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1. Introduction

Fix d > 2 and s € (0,d). The aim of this paper is to provide an extension of a theorem
of David and Semmes [3] to general non-atomic measures. Their theorem provides a
geometric characterization of the s-dimensional Ahflors-David regular measures' for
which a certain class of square function operators, or singular integral operators, are
bounded in L?(u).

Their description is given in terms of Jones’ -coefficients, which are defined for s € N
as

OBl = <m£&i / (BN g) ",

B(z,r)

where B(z,7) denotes the open ball centred at x € R? with radius 7 > 0, and P, denotes
the collection of affine s-planes in RY. Jones introduced these coefficients (with L (p)
norm replacing the L?(p) mean) in order to give a new proof of the boundedness of the
Cauchy Transform on a Lipschitz curve [10] and to characterize the rectifiable curves
in R? [11].

Let us now state the David—Semmes theorem in the form most convenient for our
purposes.

Theorem A. [3] Suppose that p is an s-dimensional Ahflors—David regular measure. The
following three statements are equivalent:

(i) For every odd function K € C®(R\{0}) satisfying standard decay estimates,’
and € > 0, the truncated singular integral operator (SIO)

1 A measure p is Ahflors-David regular if there exists a constant C' > 0 such that &r° < p(B(w,r)) < Cr°
for every x € supp(p) and r > 0.
2 Namely, that for every multi-index «, there is a constant C, > 0 such that |D*K(z)| < \TIC*ﬁ for

every = € R%\{0}.
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T, (f)(-) = / K(- — )/ (w)duy) (1.1)

R4\ B(z,e)

is bounded on L*(u) with an operator norm that can be estimated independently of <.
(ii) For every odd function ¢ € C$°(R?), the square function operator

S0 = [ 1% [o(S2) | 2 (1.2
0

t
R4
is bounded in L?().
(iii) s € Z and there exists a constant C' > 0 such that

£(Q)

| [ BuaB.n? T dute) < cul@) (13)
Q 0

for every cube Q C RY, where p|Q denotes the restriction of u to Q.

We shall henceforth refer to (i) as the condition that all SIOs with smooth odd kernels
are bounded in L?(j).

The path that David and Semmes take to prove Theorem A is to show that condition
(ii) implies (iii), and also that (iii) is equivalent to a number of geometric conditions
on the support of p, such as uniform rectifiability (see [3] for definitions). One can then
apply a theorem of David [2] to conclude that (i) holds. A standard artifice takes us from
(i) to (ii) (see Section 1.4 below).

At this point we should mention that David and Semmes asked whether replacing
the condition (i) with just the L?(u) boundedness of the s-Riesz transform — the SIO
with kernel K (z) = \z|+“ — is already sufficient to conclude that (iii) holds. The fact
that s € Z under this assumption was proved by Vihtild [24]. Demonstrating that (1.3)
holds if s € Z has proven more elusive, and is at present only known when s = 1,
by the Mattila—Melnikov—Verdera theorem [16], and s = d — 1, when it was proved
by Nazarov—Tolsa—Volberg [19] (in an equivalent form, building upon a proof scheme
introduced in [6]).

In this paper, we do not make any progress on the Riesz transform question, but
instead give a complete solution to another problem of David and Semmes referred to
(rather generously) in Section 21 of [3] as a “glaring omission” in their theorem. Namely,
we provide an analogue of Theorem A for general non-atomic locally finite Borel measures
(without any regularity assumptions). Moreover, we do so for the somewhat smaller class
of singular integral kernels considered by Mattila and Preiss [15]. When specialized to
the case of Ahflors—David regular measures, our arguments yield a new direct proof of
the assertion that (ii) implies (iii) in Theorem A above.
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1.1. The non-integer condition: the Wolff energy

The conditions that should replace (iii) in Theorem A when one considers a general
measure are by now quite well agreed upon by specialists. This is particularly true when
s ¢ 7Z, due to the work of Mateu-Prat—Verdera [12]. It turned out that a well-known
object in non-linear potential theory, the Wolff energy, provides the key. We define the
Wolff energy of a cube Q C R? by

_ /7’(;4@ AL
Q0

The Mateu—Prat—Verdera theorem states that, if s € (0, 1), then for a non-atomic mea-
sure u, the s-Riesz transform of p is bounded in L?(y) if and only if the following Wolff
energy condition holds:

W(p, Q) < Cu(Q) for every cube Q C R%. (1.4)

In the proof presented in [12], the necessity of the Wolff energy condition for the
boundedness of the s-Riesz transform relied fundamentally on the restriction to s € (0, 1),
as it made use of a variation of the Menger—Melnikov curvature formula. However, the
sufficiency of the condition (1.4) relied on neither the particular structure of the s-Riesz
kernel |x|++1, nor the restriction on s, and by adapting their technique one can prove the
following result.

Theorem B (Mateu—Prat—Verdera). Fixz s € (0,d). If u is a measure that satisfies (1.4),
then all s-dimensional SIOs with all smooth odd kernels are bounded in L?(u) (that is,
statement (i) of Theorem A holds).

To find a proof of this theorem precisely as stated, one can consult Appendix A
of [8], the calculation is also essentially carried out in [5]. The Mateu—Prat—Verdera
conjecture asks whether one may extend the necessity of the condition (1.4) for the
L?(p) boundedness of the s-Riesz transform in L?(u) to the range s > 1, s ¢ Z. This
was recently proved in the case when s € (d — 1,d) by M.-C. Reguera and the three of
us [9]. It is an open problem for s € (1,d — 1)\Z.

