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Abstract. We continue our study of the reflectionless measures associated to an s-dimensional
Calderén—Zygmund operator (CZO) acting in R¥ with s € (0, d). Here, our focus will be the study
of CZOs that are rigid, in the sense that they have few reflectionless measures associated to them.
Our goal is to prove that the rigidity properties of a CZO T impose strong geometric conditions
upon the support of any measure p for which 7 is a bounded operator in L%(w). In this way,
we shall reduce certain well-known problems at the interface of harmonic analysis and geometric
measure theory to a description of reflectionless measures of singular integral operators. What is
more, we show that this approach yields promising new results.
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1. Introduction

We continue our study of the reflectionless measures associated to an s-dimensional
Calder6n—Zygmund operator (CZO) T acting in R? with s € (0, d). These are mea-
sures p for which 7'(u) is constant (in a suitable weak sense) on the support of u (see
Section 2.3 for the formal definition). Here, our focus will be the study of CZOs that are
rigid, in the sense that they have few reflectionless measures associated to them. Our goal
is to prove that the rigidity properties of a CZO T impose strong geometric conditions
upon the support of any measure  for which T is a bounded operator in L? (). In this
way, we shall reduce certain well-known problems at the interface of harmonic analysis
and geometric measure theory to a description of reflectionless measures of singular in-
tegral operators. What is more, we show that this approach yields promising new results.

Our rigidity results split into two cases, depending on whether the dimension of the
CZO is integer or not.
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1.1. Ahlfors—David rigidity

We begin by describing a rigidity result that appeared in our previous paper [JNI].
In [JN1], we gave a new proof of the Mattila—Melnikov—Verdera theorem [MMV], which
states that the support of an Ahlfors—David (AD) regular measure p for which the asso-
ciated Cauchy transform operator is bounded in L? () is uniformly rectifiable. The key
element of the proof was showing that the Cauchy transform is AD-rigid in the sense that
the only AD-regular reflectionless measures associated to it are of the form ¢#!|; for a
line L and a constant ¢ > 0.

Amongst the results we want to present here is a generalization of this idea to general
integer-dimensional CZOs acting in R?. Fix s € Z. We call an s-dimensional CZO T
AD-rigid if every AD-regular reflectionless measure associated to it takes the form c¢H*|,
for an s-plane L. (On the other hand, every measure of this form is reflectionless for any
s-dimensional CZO T, and so this rigidity condition is that a CZO T should have as few
AD-regular reflectionless measures associated to it as possible.)

We shall show that if T is AD-rigid, and w is an AD-regular measure for which T is
bounded in L*>(1), then p is s-uniformly rectifiable. More precisely, we shall show that
one of the geometric criteria for s-uniform rectifiability given by David and Semmes [DS]
is satisfied under the rigidity assumption (Proposition 3.1).

1.2. Wolff rigidity

Fix s ¢ Z. A theorem of Vihtild [Vih] states that the s-dimensional Riesz transform, the
CZO with kernel K (x) = x/|x|*T!, x € R?, cannot be bounded in L (1) if  has positive
lower density on a set of positive u-measure, i.e., if

B(x,

,u({x e RY : liminf XB& 1) 0}) > 0.
r—0 rs

Because of this, the condition of AD-regularity is too strong to develop an interest-

ing theory of measures with bounded non-integer-dimensional CZOs. We shall therefore

remove the lower bound condition in the definition of AD-regularity, and consider mea-
sures u satisfying the growth condition

w(B(x,r)) <r® foranyx € R and r > 0. (1.1)

Remark 1.1. For a wide class of non-degenerate CZOs including the s-Riesz transform,
the condition (1.1) is in fact a necessary condition for the CZO associated to a non-atomic
measure 4 to be bounded in L2(11): see for instance [Dav2].

The question of most interest for non-integer-dimensional CZOs is to find the correct
quantitative version of Vihtild’s theorem. Following Mateu, Prat and Verdera [MPV], we
introduce the Wolff potential of a measure. For p € (0, 00), the p-Wolff potential of 1 is

defined by' % /(B r)\” dr
Wp(u)(x)=f0 (“—) —. (1.2)

rs r

1 In the potential theory literature (e.g. [AH]), our p-Wolff potential of u would be denoted by
Wod—s)/(p+1).(p+1)/ p(W)-
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The Mateu—Prat—Verdera criterion states that if s € (0, d) and u is a measure that satisfies
the condition

f Wa(xom)dp < u(Q)  for every cube 0 € R, (1.3)
0

then every CZO T associated to ju is bounded in L*(iv). We include a proof of this fact in
Appendix A for the benefit of the reader, as it is not readily found in the literature in the
generality stated here.

We are interested in the extent to which conditions such as the Mateu—Prat—Verdera
condition (1.3) are necessary for the L?(w) boundedness of a particular CZO T'.

We declare that an s-dimensional CZO T is Wolff-rigid if the only reflectionless mea-
sure associated to it satisfying the growth condition (1.1) is the zero measure.

In Proposition 3.2 below, we shall show that if a CZO T is Wolff-rigid, then there
exists p € (0, 00), depending on s, d, and the regularity of the kernel of T, such that for
every measure [ satisfying (1.1) for which T is bounded in L*>(1), we have

f Wy (xom)du < Cu(Q)  for every cube Q C RY,
0

where C > 0 depends on s, d, and the operator norm of T.

1.3. The Riesz transform

Our interest in Propositions 3.1 and 3.2 comes from certain well known questions regard-
ing the s-Riesz transform, the CZO with kernel K (x) = x/ Ix|**t1, x € R4, Throughout
this section, u will denote a measure for which the associated s-Riesz transform operator
is bounded in Lz(u).

David and Semmes [DS] asked whether, in the case when s € Z and p is AD-regular
measure, 1 is s-uniformly rectifiable. This was settled when s = 1 by Mattila, Melnikov,
and Verdera [MMV], and when s = d — 1 by Nazarov, Tolsa and Volberg [NTV1]. At
the same time as [NTV 1], a series of papers by Hofmann, Martel, Mayboroda and Uriate-
Tuero [HM, HMM, HMU] proved the result under an additional hypothesis on the support
of ;. The cases s = 2, ..., d — 2 remain open.

Regarding the non-integer-dimensional case, Mateu, Prat and Verdera [MPV] proved
that if s € (0, 1) then u satisfies (1.3). Thus, if s € (0, 1), then the s-Riesz transform
associated to p is bounded in L%(w) if and only if (1.3) holds.

This result is rather surprising due to the fact that the Riesz kernel is a sign-changing
vector field whereas the Wolff potential has a positive kernel. In particular, the estimate
implies that the Calderén—Zygmund capacity defined by the Riesz transform is equivalent
to a certain positive non-linear capacity from potential theory.

In [MPV] (and elsewhere, for instance [ENV1, Tol2]) it was conjectured that (1.3)
should hold true for s > 1, s ¢ Z. This conjecture is open for s > 1.2 For s € (d — 1, d),

2 While this paper was in preparation, Reguera, Tolsa and the two present authors proved this
conjecture for s € (d — 1, d) by combining the ideas developed here with those developed in the
paper [RT] mentioned below.
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Eiderman, Nazarov and Volberg [ENV 1] showed that the support of 1 cannot have finite
s-dimensional Hausdorff measure. This is a qualitative version of (1.3). Fors € (1,d—1)
with s & 7 even showing that this qualitative property holds remains an open problem.

The sharp estimate (1.3) was recently verified for s € (d — 1, d) for measures sup-
ported on uniformly disconnected sets by Reguera and Tolsa [RT]. The problem is under-
stood for all s € (0, d) if the measure is precisely the s-dimensional Hausdorff measure
restricted to a Cantor-type set [Tol2, EV].

In short, the results that are known for general measures split into two cases: s €
(0,1] and s € [d — 1, d). In the first case, the powerful Menger curvature formula, first
introduced to the area by Melnikov, is available. In the latter case, one can make use of a
strong maximum principle for the operator (—A)* when o < 1.

The main challenge is to come up with techniques that can apply to intermediate
cases in which neither the Menger curvature formula nor the strong maximum principle
is readily available. It is our hope that reflectionless measures may provide such a tool.
Therefore, we pose the following question regarding the rigidity of the s-Riesz transform.

Question 1.2. Is the s-Riesz transform sufficiently rigid? In other words, suppose that |
is a reflectionless measure for the s-Riesz transform satisfying (1.1).

(@) Ifs €7, is then | necessarily the zero measure?
() If s € Z, and 1 is s-AD regular, does then u coincide with a constant multiple of the
s-dimensional Hausdorff measure restricted to an s-plane?

Of the two parts of this question, we are more confident that part (a) should have a “yes”
answer, and in this paper we verify that this is the case when s € (d — 1,d) (Propo-
sition 3.3). Combining this with the non-integer rigidity result mentioned above (Pro-
position 3.2) yields the following theorem.

Theorem 1.3. Lets € (d — 1,d). There exists p € (0, 00), depending on s and d, such
that if | is a non-atomic measure for which the associated s-Riesz transform operator is
bounded in L2(u), then

| Watxomdis = Cu(@)  for every cube 0 < B,
0

for a constant C > 0 depending on s, d, and the operator norm of the Riesz transform.

