) ≥ 1

2
µ(Q).

We shall now recall one of the criteria for uniform rectfiability given in [DS]. The

most convenient condition to work with when taking the weak limit of a sequence of

measures appears to be the Local Weak Convexity (LCV) condition:

Fix δ > 0. For an AD-regular measure µ, we say that a dyadic cube Q ∈ D is

δ-non-LCV if

there exist x, y ∈ 3Q ∩ supp(µ) such that B
( x+y

2
, δℓ(Q)

)
∩ supp(µ) = ∅. (2.2)

According to [DS, Chapter 1, Corollary 2.10] the uniform rectifiability of supp(µ) is

equivalent to the fact that for each δ > 0, the family of δ-non-LCV dyadic cubes is a

Carleson family, i.e., for each δ > 0, there exists Cδ > 0 such that for every P ∈ D,
∑

Q∈D:Q⊂P,
Q is δ-non-LCV

ℓ(Q)s ≤ Cδℓ(P )
s .

2.6. Stabilization of dyadic lattices

We say that a sequence of dyadic lattices Dk stabilizes in a dyadic lattice D′ if every

Q′ ∈ D′ lies in Dk for sufficiently large k.

Lemma 2.1. Suppose Dk is a sequence of dyadic lattices with Q0 = (0, 1)d ∈ Dk for

all k. Then there exists a subsequence that stabilizes to some lattice D′.

The lemma is proved via a standard diagonal argument: For n ≥ 0, there are only 2nd

distinct ways to arrange a dyadic lattice so that Q0 is a child of a cube of sidelength 2n.

3. Main results

Having introduced the required notation and concepts, we can list our main results. Firstly,

the integer-dimensional rigidity result:

Proposition 3.1. Let s ∈ Z, s ∈ (0, d). Suppose that T is an s-dimensional CZO, and

that the only s-AD regular reflectionless measures associated to T are of the form cHs |L
for a constant c > 0 and an s-plane L. If µ is an s-AD regular measure for which T

is bounded in L2(µ), then for every δ > 0, the family of dyadic δ-non-LCV cubes is a

Carleson family.

The second result is the non-integer-rigidity result. Formally, there is no need in this case

to impose the requirement that s be non-integer, but in order for the hypothesis on T to

be satisfied, s cannot be an integer. Recall the Wolff potential (1.2) from the introduction.
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Proposition 3.2. Let s ∈ (0, d). Suppose that T is an s-dimensional CZO, and that the

only nice reflectionless measure for T is the zero measure. There exists p ∈ (0,∞), de-

pending on d, s, and α, such that any3-nice measureµwith associated CZO transform T

bounded in L2(µ) satisfies

∫

Q

Wp(χQµ) dµ ≤ Cµ(Q) for any cube Q ⊂ R
d , (3.1)

for a constant C > 0 depending on s, d, α, 3, and ‖Tµ‖L2(µ)→L2(µ).

As discussed in the introduction, we are able to answer Question 1.2 affirmatively if

s ∈ (d − 1, d).

Proposition 3.3. If s ∈ (d − 1, d), then the only nice reflectionless measure for the

s-dimensional Riesz transform is the zero measure.

4. An overview of the proof of Proposition 3.2

We shall prove Proposition 3.2 first. The proof of Proposition 3.1 will be significantly

simpler. It will be convenient to prove the analogue of Proposition 3.2 with a dyadic

Wolff potential.

Proposition 4.1. Suppose that the only nice reflectionless measure for a CZO T is the

zero measure. If µ is a finite nice measure for which the CZO T is bounded in L2(µ),

then there exist p ∈ [2,∞) depending on s, d, and α, and a constant C > 0 depending

on s, d, α, and ‖T ‖µ, such that

∑

Q∈D
Dµ(3Q)

pµ(3Q) ≤ Cµ(Rd).

To get Proposition 3.2 from Proposition 4.1, merely note that if µ is a measure with

associated CZO transform T bounded in L2(µ), then for any cubeQ, ν = χQµ is a finite

measure for which the associated CZO transform T is bounded in L2(ν). Proposition 4.1

then yields ∫

Rd

Wp(ν) dν ≤ C
∑

Q′∈D
Dν(3Q

′)pν(3Q′) ≤ Cν(Rd),

as required.

The proof of Proposition 4.1 proceeds through studying the Lipschitz oscillation co-

efficient at a dyadic cube. We first outline this scheme.

Let µ be a (non-negative) measure. For A > 100
√
d and a cube Q ∈ D, define the

set of functions

8
µ
A(Q) =

{
ψ ∈ Lip0(B(xQ, Aℓ(Q))) : ‖ψ‖Lip ≤

1

ℓ(Q)
,

∫

Rd

ψ dµ = 0

}
.
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The system 8
µ
A(Q) (Q ∈ D) is a Riesz system, that is, there exists a constant C =

C(A, s, d) > 0 such that for any f ∈ L2(µ), and every choice of ψQ ∈ 9µA(Q) (Q ∈ D),

∑

Q∈D

|〈f,ψQ〉µ|2

µ(B(xQ, 3Aℓ(Q)))
≤ C‖f ‖2

L2(µ)
.

See Appendix B for a proof of this fact. Consequently, if in addition µ is a finite 3-nice

measure for which T is bounded in L2(µ), then

∑

Q∈D

|〈T (ψQµ), 1〉µ|2

µ(B(xQ, 3Aℓ(Q)))
=

∑

Q∈D

|〈Tµ(1), ψQ〉µ|2

µ(B(xQ, 3Aℓ(Q)))
≤ C(A)‖Tµ(1)‖2

L2(µ)

≤ C(A)‖Tµ‖2
L2(µ)→L2(µ)

µ(Rd). (4.1)

We now introduce the Lipschitz oscillation coefficient. Define

2Aµ(Q) = sup
f∈8µA(Q)

|〈T (fµ), 1〉µ|. (4.2)

From (4.1) we see that

∑

Q∈D

2Aµ(Q)
2

µ(B(xQ, 3Aℓ(Q)))
≤ C(A)‖Tµ‖2

L2(µ)→L2(µ)
µ(Rd). (4.3)

Lemma 4.2. Suppose that µ is a finite 3-nice measure for which the CZO T is bounded

in L2(µ). Suppose that F ⊂ D, 1 > 0 and A > 1 are such that for every Q ∈ F ,

2Aµ(Q) ≥ 1Dµ(3Q)µ(3Q). (4.4)

Then

∑

Q∈F
Dµ(3Q)

2 µ(3Q)2

µ(B(xQ, 3Aℓ(Q)))
≤ C(A)

(‖Tµ‖L2(µ)→L2(µ)

1

)2

µ(Rd).

The lemma is an immediate consequence of the inequality (4.3). Consequently, if we were

able to show that there exist positive constants 1 and A such that (4.4) holds for every

cube Q ∈ D, then we would arrive at

∑

Q∈D
Dµ(3Q)

2 µ(3Q)2

µ(B(xQ, 3Aℓ(Q)))
≤ Cµ(Rd),

from which the solution of the Mateu–Prat–Verdera conjecture would follow for the

CZO T . However, the inequality (4.4) can easily fail for many cubes, but the main point

behind the proof of Proposition 4.1 is that under the hypothesis of the non-existence of

non-trivial 3-nice reflectionless measures, (4.4) holds for a class of cubes near which µ

is sufficiently regular.
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Definition 4.3. Let µ be a locally finite measure, and let ε > 0. A cube Q ∈ D is called

ε-regular for µ if

Dµ(3Q
′) ≤ 2εd(Q,Q

′)Dµ(3Q) for every Q′ ∈ D. (4.5)

In Section 5 we shall show that if any locally finite measure µ has an ε-regular cube

Q ∈ D, and ε is small enough (in terms of d, s and α), then µ is diffuse and so one

can define the Lipschitz oscillation coefficient at Q. We shall then prove the following

alternative:

Proposition 4.4. One of the following two statements holds: Either

(i) there exists a non-trivial nice reflectionless measure for the CZO T , or

(ii) there exist ε,A,1 > 0 such that whenever µ is a locally finite measure and Q ∈ D

is an ε-regular cube, one has

2Aµ(Q) ≥ 1Dµ(3Q)µ(3Q).

Under the hypothesis of Proposition 4.1, we are forced into part (ii) of this alternative. Let

us now fix ε and A as in (ii). Returning to the case of a finite nice measure µ for which

T is bounded in L2(µ), Lemma 4.2 implies that

∑

Q∈D:Q is ε-regular

Dµ(3Q)
2 µ(3Q)2

µ(B(xQ, 3Aℓ(Q)))
≤ Cµ(Rd),

where the constant C > 0 may depend on ε, A, ‖Tµ‖L2(µ)→L2(µ), and 1. However, a

regular cube is doubling by its defining property, and so
∑

Q∈D:Q is ε-regular

Dµ(3Q)
2µ(3Q) ≤ Cµ(Rd)

as well.