1.2. The integer condition: the Jones energy

For the case of integer s, we introduce the Jones energy of a cube Q C R%:

T(11.Q) = // 8o (Bl (MEOBEINA T iy )

rs
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Here 11|@Q denotes the restriction of p to @. This square function appears in Azzam—Tolsa
[1], where amongst other things, the following theorem is proved.

Theorem C. [1] Let u be a non-atomic measure on C. Then the Cauchy transform, the
one dimensional SIO with kernel K(z) = 1 in C, is bounded in L*(n), if and only if
SUD,C >0 M < C and

J (1, Q) < Cu(Q) for every cube @ C C.

This theorem makes essential use of the relationship between the L%-norm of the
Cauchy transform of a measure, and the curvature of a measure. Nevertheless, by com-
bining the techniques of [1] with those in [21], Girela—Sarrién [7] succeeded in proving
the sufficiency of the Jones energy condition for the boundedness of SIOs in greater
generality:

Theorem D. [7] Fiz s € Z, s € (0,d). Suppose that there is a constant C' > 0 such that
sup wB@) < ¢ gnd
rERD s >~

T, Q) < Cu(Q) for every cube Q@ C RY, (1.6)

Then all s-dimensional SIOs with smooth odd kernels are bounded in L?(p).
1.8. Statement of results

Choose a non-negative non-increasing function ¢ € C*°([0, o)), such that supp(yp) C
,2) and ¢ =1 on [0,1). We form the square function operator
0,2) and 1 0,1). We form th functi %

/‘/ Y lx_m)f(y)du(yﬁ%)w.

We shall prove the following two results:

Theorem 1.1. Fix s ¢ 7. Let i be a non-atomic locally finite Borel measure. If the square
function operator S, is bounded in L*(w), then there is a constant C > 0 such that

W(p, Q) < Cu(@) (L.7)
for every cube Q C R?.

Theorem 1.2. Fix s € Z. Let u be a non-atomic locally finite Borel measure. If the square
function operator S,, is bounded in L*(u), then there is a constant C > 0 such that
M < C for every x € R, r >0, and
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T (1, Q) < Cu(Q) (1.8)

for every cube Q C R%.
1.4. Singular integrals and square functions

When combined with the theorems of Mateu-Prat—Verdera [16] and Girela-Sarrién
[7] (Theorems B and D above), our theorems yield the following result.

Theorem 1.3. Suppose that p is a non-atomic locally finite Borel measure. The following
statements are equivalent.

(i) All SIOs with smooth odd kernels are bounded in L*(p).
(ii) All SIOs of Mattila—Preiss type are bounded in L?(u). These are the SIOs with
kernels that have the form K(x) = lx‘%d)ﬂﬂ) forp € C([0,00)) satisfying

[ ()| < Crlt| ™" for every t € [0, 00) and every k > 0.

(iii) The square function operator S, is bounded in L?(p).
(iv) Either
o s ¢ Z and the Wolff energy condition (1.7) holds,
or
o s €7Z and the Jones energy condition (1.8) holds.

That (iii) implies (iv), is merely a restatement of Theorems 1.1 and 1.2, while Theo-
rems B and D imply that (iv) implies (i). That (i) implies (ii) is trivial as every SIO of
Mattila—Preiss type is a SIO with smooth odd kernel. Thus we only need to show that
(ii) implies (iii). This is a standard argument, already present in [3,15]. To sketch the
idea, let us fix a sequence ¢y, of independent mean zero £1-valued random variables (on
some probability space ). For w € Q, t € [1,2), and kg € N, consider the following STIO
of Mattila—Preiss type

Tl = [[ Y a g (U5l fwut)

Rd  KEZ,|K|<ko

Following Section 3 of [3], one obtains that

2
dt
196 (P22 < Cksue%/EwIITt,ko,w(f)lliz(m; < Ol 22
°0
1

since all SIOs of Mattila—Preiss type are bounded in L?(u).
Proving that (iii) implies (ii) or (ii) implies (i) without going through (iv) appears to
be non-trivial. (At least we do not know how to do that.)
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1.5. The particular choice of the bump function ¢ doesn’t matter too much

It is natural to wonder the extent to which the mapping properties of S,, depend on
the particular choice of the bump function ¢. Here we make three remarks in this regard,
with the particular aim of convincing the reader that Theorems 1.1 and 1.2 remain valid
if one instead defines the square function operator in a more customary way with a
(perhaps only bounded measurable) bump function that is supported away from 0.

(1) Suppose that ¢ € C*°([0, 00)) is a non-negative function that has bounded support
and is identically equal to 1 near 0. Then the proofs of Theorems 1.1 and 1.2 can be
adapted so that the same conclusions are reached with the L?(x) boundedness of S,
replaced by that of the operator

SuoN@ = ( [] [ 3o () rauto)] )"
0 R4

(2) For non-negative functions ¢ and g, define the multiplicative convolution

w0 = [o(L)sw .
0

From a change of variable and Minkowski’s inequality we infer that

Vi du
IS0ty (D20 < [ [ 0719 180Dl
0

and as such, if S, is bounded in L?(u), and [~ u*g(u)du < oo, then S, 4, is bounded
in L?().

(3) Finally, suppose that 1) is non-negative, bounded, measurable, and compactly
supported in (0,00) (so 0 ¢ supp(¢)), with S, ,» bounded on L?(y).

Writing supp(v) C [a, A] for some a, A > 0, we choose a function g € C*°([0, c0))
supported on [0, %} that takes the value (fooo ¢(%) %“)_1 on the interval [0, %] Then the
function ¢, € C*°([0,00)) has support contained in [0,22] and ¢, = 1 on [0,1]. From
remark (2) we have that S, , is bounded on L?(p).