As already mentioned, in a subsequent paper written in collaboration with Reguera and
Tolsa, the sharp exponent p = 2 is proved. We emphasize that the proof in that paper
builds upon, and so does not supersede, what is done here. We also mention that Ques-
tion 1.2 has been answered for s € (0, 1) by Prat and Tolsa [PT].

We are a long way from answering Question 1.2 either positively or negatively, but at
least we can say that reflectionless measures for the Riesz transform have some special
structure. More precisely, we show that for any s € (0, d), a reflectionless measure for
the s-Riesz transform satisfying (1.1) has

e nowhere dense support (Section 9.2), and
e infinite energy in the sense that ([, pa — L du(x)du(y) = oo (Section 10).

=y
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Neither property is true for a general CZO. For instance, the 2-dimensional Lebesgue

measure on the unit disc is a reflectionless measure for the 1-dimensional CZO with
kernel Z/z2 in C (see [JN2] or Part II of this series).

2. Preliminaries

2

.1. General notation

By a measure, we shall always mean a non-negative locally finite Borel measure. For a
measure [, supp(u) denotes its closed support. The d-dimensional Lebesgue measure
is denoted by myg.

For A > 0, we say that a measure p is A-nice if u(B(x,r)) < Ar® for every ball
B(x,r) C R?. A measure is nice if it is A-nice for some A > 0.3

A measure u is called A-AD-regular if itis A-nice and also u(B(x, r)) > (1/A)r® for
every x € supp(u) and r > 0. A measure is AD-regular if it is A-AD regular for some
A > 0.

For two complex-valued functions f, g € LZ(M), we define

(fL &= /Rd fedu.

In the event that one of the two functions (say f) is C? -valued, we shall write ( f8u
to mean the vector with components { fj, g),., where f; are the components of f.
A function f (either scalar- or vector-valued) is called Lipschitz continuous if

|f(x) = f)
Ifllp = sup ————— <0
x,yeRY, x#£y lx — yl

For an open set U C R¢, Lipo(U) denotes the set of Lipschitz continuous functions
that are compactly supported in U.

The oscillation of a function f on a set E is defined as supy yep |f(x) — fl.

We denote by D a lattice of open dyadic cubes in R?. (Our approach involves several
limiting operations in which lattices will be shifted and rescaled, so we shall always be
dealing with some dyadic lattice, rather than the standard one.) We set Qo = (0, 1.
We introduce a graph structure I'(D) on a dyadic lattice D by connecting each dyadic
cube with an edge to its children, and to all neighbouring cubes of the same sidelength.
The graph distance on D, denoted by d(Q, Q’), is the shortest path from Q to Q' in
the graph I'(D). This graph has vertex degree (that is, the maximal number of edges
emanating from a cube) bounded by 2¢ + 2d + 1.

3 Of course, we could always renormalize a measure so that if it is nice, then the growth condition

(1.1) holds, but we will be renormalizing measures in a variety of ways, and so it makes some sense
to keep track of this parameter.
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e The density of a measure u at a cube Q (not necessary dyadic) is denoted by

n(Q)
(o)

We shall just write D(Q) if the underlying measure is clear from the context.

D, (Q) =

2.2. s-dimensional Calderon—Zygmund operators

We recall that an s-dimensional CZ kernel is a function K : R? \ {0} — c? satisfying
(i) 1K @)| < 1/|x|* for x € RY\ {0},

(ii) K(—x) = —K(x) forx € R\ {0}, and

(iii) for some « € (0, 1], the function x — |x|*T¥ K (x) is Holder continuous of order o.

Throughout the paper, we shall be interested in homogeneous CZ kernels, and so we

impose the following additional condition:

@iv) K(x) = A" K(x) for A > 0.

Fix a CZ-kernel K. For § > 0, the regularized CZ kernel is defined by

|x]

s+a
Ks(x) = K(x)( ) . xeRI\ o},

max(|x|, §)

and K5(0) = 0.

Notice that |Ks(x)| < 1/8* for all x € RY.

If u is a A-nice measure, then the Cauchy—Schwarz inequality ensures that the regu-
larized CZO transform

Tos(f)(x) = fR K= 0O duly), xR

is uniformly bounded pointwise in absolute value in terms of &, A, and || fl 2, In
particular, 7}, 5 : L?() — L (1) for any § > 0.

We say that a nice measure u has associated CZO T bounded in L*() if

”T”H = Sug ”TM’(S"LZ(M)_)IJZ(M) < . (21)
6>

2.3. Reflectionless measures

We briefly recall the definition of a reflectionless measure. A more thorough description
is given in Section 3 of Part I.

Fix a CZO T. We recall that a measure u is said to be diffuse if the function (x, y) +—
1/lx —y[* lisin Llloc(/L x ). For a diffuse measure u, and for f, ¢ € LipO(Rd), we
may define

(T(f), ) = // K(x — y)Hyp(x, y)du(x)dp(y),
R4 xR4

where

Hpy = A fDMex) — o) f()].
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If in addition p has restricted growth at infinity, in the sense that fl > W du(x) < oo,

then we may define the pairing (T'(f 1), ¢), when f € LipO(Rd) satisfies -/]Rd fdu=0,
and ¢ is merely a bounded Lipschitz function. To do this, fix ¥ € Lipy(RY) that is
identically equal to 1 on a neighbourhood of the support of f, and set

(T(fm), @) =(T(f1), o) + /ﬂ;d T(frm) @ = ¥ (0)]ex) du(x).

The mean zero property of f ensures that |7 (fu)(x)| < (lf‘)fcﬁ for x € supp(l — ),
from which the restricted growth at infinity ensures that the integral above converges
absolutely.

We say that a diffuse measure p with restricted growth at infinity is reflectionless
for T if

(T(fn), 1), =0 forevery f € LipO(Rd) satisfying / fdu=0.
R4

2.4. The linear operator T,

Suppose that 1 is a A-nice measure for which the associated CZO T is bounded in L?(11).
For f, ¢ € LipO(Rd), we have Hy, € LipO(Rd x R%), and Hf y(x, x) = 0. Thus, for
any § > 0,

C(f,9)

|Ks(x — y)Hfo(x, y)| < WXSxS(xa ¥,

where § D supp(f) x supp(¢). Now, note that Ks(x — y)Hy,(x,y) converges to
K (x —y)Hy o (x, y) outside the set {(x, y) € RIxRY: x = v}. Insofar as the measure ©

is nice, this set has zero u x u measure, and also % € L'(u x ). Consequently,
the dominated convergence theorem ensures that

(Ts(f)s 9 = / / Ks(x — y)Hy.y (r, v) dn () dpe(y)
R4 x R4

converges as § — 0 to

// K(x = y)Hyp(x, y)dp(x) dp(y) = (T(f11), @)p-
R4 xR4
Furthermore, since [(Ty, 5(f), @) ul < Coll fllL2¢u) @l L2(y) Tor every 6 > 0,

KT(f1), @) ul = Coll fll L2 ll@ll 20

Consequently, by the Riesz—Fischer theorem, there exists a unique bounded linear opera-
tor T}, : L?(u) — L%*(p) such that

(T, (f), @) = (T(fn),9)  whenever f, ¢ € Lipy(R).
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2.5. Uniform rectifiability and the local convexity condition

Now fix s € Z. In this section we recall some of the language and results from David and
Semmes [DS].

We say that an AD-regular measure u is uniformly rectifiable if there exists M > 0
such that for every cube Q € D, there is a Lipschitz mapping Fp : R® — R? with
IFgll < M(Q) and p(Fo(R*) N Q) = $u(Q).

We shall now recall one of the criteria for uniform rectfiability given in [DS]. The
most convenient condition to work with when taking the weak limit of a sequence of
measures appears to be the Local Weak Convexity (LCV) condition:

Fix § > 0. For an AD-regular measure p, we say that a dyadic cube Q € D is
8-non-LCV if

there exist x, y € 30 N supp(u) such that B()% M(Q)) N supp(pn) = 0. 2.2)

According to [DS, Chapter 1, Corollary 2.10] the uniform rectifiability of supp(u) is
equivalent to the fact that for each § > 0, the family of §-non-LCV dyadic cubes is a
Carleson family, i.e., for each § > 0, there exists Cs > 0 such that for every P € D,

E £(Q)" < Cst(P)".
QeD: QcCP,
Q is §-non-LCV

2.6. Stabilization of dyadic lattices

We say that a sequence of dyadic lattices Dy stabilizes in a dyadic lattice D’ if every
Q' € D' lies in Dy, for sufficiently large k.

Lemma 2.1. Suppose Dy, is a sequence of dyadic lattices with Qg = (0, 1)? € Dy for
all k. Then there exists a subsequence that stabilizes to some lattice D'.

The lemma is proved via a standard diagonal argument: For n > 0, there are only 2"¢
distinct ways to arrange a dyadic lattice so that Qg is a child of a cube of sidelength 2".

3. Main results

Having introduced the required notation and concepts, we can list our main results. Firstly,
the integer-dimensional rigidity result:

Proposition 3.1. Lets € Z, s € (0,d). Suppose that T is an s-dimensional CZO, and
that the only s-AD regular reflectionless measures associated to T are of the form cH® |,
for a constant ¢ > 0 and an s-plane L. If w is an s-AD regular measure for which T
is bounded in L*(w), then for every 8 > 0, the family of dyadic 8-non-LCV cubes is a
Carleson family.