We therefore arrive at the following question: When does the sum over regular ε-cubes

bound the entire sum? In Section 6, we shall prove the following lemma.

Lemma 4.5. Suppose that µ is a finite nice measure. For each ε > 0, there exists p =
p(ε, d) ≥ 2 such that

∑

Q∈D
Dµ(3Q)

pµ(3Q) ≤ C
∑

Q∈D:Q is ε-regular

Dµ(3Q)
pµ(3Q),

where C = C(ε, d, s) > 0.

From this lemma, and the inequality Dµ(3Q)
p ≤ (C3)p−2Dµ(3Q)

2, we deduce that

∑

Q∈D
Dµ(3Q)

pµ(3Q) ≤ C
∑

Q∈D:Q is ε-regular

Dµ(3Q)
2µ(3Q) ≤ Cµ(Rd),

and Proposition 4.1 follows.
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5. Measures with slightly non-standard growth

Fix β satisfying β < min(α, s) (recall here that α ≤ 1). We say that a measure µ is

3-reasonable if

µ(B(x, r)) ≤ 3rs(Rmax(1, 1/r))β whenever B(x, r) ⊂ B(0, R) with R > 1.

It is immediate from the definition that if µk is a sequence of3-reasonable measures,

then there is a subsequence which converges weakly to a 3-reasonable measure µ. (Of

course, here we are using the weak compactness of the space of locally finite measures

over the (separable) space of compactly supported continuous functions.)

Throughout this section, all constants may depend on 3 and β without explicit men-

tion. The next lemma consists of two straightforward estimates using the definition of a

reasonable measure.

Lemma 5.1. Let R > 1, and suppose that µ is 3-reasonable. Then there is a constant

C > 0 such that if r ∈ (0, 2R), then

∫

|x−y|<r

1

|x − y|s−1
dµ(y) ≤ CRβ min(r1−β , r) for x ∈ B(0, R),

and ∫

Rd\B(0,R)

1

|x|s+α
dµ(x) ≤

C

Rα−β .

Proof. For the first estimate, note that

∫

|x−y|<r

1

|x − y|s−1
dµ(y) ≤ C

∫ r

0

µ(B(x, t))

t s−1

dt

t
.

Note that B(x, t) ⊂ B(0, 3R) for x ∈ B(0, R) and t ≤ 2R. Thus, if t ∈ (0, 1], then

µ(B(x, t)) ≤ 3βRβ3t s−β . Consequently, if r ∈ (0, 1] then

∫ r

0

µ(B(x, t))

t s−1

dt

t
≤ CRβ

∫ r

0

t1−β dt

t
≤ CRβr1−β .

On the other hand, for t ∈ (1, 2R)we haveµ(B(x, t)) ≤ 3βRβ3t s , and so
∫ r

1
µ(B(x,t))

ts−1
dt
t

≤ CRβr . The desired bound follows.

The tail estimate is just as simple. For r > 1, we have µ(B(0, r)) ≤ 3rs+β . Substi-

tuting this inequality into the integral
∫ ∞
R

µ(B(0,r))
rs+α

dr
r

yields the required estimate. ⊓⊔

An immediate consequence of the first estimate in this lemma is that a 3-reasonable

measureµ is diffuse, that is, the function (x, y) 7→ 1/|x − y|s−1 is locally integrable with

respect to µ × µ. Furthermore, the second estimate ensures that µ has restricted growth

at infinity in the sense that
∫
|x|≥1(1/|x|

s+α) dµ(x) < ∞. Consequently, the bilinear form

〈T (fµ), 1〉µ is well defined for any f ∈ Lip0(R
d) with

∫
f dµ = 0 (recall Section 2.3).
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Now, recall from Section 8 of Part I that a sequence of measuresµk is called uniformly

diffuse if, for each R > 0 and ε > 0, there exists r > 0 such that for all k,
∫∫

x,y∈B(0,R): |x−y|<r

dµk(x) dµk(y)

|x − y|s−1
≤ ε,

and µk is said to have uniformly restricted growth (at infinity) if, for each ε > 0, there

exists an R ∈ (0,∞) such that for all k,
∫

Rd\B(0,R)

1

|x|s+α
dµk(x) ≤ ε.

Notice that since the constant in Lemma 5.1 depends only on s, 3, and β, a se-

quence µk of 3-reasonable measures is uniformly diffuse with uniformly restricted

growth at infinity. Consequently, Lemma 8.2 of Part I is applicable to such a sequence

of measures. Let us now state this convergence lemma for the special case under consid-

eration.

Consider two sets of functions:

8
µ
R =

{
ψ ∈ Lip0(B(0, R)) : ‖ψ‖Lip < 1 and

∫

B(0,R)

ψ dµ = 0

}
,

8µ =
{
ψ ∈ Lip0(R

d) : ‖ψ‖Lip < 1 and

∫

Rd

ψ dµ = 0

}
=

⋃

R>0

8
µ
R.

Lemma 5.2. Suppose thatµk are3-reasonable measures that converge weakly to a mea-

sure µ (and so µ is 3-reasonable as well). Let γk and R̃k be sequences of non-negative

numbers satisfying γk → 0 and R̃k → ∞ as k → ∞. If |〈T (ψµk), 1〉µk | ≤ γk for all

ψ ∈ 8µk
R̃k

, then 〈T (ψµ), 1〉µ = 0 for all ψ ∈ 8µ.

Let us also record a useful corollary of this result.

Corollary 5.3. The weak limit of a sequence of 3-reasonable reflectionless measures is

( provided it exists) a 3-reasonable reflectionless measure.

5.1. Lipschitz oscillation coefficients and reflectionless measures

In this section we prove Proposition 4.4. We shall assume that statement (i) of the propo-

sition fails to hold, which is to say that the only nice reflectionless measure is the trivial

measure.

The proof that statement (ii) holds will be obtained via a compactness argument. First

we fix ε, and let A tend to infinity and 1 tend to zero. Then we let ε tend to zero.

Lemma 5.4. There exists 3 > 0 such that if ε is small enough (smaller than some ε0

depending on β), then any measure µ satisfying

Dµ(3Q) ≤ 2εd(Q,Q0) for every Q ∈ D,

for some dyadic lattice D containing Q0, is 3-reasonable.
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Proof. Fix a ball B(x, r) ⊂ B(0, R) with R > 1. Then B(x, r) is contained in the union

of at most 3d dyadic cubes of sidelength between r and 2r . We shall estimate d(Q,Q0)

for one of these dyadic cubes Q. Note that Q is contained in the ball B(0, 10
√
d R), and

so has graph distance at most log2(R/r)+C from the dyadic ancestor ofQ0 of sidelength

between R and 2R. But then d(Q,Q0) ≤ 2 log2 R + log2(1/r)+ C. It follows that

µ(B(x, r)) ≤ Crs−εR2ε,

so we only need to choose ε0 ≤ β/2. ⊓⊔

Lemma 5.5. Let ε ∈ (0, ε0). One of the following two statements holds:

(i) There exist A = A(ε) and 1 = 1(ε) > 0 such that every non-trivial locally finite

measure µ with an ε-regular cube Q ∈ D satisfies

2Aµ(Q) ≥ 1Dµ(3Q)µ(3Q).

(ii) There exists a reflectionless measure satisfying µ(3Q0) ≥ 1 and

Dµ(3Q) ≤ 2εd(Q,Q0) for every Q ∈ D′ (5.1)

where D′ is some dyadic lattice containing Q0.

Proof. Suppose that (i) fails to hold. For each k > 100
√
d , there is a non-trivial mea-

sure µ̃k and an ε-regular cube Qk with

|〈T (ψµ̃k), 1〉µ̃k | ≤
1

k
Dµ̃k (3Qk)µ̃k(3Qk) for all ψ ∈ 8µ̃kk (Qk).

Now define the measure µk by

µk( · ) =
1

µ̃k(3Qk)
µ̃k(xQk + ℓ(Qk) · ).

Then µk(3Q0) ≥ 1. Furthermore, µk satisfies the inequality (5.1) in the shifted lattice

Dk = 1
ℓ(Qk)

[D − xQk ], and

|〈T (ψµk), 1〉µk | ≤ 1/k for all ψ ∈ 8µkk .

By choosing a suitable subsequence, we may assume that µk converges weakly to a

measure µ with µ(3Q0) ≥ 1. Passing to a further subsequence if necessary, we may as-

sume that the lattices Dk stabilize to some lattice D′ (see Section 2.6). Since dyadic cubes

are open, the lower semicontinuity of the weak limit ensures that µ satisfies (5.1) in the

lattice D′. The measures µk are 3-reasonable (Lemma 5.4), and so applying Lemma 5.2

with γk = 1/k and R̃k = k yields the reflectionless measure promised in (ii). ⊓⊔

Our second lemma rules out the possibility that the second alternative of Lemma 5.5 holds

for every ε > 0, and so proves Proposition 4.4.