1.6. The Mayboroda—Volberg theorem

Building on the tools developed in [22,21,20], Mayboroda and Volberg [17,18] proved
that if u is a non-trivial finite measure with H*®(supp(u)) < oo, and S, (1) < oo p-almost
everywhere, then s € Z and supp(u) is s-rectifiable (see Section 2.6 below for the def-
inition). When combined with Theorem 1.1 of Azzam-Tolsa [1], Theorems 1.1 and 1.2
above provide another demonstration of this result. We sketch the argument here.
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One begins with a standard T'(1)-theorem argument which involves finding a compact
subset E C supp(p) whose p measure is as close to p(R?) as we wish, for which S,/ is
bounded in L?(u') with g’ = p|E. This utilizes the method of suppressed kernels, see for
instance Proposition 3.2 of [17]. But since p’ is supported on a set of finite H* measure,
the conclusion of Theorem 1.1 cannot hold unless ' = 0, and so s € Z and the conclusion
of Theorem 1.2 holds. Theorem 1.1 in [1] then yields that supp(u’) is rectifiable. From
this we conclude that supp(u) is rectifiable.

2. Preliminaries
2.1. Notation

e By C > 0 we denote a constant that may change from line to line. Any constant
may depend on d and s without mention. If a constant depends on parameters other
than d and s, then these parameters are indicated in parentheses after the constant.

« We denote the closure of a set E by E.

e For z € R? and r > 0, B(x,r) denotes the open ball centred at z with radius 7.

e By a measure, we shall always mean a non-negative locally finite Borel measure.

« We denote by Lip(R?) the collection of Lipschitz continuous functions on R%. For
an open set U, we denote by Lip,(U) the subset of Lip(R?) consisting of those Lips-
chitz continuous functions with compact support in U. We define the homogeneous
Lipschitz semi-norm

Wy = sup L@ ZSG]

z,y€ERL xH£y |x - y‘

o We denote by supp(u) the closed support of p, that is,
supp(p) = Rd\{ U B : B is an open ball with u(B) = 0}.

o For a closed set E, we shall denote by p|g the restriction of the measure p to E,
that is, p|g(A) = p(AN E) for a Borel set A.

e For n > 0, we denote by H" the n-dimensional Hausdorff measure. When restricted
to an n-plane, H™ is equal to a constant multiple of the n-dimensional Lebesgue
measure m,,.

« For a cube Q C R?, £(Q) denotes its side-length. For A > 0, we denote by AQ the
cube concentric to @ of side-length A¢(Q).

e Set Qo = (—%, %)d For a cube @, we set Lg to be the canonical affine map (a com-
position of a dilation and a translation) satisfying Lg(Qo) = Q-

o We define the ratio of two cubes @ and @Q’ by

Q'+ Q)= [togs 55y

(@’
@
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o For any z € R, r > 0, we set

so 1(B(w,1)) < T(B(a, 1)) < p(B(a, 2r)).
2.2. Balls associated to cubes

We associate the ball Bg, = B(0,4v/d) to the cube Qo = (—3,3)%. Then for an
arbitrary cube @, we set

Bq = Lo(Bg,)-

Notice that Bg = B(zq,4Vdl(Q)), where xg = L(0) is the centre of Q.
d

We associate to the cube Qg the function ¢g,(z) = 90(2\/_) x € RY. For any other

cube @ we set pg = g, © Eél = go(z‘\'/gf(%‘)). The reader may wish to keep in mind the

following chain of inclusions:

3Q C B(zg,2Vdl(Q)) C {pq = 1} C supp(vq) C Bg.

We set

IN(Q):/QOQCZ:U (z /mdu)-

R4 Bqg

In relation to our previous notation, we have Z,(Q) = Z,(3Bg). For n > 0, we define
the n-density of a cube @ by

Dun(Q) = @/wczdu = E(Q;)nfu(@
Thus
HQ) o) < 1MBa) _ p8VQ) (1)

Q)" Q)"
If n = s, then we just write D, (Q) instead of D,, s(Q).

2.8. Flatness and transportation coefficients

For n € N, the n-dimensional S-coefficient of a measure p in a cube @ is given by

B 1 dist(z, L)\ 2 1/2
Bun(Q) = mﬁeﬂ?ﬁn/<w> po(x)du(x)|

Rd
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where, as before, P,, denotes the collection of n-planes in R?. We shall write

ﬂu(Q) = ﬁﬂ,\ﬁj (Q)

It is easy to see that there is an n-plane Lg such that

50l = [ [ (TG et@duto)]

Rd

and we shall call any plane L¢ satisfying this property an optimal n-plane for 5, ,(Q).
The following classical fact will prove very useful for our analysis:

Lemma 2.1. Suppose v is a non-zero finite measure. Fvery n-plane L that minimizes
the quantity f]Rd dist(x, L)2dv(z) contains the centre of mass of v, that is, the point
ﬁ fRd rdv(z) € R,

Proof. We may assume that [, = dv(z) = 0. For a (d — n)-dimensional orthonormal set

Un41,---,vq, consider the function F : R? — R given by
d 2
F@) = /’ Z ((b—2),v;)v;| dv(z), be R
R4 j=n+1
For the n-plane L = b+ span(vp41,...,v4)" to be a minimizer, we must certainly have

that VF(b) = 0. But

d d
VE(b) :/2( 3y <(bfx),vj>vj)d1/(z) =2w(®) 3 (b,
Jj=n-+1 j=n+1

R4

Thus VF(b) = 0 if and only if b € span(v,y1,-..,vq)". Therefore, should L be
optimal, then it is necessarily a linear subspace. O

The n-dimensional transportation (or Wasserstein) coefficient of a measure p in a
cube Q C R? is given by

aun(Q) = inf sup ’/ wofdp—"9,H"L)|s
LEPn:  feLipg(3Bq).'J.
E03Be22 ) fluw< 70y
where ¥, 1 = % In the case when n = s we will write o, (Q) = ¢, 5s(Q).