The second result is the non-integer-rigidity result. Formally, there is no need in this case
to impose the requirement that s be non-integer, but in order for the hypothesis on 7T to
be satisfied, s cannot be an integer. Recall the Wolff potential (1.2) from the introduction.
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Proposition 3.2. Let s € (0, d). Suppose that T is an s-dimensional CZO, and that the
only nice reflectionless measure for T is the zero measure. There exists p € (0, 00), de-
pending ond, s, and a, such that any A-nice measure | with associated CZO transform T
bounded in L*(1) satisfies

/ Wp(xon)du < Cu(Q)  for any cube Q C RY, 3.1
o

for a constant C > 0 depending on s, d, o, A, and | Ty |l 12,y 12()-

As discussed in the introduction, we are able to answer Question 1.2 affirmatively if
se(d—-1,d).

Proposition 3.3. If s € (d — 1,d), then the only nice reflectionless measure for the
s-dimensional Riesz transform is the zero measure.

4. An overview of the proof of Proposition 3.2

We shall prove Proposition 3.2 first. The proof of Proposition 3.1 will be significantly
simpler. It will be convenient to prove the analogue of Proposition 3.2 with a dyadic
Wollff potential.

Proposition 4.1. Suppose that the only nice reflectionless measure for a CZO T is the
zero measure. If @ is a finite nice measure for which the CZO T is bounded in L*(v),
then there exist p € [2, 00) depending on s, d, and «, and a constant C > 0 depending
ons,d, a, and ||T|,, such that

Y DB uB0) < Cu®?).
QeD

To get Proposition 3.2 from Proposition 4.1, merely note that if © is a measure with
associated CZO transform T bounded in L% (), then for any cube Q, v = xou is a finite
measure for which the associated CZO transform 7 is bounded in L2(v). Proposition 4.1
then yields

f W,(dv < C Y Dy,(30)v(3Q) < Cv(RY),
R? Q'eD
as required.

The proof of Proposition 4.1 proceeds through studying the Lipschitz oscillation co-
efficient at a dyadic cube. We first outline this scheme.

Let 1 be a (non-negative) measure. For A > 100+/d and a cube Q € D, define the
set of functions

. 1
DL(Q) = {1/f € Lipg(B(xg, AL(Q))) : I¥lLip < W0) /11;«1 Ydp = 0}-
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The system <I>’Z(Q) (Q € D) is a Riesz system, that is, there exists a constant C =
C(A, s, d) > 0such that forany f € L*(u), and every choice of Yo € \IJX(Q) (0 €D,

I/, ¢Q>M|2 5
C .
Q;)M(B(XQ,3A£(Q))) = ”f”LZ(M)

See Appendix B for a proof of this fact. Consequently, if in addition u is a finite A-nice
measure for which T is bounded in L2(u), then

T o). il (T (), o)l )
= CA)|T,.(1
QXd:) n(B(xg,3AL(Q))) Qe% w(B(xg,3AL(Q))) < CAIITu( )||L2(M)

< CINTl T2 120 HRD. .1

(n)—

We now introduce the Lipschitz oscillation coefficient. Define

ONQ) = sup [T(fw), 1)yl (4.2)
fed@(Q)

From (4.1) we see that

> Ou( 0" < CA)|T, |12 n(RY) 4.3)
5 M(B(xg, 3A(0) ~ L2 )= L2(0) ' :

Lemma 4.2. Suppose that | is a finite A-nice measure for which the CZO T is bounded
in L2(1). Suppose that F C D, A > 0 and A > 1 are such that for every Q € F,

©,(0) = AD,B3O)nBQ). 4.4)

Then

2 nGO)Y IITu||L2(u)—>L2(u))2 d
Q;D"GQ) [((Bxg, 3AL(0)) ~ W ( A R

The lemma is an immediate consequence of the inequality (4.3). Consequently, if we were
able to show that there exist positive constants A and A such that (4.4) holds for every
cube Q € D, then we would arrive at

2
D30y — 1D Cr®Y),
2 PrOO’ e Sy = R

from which the solution of the Mateu—Prat—Verdera conjecture would follow for the
CZO T. However, the inequality (4.4) can easily fail for many cubes, but the main point
behind the proof of Proposition 4.1 is that under the hypothesis of the non-existence of
non-trivial A-nice reflectionless measures, (4.4) holds for a class of cubes near which u
is sufficiently regular.
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Definition 4.3. Let u be a locally finite measure, and let ¢ > 0. A cube Q € D is called
e-regular for p if

D,(3Q") <2242 p (30) forevery Q' € D. 4.5)

In Section 5 we shall show that if any locally finite measure u has an e-regular cube
Q € D, and ¢ is small enough (in terms of d, s and «), then p is diffuse and so one
can define the Lipschitz oscillation coefficient at Q. We shall then prove the following
alternative:

Proposition 4.4. One of the following two statements holds: Either

(i) there exists a non-trivial nice reflectionless measure for the CZO T, or
(i) there exist €, A, A > 0 such that whenever 1 is a locally finite measure and Q € D
is an e-regular cube, one has

©4(Q) > AD,(3Q)nB3Q).

Under the hypothesis of Proposition 4.1, we are forced into part (ii) of this alternative. Let
us now fix ¢ and A as in (ii). Returning to the case of a finite nice measure p for which
T is bounded in L*(1), Lemma 4.2 implies that

2
Y Dp.eor— P9 < Cu®Y,

QeD: Q is e-regular n(B(xg,3AL(Q))) —

where the constant C > 0 may depend on ¢, A, [Ty llp2(,)— 12 and A. However, a

regular cube is doubling by its defining property, and so

Y. DuBQ’uBQ) < CuR?)

Q€D: Q is e-regular

(u)°

as well.
We therefore arrive at the following question: When does the sum over regular e-cubes
bound the entire sum? In Section 6, we shall prove the following lemma.

Lemma 4.5. Suppose that | is a finite nice measure. For each ¢ > 0, there exists p =
p(e,d) > 2 such that

Y D,GORGO<C Y DGO uGO).

QeD Q€D: Q is e-regular
where C = C(e, d, s) > 0.
From this lemma, and the inequality D, (3Q)? < (CA)?~2D,(3Q)?, we deduce that

> D.BORBY<C Y D,(30)*u(30Q) < Cp(RY),

QeD QeD: Q is e-regular

and Proposition 4.1 follows.
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5. Measures with slightly non-standard growth

Fix B satisfying 8 < min(c, s) (recall here that « < 1). We say that a measure u is
A-reasonable if

w(B(x,r)) < Arf(Rmax(1, 1/r))ﬁ whenever B(x,r) C B(0, R) with R > 1.

It is immediate from the definition that if wy is a sequence of A-reasonable measures,
then there is a subsequence which converges weakly to a A-reasonable measure . (Of
course, here we are using the weak compactness of the space of locally finite measures
over the (separable) space of compactly supported continuous functions.)

Throughout this section, all constants may depend on A and 8 without explicit men-
tion. The next lemma consists of two straightforward estimates using the definition of a
reasonable measure.

Lemma 5.1. Let R > 1, and suppose that u is A-reasonable. Then there is a constant
C > 0 such that if r € (0, 2R), then

1
/l | Wdu(y) < CRPmin(+'#,r) forx € B(0O,R),
x—y|<r

and

/ 1 du(x) < C
E—— X —_—.
RA\BO,R) [X[ST¥ WA= Rap

Proof. For the first estimate, note that

1 "u(B(x,t)) dt
/ T s—1 du(y) < C/ -
lx—yl<r |x — )’|s 0 1’ !

Note that B(x,t) C B(0,3R) for x € B(0, R) and t+ < 2R. Thus, if t € (0, 1], then
w(B(x, 1)) < 3P RPAt*~F . Consequently, if r € (0, 1] then

r r
/ u(B(x. 1)) dt _ CRﬂ/ 1B dr _ CREA1B.
o b T 0 r

On the other hand, for t € (1, 2R) we have ju(B(x, 1)) < 38 RPAr*, and so [] LE&0) df
< CRPr. The desired bound follows.
The tail estimate is just as simple. For r > 1, we have u(B(0,r)) < ArsTP . Substi-

tuting this inequality into the integral [ ;;O % dTr yields the required estimate. O

An immediate consequence of the first estimate in this lemma is that a A-reasonable
measure /. is diffuse, that is, the function (x, y) — 1/|x — y|*~! is locally integrable with
respect to ;. x . Furthermore, the second estimate ensures that p has restricted growth
at infinity in the sense that flxlzl (1/1x°t%) du(x) < oo. Consequently, the bilinear form

(T(fw), 1), is well defined for any f € LipO(Rd) with f fdu = 0 (recall Section 2.3).
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Now, recall from Section 8 of Part I that a sequence of measures py is called uniformly
diffuse if, for each R > 0 and ¢ > O, there exists » > 0 such that for all ,

/]’ dpe(x) dpk(y) _
T o1 =&
x,yeB(0,R): [x—y|<r lx — y[*

and pu is said to have uniformly restricted growth (at infinity) if, for each ¢ > 0, there
exists an R € (0, oo) such that for all &,

1
—dur(x) <e.
/]I‘Rd\B(O,R) |x|s+e i) =

Notice that since the constant in Lemma 5.1 depends only on s, A, and B, a se-
quence wi of A-reasonable measures is uniformly diffuse with uniformly restricted
growth at infinity. Consequently, Lemma 8.2 of Part I is applicable to such a sequence
of measures. Let us now state this convergence lemma for the special case under consid-
eration.