Reflectionless measures II 15

Lemma 5.6. Suppose that the only nice reflectionless measure is the zero measure.

Then there exists ε ∈ (0, ε0) such that there is no reflectionless measure µ satisfying

µ(3Q0) ≥ 1 and

Dµ(3Q) ≤ 2εd(Q,Q0) (5.2)

for every Q ∈ D where D is a dyadic lattice with Q0 ∈ D.

Proof. Suppose that for each ε ∈ (0, ε0), there exists a reflectionless measure µε with

µε(3Q0) ≥ 1 satisfying (5.2) for every cube Q in some dyadic lattice Dε containing Q0.

We may assume that µε converges weakly to a measure µ as ε tends to zero along a

suitably chosen sequence, and also that the lattices Dε stabilize to some lattice D′. Since

the measures µε are 3-reasonable, an application of Corollary 5.3 ensures that the limit

measure µ is reflectionless. However, µ(3Q) ≤ ℓ(Q)s for any cube Q ∈ D′. Thus µ is a

nice reflectionless measure. But µ(3Q0) ≥ 1. This contradiction proves the lemma. ⊓⊔

6. Senior vertices on a graph

To complete the proof of Proposition 4.1 it remains to provide a proof of Lemma 4.5,

which is a very elementary piece of graph theory.

Suppose that Ŵ is a graph with vertex degree bounded by D. Suppose that ν is a

bounded non-negative function on Ŵ.

Let M > 0. We call a vertex x ∈ Ŵ subordinate to y ∈ Ŵ if ν(x) < 2−Md(x,y)ν(y).
Here d(x, y) denotes the graph distance (i.e., the length of a shortest path from x to y

in Ŵ). A vertex x ∈ Ŵ is senior if it is not subordinate to any vertex in the graph.

For each x ∈ Ŵ, consider max{ν(y)2−Md(x,y) : y ∈ Ŵ}. That the maximum is attained

is an immediate consequence of the boundedness of ν and the vertex degree. Suppose

that the maximum is attained at x∗. (We shall view x∗ as a vertex determined by x.)

Then we claim that x∗ is senior. Otherwise, there exists some z ∈ Ŵ such that ν(x∗) <
2−Md(x∗,z)ν(z). But then by the triangle inequality ν(x∗)2−Md(x,x∗) < ν(z)2−Md(x,z),
which is a contradiction. Clearly ν(x) ≤ 2−Md(x∗,x)ν(x∗).

If 2−MD < 1, then for any fixed senior vertex z ∈ Ŵ,
∑

x∈Ŵ: x∗=z
ν(x) ≤

∑

x∈Ŵ
2−Md(x,z)ν(z) ≤ ν(z)

∑

k≥0

2−Mk#{x ∈ Ŵ : d(x, z) = k},

which is at most ν(z)
∑
k≥0 2−MkDk ≤ Cν(z). Combining these observations, we arrive

at ∑

x∈Ŵ
ν(x) ≤ C

∑

x is senior

ν(x).

6.1. The proof of Lemma 4.5

Fix ε > 0 and a finite nice measure µ.

First choose M with (2d + 2d + 1)2−M < 1. (The number 2d + 2d + 1 is an upper

bound for the vertex degree of the graph Ŵ(D).) For p ≥ 2, set

ν(Q) = Dµ(3Q)
pµ(3Q).
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Notice that ν is a bounded function, since µ is a finite nice measure. A vertex Q ∈ D is

senior if

Dµ(3Q
′)pµ(3Q′) ≤ 2Md(Q

′,Q)Dµ(3Q)µ(3Q) for every Q′ ∈ D.

The general considerations preceding this subsection guarantee that

∑

Q∈D
ν(Q) ≤ C

∑

Q∈D:Q is senior

ν(Q). (6.1)

On the other hand, for a senior cube Q ∈ D,

Dµ(3Q
′)p+1 ≤ 2Md(Q

′,Q)Dµ(3Q)
p+1 ℓ(Q)

s

ℓ(Q′)s
≤ 2(M+s)d(Q,Q′)Dµ(3Q)

p+1

for any Q′ ∈ D. Thus, a senior cube Q is an M+s
p+1

-regular cube for µ.

But now, provided that M+s
p+1

< ε, we have

∑

Q∈D
ν(Q) ≤ C

∑

Q∈D:Q is ε-regular

ν(Q),

and so Lemma 4.5 is proved.

7. The proof of Proposition 3.1

The proof of Proposition 3.1 is quite similar to that of Proposition 3.2 except that it is

significantly more qualitative, and the measures under consideration will have more reg-

ularity.

Fix s ∈ Z, s ∈ (0, d). Suppose that T is a CZO such that the only s-AD regular

reflectionless measures associated to T are of the form cHs |L for a constant c > 0 and

an s-plane L. Recall the definition of the Lipschitz oscillation coefficient 2Aµ(Q) from

Section 4. We shall prove the following lemma.

Lemma 7.1. For each δ > 0, there exist 1,A > 0 such that if µ is an 3-AD regular

measure, and Q ∈ D is δ-non-LCV for µ, then

2Aµ(Q) ≥ 1ℓ(Q)s .

Taking this lemma for granted for the time being, we shall conclude the proof of Propo-

sition 3.1. Recall that we want to show that if µ is a 3-AD regular measure with Tµ
bounded in L2(µ), then for each δ > 0 there exists Cδ > 0 such that for every P ∈ D,

∑

Q∈D:Q⊂P,
Q is δ-non-LCV (for µ)

ℓ(Q)s ≤ Cδℓ(P )
s . (7.1)
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To see this, fix some 3-AD regular measure with T bounded in L2(µ). Also fix δ > 0

and a dyadic cube P ∈ D. Consider a cube Q ∈ D with Q ⊂ P that is δ-non-LCV. By

Lemma 7.1, there exists ψQ ∈ 8µA(Q) with

|〈T (ψQµ), 1〉µ| ≥
1

2
ℓ(Q)s .

Now, set A′ > 100
√
d A. Choose ϕA′ ∈ Lip0(B(xP , 2A′ℓ(P ))) satisfying 0 ≤ ϕA′ ≤ 1

on R
d and ϕ ≡ 1 on B(xP , A

′ℓ(P )). Then, since ψQ has µ-mean zero, it follows that

|〈T (ψQµ), 1 − ϕA′〉µ| is dominated by
∫

Rd\B(xP ,A′ℓ(P ))

∫

B(xQ,Aℓ(Q))

|K(y − x)−K(−x)| |ψQ(y)| dµ(y) dµ(x).

But, with x 6∈ B(xP , A′ℓ(P )) and y ∈ B(xQ, Aℓ(Q)), we have

|K(y − x)−K(−x)| ≤
CAαℓ(Q)α

|x|s+α
.

Also, ‖ψQ‖∞ ≤ 2A. Thus,

|〈T (ψQµ), 1 − ϕA′〉µ| ≤ CA

∫

Rd\B(xP ,A′ℓ(P ))

Aα+sℓ(Q)s+α

|x|s+α
dµ(x),

which is dominated by CA1+s+αℓ(Q)s/A′α (as ℓ(P ) ≥ ℓ(Q)). Fix A′ (chosen in terms

of δ, s, d, and 3) such that

CA1+s+α

A′α ≤
1

4
.

Our conclusion is that for each δ-non-LCV cube Q ⊂ P there exists ψQ ∈ 8µA(Q) such

that

|〈T (ψQµ), ϕA′〉µ| ≥
1

4
ℓ(Q)s .

Now, recall that the system 8
µ
A(Q) (Q ∈ D) is a Riesz system, so there exists a constant

C = C(A, s, d) > 0 such that for every choice of ψQ ∈ 8µA(Q) (Q ∈ D),

∑

Q∈D:Q⊂P

|T (ϕA′µ),ψQ〉µ|2

µ(B(xQ, 3Aℓ(Q)))
≤ C‖Tµ(ϕA′)‖2

L2(µ)
.

Restricting the sum to those δ-non-LCV cubes Q contained in P , we deduce that

∑

Q∈D:Q⊂P,
Q is δ-non-LCV

ℓ(Q)2s

µ(B(xQ, 3Aℓ(Q)))
≤ C(δ)‖Tµ(ϕA′)‖2

L2(µ)

≤ C(δ)‖Tµ‖2
L2(µ)→L2(µ)

‖ϕA′‖2
L2(µ)

≤ C(δ)‖Tµ‖2
L2(µ)→L2(µ)

ℓ(P )s .

Since µ(B(xQ, 3Aℓ(Q))) ≤ C(A)ℓ(Q)s , we derive the required inequality (7.1).

We now return to proving Lemma 7.1. Let us begin with a few simple facts about the

weak convergence of AD-regular measures.
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• Suppose that µk is a sequence of3-AD regular measures. Then there is a subsequence

that converges weakly to a 3-AD regular measure µ.