Notice that the S-number is a gauge of how flat the measure is within a given cube,
while the a-number tells us how close a measure is to a constant multiple of the Lebesgue
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measure of an n-plane. As one might expect, for n € N, we have

BM,H(Q)Z < Caun(Q).
To see this, take an n-plane L that intersects %BQ- Then the function

@) = (Fgg) eaa

is supported in 3Bg and has Lipschitz norm bounded by %. This proves the desired
inequality since p30pg = ¢q.

2.4. The dyadic energies

Consider a dyadic lattice D. Then, for any finite measure 1 we have the following two

inequalities:
j(Nde) <C Z 5#(@)21)#(@)21#(@)7 (2.2)
QeD
and
W R < 0 3 DLQPL.(Q). (2.3)
QeD

Both of these inequalities follow from integrating with respect to p the pointwise
inequalities, for s € 7Z,

and, for s € (0,d),

7)(@)@ <0 Y Du@’¢alr).
0

We shall just prove the first pointwise inequality (the second one is easier). Rewrite the
left hand side as

£ L[ ey

kEZ i B(z,r)
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For each z € R? and k € Z, there is a cube Q € D with £(Q) = 2¥*! and z € Q. Then,
for r € (2%, 281, B(z,r) C B(zg,2vdl(Q)) and so, for an s-plane L,

;; (§Eﬂé?l£2)2du(y)fé2S+2Z(é5;‘/mwQ(y)(ﬁf%é%iél)Qdu(y%
Rd

B(z,r)

while also M <2°D,(Q), and pg(x) = 1. Thus the sum (2.4) is dominated by a
constant multiple of

YooY Bu@QDu(@)eq().

kEZ QED:4(Q)=2k+1

2.5. Lattice stabilization

We say that a sequence of dyadic lattices D*) stabilizes in a dyadic lattice D’ if every
Q' € D' lies in D®) for sufficiently large k.

Lemma 2.2. Suppose D) is a sequence of dyadic lattices with Qo € D) for all k. Then
there exists a subsequence of the dyadic lattices that stabilizes to some dyadic lattice D'.

The lemma is proved via a diagonal argument: For every n > 0, there are 2"¢ ways to

choose a dyadic cube of sidelength 2" so that (—3, 3)? is one of its dyadic descendants.

2.6. A basic density result

For an integer n, a set E is called n-rectifiable if it is contained, up to an exceptional set
of H™-measure zero, in the union of a countable number of images of Lipschitz mappings
f : R" » R We shall require the following elementary density property of measures
supported on rectifiable sets, whose proof may be found in Mattila [13].

Lemma 2.3. Suppose that p is a measure supported on an n-rectifiable set. Then

liminf D, ,(Q) >0 -almost € R<.
Qagrz}(lg)ao wn(Q) for p-almost every x

We shall actually only require this result when the support of p is locally contained
in a finite union of smooth n-surfaces.

2.7. The growth condition

Lemma 2.4. Fiz s € (0,d). If p is a non-atomic measure for which the square function
operator S, is bounded in L*(p), then supgep Dp(Q) < oo for any lattice D.
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This lemma is well-known, and is essentially due to G. David. Since we could only
locate a proof in the case of non-degenerate Calderén—Zygmund operators rather than
the square function, we reproduce a sketch of David’s argument (Proposition 1.4 in
Chapter 3 of [2]) in the context of the square function. We shall verify that there is a
constant C' > 0 such that for any cube Q@ C RY, u(Q) < C4(Q)?, from which the lemma
certainly follows (see (2.1)).

The first step is to use the pigeonhole principle to verify the following;:

Claim. For every integer A > 100, there exists Cy > 0, such that for any cube Q C RY,
there exists a sub-cube Q* C @, with £(Q*) = £(Q)/A, satisfying the property that

w@") > (1 - %)M(Q), (2.5)

p(Q)
20Q) -

where A =

Set » = 1g55. We first locate a cube @' C @ of side-length £(Q') = 2xA~(Q)

satisfying® u(Q") > % A=%u(Q). If the claim fails to hold for a given Cy > 0, then one can
find Q" C Q, with £(Q") = 42 4(Q", Q') > 4D and satisfying u(Q") > $p =4

Notice that, if f = xg~, then have S, (f)(x) > c(A4, ) ’;Eg;/) for z € Q'. Squaring this

bound and integrating over Q' yields that

W(Q)u(Q")? WQ (@) 3
qQ) qop =@

Plugging in the lower bounds on the measures of @' and Q" gives

< C(A, »)u(Q"), and hence

2
Con(Q)” _ C(A, »), and hence Cy < C(A, »).

Q™ =
But this is absurd if Cy was chosen large enough. The claim is proved.
Starting with any cube Q) we iterate the claim to find a sequence of cubes Q)

‘ . ‘ - } - . . )
j >0 with QW) c QU-1, ¢(QW) = ¢(QU~V)/A, and, with A = ;;giml,

AG) > g8 (1 — %)A(i—l).

0
J*l))

Assuming A(® > 1 is large enough in terms of Cy, we infer by induction that A() >
AN > o> A%3/2)0) Plugging this back into (2.5) yields that for every j

j—1

J
. C
QW) 2 [ 1(1 - W(W)“<Q(O)>~

3 The factor of 2 in the sidelength here is due to the fact that our cubes are open.
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Assuming A\(9) is large enough, we have that pu(QU)) > %N(Q(O)) for every j7 > 1, which
implies that the non-atomic measure p has an atom. Consequently, there is an absolute
bound C > 0 for which A(9) < C. Since Q(?) was an arbitrary cube, we have proved the
desired growth condition on the measure.