Consider two sets of functions:

ok = {w € Lipy(B(0, R)) : [|[/|ILip < 1 and /
B(0,R)

vdu ZO},

o = {uf € Lipy(RY) : |¢|lLip < 1 and / Vdp = 0} = U Pl
R R>0
Lemma 5.2. Suppose that jx are A-reasonable measures that converge weakly to a mea-
sure u (and so w is A-reasonable as well). Let yx and Ry be sequences of non-negative
numbers satisfying yx — 0 and Ry — oo as k — oo. If (T (), 1)l < yx forall
Y e q>%i, then (T (Yrp), 1), = 0 forall € d*.

Let us also record a useful corollary of this result.

Corollary 5.3. The weak limit of a sequence of A-reasonable reflectionless measures is
(provided it exists) a A-reasonable reflectionless measure.

5.1. Lipschitz oscillation coefficients and reflectionless measures

In this section we prove Proposition 4.4. We shall assume that statement (i) of the propo-
sition fails to hold, which is to say that the only nice reflectionless measure is the trivial
measure.

The proof that statement (ii) holds will be obtained via a compactness argument. First
we fix ¢, and let A tend to infinity and A tend to zero. Then we let ¢ tend to zero.

Lemma 5.4. There exists A > O such that if ¢ is small enough (smaller than some &g
depending on ), then any measure [ satisfying

D,(3Q) < 26d(Q.00)  for every Q € D,

for some dyadic lattice D containing Qy, is A-reasonable.
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Proof. Fix aball B(x,r) C B(0, R) with R > 1. Then B(x, r) is contained in the union
of at most 3¢ dyadic cubes of sidelength between r and 2r. We shall estimate d(Q, Qo)
for one of these dyadic cubes Q. Note that Q is contained in the ball B(0, 104/d R), and
so has graph distance at most log, (R /r)+ C from the dyadic ancestor of Q of sidelength
between R and 2R. But then d(Q, Qo) < 2log, R +log,(1/r) + C. It follows that

u(B(x,r)) < Cri *R*,
so we only need to choose g9 < /2. O

Lemma 5.5. Let ¢ € (0, g9). One of the following two statements holds:

(i) There exist A = A(e) and A = A(e) > 0 such that every non-trivial locally finite
measure jL with an e-regular cube Q € D satisfies

©1(0) = AD,(3Q)nBQ).
(ii) There exists a reflectionless measure satisfying £(3Qo) > 1 and
D,(3Q) < 2:42:Q0)  forevery Q € D' (5.1

where D' is some dyadic lattice containing Q.

Proof. Suppose that (i) fails to hold. For each k > 100+/d, there is a non-trivial mea-
sure fi; and an e-regular cube Qj with

~ 1 ~ i
KT (Yie), Dl = %Dﬁk(?’Qk)Mk(:;Qk) for all ¥ € ®*(Qx).

Now define the measure p; by

1
pk () = =———ik(xg, + €(Qx) ).
PIYET) M
Then ux(3Qo) > 1. Furthermore, iy satisfies the inequality (5.1) in the shifted lattice
Di = 751D — %], and

UT (Ypr), V| < 17k forall Y € O~

By choosing a suitable subsequence, we may assume that u; converges weakly to a
measure 1 with £(3Q0) > 1. Passing to a further subsequence if necessary, we may as-
sume that the lattices Dy stabilize to some lattice D’ (see Section 2.6). Since dyadic cubes
are open, the lower semicontinuity of the weak limit ensures that p satisfies (5.1) in the
lattice D’. The measures jux are A-reasonable (Lemma 5.4), and so applying Lemma 5.2
with yx = 1/k and Ry = k yields the reflectionless measure promised in (ii). O

Our second lemma rules out the possibility that the second alternative of Lemma 5.5 holds
for every ¢ > 0, and so proves Proposition 4.4.
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Lemma 5.6. Suppose that the only nice reflectionless measure is the zero measure.
Then there exists ¢ € (0, &9) such that there is no reflectionless measure | satisfying
1(3Q0) > 1 and

D,(3Q) < 2°4(:C0 (5.2)

for every Q € D where D is a dyadic lattice with Qg € D.

Proof. Suppose that for each ¢ € (0, gg), there exists a reflectionless measure ., with
we(300) > 1 satisfying (5.2) for every cube Q in some dyadic lattice D, containing Qy.
We may assume that p, converges weakly to a measure u as & tends to zero along a
suitably chosen sequence, and also that the lattices D, stabilize to some lattice D’. Since
the measures . are A-reasonable, an application of Corollary 5.3 ensures that the limit
measure u is reflectionless. However, u(3Q) < £(Q)* for any cube Q € D'. Thus u is a
nice reflectionless measure. But 1(3Q) > 1. This contradiction proves the lemma. O

6. Senior vertices on a graph

To complete the proof of Proposition 4.1 it remains to provide a proof of Lemma 4.5,
which is a very elementary piece of graph theory.

Suppose that I is a graph with vertex degree bounded by D. Suppose that v is a
bounded non-negative function on I'.

Let M > 0. We call a vertex x € I" subordinatetoy € I' if v(x) < 27 v(y).
Here d(x, y) denotes the graph distance (i.e., the length of a shortest path from x to y
in I'). A vertex x € I is senior if it is not subordinate to any vertex in the graph.

For each x € I', consider max{v(y)2~M4(.Y) . y e I'}. That the maximum is attained
is an immediate consequence of the boundedness of v and the vertex degree. Suppose
that the maximum is attained at x*. (We shall view x* as a vertex determined by x.)
Then we claim that x* is senior. Otherwise, there exists some z € I' such that v(x*) <
2~Md(".2)y (7). But then by the triangle inequality v(x*)2~MI@x") ) (7)2~Md(x.2),
which is a contradiction. Clearly v(x) < 2~M A0y (x*).

If 2~ p < 1, then for any fixed senior vertex z € I,

> v =Y 2 MIEDy(g) <u(r) Y 2 MAHx e T i d(x, 7) = k),

xel:x*=z xel k>0

Md(x,y)

which is at most v(z) ) ;- 2~Mkpk < Cu(z). Combining these observations, we arrive

at
dvm=C Y v
xel X is senior

6.1. The proof of Lemma 4.5

Fix ¢ > 0 and a finite nice measure j.
First choose M with (29 + 2d + 1)2=M < 1. (The number 2¢ + 2d + 1 is an upper
bound for the vertex degree of the graph I'(D).) For p > 2, set

v(Q) = Du(0) nBQ).
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Notice that v is a bounded function, since u is a finite nice measure. A vertex Q € D is
senior if

D,(30) u(3Q") <2M41@"Dp,(30)u(3Q) forevery Q' € D.
The general considerations preceding this subsection guarantee that

Yvy=c Y w0 ©6.1)

QeD QeD: Q is senior

On the other hand, for a senior cube Q € D,

Du(3Q/)p+l < ZMd(Q'~Q)DM(3Q)”+1 % < 2(M+s)d(Q,Q/)DM(3Q)p+1
M+s
p+1
< g, we have

for any Q' € D. Thus, a senior cube Q is an
M+s

-regular cube for .

But now, provided that

p+1
dov@) =<c > v,
QeD QeD: Q is e-regular

and so Lemma 4.5 is proved.

7. The proof of Proposition 3.1

The proof of Proposition 3.1 is quite similar to that of Proposition 3.2 except that it is
significantly more qualitative, and the measures under consideration will have more reg-
ularity.

Fix s € Z, s € (0,d). Suppose that T is a CZO such that the only s-AD regular
reflectionless measures associated to T are of the form ¢#?*|;, for a constant ¢ > 0 and
an s-plane L. Recall the definition of the Lipschitz oscillation coefficient @ﬁ(Q) from
Section 4. We shall prove the following lemma.

Lemma 7.1. For each 6 > 0, there exist A, A > 0 such that if u is an A-AD regular
measure, and Q € D is §-non-LCV for u, then

01 (0) = ALQ)’.