• Fix a sequence µk of 3-AD regular measures that converges weakly to a measure µ

(and so µ is 3-AD regular). Suppose that xk ∈ supp(µk) and xk converges to some

x ∈ R
d . Then x ∈ supp(µ).

• Fix a dyadic cube Q ∈ D. Let µk be a sequence of 3-AD regular measures that

converges weakly to a measure µ (and so µ is 3-AD regular). If Q is δ-non-LCV for

each µk , then Q is δ-non-LCV for µ.

The first two facts are essentially immediate and very well known. We shall prove

the third. By definition, there are points xk and yk in 3Q ∩ supp(µk) such that zk =
(xk + yk)/2 satisfies B(zk, δℓ(Q)) ∩ supp(µk) = ∅. By passing to a subsequence,

we may assume that xk converges to some x ∈ 3Q ∩ supp(µ), and yk converges to

some y ∈ 3Q ∩ supp(µ). But then zk converges to z = (x + y)/2. Now, choose an

increasing sequence fℓ ∈ Lip0(B(z, δℓ(Q))) that converges pointwise to χB(z,δℓ(Q)).

For each ℓ, supp(fℓ) ⊂ B(zk, δℓ(Q)) for all sufficiently large k, and so
∫
Rd
fℓ dµ =

limk→∞
∫
Rd
fℓ dµk = 0. But then the monotone convergence theorem ensures that

µ(B(z, δ)) = 0.

We now suppose that the statement of the lemma is false. Then for some δ > 0 and

every k ∈ N there exists a 3-AD regular measure µ̃k and a dyadic cube Qk that is δ-non-

LCV for µ̃k such that

|〈T (ψµ̃k), 1〉µ̃k | ≤
1

k
ℓ(Qk)

s for all ψ ∈ 8µ̃kk (Qk).

For each k, consider the measure µk( · ) = µ̃k(xQk + ℓ(Qk) · )/ℓ(Qk)
s . Then µk is

3-AD regular, the unit cube Q0 is δ-non-LCV for µk , and

|〈T (ψµk), 1〉µk | ≤ 1/k for all ψ ∈ 8µkk (Q0)

(and in particular for ψ ∈ 9µkk ).

By passing to a subsequence if necessary, we may assume that there is a3-AD regular

measure µ such that Q0 is δ-non-LCV for µ, and µk converges to µ weakly.

On the other hand, Lemma 5.2 is applicable (3-AD-regular measures are certainly

3-reasonable) with γk = 1/k and Rk = k. Hence µ is reflectionless. By hypothesis, µ

therefore takes the form µ = cHs |L for some s-plane L and c > 0. But this measure

cannot have a δ-non-LCV cube. This contradiction proves the lemma, and with it the

proposition.

8. An extremal reflectionless measure

We now prove the existence of an extremal3-nice reflectionless measure for smooth non-

degenerate CZOs. This extremal measure will form a key tool in the argument asserting

Proposition 3.3. We shall use the results of Section 6 from Part I here.

We shall also use the notation of Section 3.7 of Part I, with the md -almost ev-

erywhere defined function T µ(1). One should think of T µ(1)(x) as the difference
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∫
Rd
K(y − x) dµ(y)− 〈T (ϕ0µ), 1〉µ where ϕ0 ∈ Lip0(R

d) satisfies
∫
Rd
ϕ0 dµ = 1. No-

tice that the local part of the first term in the difference, say
∫
Rd
K(y − x)ψR(y) dµ(y)

where ψR ∈ Lip0(B(0, 2R)) satisfies ψR ≡ 1 on B(0, R), lies in L1
loc(md) as

∫

K

∫

B(0,R)

1

|x − y|s
dµ(y) dmd(x) ≤ Cmd(K)

(d−s)/dµ(B(0, R))

for any compact set K ⊂ R
d . The term 〈T (ϕ0µ),ψR〉µ also makes sense as a bilinear

form. The remaining contribution to the difference
∫
Rd
K(y − x) dµ(y)− 〈T (ϕ0µ), 1〉µ

can be written as
∫∫

Rd×Rd

[K(y − x)−K(y − z)](1 − ψR(y))ϕ0(z) dµ(y) dµ(z), (8.1)

and provided that R is chosen so large that x ∈ B(0, R/2) and supp(ϕ0) ⊂ B(0, R/2),

this double integral converges absolutely due to the restricted growth at infinity. The pre-

cise definition of T µ(1) as an md -almost everywhere defined function can therefore be

taken as

T µ(1)(x) =
∫

Rd

K(y − x)ψR(y) dµ(y)+ 〈T (ϕ0µ),ψR〉µ

+
∫∫

Rd×Rd

[K(y − x)−K(y − z)](1 − ψR(y))ϕ0(z) dµ(y) dµ(z),

where R is chosen sufficiently large. The value T µ(1)(x) is of course independent of the

choice of R as long as the double integral (8.1) converges absolutely.

Outside of applying the results from Part I verbatim, the only fact that the reader

needs to know in this section about T µ(1) is that for md -almost every x, x′ ∈ R
d , we

have T µ(1)(x)− T µ(1)(x
′) =

∫
Rd

[K(y − x)−K(y − x′)] dµ(y), which can be readily

checked from the definition given above.

The Cotlar Lemma (Corollary 7.2 of Part I) states that if µ is a 3-nice reflectionless

measure, then ‖T µ(1)‖L∞(md ) ≤ C where C > 0 depends only on d, s, and 3.

In this subsection, we shall assume that � ∈ C∞(Sd−1) satisfies m(ξ/|ξ |) 6= 0 for

any ξ ∈ R
d , where m and � are related by

F

(
�(·/| · |)

| · |s

)
(ξ) =

m(ξ/|ξ |)
|ξ |d−s

for any ξ 6= 0, (8.2)

where F is the Fourier transform. This assumption guarantees that the Wiener lemma

(Lemma 7.3 of Part I) holds.

Proposition 8.1. If there is a non-trivial 3-nice reflectionless measure, then there exists

a 3-nice reflectionless measure µ⋆ such that dist(0, supp(µ⋆)) = 1 and

|T µ⋆(1)(0)| = ‖T µ⋆(1)‖L∞(md ).

We now set up an extremal problem whose solution will provide the measure µ⋆ whose

existence is claimed in the statement of Proposition 8.1.
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Define F to be the set of non-trivial 3-nice reflectionless measures µ. We suppose

that F 6= ∅.

Set Q = sup{|T µ(1)(0)| : µ ∈ F with dist(0, supp(µ)) = 1}.

Claim 8.2. Q > 0.

Proof. Pick a measureµ ∈ F . The Wiener Lemma implies that if |T µ(1)| = 0md -almost

everywhere in R
d , then µ = 0. If µ ∈ F , then |T µ(1)| = 0 md -almost everywhere on

supp(µ) (Corollary 6.6 from Part I), and so there must be a point z 6∈ supp(µ) with

|T µ(1)(z)| > 0. Set p = dist(z, supp(µ)). Consider the measure µ̃( · ) = µ(p · + z)/ps .
Then µ̃ ∈ F , dist(0, supp(µ)) = 1, and |T µ̃(1)(0)| = |T µ(1)(z)| > 0. ⊓⊔

Claim 8.3. Q < ∞.

Proof. This follows immediately from the Cotlar Lemma (Corollary 7.2 from Part I). ⊓⊔

Claim 8.4. There exists µ⋆ ∈ F with dist(0, supp(µ)) = 1 such that |T µ⋆(1)(0)| = Q.

Proof. For each j ∈ N, choose µj ∈ F with dist(0, supp(µj )) = 1 satisfying |T µj (1)(0)|
≥ Q(1 − 2−j−1) ≥ Q/2. Then, by Corollary 6.5 in Part I, there exists M ′ = M ′(Q)
such that µj (B(0,M

′)) ≥ c(Q) for each j . We may pass to a subsequence that con-

verges to a 3-nice reflectionless measure µ (Corollary 5.3 of this paper). From standard

weak semicontinuity properties of the weak limit, we have dist(0, supp(µ)) ≥ 1 and

µ(B(0,M ′)) ≥ c(Q). Since the measures µj are uniformly diffuse (see Section 5, where

it is shown that even a sequence of3-reasonable measures is uniformly diffuse), the con-

vergence result of Lemma 8.1 in Part I is applicable, and yields |T µ(1)(0)| = Q. Fix

p = dist(0, supp(µ)). Setting µ⋆( · ) = µ(p · )/ps yields the claim. ⊓⊔

Proof of Proposition 8.1. Consider the measure µ⋆ constructed in Claim 8.4, and suppose

that |T µ⋆(1)(0)| < ‖T µ⋆(1)‖L∞(md ). As a consequence of Corollary 6.6 from Part I, there

exists x 6∈ supp(µ⋆)with |T µ⋆(1)(x)| > |T µ⋆(1)(0)|. But now set p = dist(x, supp(µ⋆)).