3. The basic scheme
3.1. Localization to square function constituents
Let us now suppose that 4 is a measure for which the square function operator S,

is bounded in L?(u). For a dyadic lattice D, notice that for each k € Z, the balls
{ABg : Q € D,{(Q) = 2*} have overlap number at most C A%. Thus,

AL(Q)
Ix—yl th
O B = S LI
@€PaB, (o) we (3.1)

CANISulIL2 1y 2 1122y

for every f € L?(u). Here C(A) = CA%log(A), as each t € (0,00) can lie in at most
C'log(A) of the intervals [2F /A, 2 A], k € Z. The precise form of C(A) is not important.
We shall term the quantity

AlQ

st@- [ f / Yo (T [ L), (32)

ABq Q Rd

a square function constituent. Our aim is to verify the following theorems.

Theorem 3.1. If s ¢ 7, then there are constants C > 0 and A > 0 such that for any
measure i satisfying supgep Dyu(Q) < 00, we have

> DuQPLUQ) < C Y SHQ). (3.3)
QED QEeD

Theorem 3.2. If s € 7Z, then there are constants C' > 0 and A > 0 such that for any
measure i satisfying supgep Dyu(Q) < 00, we have

Y BulQPDUQPTIQ) < C Y SHQ). (3.4)
QeD QeD

To see that Theorems 1.1 and 1.2 follow from Theorems 3.2 and 3.1 respectively, let
us again assume that p is a measure for which S, is bounded on L?(u). Then from
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Section 2.7 we see that the condition supyep D, (Q) < oo holds. Fix a cube P € D. By
testing the inequality (3.1) against the function f = xp, we observe that the measure
1| p satisfies

Z 8;1\13(@) < C(A>||SH||%2(/,L)~)L2(“),LL(P)
QeD

for every A > 0. Now, from Theorems 3.2 and 3.1 applied to u|p, we find that if s € Z,
then there is a constant C' > 0 such that

> B (@)D (Q)* L (@) < ClISlIZ 2 ) 2y (P) (3.5)
QeD

while, if s ¢ Z, then there is a constant C' > 0 such that

> Dy (@)L, (Q) < ClISIT 2y L2y (). (3.6)
QeD

Making reference to Section 2.4, we conclude that the energy conditions (1.8) and (1.7)
hold.

3.2. The general principle that we will use over and over again
Consider a rule I' that associates to each measure y a function
I'y: D —[0,00).
General Principle. Fiz A > 1 and A > 0. If we can verify the following statement:
for every measure p and Q € D, S;:‘(Q) > AT, (Q)Z.(Q), (3.7)

then we get that

QL@ < 1 Y SHQ). (3.8)

QED QEeD

Comparing (3.8) with (3.4) and (3.3), it is natural to attempt to verify (3.7) with the
choice

Bu(Q)?Du(Q)? for s € Z,

Fu(@) = { D, (Q)? for s ¢ Z.

Unfortunately this is not possible. As such, we shall use the general principle in a more
convoluted way.
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The key to proving Theorems 3.2 and 3.1 is to first understand the properties of
measures for which no non-zero square function constituent can be found in any cube.
Following Mattila [13,14], we call such measures ¢-symmetric.

4. The structure of -symmetric measures

A measure p is called p-symmetric if

/(m — y)gp(‘xt;y‘)dy(y) = 0 for every = € supp(p) and ¢ > 0.

Rd

We followed Mattila in the nomenclature: A measure is called symmetric if
fB(LT) (x — y)du(y) = 0 for every = € supp(u) and r > 0. Of course this is a closely
related object to the p-symmetric measure, and we will lean heavily on the theory of
symmetric measures developed by Mattila [14] and Mattila—Preiss [15].

The reader may want to keep in mind the following example of a p-symmetric measure:
For a linear subspace V of dimension k& € {0,...,d}, a uniformly discrete set E with
E NV = {0} that is symmetric about each of its points (that is, if z € E, and y € E,
then 2y —x € E), and a non-negative symmetric function f on E (symmetry here means
that if z,y € E, then f(z) = f(2y — x)), form the measure

= Z f(x)Hk|V+x

zEE

Then p is p-symmetric. Provided that ¢ is reasonably ‘non-degenerate’, we expect that
every -symmetric measure (with 0 € supp(u)) takes the above form, but we do not
explore this too much here.

4.1. Doubling scales

Fix 7 = 1000v/d and a constant C; > 7% to be chosen later. We shall call R > 0 a
doubling scale, or doubling radius, if

T,(B(0,7R)) < C,T,(B(0. R)).
For A € (0,00), we say that a measure has Ad-power growth if

o sup (B0 B)

4.1
R—o0 R)\ ( )

Lemma 4.1. Suppose that p is a measure with A-power growth for some A € (0,00). If
C, > 7, then for every R > 0, there is a doubling scale R' > R.
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Proof. Since the statement is trivial if p is the zero measure, we may assume that
Z,(B(0,R)) > 0. We consider radii of the form 7%R, k € N. If none of these radii are
doubling, then for every k € N we have

Z,.(B(0, 7" R)) > C.Z,,(B(0,7"R)) > C*¥T,(B(0,7R))
> CFZL,(B(0, R)).

But then as C; > 7, we infer that

lim

k—o0
which violates the growth condition (4.1). Thus, under this condition on C, there exists
some doubling scale R’ = 7*R with k > 1. O

4.2. Behaviour at infinity

We next prove a variation of a powerful perturbation result used by Mattila—Preiss
[15].