Taking this lemma for granted for the time being, we shall conclude the proof of Propo-
sition 3.1. Recall that we want to show that if @ is a A-AD regular measure with 7},
bounded in L2(,u), then for each § > 0 there exists Cs > 0 such that for every P € D,

E £(Q)* < Cst(P)". (7.1)
QeD: QCP,
Q is 6-non-LCV (for w)
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To see this, fix some A-AD regular measure with 7 bounded in L?(u1). Also fix § > 0
and a dyadic cube P € D. Consider a cube Q € D with Q C P that is §-non-LCV. By
Lemma 7.1, there exists Yo € QDZ(Q) with

A
KT (Yom), Nul = EE(Q)“V~

Now, set A’ > 100+/d A. Choose ¢4/ € Lipy(B(xp, 2A’€(P))) satisfying 0 < g < 1
on R? and ¢ = 1 on B(xp, A'¢(P)). Then, since Yo has p-mean zero, it follows that
(T (Yom), 1 — @ar)ulis dominated by

f / [K(y —x) = K(=0)| [YoWMdu(y) du(x).
RI\B(xp,A'¢(P)) J B(xg,AL(Q))

But, with x & B(xp, A’¢(P)) and y € B(xg, A2(Q)), we have

CA%L(Q)*
[K(y —x) — K(—=x)| = MT.
Also, [[Yglloc < 2A. Thus,
Aa—i—sE(Q)s—Hx

(T (Wom). 1 — ox)ul < CAf (),

RA\B(xp,A’C(P)) | |ste

which is dominated by CA'5+%¢(Q)* /A’ (as £(P) > £(Q)). Fix A’ (chosen in terms
of 8, s, d, and A) such that

CAl+s+oz A

- <

A 47
Our conclusion is that for each 6-non-LCV cube Q C P there exists ¥g € @Z(Q) such
that

A
KT (Yom), oadul = ZK(Q)S-

Now, recall that the system CD‘X (Q) (Q € D) is a Riesz system, so there exists a constant
C = C(A, s, d) > 0such that for every choice of Yo € CDZ(Q) (Q €D,

IT(par i), Vo)l i
ClTa (o) P, .
QeD: QCP n(B(xg,3AL(Q))) = CliTu(@anlla

Restricting the sum to those §-non-LCV cubes Q contained in P, we deduce that

“°o)* 2
< COITu(ea)l
QGD:ZQ:CP, 1(B(xg, 3AL(Q)) PTG
Q is §-non-LCV ;
< CONTuNT2 20 19471720y < CONTUT 20 1200 L)

Since u(B(xg, 3A€(Q))) < C(A)L(Q)*, we derive the required inequality (7.1).
We now return to proving Lemma 7.1. Let us begin with a few simple facts about the
weak convergence of AD-regular measures.
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e Suppose that iy is a sequence of A-AD regular measures. Then there is a subsequence
that converges weakly to a A-AD regular measure u.

e Fix a sequence i of A-AD regular measures that converges weakly to a measure p
(and so p is A-AD regular). Suppose that x; € supp(ux) and x; converges to some
x € R%. Then x € supp(u).

e Fix a dyadic cube Q € D. Let u; be a sequence of A-AD regular measures that
converges weakly to a measure p (and so pu is A-AD regular). If Q is §-non-LCV for
each ug, then Q is 6-non-LCV for w.

The first two facts are essentially immediate and very well known. We shall prove
the third. By definition, there are points x; and y; in 3Q N supp(ux) such that z; =
(xx + yr)/2 satisfies B(zx, 8£(Q)) N supp(ix) = . By passing to a subsequence,
we may assume that x; converges to some x € 3Q N supp(u), and y; converges to
some y € 30 N supp(u). But then z; converges to z = (x 4+ y)/2. Now, choose an
increasing sequence fy € Lipy(B(z,8£(Q))) that converges pointwise to X p(z,5¢(0))-
For each ¢, supp(fy) C B(zx, §¢(Q)) for all sufficiently large k, and so fRd fedu =
limy s o0 f]Rd fedux = 0. But then the monotone convergence theorem ensures that
n(B(z,8)) = 0.

We now suppose that the statement of the lemma is false. Then for some § > 0 and
every k € N there exists a A-AD regular measure ji; and a dyadic cube Q that is §-non-
LCYV for i; such that

1 ~
(T (i), Dy, | < %E(Qk)s for all y € ®;*(Qp).

For each k, consider the measure pux(-) = [ (xo, + €(Qk) -)/€(Qr)*. Then py is
A-AD regular, the unit cube Qg is §-non-LCV for p, and

T ), D)yl < 1/k - forall yr € &;*(Qo)

(and in particular for ¢ € W; ).

By passing to a subsequence if necessary, we may assume that there is a A-AD regular
measure p such that Qg is §-non-LCV for u, and pj converges to u weakly.

On the other hand, Lemma 5.2 is applicable (A-AD-regular measures are certainly
A-reasonable) with yx = 1/k and R; = k. Hence u is reflectionless. By hypothesis,
therefore takes the form u = ¢H?*|p for some s-plane L and ¢ > 0. But this measure
cannot have a §-non-LCV cube. This contradiction proves the lemma, and with it the
proposition.

8. An extremal reflectionless measure

We now prove the existence of an extremal A-nice reflectionless measure for smooth non-
degenerate CZOs. This extremal measure will form a key tool in the argument asserting
Proposition 3.3. We shall use the results of Section 6 from Part I here.

We shall also use the notation of Section 3.7 of Part I, with the mg-almost ev-
erywhere defined function Tﬂ(l). One should think of Tﬂ(l)(x) as the difference
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Jre Ky —x)dp(y) — (T (pop), 1), where g € Lipy(RY) satisfies [zs 9o du = 1. No-
tice that the local part of the first term in the difference, say fRd K@y —x)¢yr(y)du(y)

where ¥g € Lipg(B(0, 2R)) satisfies g = 1 on B(0, R), lies in LY (my) as

loc

! (d—s)/d
/ / du(y)dmg(x) < Cmg(K) w(B(0, R))
x JBo,R) 1x —yI*

for any compact set K C R?. The term (T (po), ¥R), also makes sense as a bilinear
form. The remaining contribution to the difference fRd K@y —x)du@) — (T (popn), )
can be written as

/ f (K —x) — K(y — D10 = YrNeo@ dum dp@).  @.1)
RY x R4

and provided that R is chosen so large that x € B(0, R/2) and supp(¢p) C B(0, R/2),
this double integral converges absolutely due to the restricted growth at infinity. The pre-
cise definition of 7', (1) as an mg4-almost everywhere defined function can therefore be
taken as

T(1)(x) = /R KO = 0UR0) di(y) + (T o), Y
+ / f [K(y —x) — K(y — D11 — ()0 dpu(y) du(),
R4 x R4

where R is chosen sufficiently large. The value Tu(l)(x) is of course independent of the
choice of R as long as the double integral (8.1) converges absolutely.

Outside of applying the results from Part I verbatim, the only fact that the reader
needs to know in this section about Tu(l) is that for my-almost every x, x’ € RY, we
have 7, (1)(x) — T, (1)(x) = [palK (y — x) — K (y — x’)]du(y), which can be readily
checked from the definition given above.

The Cotlar Lemma (Corollary 7.2 of Part 1) states that if x is a A-nice reflectionless
measure, then ”T;L(I)HLOO(md) < C where C > 0 depends only on d, s, and A.

In this subsection, we shall assume that Q € C°(S?~!) satisfies m(£/|€]) # O for
any £ € R?, where m and Q are related by

I<Q(|/: |)>(S) N m|§|£|_$|) for any & # 0, (8.2)

where F is the Fourier transform. This assumption guarantees that the Wiener lemma
(Lemma 7.3 of Part I) holds.

Proposition 8.1. If there is a non-trivial A-nice reflectionless measure, then there exists
a A-nice reflectionless measure pw* such that dist(0, supp(u*)) = 1 and

T ur (DO = IIT o (D] 2% (mg) -

We now set up an extremal problem whose solution will provide the measure ©* whose
existence is claimed in the statement of Proposition 8.1.
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Define F to be the set of non-trivial A-nice reflectionless measures . We suppose
that F # .
Set @ = sup{|T ,(1)(0)] : u € F with dist(0, supp(p)) = 1}.

Claim 8.2. O > 0.

Proof. Pick ameasure u € F. The Wiener Lemma implies that if |Tﬂ(l)| = 0 mg-almost
everywhere in R?, then u = 0. If u € F, then |7M(1)| = 0 mg-almost everywhere on
supp(u) (Corollary 6.6 from Part I), and so there must be a point z ¢ supp(u) with
|TM(1)(z)| > 0. Set p = dist(z, supp(u)). Consider the measure fi(-) = u(p - +2)/p°.
Then 1 € F, dist(0, supp(u)) = 1, and |Tﬂ(1)(0)| = |TM(1)(Z)| > 0. O

Claim 8.3. O < o¢.

Proof. This follows immediately from the Cotlar Lemma (Corollary 7.2 from PartI). O

Claim 8.4. There exists u* € F with dist(0, supp()) = 1 such that |TW(1)(O)| = 0.

Proof. Foreach j € N, choose u; € F with dist(0, supp(u;)) = 1 satisfying |Tﬂj(l)(0)|
> Q(1 —27/=1) > Q/2. Then, by Corollary 6.5 in Part I, there exists M’ = M'(Q)
such that 1 (B(0, M")) > ¢(Q) for each j. We may pass to a subsequence that con-
verges to a A-nice reflectionless measure p (Corollary 5.3 of this paper). From standard
weak semicontinuity properties of the weak limit, we have dist(0, supp(x)) > 1 and
w(B(0, M")) > ¢(Q). Since the measures ; are uniformly diffuse (see Section 5, where
it is shown that even a sequence of A-reasonable measures is uniformly diffuse), the con-
vergence result of Lemma 8.1 in Part I is applicable, and yields |TM(1)(O)| = Q. Fix
p = dist(0, supp(w)). Setting u*(-) = u(p-)/p* yields the claim. O

Proof of Proposition 8.1. Consider the measure * constructed in Claim 8.4, and suppose
that |T (D)) < || T «(1) ||L°°(md) Asa | consequence of Corollary 6.6 from Part I, there
exists x ¢ supp(u*) w1th |T «(D(x)] > |T «(1)(0)|. But now setp = dist(x, supp(,u*))
Consider i(-) = u*(p - +x)/p*. Then ft € F and Q < |T ~(Dx)| = |T (D).
This is absurd. ]

9. The Riesz transform

In this section, we consider the simplest and most interesting s-dimensional CZO, the
s-Riesz transform. This is the choice of kernel K (x) = x/ |x|‘Jrl forx € R4 (so the Riesz
transform is RY- valued). We will write R, instead of T, M(l) instead of Tﬂ(l) and
SO on.