Consider µ̃( · ) = µ⋆(p · + x)/ps . Then µ̃ ∈ F and Q < |T µ⋆(1)(x)| = |T µ̃(1)(0)|.
This is absurd. ⊓⊔

9. The Riesz transform

In this section, we consider the simplest and most interesting s-dimensional CZO, the

s-Riesz transform. This is the choice of kernelK(x) = x/|x|s+1 for x ∈ R
d (so the Riesz

transform is R
d -valued). We will write Rµ instead of Tµ, Rµ(1) instead of T µ(1), and

so on.

Note that, in this case,m(ξ/|ξ |) = cξ/|ξ | for a non-zero complex number c, wherem

is given by (8.2). Thus the Wiener Lemma, and hence Proposition 8.1, are both applicable

for the s-Riesz transform when s ∈ (0, d).
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9.1. The proof of Proposition 3.3

We shall need a lemma which accounts for the restriction to s ∈ (d − 1, d). It is nothing

more than the integral representation formula for the fractional Laplacian (from which the

strong maximum principle trivially follows), but we could not find the statement precisely

in the form we need it, so a proof is included in an appendix.

Lemma 9.1. Suppose that s ∈ (d − 1, d), and µ is a 3-nice reflectionless measure with

0 6∈ supp(µ). Then

P.V.

∫

Rd

Rµ(1)(0)− Rµ(1)(x)

|x|2d+1−s dmd(x)

= lim
δ→0

∫

Rd\B(0,δ)

Rµ(1)(0)− Rµ(1)(x)

|x|2d+1−s dmd(x) = 0.

Proof of Proposition 3.3. Suppose that there is a non-trivial reflectionless mea-

sure µ. Consider the measure µ⋆ provided by Proposition 8.1. Since |Rµ⋆(1)(0)| =
‖Rµ⋆(1)‖L∞(md ), Lemma 9.1 implies that Rµ⋆(1) is constantmd -almost everywhere. But

then the Wiener Lemma yields µ ≡ 0. This is a contradiction. ⊓⊔

9.2. Weak porosity

Having proved that non-trivial 3-nice reflectionless measures for the s-Riesz transform

fail to exist if s ∈ (d − 1, d), we move on to studying them for s ≤ d − 1. We shall

here prove that the support of a reflectionless measure for the Riesz transform is nowhere

dense. We actually prove a slightly stronger version of this statement.

Proposition 9.2. Suppose that µ is a3-nice reflectionless measure for the s-Riesz trans-

form with s ∈ (0, d − 1]. For each ε > 0 there is a constant λ = λ(ε) > 0 such that if

µ(B(x, r)) > εrs , then there is a ball B ′ ⊂ B(x, 3r) of radius λr that does not intersect

supp(µ).

If we take into account the general porosity result in Lemma 6.7 of Part I, Proposition 9.2

will follow immediately from the following result.

Lemma 9.3. Let s ∈ (0, d − 1]. There is a constant c > 0 such that if µ(B(x, r)) ≥ εrs ,

then
∫
B(x,3r) |Rµ(1)| dmd > cεmd(B(x, 3r)).

Proof. We may assume that x = 0 and r = 1. Let ψ1/2 be a non-negative bump function

supported in B(0, 1/2) with
∫
Rd
ψ1/2 dmd = 1. Then (ψ1/2 ∗ µ)(B(0, 2)) ≥ cε. There is

a positive constant b = b(s) such that

div(ψ1/2 ∗ Rµ(1))(x) =
{
b(ψ1/2 ∗ µ)(x) if s = d − 1,

b
∫
Rd

(ψ1/2∗µ)(y)
|x−y|s+1 dmd(y) if s < d − 1.

Indeed, for fixed x′ ∈ R
d ,

ψ1/2 ∗ Rµ(1)(x)− ψ1/2 ∗ Rµ(1)(x′) =
∫

Rd

[K(y − x)−K(y − x′)] d(ψ1/2 ∗ µ)(y),

from which the formulas follow by differentiating the kernel.
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On the other hand, if ϕ ∈ C∞
0 (R

d), then

∫

Rd

[ψ1/2 ∗ Rµ(1)] · ∇ϕ dmd = −
∫

Rd

div(ψ1/2 ∗ Rµ(1))ϕ dmd .

Choose ϕ to be non-negative, with bounded gradient, and satisfying ϕ ≡ 1 on B(0, 2)

and supp(ϕ) ⊂ B(0, 3). Then

C

∫

B(0,3)

|Rµ(1)| dmd ≥
∣∣∣∣
∫

Rd

[ψ1/2 ∗ Rµ(1)] · ∇ϕ dmd
∣∣∣∣

≥
∫

B(0,2)

div(ψ1/2 ∗ Rµ(1)) dmd ≥ cε,

as required. ⊓⊔

10. Behaviour at infinity

The growth of a reflectionless measure at infinity is something we do not yet under-

stand particularly well. Studying tangent measures at infinity formed an important part of

Preiss’s proof of the rectifiability of a measure µ for which the limit limr→0Dµ(B(x, r))

exists for µ-almost every x ∈ R
d [Pre], and there is a hope that studying the behaviour of

reflectionless measures at infinity could help shed some light on Question 1.2.

In this section, we make some elementary remarks about the behaviour of reflection-

less measures at infinity in order to introduce a couple of simple ideas.

Lemma 10.1. Suppose that µ is a reflectionless measure for a CZO T satisfying the

following (uniform diffuseness at infinity) condition: For every ε > 0 there exists δ > 0

such that

1

µ(B(0, R))

∫∫

x,y∈B(0,R): |x−y|<δR

1

R|x − y|s−1
dµ(y) dµ(x) < ε

for all sufficiently large R > 0. If

∫

Rd

1

(1 + |x|)s
dµ(x) < ∞, (10.1)

then

〈T (ϕµ), 1〉µ = 0 for all ϕ ∈ Lip0(R
d)

(and not only for those test functions with µ-mean zero).

Here one makes sense of 〈T (ϕµ), 1〉µ by first introducing some ψ ∈ Lip0(R
d) that is

identically 1 on the support of ϕ. The condition (10.1) shows that the function x 7→
K(x − y)(1 − ψ(x)) is in L1(µ) if y ∈ supp(ϕ). Therefore we may set

〈T (ϕµ), 1〉µ = 〈T (ϕµ), ψ〉µ +
∫

Rd

ϕ(y)

∫

Rd

K(x − y)(1 − ψ(x)) dµ(x) dµ(y).
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Let us remark that if s ≤ 1, then (10.1) already implies that µ is uniformly diffuse at

infinity. For any s, the uniform diffuseness condition is satisfied if µ has finite energy in

the sense that ∫

Rd×Rd

1

|x − y|s−1
dµ(x) dµ(y) < ∞ (10.2)

Any 3-reasonable measure is also uniformly diffuse at infinity.

Proof of Lemma 10.1. Fix ϕ ∈ Lip0(R
d). We shall also fix a non-negative function

ψ ∈ Lip0(B(0, 3/2)) that equals 1 everywhere on B(0, 1). For R > 0, we shall set

ψR( · ) = ψ(·/R).
For any R > 0 large enough to ensure that

∫
Rd
ψR dµ > 0, the reflectionless property

of µ guarantees that

〈
T

([
ϕ −

∫
Rd
ϕ dµ∫

Rd
ψR dµ

ψR

]
µ

)
, 1

〉

µ

= 0.

Consequently, to prove the result it suffices to find a sequence of radii Rj → ∞ such that

lim
j→∞

1∫
Rd
ψRj dµ

〈T (ψRjµ), 1〉µ = 0.

Since supR>1 µ(B(0, R))/R
s < ∞, we can find an infinite sequence of radii Rj = 3ℓj ,

ℓj ∈ N, that are doubling in the sense that

µ(B(0, 3Rj )) ≤ 9sµ(B(0, Rj )).

Indeed, for each non-doubling radius R, Dµ(B(0, 3R)) > 3sDµ(B(0, R)), and so there

can be no infinite sequence of consecutive non-doubling radii.

Notice that µ(B(0, 3Rj )) ≤ 9s
∫
Rd
ψRj dµ ≤ 81sµ(B(0, Rj )). In addition, since∑

j Dµ(B(0, 3Rj ))<∞, there is a sequence δj →0 such thatDµ(B(0, 3Rj ))δ
−(s−1)
j →0

as j → ∞.

Let us now group together the simple estimates we shall require. Fix a doubling ra-

dius Rj . Then

|〈T (ψRjµ), 1 − ψ2Rj 〉µ| ≤
∫

|x|≥2Rj

∫

|y|<3Rj /2

1

|x − y|s
dµ(y) dµ(x)

≤ Cµ(B(0, 3Rj/2))

∫

|x|>Rj

1

|x|s
dµ(x) ≤ C

[∫

|x|>Rj

1

|x|s
dµ(x)

]
µ(B(0, Rj )).