Lemma 4.2 (The Mattila—Preiss formula). Let p be a p-symmetric measure. Suppose that
0 € supp(p) and x € supp(u). Then, whenever R is a doubling radius with R > |z,

Vo (WY (2 o Nauy)| < &L

S )
monl T r/\ |yl R

r€[R,2R)] Z,.(B(0, T)>R[ T

This formula does not appear precisely as stated in [15]. The formulation is rather close
to that of Lemma 8.2 in [23], which in turn was strongly influenced by the techniques in
[15].

Proof. Since ¢ = 1 on [0, 1], the function ¢(x) = ¢(|z|) lies in C5°(B(0,2)). Taylor’s
theorem ensures that for each y € R?,

(5 o) oo (B) o 258, aa

where, for some z on the line segment between 0 and =,
(YY) = =(, —=)x).
Y 72 T

Therefore, if r > |z|, then

2

) < e < RN .
| z,r(y)| <C 2 XB(O,:%)(@/) <C r2 90(3T)
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Now, since both z and 0 lie in supp(u), we have

= ve(E= D) aut) o

Rd

and also [, yap(l%l)du(y) = 0. Whence, for r > |z,

’/w(@)ciu(y) —/(x—y)%<ﬁ,x>w’(%|)du(y)’

Rd R

< [le vl Wlanty) < P2, 300,30,
Rd

In conjunction with the straightforward estimate

S (1) aut) < EoE 0,20 < L2, 3030,
Rd
we infer that
sz,B0.0) + [ Lo (W) (L ahaut)| < oz, moar). )

Rd

Finally, suppose r € [R,2R], with R > |z| a doubling radius. Then Z,(B(0,3r)) <
Z,(B(0,7R)) < C;Z,(B(0,r)). Thus, after dividing both sides of (4.3) by Z,(B(0,7)),
we arrive at the desired inequality. O

A variant of this formula was used in [15] to derive a growth rate at infinity of a
symmetric measure. We repeat their argument in the form of the following lemma, as
we are working under different assumptions on the measure.

Lemma 4.3 (The growth lemma). Let p be a @-symmetric measure with 0 € supp(u). If
Z1,. ..,k 18 a mazimal linearly independent set in supp(u), and R is a doubling radius
with R > max(|z1],...,|zk|), then

d
sup o arLun(BO,7) L CCry.ymi)
r€[R,2R) Z,(B(0,7)) R

Proof. Counsider the orthonormal basis v1, ..., v of V = span(supp(u)) obtained via the
Gram-Schmidt algorithm from 1, ..., z;. By applying Lemma 4.2 to each element x;,
and using the triangle inequality, we infer that, for every j =1,... k,
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Rd

sup
re€[R,2R]

But now observe that

k

Z%(Bto?r» [ () et

1 Ré
%w’(@)(%vvﬁdu@)‘ (4.5)

sup ’k +
r€[R,2R]

Mw _

o)
sup —_—
S relR2R] Iu(B(Oﬂ"))Rd
C(CT,JM, AN ,xk)

R .

v +

IN

Finally, notice that since vq,...,v; form an orthonormal basis of V', we have

Z/ y,v; M <£|’ v; Ydp(y /@d(@)du(y)

d
= —r%I (B(0,1)),

and the lemma follows by inserting this identity into the left hand side of (4.5). O

Lemma 4.4 (Mazimal growth at infinity). Let p be a p-symmetric measure with 0 €
supp(p). Let V' denote the linear span of supp(p), and k = dim(V'). Then for any e > 0,

.. Tu(B(O,R))

Proof. From Lemma 4.3, we may fix Ry > 0 such that if R > Ry is a doubling scale,
then

47 (B0,r)| e
sup |k —rdt 2 < 2 4.6
r€[R,2R] I;L(B(Oﬂ")) 2 ( )

and so

L47,(B0,r) _k—%
dr 1 ’ > 2 for every r € [R,2R).
L(BO,7) .2

Integrating this inequality between R and 2R yields that

Z,(B(0,2R)) > 2*73Z7,(B(0, R)).
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We therefore infer the following alternative for any R > Ry: Either R is a non-doubling
radius, in which case, since C, > 7%,

Z,(B(0,7R)) > C;Z,(B(0,R)) > 7"~ 2Z,(B(0, R)),
or, R is a doubling radius, in which case
7,(B(0,2R)) > 2" 57,(B(0, R)).

Starting with Ry, we repeatedly apply the alternative to obtain a sequence of radii
R; — oo with R; equal to either 2R;_; or TR;_1, such that

R;

T,(B(0,R;)) > (R—O)kigIﬂ(B(O,Ro)).

Finally notice that for any R > Ry, there exists some R; with % <R; <R,so0

R;\k—%
T,(BO. ) > T,(BO.Ky) > () "Tu(B(O, Ro))
. (4.7)
> (7)) TABOR).

The lemma is proved. 0O

We shall need one additional corollary of the Mattila—Preiss formula. It is a direct
analogue for symmetric measures of an influential result of Preiss (see Proposition 6.19
in [4]), which states that if a uniform measure is sufficiently flat at arbitrarily large scales
(has small enough coefficient 5, (@) for all cubes @ of sufficiently large side-length),
then the measure is flat (supported in an n-plane).

In the case of symmetric measures, this statement is much easier to achieve than
for uniform measures due to the strength of the Mattila—Preiss formula.* We give the
statement in the contrapositive form as it will be convenient for our purposes.

Lemma 4.5 (Propagation of non-flatness to infinity). Let u be a p-symmetric measure

with 0 € supp(u). Suppose that supp(p) is not contained in an n-plane. There exists
R, > 0 such that if R > R,, is a doubling scale, then

o [ (Y o (> s 9

Rd

4 It is not true, though, that every symmetric measure is a uniform measure.
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Proof of Lemma 4.5. Since 0 is the centre of mass of the measure go(ﬁ)du (p is sym-
metric and 0 € supp(u)), we infer from Lemma 2.1 that it suffices to only consider linear
subspaces L (instead of all affine subspaces) in the infimum appearing on the left hand
side of (4.8).