Note that, in this case, m(£/|&|) = c&/|&| for a non-zero complex number ¢, where m
is given by (8.2). Thus the Wiener Lemma, and hence Proposition 8.1, are both applicable
for the s-Riesz transform when s € (0, d).
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9.1. The proof of Proposition 3.3

We shall need a lemma which accounts for the restriction to s € (d — 1, d). It is nothing
more than the integral representation formula for the fractional Laplacian (from which the
strong maximum principle trivially follows), but we could not find the statement precisely
in the form we need it, so a proof is included in an appendix.

Lemma 9.1. Suppose that s € (d — 1, d), and v is a A-nice reflectionless measure with
0 & supp(u). Then

PV / R, (1)(0) = R, ()(x)
R4

|x|2d+1—s

dmg(x)

Ru(1)(0) = Ry (1) (x)

= lim |x|2d+1—s

§—0 R4\ B(0,5)

dmgy(x) = 0.

Proof of Proposition 3.3. Suppose that there is a non-trivial reflectionless mea-
sure w. Consider the measure u* provided by Proposition 8.1. Since |EM*(1)(O)| =
IR 1+ (1) || Lo 4> Lemma 9.1 implies that R+ (1) is constant m4-almost everywhere. But
then the Wiener Lemma yields = 0. This is a contradiction. O

9.2. Weak porosity

Having proved that non-trivial A-nice reflectionless measures for the s-Riesz transform
fail to exist if s € (d — 1, d), we move on to studying them for s < d — 1. We shall
here prove that the support of a reflectionless measure for the Riesz transform is nowhere
dense. We actually prove a slightly stronger version of this statement.

Proposition 9.2. Suppose that |1 is a A-nice reflectionless measure for the s-Riesz trans-
form with s € (0,d — 1]. For each ¢ > 0 there is a constant A, = A(e) > 0 such that if
w(B(x,r)) > er’, then there is a ball B’ C B(x, 3r) of radius Ar that does not intersect
supp(u).

If we take into account the general porosity result in Lemma 6.7 of Part I, Proposition 9.2
will follow immediately from the following result.

Lemma 9.3. Lets € (0,d — 1]. There is a constant ¢ > 0 such that if p(B(x, r)) > ers,
then fB(x,?:r) IR, ()| dmg > cemq(B(x,3r)).

Proof. We may assume that x = 0 and r = 1. Let ¥ 2 be a non-negative bump function
supported in B(0, 1/2) with [pq ¥1/2dmg = 1. Then (Y12 % n)(B(0, 2)) > ce. There is
a positive constant b = b(s) such that

_ b(Yr12 * ) (x) ifs=d—1,
div( * Ry (1))(x) = '
fuee !bed %d'nd(y) ifs <d—1.

Indeed, for fixed x’ € RY,
Y12 * R (1)(x) — Y12 * R, (1)(x') = /Rd[K(y —x)— K@y —x)1d@n* w)(y),

from which the formulas follow by differentiating the kernel.
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On the other hand, if ¢ € C{°(RY), then

/ (W12 % Ru(D)] - Vo dmg = — / div(y12 % B (1)) dimg.
R4 R4

Choose ¢ to be non-negative, with bounded gradient, and satisfying ¢ = 1 on B(0, 2)
and supp(¢) C B(0, 3). Then

C/ IR, (D) dmg > ‘/ (V172 % Ru(D]- Vo dmg
B(0,3) R

> f div(yriy2 * Ru(1)) dmg > ce,
B(0.2)

as required. O

10. Behaviour at infinity

The growth of a reflectionless measure at infinity is something we do not yet under-
stand particularly well. Studying tangent measures at infinity formed an important part of
Preiss’s proof of the rectifiability of a measure p for which the limit lim, o D, (B(x, r))
exists for p-almost every x € R? [Pre], and there is a hope that studying the behaviour of
reflectionless measures at infinity could help shed some light on Question 1.2.

In this section, we make some elementary remarks about the behaviour of reflection-
less measures at infinity in order to introduce a couple of simple ideas.

Lemma 10.1. Suppose that  is a reflectionless measure for a CZO T satisfying the
following (uniform diffuseness at infinity) condition: For every ¢ > 0 there exists 6 > 0
such that

1 // 1
— ————dp(y)du(x) <e¢
(B0, R)) J Jx yeB(,R): x—y|<sr Rlx — y[*~!
for all sufficiently large R > 0. If

1
/Rd T+ oy 1= oy

(T(pu), 1), =0 forall ¢ € Lipy(R?)

(and not only for those test functions with y-mean zero).

then

Here one makes sense of (T'(¢u), 1), by first introducing some {» € Lip, (RY) that is
identically 1 on the support of ¢. The condition (10.1) shows that the function x +
K(x—y)(1 —¢(x))isin Ll(,u) if y € supp(¢). Therefore we may set

(T(ow), 1) =T (o), ¥} + /Rd @(y) fRd K(x —y)(1 = (x))dux) dpu(y).
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Let us remark that if s < 1, then (10.1) already implies that y is uniformly diffuse at
infinity. For any s, the uniform diffuseness condition is satisfied if u has finite energy in
the sense that

1
/ ———dn(x)du(y) < oo (10.2)
RIxRA |X — |

Any A-reasonable measure is also uniformly diffuse at infinity.

Proof of Lemma 10.1. Fix ¢ € Lipo(Rd). We shall also fix a non-negative function
¥ € Lipy(B(0, 3/2)) that equals 1 everywhere on B(0, 1). For R > 0, we shall set
YR(-) = Y (/R).

For any R > 0 large enough to ensure that fRd Yrdp > 0, the reflectionless property

of u guarantees that
T\|¢—F—F——-VYr|n). 1) =0.
< <[ fRd IpR d/,L nw

Consequently, to prove the result it suffices to find a sequence of radii R; — 0o such that

1
lim —— (T (Yg, 1), 1), =0.
Jim e T Wy

Since supp.; #(B(0, R))/R* < oo, we can find an infinite sequence of radii R; = 34,
¢; € N, that are doubling in the sense that

W(B(0,3R))) < 9 u(B(O, R))).

Indeed, for each non-doubling radius R, D, (B(0,3R)) > 3°D,(B(0, R)), and so there
can be no infinite sequence of consecutive non-doubling radii.

Notice that u(B(0,3R;)) < 9° fRd VR, d < 81°u(B(0, Rj)). In addition, since
Zj D, (B(0,3R;)) < oo, there is a sequence §; — 0 such that D, (B(0, 3Rj))8j_(s_l) —0
as j — oo.

Let us now group together the simple estimates we shall require. Fix a doubling ra-
dius R;. Then

(T Way10) 1 — o bl < / du(y) dpo)
Ix|=2R; JIy|<3R; /2 |X — ¥l
1 1
< Cu(B(0,3R;/2)) —dp(x) < C[/ . dM(x)}M(B(O, Rj)).
Ix|=R; X1 Ix|>R; 1X]

On the other hand, we write (T (g, it), Y2R;) . as

/ / K = )L (0, (0)War, (1) — Wy (0ar, (0)) dia () dpa(y),
B(0.3R;)xB(0,3R;)

which is bounded in absolute value by a constant multiple of

1
/f w7 dnx)du(y).
B(0,3R;))xB(0,3R;) Rjlx — y[



24 Benjamin Jaye, Fedor Nazarov

Now notice that

D, (B(0,3R;
MM(B(O, R))).

J

1
// o dn@du(y) =C
x,yeB(0,3R}): lx—y|>8;R; Rjlx — ¥l

Bringing these estimates together we see that, for each j,

1

1 D, (B(0,3R;))
fRd I/IRJ' d“

dux)+C e
J

T Wy, 1)l < c/

x|=R; 1xI°

+ — du(x)du(y).

1
o5 I O
n(B(0,3R;)) JJx yeB0.3R)): 1x—yl<s;R; Rjlx — yI°

We see that fl L du(x) tends to zero as j — oo due to (10.1). On the other hand,

x|>Rj |x[
the diffuseness at infinity ensures that

sl
- — du)du(y) = 0 asj — oo
n(B(O, 3R/)) x,y€B(0,3R;j): [x—y|<8; R; Rj|x - )’|s_1

But D, (B(0, 3Rj))8j7(s71) — 0 as j — oo by construction, and so we conclude that
li : (T(Wriw), 1) =0
m ——F——— RiL), =Y,
Jj—>00 fRd ij d/“L / a
as required. O

‘We now move on to using this lemma to prove the following proposition.