On the other hand, we write 〈T (ψRjµ),ψ2Rj 〉µ as

∫∫

B(0,3Rj )×B(0,3Rj )
K(x − y) 1

2

(
ψRj (y)ψ2Rj (x)− ψRj (x)ψ2Rj (y)

)
dµ(x) dµ(y),

which is bounded in absolute value by a constant multiple of
∫∫

B(0,3Rj )×B(0,3Rj )

1

Rj |x − y|s−1
dµ(x) dµ(y).
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Now notice that
∫∫

x,y∈B(0,3Rj ): |x−y|>δjRj

1

Rj |x − y|s−1
dµ(x) dµ(y) ≤ C

Dµ(B(0, 3Rj ))

δs−1
j

µ(B(0, Rj )).

Bringing these estimates together we see that, for each j ,

1∫
Rd
ψRj dµ

|〈T (ψRjµ), 1〉µ| ≤ C

∫

|x|≥Rj

1

|x|s
dµ(x)+ C

Dµ(B(0, 3Rj ))

δs−1
j

+ C
1

µ(B(0, 3Rj ))

∫∫

x,y∈B(0,3Rj ): |x−y|≤δjRj

1

Rj |x − y|s−1
dµ(x) dµ(y).

We see that
∫
|x|≥Rj

1
|x|s dµ(x) tends to zero as j → ∞ due to (10.1). On the other hand,

the diffuseness at infinity ensures that

1

µ(B(0, 3Rj ))

∫∫

x,y∈B(0,3Rj ): |x−y|≤δjRj

1

Rj |x − y|s−1
dµ(x) dµ(y) → 0 as j → ∞.

But Dµ(B(0, 3Rj ))δ
−(s−1)
j → 0 as j → ∞ by construction, and so we conclude that

lim
j→∞

1∫
Rd
ψRj dµ

〈T (ψRjµ), 1〉µ = 0,

as required. ⊓⊔
We now move on to using this lemma to prove the following proposition.

Proposition 10.2. Let s ∈ (0, d). The only reflectionless measure µ for the s-Riesz trans-

form satisfying (10.2) is the zero measure.

Proof. Suppose that µ is a reflectionless measure satisfying (10.2). Then we can readily

deduce that the hypotheses of Lemma 10.1 are satisfied. Fix ϕ ∈ Lip(Rd), and choose

a sequence ϕn ∈ Lip0(R
d) that satisfies supn ‖ϕn‖Lip < ∞ and ϕn(x) → ϕ(x). From

Lemma 10.1 we see that 〈R(ϕnµ), 1〉µ = 0 for each n.

Now notice that
∣∣[[ϕ − ϕn](x)− [ϕ − ϕn](y)

]
K(x − y)

∣∣ → 0 whenever x 6= y,

and the set {(x, y) ∈ R
d × R

d : x = y} is of µ× µ measure zero. In addition, there is a

constant C > 0 such that for x 6= y,

sup
n

|[ϕ − ϕn](x)− [ϕ − ϕn](y)K(x − y)| ≤
C

|x − y|s−1
.

The function (x, y) 7→ 1/|x − y|s−1 lies inL1(µ×µ) due to (10.2), and so the dominated

convergence theorem now yields
∫∫

Rd×Rd

K(x − y)[ϕ(x)− ϕ(y)] dµ(x) dµ(y) = 0.
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Now fix a co-ordinate j ∈ {1, . . . , d}, and consider the function ϕ(x) = xj . Then
∫

Rd×Rd

(xj − yj )(x − y)

|x − y|s+1
dµ(x) dµ(y) = 0.

In particular, taking the j -th co-ordinate of this vector yields

∫

Rd×Rd

(xj − yj )
2

|x − y|s+1
dµ(x) dµ(y) = 0.

But then summation over j yields
∫

Rd×Rd

1

|x − y|s−1
dµ(x) dµ(y) = 0,

and µ must be the zero measure. ⊓⊔

Remark 10.3. The harmonic measure in R
2 of the line segment [−1, 1] with pole at

infinity is the measure µ supported on the line {x2 = 0} with density dµ(x1, x2) =
1
π

1√
1−x2

1

χ[−1,1](x1) dm1(x1). We recall from [MePV] that this measure has the property

that the principal value of the one-dimensional Riesz transform of µ is zero on supp(µ).

The above proposition in particular implies that µ is not reflectionless in our sense.4

Question 10.4. Suppose that µ is a 3-nice reflectionless measure for the s-Riesz trans-

form with s ∈ (1, d − 1). If µ 6= 0, does there exist ε > 0 such that

µ(B(0, R)) ≥ Rs/2+ε for all sufficiently large R > 0?

We would be especially interested if one could answer this question with ε = s/2.

Appendix A. The sufficiency of the Mateu–Prat–Verdera condition

The purpose of this appendix is to provide the proof of the following well-known result.

Fix s ∈ (0, d), and let T be an s-dimensional CZO.

Theorem A.1. Suppose that there is a constantC0 > 0 such that for every cubeQ ⊂ R
d ,

∫

Q

W2(χQµ) dµ(x) ≤ C0µ(Q). (A.1)

Then Tµ is bounded in L2(µ), with norm bounded by C · C0, where C depends on d , s,

and α.

Although this theorem is indeed well known, it is difficult to locate a proof, so we shall

provide one here. The proof is very similar to that of [ENV1, Theorem 4.6], but we are

working under a slightly weaker assumption on the Wolff potential, and so we prefer to

avoid any integration by parts arguments. We shall rely upon the following lemma.

4 In particular, one could make a valid complaint about our use of the term “reflectionless”.
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Lemma A.2. There is a constant C > 0, depending on d, s, and α, such that for any

finite measure ν and ε > 0,

∫

Rd

∣∣∣∣
∫

|x−y|>ε
K(x − y) dν(y)

∣∣∣∣
2

dν(x) ≤ C

∫

Rd

W2(ν) dν.

To deduce the theorem from the lemma, fix a cubeQ and consider the measure ν = χQµ.

From the lemma and (A.1), we find a constant C > 0, depending only of C0, d, s, and α,

such that for any ε > 0,

∫

Q

∣∣∣∣
∫

Q: |y−x|>ε
K(x − y) dµ(y)

∣∣∣∣
2

dµ(x) ≤ Cµ(Q).

But then the non-homogeneous T (1)-theorem [NTrV] yields that the CZO T associated

to µ is bounded in L2(µ).

Proof of Lemma A.2. Let us expand the left hand side:
∫∫∫

x,y,z∈Rd : |x−y|,|x−z|>ε
K(x − y) ·K(x − z) dν(x) dν(y) dν(z).

It is enough to estimate the absolute value of the integral with the domain of integration

restricted to

U = {(x, y, z) ∈ R
3d : |x − y| ≥ |x − z| > ε}.

First consider the set

U1 = {(x, y, z) ∈ U : |y − z| < |x − z|}.

Notice that for (x, y, z) ∈ U1 we have |x − z| > 1
2
|x − y|. Thus

|K(x − y) ·K(x − z)| ≤ C/|x − y|2s .

But then

∣∣∣∣
∫∫∫

(x,y,z)∈U1

K(x − y) ·K(x − z) dν(x) dν(y) dν(z)

∣∣∣∣

≤
∫∫∫

(x,y,z)∈R3d : |x−y|≥|x−z|

1

|x − y|2s
dν(x) dν(y) dν(z).

However, the right hand side is of course dominated by a constant multiple of

∫

Rd

∫ ∞

0

1

r2s

∫∫

(y,z)∈R2d : |x−y|,|x−z|<r
dν(y) dν(z)

dr

r
dν(x),

which equals
∫
Rd

W2(ν) dν.

It remains to estimate
∣∣∣∣
∫∫∫

U2

K(x − y) ·K(x − z) dν(x) dν(y) dν(z)

∣∣∣∣,
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where
U2 = {(x, y, z) ∈ U : |y − z| ≥ |x − z|}

= {(x, y, z) ∈ R
3d : |y − z| ≥ |x − z|, |x − y| ≥ |x − z|}.

It is at this point that we shall appeal to the facts that K is antisymmetric and Hölder

continuous away from the diagonal. Notice that the set U2 is symmetric under permuting

x and z. Thus, we may estimate

1

2

∫∫∫

U2

∣∣K(x − y) ·K(x − z)+K(z− y) ·K(z− x)
∣∣ dν(x) dν(y) dν(z)

However, for (x, y, z) ∈ U2, the integrand |K(x − y) ·K(x − z)+K(z− y) ·K(z− x)|
is bounded by

∣∣K(x − z)
∣∣ |K(x − y)−K(z− y)| ≤

1

|x − z|s
C|x − z|α

|x − y|s+α
≤

C

|x − z|s−α|x − y|s+α
.