Set V' = span(supp(pt)). Then V has dimension k& > n by the assumption of the
lemma. Notice that if L is an n-dimensional linear subspace, then we have for every
yev,

dist(y, L) > dist(y, Ly ),
where Ly denotes the orthogonal projection of L onto V.
Let v1,...,vx be an orthonormal basis of V. Then, using Lemma 4.2 in precisely the

same manner as in the first paragraph of the proof of Lemma 4.3, we find R, > 0 large
enough so that for each j =1,...,k, and any doubling scale R > R,,,

1 y (Yl 1
vt mﬂ! ' (E)@vvﬁdu(y)’ <o (4.9)

We can find a non-zero vector z = Zle djv; so that @ L Ly. Of course, |z|> =
Z?:l |d;|* and so |d;| < |z| for every j. Thus,

<Y1l + o | e () i)
R

Consequently, we see that for any doubling scale R > R,

1 1 y (v
§<’zﬂ(3(o,R)) / m‘p(ﬁ) rrW)
B(0,2R)

: (4.10)

(here we have just used that ¢ is supported in B(0,2R)). Now notice that, since z 1 Ly,
(y, ﬁ>| < dist(y, Ly). Therefore, applying the Cauchy-Schwarz inequality to the right
hand side of (4.10), we get that

< N1 lloo

(B(0,2R)) dist(y, Ly ) \ 2 1/2
<11 fo ([ (S )
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The lemma now follows from the facts that R is a doubling radius, and @(%) =1 for
y € B(0,2R) so Z,(B(0,R)) > n(B(0,2R)). O

4.8. Flat p-symmetric measures

We now look at the behaviour of a ¢-symmetric measure that is supported in an
n-plane. Suppose that p is a ¢-symmetric measure with power growth (i.e. satisfies (4.1)
for some A\ > 0). Then, of course,

/(x ) [@(u) - @(M)]du(y) = 0 for x € supp(p), t > 0.

t t
Rd

Notice that the function ¢ +— [gp(%) — gp(%)} is supported in [1/2,2]. Consequently, if we
take any bounded function g : (0,00) — R that decays faster than any power at infinity,

then for € supp(p),

0= /g(t)/(w—y) [w(lx_;y\) —w(u)}du(y)%

/ /g Ix*ylt (1) *w(%)} Citdu(y)-

We shall use this idea to show that the support of a p-symmetric measure is contained
in the zero set of a real analytic function. As usual, this idea goes back to Mattila [14].

Lemma 4.6. Suppose that p is a p-symmetric measure with power growth, and supp(p) C
L for some n-plane L. Then either p = c H"|L for some ¢, > 0, or supp(p) s (n —1)-
rectifiable.

Proof. After applying a suitable affine transformation, we may assume that 0 € supp(u)
and L =R" x {0}, 0 € RI~™.
For z € C", set

where 22 = 274 -+22. Since the domain of integration may be restricted to [1/2, 2], we
see that w is an entire function on C”. Consider the function v:C" — C” given by v(z) =
zw(z). Then v is an entire vector field. Notice that, with (¢) = [, v( e 2mH=8) dm,, (€),
& € R™, the Fourier transform of v in R™, we have
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t

e ol5) o ()] T

The only thing we need from this formula is that ¥ is only zero when £ = 0.

= ewatg e [ o) o )
0 (4.11)
=t

Since p has power growth, and the entire function v satisfies a straightforward decay
estimate |v(z + iy)| < (1 + |y))e™* (1 + |a))e=#I" for 2,y € R", we infer that the
function

u(z) = / o( — y)du(y), = € R",

is a real analytic function on R™, and supp(u) C u=1({0}) (recall that x is symmetric).
First suppose that u is identically zero in R™. Then since y is a tempered distribution,”
we have that

0.

i=c-@

Since v is only zero at the origin, we see that supp(r) C {0}. This can only happen if p
has a polynomial density with respect to m,,, 4 = Pm,. Since the function fRn P(- -
y)v(y)dmy,(y) is identically zero on R™, we have that [, D*P(z — y)v(y)dmn(y) = 0
for any z € R" and multi-index o = (1, ..., ay). But then if the polynomial P is non-
constant, we can, with a suitable differentiation, find a non-constant affine polynomial
(a,z) + b, a € R™ and b € R, such that

/[(a, (x —y)) + bJv(y)dmy,(y) = 0 for every z € R".
RTL

Since [p, v(y)dmn,(y) = [z. yw(y)dm,(y) = 0, evaluating this expression at 2 = 0, and
taking the scalar product with a yields

/(a,y>2w(y)dmn(y) =0,

Rn

which is preposterous. Consequently, i is equal to a constant multiple of the Lebesgue
measure M.
If w is not identically zero, then since u is analytic,

R" = U {z e R" : D%u(x) # 0},

« multi-index

5 The power growth assumption is again used here.
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and therefore

swpp(e) Cu ({0 |J  {z €R™: Doux) £ 0}
a multi-index
= U {z € R": D*u(x) # 0, Du(x) = 0 for every 8 < a}.

o multi-index

The implicit function theorem ensures that each set in the union on the right hand side
is locally contained in a smooth (n — 1)-surface. O

4.4. A structure theorem

Here we summarize the results of this section in a form useful for what follows.