Proposition 10.2. Lets € (0, d). The only reflectionless measure | for the s-Riesz trans-
form satisfying (10.2) is the zero measure.

Proof. Suppose that w is a reflectionless measure satisfying (10.2). Then we can readily
deduce that the hypotheses of Lemma 10.1 are satisfied. Fix ¢ € Lip(R¢), and choose
a sequence ¢, € Lipo(Rd) that satisfies sup,, ||@nllLip < 00 and ¢, (x) — ¢(x). From
Lemma 10.1 we see that (R(¢, 1), 1), = 0 for each n.

Now notice that

|[le — @a]x) = [ — ul(M]K (x — y)| > 0 whenever x # y,

and the set {(x, y) € R? x R? : x = y} is of s x  measure zero. In addition, there is a
constant C > 0 such that for x # y,

C
sup [[¢ — ¢nl(x) = [¢ — @a]l (MK (x = y)| < [P

The function (x, y) — 1/|x — y|* " liesin L' (s x ) due to (10.2), and so the dominated
convergence theorem now yields

/ / K(x — Vo) — o)1) duly) = 0.
RI x R4
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Now fix a co-ordinate j € {1, ..., d}, and consider the function ¢(x) = x;. Then
(xj —yj)x—y)
/ L dux)du(y) = 0.
RixRd X — y|*t

In particular, taking the j-th co-ordinate of this vector yields

(xj — )*
[, e due duw) = o
RixRd X — y['F

But then summation over j yields

1
/ o dn)du(y) =0,
RA xR X — ¥

and x must be the zero measure. m]

Remark 10.3. The harmonic measure in R? of the line segment [—1, 1] with pole at
infinity is the measure u supported on the line {x = 0} with density du(x1, x2) =
% 1 = X1, 11(x1) dm1(x1). We recall from [MePV] that this measure has the property
1 1

that the principal value of the one-dimensional Riesz transform of p is zero on supp(u).

The above proposition in particular implies that u is not reflectionless in our sense.

Question 10.4. Suppose that | is a A-nice reflectionless measure for the s-Riesz trans-
formwiths € (1,d — 1). If u # 0, does there exist € > 0 such that

w(B(0, R)) > RS/7+e for all sufficiently large R > 0?

We would be especially interested if one could answer this question with ¢ = s5/2.

Appendix A. The sufficiency of the Mateu—Prat—Verdera condition

The purpose of this appendix is to provide the proof of the following well-known result.
Fix s € (0, d), and let T be an s-dimensional CZO.

Theorem A.1. Suppose that there is a constant Co > 0 such that for every cube Q C R,

/Q Wa(xom) du(x) < Cop(Q). (A1)

Then T, is bounded in Lz(u), with norm bounded by C - Cy, where C depends on d, s,
and o.

Although this theorem is indeed well known, it is difficult to locate a proof, so we shall
provide one here. The proof is very similar to that of [ENV1, Theorem 4.6], but we are
working under a slightly weaker assumption on the Wolff potential, and so we prefer to
avoid any integration by parts arguments. We shall rely upon the following lemma.

4 In particular, one could make a valid complaint about our use of the term “reflectionless”.
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Lemma A.2. There is a constant C > 0, depending on d, s, and «, such that for any
finite measure v and & > 0,

J.

To deduce the theorem from the lemma, fix a cube Q and consider the measure v = xo .
From the lemma and (A.1), we find a constant C > 0, depending only of Cy, d, s, and «,
such that for any ¢ > 0,

/‘/ K& —y)du(y)
olJo:ly—x|>e

But then the non-homogeneous 7 (1)-theorem [NTrV] yields that the CZO T associated
to w is bounded in L2().

2

/ K(x —y)dv(y)| dv(x) < C/ Wo(v) dv.
|[x—y|>e R4

2
du(x) < Cu(Q).

Proof of Lemma A.2. Let us expand the left hand side:

/// Kx—y)-K(x—2)dv(x)dv(y)dv(z).
x,y,2€R4: [x—y|,|x—z|>¢

It is enough to estimate the absolute value of the integral with the domain of integration
restricted to
U={(x,y,2) eR¥*:|x —y| > |x —z| > ¢}.

First consider the set
Uy={(x,y,2)€U:|y—z| <|x—zl}
Notice that for (x, y, z) € Uy we have |x — z| > %|x — y|. Thus
|K(x—y) K(x—2)| < C/lx — y|*.

But then

‘/// K(x—y)-K(x —2)dv(x)dv(y)dv(z)
(x,y,2)€U

1
: //,/ 35 dv(x) dv(y) dv(2).
(x,y.2)€R3: [x—y|=|x—z] 1X — Y|

However, the right hand side is of course dominated by a constant multiple of

© 1 dr
/ / 7/‘/ dv(y)dv(z) — dv(x),
R4 Jo I~ (v,2)€R2: |x—y|,|x—z|<r r

which equals [ps W2 (v) dv.
It remains to estimate

/// Kx—y)-K(x—2z)dv(x)dv(y)dv(z)|,
U
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where
Uy ={(x,y,2)€eU:ly—z|l>Ix—zl}

= {7, €R¥ 1 |y —z| > |x—z|, [x —y| > [x — z|}.

It is at this point that we shall appeal to the facts that K is antisymmetric and Holder
continuous away from the diagonal. Notice that the set U; is symmetric under permuting
x and z. Thus, we may estimate

%f/U K@ =) K(x—2)+ K@=y K@ —x)|dv(x)dv(y)dv(z)
2

However, for (x, y, z) € Us, the integrand |[K(x —y) - K(x —2) + K(z —y) - K(z — x)|
is bounded by

I Clx—z _ C
_ Z|s |x _ yls—i-a - |)C _ le—alx _ y|s+a :

K& —2)|IKx—y) —K@z—y)| < »

Our goal is now to establish the pointwise estimate

/f : dv(z)dv(y) = CW(v)(x)
(

7,2)€R: [x—y|=|x—z| |X — Z]57¥x — |5t

for every x € R?. Appealing to the distribution formula, we first bound the left hand side
of the desired inequality by a constant multiple of

f o ;,dV(Z) ar.
0 rite li—z<r |X — 2|7 r
But | . ) .
/ —_dV(Z) = (s_a)/ V( (f»t)) _t+ V( (_f’ }"))7
x—zl<r X — 257 0 i p e

and since ~ s . )

/ v( chr;r)) v( E)_c;r)) ar _ W (1) (x),

0 r r r

it suffices to estimate

/"o v(B(x,r) (" v(B(x, 1) dt dr
0

rsto 0 5o tr

We first use Cauchy’s inequality:

VB, ) (" (B, 0)dr _ (v(B(x,r))>2+( 1 f’ v(B(x,1)) dt )2
<|——= AT ,

rs+o¢ 0 s—o t 7S ﬁ

[S tl—a

to reduce matters to estimating

foo(i / v(B(x,1)) dt >2d_r
0 re 0 ts tl_a r ’




28 Benjamin Jaye, Fedor Nazarov

But [ tldfa = %r“, so the Cauchy—Schwarz inequality yields

<i " W(B(x, 1)) i>2 el ’(U(B(x,t))>2 dt
ra/O s tl—oc — ro{/(; 1S tl—oz’

from which we deduce that

/00 1/r V(B(x,1)) dt 2dr<C/°° v(B(x, 1))\ /00 1 dr] dt
0 (7& o 5 =) =) (t— P T

(A2)
Evaluating the inner integral on the right hand side, [ qE = g We conclude that

the right hand side equals a constant multiple of W5 (v)(x). The lemma follows. ]

oo 1dr _ 11

Appendix B. Riesz systems

Throughout this appendix, fix a non-trivial locally finite measure . Recall that
. 1
PL(Q) = {Vf € Lipy(B(xg, AL(Q)) : I¥lLip < 57, f vdp = 0}-
Q) Jra

We shall prove that there is a constant C = C(A) > 0 such that for each f € L*(u),
and arbitrary choices of g € @Z(Q), we have

|<fv ¢Q>u|2 2
Q;a 1(Bleg, 3400)) = CM -

Here, and elsewhere in this appendix, the sum over the dyadic cubes is taken over those
cubes with u(B(xg, 3A£(0))) > 0.

We shall prove this inequality by verifying the equivalent dual inequality: there is a
constant C = C(A) > 0 such that for each non-negative sequence (ag)gp € 22(D), and
for every choice of ¥rg € @Z(Q), we have

2

< Clall?,.
L2(p)

H ) agyo
oD Vi(B(xg,3A0(0Q)))

It will be convenient to set pg = u(B(xg, 3A£(Q))). We begin the proof with a few
preparatory estimates. For each Q € D, choose g € CD‘/;(Q). Then

IYolleo < I¥ollLip - diam(supp(¥g)) < CA.