Our goal is now to establish the pointwise estimate

∫∫

(y,z)∈R2d : |x−y|≥|x−z|

1

|x − z|s−α|x − y|s+α
dν(z) dν(y) ≤ CW2(ν)(x)

for every x ∈ R
d . Appealing to the distribution formula, we first bound the left hand side

of the desired inequality by a constant multiple of

∫ ∞

0

ν(B(x, r))

rs+α

∫

|x−z|<r

1

|x − z|s−α
dν(z)

dr

r
.

But ∫

|x−z|<r

1

|x − z|s−α
dν(z) = (s − α)

∫ r

0

ν(B(x, t))

t s−α
dt

t
+
ν(B(x, r))

rs−α
,

and since ∫ ∞

0

ν(B(x, r))

rs+α
ν(B(x, r))

rs−α
dr

r
= W2(ν)(x),

it suffices to estimate
∫ ∞

0

ν(B(x, r))

rs+α

∫ r

0

ν(B(x, t))

t s−α
dt

t

dr

r
.

We first use Cauchy’s inequality:

ν(B(x, r))

rs+α

∫ r

0

ν(B(x, t))

t s−α
dt

t
≤

(
ν(B(x, r))

rs

)2

+
(

1

rα

∫ r

0

ν(B(x, t))

t s

dt

t1−α

)2

,

to reduce matters to estimating

∫ ∞

0

(
1

rα

∫ r

0

ν(B(x, t))

t s

dt

t1−α

)2
dr

r
.
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But
∫ r

0
dt

t1−α = 1
α
rα , so the Cauchy–Schwarz inequality yields

(
1

rα

∫ r

0

ν(B(x, t))

t s

dt

t1−α

)2

≤ C
1

rα

∫ r

0

(
ν(B(x, t))

t s

)2
dt

t1−α ,

from which we deduce that

∫ ∞

0

(
1

rα

∫ r

0

ν(B(x, t))

t s

dt

t1−α

)2
dr

r
≤ C

∫ ∞

0

(
ν(B(x, t))

t s

)2[∫ ∞

t

1

rα

dr

r

]
dt

t1−α .

(A.2)

Evaluating the inner integral on the right hand side,
∫ ∞
t

1
rα
dr
r

= 1
α

1
tα

, we conclude that

the right hand side equals a constant multiple of W2(ν)(x). The lemma follows. ⊓⊔

Appendix B. Riesz systems

Throughout this appendix, fix a non-trivial locally finite measure µ. Recall that

8
µ
A(Q) =

{
ψ ∈ Lip0(B(xQ, Aℓ(Q))) : ‖ψ‖Lip ≤

1

ℓ(Q)
,

∫

Rd

ψ dµ = 0

}
.

We shall prove that there is a constant C = C(A) > 0 such that for each f ∈ L2(µ),

and arbitrary choices of ψQ ∈ 8µA(Q), we have

∑

Q∈D

|〈f,ψQ〉µ|2

µ(B(xQ, 3Aℓ(Q)))
≤ C‖f ‖2

L2(µ)
.

Here, and elsewhere in this appendix, the sum over the dyadic cubes is taken over those

cubes with µ(B(xQ, 3Aℓ(Q))) > 0.

We shall prove this inequality by verifying the equivalent dual inequality: there is a

constant C = C(A) > 0 such that for each non-negative sequence (aQ)Q ∈ ℓ2(D), and

for every choice of ψQ ∈ 8µA(Q), we have

∥∥∥∥
∑

Q∈D

aQψQ√
µ(B(xQ, 3Aℓ(Q)))

∥∥∥∥
2

L2(µ)

≤ C‖a‖2
ℓ2 .

It will be convenient to set ρQ = µ(B(xQ, 3Aℓ(Q))). We begin the proof with a few

preparatory estimates. For each Q ∈ D, choose ψQ ∈ 8µA(Q). Then

‖ψQ‖∞ ≤ ‖ψQ‖Lip · diam(supp(ψQ)) ≤ CA.

Thus,

‖ψQ‖L1(µ) ≤ CAµ(B(xQ, Aℓ(Q)).
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Notice that if Q′,Q′′ ∈ D with ℓ(Q′) ≤ ℓ(Q′′), then the oscillation of ψQ′′ on

B(xQ′ , Aℓ(Q′)) is bounded by Aℓ(Q′)/ℓ(Q′′). Thus

|〈ψQ′ , ψQ′′〉µ|
√
ρQ′ρQ′′

≤ C(A)
ℓ(Q′)

ℓ(Q′′)

√
µ(B(xQ′ , Aℓ(Q′)))

ρQ′′
.

Also note that |〈ψQ′ , ψQ′′〉µ| = 0 if B(xQ′ , Aℓ(Q′)) ∩ B(xQ′′ , Aℓ(Q′′)) = ∅.

For the remainder of this proof, all sums over cubes will be taken over the dyadic

lattice D, so we shall not write this explicitly. Now, let (aQ)Q∈D ∈ ℓ2(D). Then

∥∥∥∥
∑

Q

aQψQ√
ρQ

∥∥∥∥
2

L2(µ)

≤ 2
∑

Q′,Q′′: ℓ(Q′)≤ℓ(Q′′)

|aQ′ | |aQ′′ |
|〈ψQ′ , ψQ′′〉µ|

√
ρQ′ρQ′′

.

By our previous estimates, Cauchy’s inequality implies that |aQ′ | |aQ′′ | |〈ψQ′ ,ψQ′′ 〉µ|
√
ρQ′ρQ′′ is

bounded by

C(A)

[ |aQ′ |2

2

ℓ(Q′)

ℓ(Q′′)
+

|aQ′′ |2

2

ℓ(Q′)

ℓ(Q′′)

µ(B(xQ′ , Aℓ(Q′)))

ρQ′′

]
.

Thus, it suffices to estimate two sums:

I =
∑

Q′,Q′′: ℓ(Q′)≤ℓ(Q′′)
B(xQ′ ,Aℓ(Q′))∩B(xQ′′ ,Aℓ(Q′′))6=∅

|aQ′ |2
ℓ(Q′)

ℓ(Q′′)
,

II =
∑

Q′,Q′′: ℓ(Q′)≤ℓ(Q′′)
B(xQ′ ,Aℓ(Q′))∩B(xQ′′ ,Aℓ(Q′′))6=∅

|aQ′′ |2
ℓ(Q′)

ℓ(Q′′)

µ(B(xQ′ , Aℓ(Q′)))

ρQ′′
.

Fix Q′ and k ∈ Z+. There are at most C(A) cubes Q′′ with ℓ(Q′′) = 2kℓ(Q′) satisfying

B(xQ′ , Aℓ(Q′)) ∩ B(xQ′′ , Aℓ(Q′′)) 6= ∅. Thus

I =
∑

Q′
|aQ′ |2

∑

Q′′: ℓ(Q′)≤ℓ(Q′′)
B(xQ′ ,Aℓ(Q′))∩B(xQ′′ ,Aℓ(Q′′)) 6=∅

ℓ(Q′)

ℓ(Q′′)
≤ C(A)

∑

Q′
|aQ′ |2

∑

k∈Z+

2−k,

which is at most C(A)
∑
Q′ |aQ′ |2. For II, write

II =
∑

Q′′
|aQ′′ |2

∑

k∈Z+

2−k
∑

Q′: ℓ(Q′)=2−kℓ(Q′′))
B(xQ′ ,Aℓ(Q′))∩B(xQ′′ ,Aℓ(Q′′))6=∅

µ(B(xQ′ , Aℓ(Q′)))

ρQ′′
.

With k ∈ Z+ fixed, the inner sum can be written as

1

ρQ′′

∫

Rd

∑

Q′: ℓ(Q′)=2−kℓ(Q′′))
B(xQ′ ,Aℓ(Q′))∩B(xQ′′ ,Aℓ(Q′′)) 6=∅

χB(xQ′ ,Aℓ(Q′))(y) dµ(y). (B.1)
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Note that if B(xQ′ , Aℓ(Q′)) ∩ B(xQ′′ , Aℓ(Q′′)) 6= ∅, then B(xQ′ , Aℓ(Q′)) ⊂
B(xQ′′ , 3Aℓ(Q′′)). Thus, the domain of integration in the above integral may be restricted

to B(xQ′′ , 3Aℓ(Q′′)). On the other hand, any point y ∈ B(xQ′′ , 3Aℓ(Q′′)) lies in at most

C(A) distinct balls B(xQ′ , Aℓ(Q′)) corresponding to the cubes Q′ ∈ D with ℓ(Q′) =
2−kℓ(Q′′). Consequently, the integrand is bounded by C(A). Therefore, the quantity in

(B.1) is bounded by (1/ρQ′′)C(A)ρQ′′ ≤ C(A). This yields II ≤ C(A)
∑
Q′′ |aQ′′ |2,

completing the proof.