Thus,
IVollLiw = CAr(B(xg, AL(Q)).
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Notice that if Q’, Q" € D with £(Q") < £(Q"), then the oscillation of o~ on
B(xg, AL(Q")) is bounded by A£(Q')/£(Q"). Thus

Vo, Yo ul <C(A)E(Q’) M(B(XQ”AK(Q/))).
Jearg U@ por

Also note that [(Yo/, Yor)ul = 0if B(xg, AL(Q")) N B(xgr, AL(Q") =0
For the remainder of this proof, all sums over cubes will be taken over the dyadic
lattice D, so we shall not write this explicitly. Now, let (ap) gep € £2(D). Then

agy (Yo, Vor)ul
HZ ovo <2 Z |an||aQH|M-
LZ(M) Q’,Q”iz(Q/)fz(Q”) A/ IOQ/IOQN
By our previous estimates, Cauchy’s inequality implies that |ag/| |agr| Wo Yol i

VP Po”
bounded by

2 / . 2 / , /
C(A)[IaQI Q" n lagr|= £(Q") ,U«(B(szAZ(Q)))].
240" 2 UQ”) Q"
Thus, it suffices to estimate two sums:
E(Q)
I = 2
Z | | E(Q//)

Q',0":4(Q"h=t(Q")
B(xg ALQ)NB(x g AL(Q") Y

2 U(Q) n(Blxg, AL(Q))

11 -
€Q" por

lagr|

0',0":¢(0")<£(Q")
B(xQ/,AZ(Q/))F]B(XQ//‘AE(Q”))#@

Fix Q' and k € Z . There are at most C(A) cubes Q" with £(Q") = 2¥¢(Q’) satisfying
B(xg. AL(Q)) N B(xgr, AL(Q")) # 0. Thus

I=Y lagl
=

0":¢(0)=t(Q" keZy

B(xg ALQ))NB(x g AL(Q") £
which is at most C(A) ZQ, lag: |2. For II, write

1=l Y 27 3 p(Blxg, ALQY)

0" keZy 0" e(0h=2"ke(0") por
B(xg, AL(Q)NB(x g, AL(Q")) 0

With k € Z, fixed, the inner sum can be written as
1
— > XB(xg.AL(Q") (¥) dp(y). B.1)

por 0" 6(0)=2" (0"
B(XQ/ ,AE(Q’))ﬂB(xQ// ,AZ(Q”))#V)
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Note that if B(xg, A€(Q")) N B(xgr, AL(Q")) # @, then B(xgr, AL(Q)) C
B(xgr, 3A£(Q")). Thus, the domain of integration in the above integral may be restricted
to B(xgr, 3A€(Q")). On the other hand, any point y € B(xg», 3A£(Q")) lies in at most
C(A) distinct balls B(xo, AL(Q")) corresponding to the cubes Q" € D with £(Q") =
27k¢(Q"). Consequently, the integrand is bounded by C(A). Therefore, the quantity in
(B.1) is bounded by (1/p097)C(A)pgr < C(A). This yields Il < C(A) ZQ,, |an|2,
completing the proof.

Appendix C. The representation of the fractional Laplacian:
The proof of Lemma 9.1

In this section we shall prove Lemma 9.1. Set K (x) = x/|x|*t!,x € R?, with s €
(d — 1,d). The proof is a rather tiresome approximation argument, based around the
classical formula (see, for example [Lan], [ENV1]): if g € C(‘)’o (Rd ),

R(gma)(x) — R(gma)(y) ,
x — yd+1— ma(y),

Ve(x) = bP.V./

R4

where b € R\ {0}, and R(gma)(x) = [pa K(x — y)g(y) dma(y).
We prove the lemma in slightly more generality. For a measure u satisfying
fRd(1/|x|s+1) du(y) < oo and 0 ¢ supp(u), we define

F(u)(x) = /Rd[K(y) — K(y —x)]du(y).

If v is reflectionless, then F(v)(x) = Eu(l)(O) — Fu(l)(x) for mg-almost every x € R4
(see §9.2 above).

Lemma C.1. Suppose that i is a Borel measure with dist(0, supp(r)) = 1 and such that
there are o € (0, 1) and A > 0 for which

w(B(0,r)) < Ar® foreveryr > 1.

P.V./ Mdmd(x) =0.

Rd |x|2d+1—s

Then

Proof. Fix a non-negative mollifier ¢y € C;°(B(0, 1)) satisfying fRd Y dmg = 1. For
p>0,sety,(-) =p " Y(-/p).If p e (0,1/4) and N > O are given, then set uy =
xBo,Nvym and py v = Y, * (WXB©,N))- Notice that u, y is a measure with Cgo(Rd)
density g, v with respect to my, and since dist(0, supp(u)) = 1, we have Vg, y(0) = 0.
Thus

F
0=P.V. /Rd %dmd(x). (C.1)

Our strategy is clear: let N — oo, p — 0; we will show that the right hand side
converges to

FQGu)(x)
P.V. /Rd ded(x)
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For this we shall require some preparatory estimates. Suppose that v is a measure with
dist(0, supp(v)) > 1/2 and such that v(B(0, r)) < A'r* forr > 1 and some A’ > 0.

Observe that |x — - |7# € L!(v), with L' (v) norm bounded in terms of «, s, and A’,
whenever x € B(0,1/4) and B > s + «. This implies that for any multi-index y with
Y| = 1 and any x € B(0, 1/4),

’

|IDYF(w)(x)] = ’/ﬂ;d[DVK(y —x)]dv(y)

and also suppgq /4) |DY F(w)| < C(y, A). In concert with the elementary inequality

< Cr? sup |Af],
B(0,r)

/ Lf (rw) — £(0)]dS(w)
9B(0,1)

valid for f € C%(B(0, r)) (here S is the surface measure on the unit sphere),5 we see that
ifr < 1/4and v > 0, then

/ F@)(x) dmy ()
B

O.N\BO.7) lx[2dF1=s

" 1 / d—1
<C|| ——— F)(tw) dS(w) 19~ dt
‘/r t2d+173 9B(0.1)
< C(A)yr!t4, (C.2)

We next claim that if A > 1, then
/ [F(0)()] dma(x) < C(A) AT+ ©3)
B(0,A)

To see this, note that the left hand side is dominated by the sum

/B(O,A)

/ [K(y) — K(y — x)]dv(y)‘ dma(x)
B(0,2A)

+
B(0,A)

Let us call the two terms appearing here / and /1.
We estimate term / by fB(O’A) fB(0,2A)[|K(y)| +|K(y —x)|1dv(y) dmy(x), which is
bounded by

1 1
f / dv(y) dmg(x) + C A4 / — dv(y).
B(0,4) JB0,24) |y — xI* B(0,ANB©,1/4) |YI°

5 For the proof, just write

" d
f [f o) — FO)]dS(@) = / —[ / f(tw)dS(w)] dr;
3B(0,1) o dtJaBo,1)

but L0 fyp0.1) FEDdS@)] = [y (VI (0) - 0)dS@) = 1 [p 1, (ANEy)dma(y),
where the divergence theorem has been used in the final equality. For instance, we can infer that

| fypo.plf o) = FO1dS@)] < 3r2ma(BO. IDIAFI L (B0.r))-

/ [K(y) = K(y = 0)]dv(y)| dma(x).
R\ B(0,24)
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But in view of the growth bound v(B(0, r)) < A’r**% for r > 1, the sum of these two
integrals is easily seen to be at most Cv(B(0, 2A) A4S L CAYAY < CA9H® To estimate
term /1, merely note that for x € B(0, A),

x|
/ K0) = K=ol = [ 4o
R4\ B(0,24) R4\ B(0,24) V|

v(B(0,1)) dt
s+l t

-

But this is bounded by a constant multiple of A on < CA®. Bringing these
estimates together yields the inequality (C.3).

Integrating (C.3) yields

| F(v)(x)] P B dtadZ C(A)
/15{41\3(0 " ded()o <C) B WZ 0[7 =< m. (C4)

We are now ready to proceed with the limiting procedure. Notice that if p < 1/4 and
N > 0, then uy , satisfies the estimate u, v (B(0,r)) < A'r$T for every r > 1, with
A’ depending only on A, d, and «. Also notice that dist(0, supp(un,p)) > 1/2.

Let ¢ > 0. Then (C.2) yields the existence of r > 0 such that

F F
‘P.V. /B(O )%dmd(x)‘ + 'P.V. /B(O )%dmd(x) <& (CS5)

for all p € (0,1/4) and N > 1. In addition, the estimate (C.4) ensures that there exists
A > 0 such that

dmg(x) < ¢ (C.6)

f [F (i, n) ()| + [F () (x)]
RA\B(0,A) |x|2d+1=s

forall p € (0,1/4) and N > 1.
In particular, recalling (C.1) we infer that for every p € (0, 1/4) and N > 1,

F
[ g,
B(0,A)\B(0,r) x|

On the other hand, by writing F (i, n) = ¥, * F(un), standard convergence properties
of convolution imply that for all N, A, r > 0,
F
/ LUNL) iy )
B

[ )
BO.ANBO.r) [X[PHI OB 1X[2TT=S

< 2e.

= lim < 2e.

p—0

But now note that if N > 2A and x € B(0, A), then

A
GO = Fomomml = [[ 1K =0 - K0ldat)| < Cogi.
RI\B(0,N) N
(C.7)
Thus, F(xpo,n)i) converges uniformly to F(u) in B(0, A), from which it follows that

< 2e.

f _FW
B

(0,A0B(O,r) |x[24F1=s
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Now appealing to the inequalities (C.5) and (C.6) for a second time yields

F(uw)
‘P-V- /Rd ded(x) < e,

and the proof is complete. O
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