Appendix C. The representation of the fractional Laplacian:

The proof of Lemma 9.1

In this section we shall prove Lemma 9.1. Set K(x) = x/|x|s+1, x ∈ R
d , with s ∈

(d − 1, d). The proof is a rather tiresome approximation argument, based around the

classical formula (see, for example [Lan], [ENV1]): if g ∈ C∞
0 (R

d),

∇g(x) = b P.V.

∫

Rd

R(gmd)(x)− R(gmd)(y)

|x − y|2d+1−s dmd(y),

where b ∈ R \ {0}, and R(gmd)(x) =
∫
Rd
K(x − y)g(y) dmd(y).

We prove the lemma in slightly more generality. For a measure µ satisfying∫
Rd
(1/|x|s+1) dµ(y) < ∞ and 0 6∈ supp(µ), we define

F(µ)(x) =
∫

Rd

[K(y)−K(y − x)] dµ(y).

If ν is reflectionless, then F(ν)(x) = Rµ(1)(0)− Rµ(1)(x) for md -almost every x ∈ R
d

(see §9.2 above).

Lemma C.1. Suppose that µ is a Borel measure with dist(0, supp(µ)) = 1 and such that

there are α ∈ (0, 1) and 3 > 0 for which

µ(B(0, r)) ≤ 3rα for every r > 1.

Then

P.V.

∫

Rd

F(µ)(x)

|x|2d+1−s dmd(x) = 0.

Proof. Fix a non-negative mollifier ψ ∈ C∞
0 (B(0, 1)) satisfying

∫
Rd
ψ dmd = 1. For

ρ > 0, set ψρ( · ) = ρ−nψ( · /ρ). If ρ ∈ (0, 1/4) and N > 0 are given, then set µN =
χB(0,N)µ and µρ,N = ψρ ∗ (µχB(0,N)). Notice that µρ,N is a measure with C∞

0 (R
d)

density gρ,N with respect to md , and since dist(0, supp(µ)) = 1, we have ∇gρ,N (0) = 0.

Thus

0 = P.V.

∫

Rd

F(µρ,N )(x)

|x|2d+1−s dmd(x). (C.1)

Our strategy is clear: let N → ∞, ρ → 0; we will show that the right hand side

converges to

P.V.

∫

Rd

F(µ)(x)

|x|2d+1−s dmd(x).
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For this we shall require some preparatory estimates. Suppose that ν is a measure with

dist(0, supp(ν)) ≥ 1/2 and such that ν(B(0, r)) ≤ 3′rα for r > 1 and some 3′ > 0.

Observe that |x − · |−β ∈ L1(ν), with L1(ν) norm bounded in terms of α, s, and 3′,
whenever x ∈ B(0, 1/4) and β > s + α. This implies that for any multi-index γ with

|γ | ≥ 1 and any x ∈ B(0, 1/4),

|DγF(µ)(x)| =
∣∣∣∣
∫

Rd

[DγK(y − x)] dν(y)
∣∣∣∣,

and also supB(0,1/4) |DγF(µ)| ≤ C(γ,3′). In concert with the elementary inequality

∣∣∣∣
∫

∂B(0,1)

[f (rω)− f (0)] dS(ω)
∣∣∣∣ ≤ Cr2 sup

B(0,r)

|1f |,

valid for f ∈ C2(B(0, r)) (here S is the surface measure on the unit sphere),5 we see that

if r < 1/4 and τ > 0, then
∣∣∣∣
∫

B(0,r)\B(0,τ )

F(ν)(x)

|x|2d+1−s dmd(x)

∣∣∣∣ ≤ C

∣∣∣∣
∫ r

τ

1

t2d+1−s

∫

∂B(0,1)

F(ν)(tω) dS(ω) td−1 dt

∣∣∣∣

≤ C(3′)r1+s−d . (C.2)

We next claim that if A > 1, then
∫

B(0,A)

|F(ν)(x)| dmd(x) ≤ C(3′)Ad+α. (C.3)

To see this, note that the left hand side is dominated by the sum

∫

B(0,A)

∣∣∣∣
∫

B(0,2A)

[K(y)−K(y − x)] dν(y)
∣∣∣∣ dmd(x)

+
∫

B(0,A)

∣∣∣∣
∫

Rd\B(0,2A)
[K(y)−K(y − x)] dν(y)

∣∣∣∣ dmd(x).

Let us call the two terms appearing here I and II.

We estimate term I by
∫
B(0,A)

∫
B(0,2A)[|K(y)| + |K(y− x)|] dν(y) dmd(x), which is

bounded by
∫

B(0,A)

∫

B(0,2A)

1

|y − x|s
dν(y) dmd(x)+ CAd

∫

B(0,A)\B(0,1/4)

1

|y|s
dν(y).

5 For the proof, just write

∫

∂B(0,1)
[f (rω)− f (0)] dS(ω) =

∫ r

0

d

dt

[∫

∂B(0,1)
f (tω) dS(ω)

]
dt;

but d
dt

[
∫
∂B(0,1) f (tω) dS(ω)] =

∫
∂B(0,1)(∇f (tω) · ω) dS(ω) = t

∫
B(0,1)(1f )(ty) dmd (y),

where the divergence theorem has been used in the final equality. For instance, we can infer that

|
∫
∂B(0,1)[f (rω)− f (0)] dS(ω)| ≤ 1

2
r2md (B(0, 1))‖1f ‖L∞(B(0,r)).
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But in view of the growth bound ν(B(0, r)) ≤ 3′rs+α for r > 1, the sum of these two

integrals is easily seen to be at mostCν(B(0, 2A))Ad−s+CAdAα ≤ CAd+α . To estimate

term II, merely note that for x ∈ B(0, A),
∫

Rd\B(0,2A)
|K(y)−K(y − x)| dν(y) ≤ C

∫

Rd\B(0,2A)

|x|
|y|s+1

dν(y).

But this is bounded by a constant multiple of A
∫ ∞
A

ν(B(0,t))

ts+1
dt
t

≤ CAα . Bringing these

estimates together yields the inequality (C.3).

Integrating (C.3) yields

∫

Rd\B(0,A)

|F(ν)(x)|
|x|2d+1−s dmd(x) ≤ C(3′)

∫ ∞

A

1

Z2d+1−s Z
d+α dZ

Z
≤

C(3′)

Ad−s+1−α . (C.4)

We are now ready to proceed with the limiting procedure. Notice that if ρ < 1/4 and

N > 0, then µN,ρ satisfies the estimate µρ,N (B(0, r)) ≤ 3′rs+α for every r > 1, with

3′ depending only on 3, d , and α. Also notice that dist(0, supp(µN,ρ)) ≥ 1/2.

Let ε > 0. Then (C.2) yields the existence of r > 0 such that
∣∣∣∣P.V.

∫

B(0,r)

F(µρ,N )(x)

|x|2d+1−s dmd(x)

∣∣∣∣ +
∣∣∣∣P.V.

∫

B(0,r)

F(µ)(x)

|x|2d+1−s dmd(x)

∣∣∣∣ < ε (C.5)

for all ρ ∈ (0, 1/4) and N > 1. In addition, the estimate (C.4) ensures that there exists

A > 0 such that
∫

Rd\B(0,A)

|F(µρ,N )(x)| + |F(µ)(x)|
|x|2d+1−s dmd(x) ≤ ε (C.6)

for all ρ ∈ (0, 1/4) and N > 1.

In particular, recalling (C.1) we infer that for every ρ ∈ (0, 1/4) and N > 1,
∣∣∣∣
∫

B(0,A)\B(0,r)

F(µρ,N )

|x|2d+1−s dmd(x)

∣∣∣∣ < 2ε.

On the other hand, by writing F(µρ,N ) = ψρ ∗ F(µN ), standard convergence properties

of convolution imply that for all N,A, r > 0,
∣∣∣∣
∫

B(0,A)\B(0,r)

F(µN )

|x|2d+1−s dmd(x)

∣∣∣∣ = lim
ρ→0

∣∣∣∣
∫

B(0,A)\B(0,r)

F(µN,ρ)

|x|2d+1−s dmd(x)

∣∣∣∣ ≤ 2ε.

But now note that if N > 2A and x ∈ B(0, A), then

|F(µ)(x)− F(χB(0,N)µ)(x)| =
∣∣∣
∫

Rd\B(0,N)
[K(y − x)−K(y)] dµ(y)

∣∣∣≤ C(3)
A

N1−α .

(C.7)

Thus, F(χB(0,N)µ) converges uniformly to F(µ) in B(0, A), from which it follows that

∣∣∣∣
∫

B(0,A)\B(0,r)

F(µ)

|x|2d+1−s dmd(x)

∣∣∣∣ ≤ 2ε.
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Now appealing to the inequalities (C.5) and (C.6) for a second time yields

∣∣∣∣P.V.
∫

Rd

F(µ)

|x|2d+1−s dmd(x)

∣∣∣∣ ≤ 4ε,

and the proof is complete. ⊓⊔
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