Proposition 4.7. Suppose that u is a p-symmetric measure satisfying Bg, Nsupp(u) # <,
and such that

lim sup 7M<B(O’ R))

< oo for some A > 0.
X
R—o0 R

Then

(1) If supp(u) is not contained in any n-plane, then
— for any € > 0 and every T > 1, there exists £ > 0 such that if Q is a cube
satisfying £(Q) > £ and $Bg O Bg,, then Dy pi1-£(Q) > T.
— there exists a constant ¢* > 0, depending on s, d, A, and ||¢'||«, such that when-
ever D is a dyadic lattice and £ > 0, there exists Q' € D with £(Q") > £ satisfying
%BQ/ D) BQo and

Bu,n(Q/) > "

(2) If supp(p) C L for some n-plane L, then either pn = c¢H"|L or supp(p) is
(n — 1)-rectifiable.

Proof. First assume that supp(u) is not contained in any n-plane. Fix some point z €
supp(pt) NQo. To prove the first property listed in item (1), observe that from Lemma 4.4
applied to the gp-symmetric measure p,, = u( - +2x0) it follows that limpg_, o % =
oo. But if $Bg D Bg,, then B(zg, 2V/d((Q)) contains a ball B(zg, R) with R comparable
to 4(Q). Then Dy, p11--(Q) > cw, and the first statement listed in item (1)
follows.

To derive the second property listed in item (1), apply Lemma 4.1 to the ¢-symmetric
measure fi,, = pu(- + xo) to infer that, provided C, > 7* (we fix C; to be of this order
of magnitude), the measure (i, has a sequence of doubling scales R; with R; — oo.
Lemma 4.5 yields that if j is large enough, then
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1 . dist(z, L)\2 |z — x|
—————— inf d >
Z.(B(xo, R;)) LeP, (/ )( R; )90( 2R, )“(I)—C’

B I0,4RJ‘

for some constant ¢ > 0 depending on s, d, A, and ||¢||cc-
Now, for any given lattice D, choose a cube @ intersecting B(zq, R;) of side-length
between 4R; and 8R;. For large enough j, we certainly have that %BQ D Bg,. Also notice

that B(zg,4R;) C B(zg,2Vdl(Q)) C {po = 1} C supp(pg) C B(zg,4Vdl(Q)) C
B(xo,TR;). Consequently, for any n-plane L,

ARG S EC Tt
B(z0,4R;

<o [ (Fhg™) vatauta)
Bq

while Z,,(Q) < C;Z,,(B(zo, R;)). Bringing these observations together proves the second
statement listed in item (1).
Item (2) is merely a restatement of Lemma 4.6. O

5. The rudiments of weak convergence

We say that a sequence of measures py converges weakly to a measure p, written
e — p if

i [ fau = [ fa.
k—o0
R4 Rd
for every f € Co(RY) (the space of continuous functions on R? with compact support).

5.1. A general convergence result

Our first result is a simple convergence lemma that we shall use in blow-up argu-
ments.

Lemma 5.1. Suppose that v, — v. Fiz ¢ € Lip(R? x RY), and a sequence of functions
Yy, € Lip(R? x RY) such that

o i converge uniformly to 1,

o there exists R > 0 such that supp(yy(z,-)) C B(z, R) for every x € R% and k € N,
and

o supy, [|¥|Lip < 00.
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Then, for any bounded open set U C R?,

lim inf ! L[wk@,y)duk(y)fdvk(x)

> [|[ e avt)| dvio).
U Rd

Proof. Choose M such that U C B(0, M). Notice that the function

- / i (2, 9)dvi(y)
Rd

has both its modulus of continuity and supremum norm on the set B(0, M) bounded in
terms of M, R, supy, ||¥k||Lip and supy, Vk( (0, R+ M)). Consequently, the functions fj
converge uniformly to the function f(z f]Rd x,y)dv(y) on B(0, M). But now, for
g € Co(B(0, M)), the sequence g|fx|? converges to g|f|? uniformly, and so from the weak
convergence of v to v we conclude that

lim /g|fk|2dz/k:/g|f|2dz/.
k—o0
Rd

R4

The desired lower semi-continuity property readily follows by choosing for g an increasing
sequence of functions in Lipy(B(0, M)) that converges to xy pointwise. O

Lemma 5.2. Suppose that py is a sequence of measures satisfying

(1) T (Qo) = 1,
(2) sup,, ur(B(0, R)) < oo for every R > 0,

(3) i (Qo) < -

Then there is a subsequence of the measures that converges weakly to a @-symmetric
measure (v satisfying Z,,(Qo) > 1.

The reader should compare item (3) in the assumptions of the lemma with the display
(3.7). This lemma will be used to argue by contradiction that (3.7) holds for certain
choices of function I'.

Proof. Using the condition (2) we pass to a subsequence of the measures that converges
weakly to a measure p. It is immediate from (1) that Z,,(Qo) > 1. To complete the proof
it remains to demonstrate that u is p-symmetric, that this,
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/(z - y)@(@)du(y) = 0 for every = € supp(p) and t > 0. (5.1)

R4

To this end, fix M > 0 and ¢ > 0. We apply Lemma 5.1 with vy = pg, v = u, and
Yr(z,y) = (x — y)(p(@) This yields that

| / 2 ()| )

B(0,M)

k—o0
B(0,M) R4

< lim inf ‘/ |x —ul )duk(y)’zduk(x)

After dividing both sides by ﬁ(s%l), integrating this inequality over (%, M) with respect
to 2 and applying Fatou’s lemma we get

¢
/ /‘/ ts+1 \x - y|>du(y)’2%du(53) < limkinfS%W(Qo),
M

B(0,M)

and the right hand side is equal to 0 because of the condition (3) (just note that
SM (Qo) < Sk ,(Qo) for k > M). Since M was chosen arbitrarily, and certainly the

function  — [, (x — y)@(@)du(y) is continuous, we conclude that (5.1) holds. O
5.2. Geometric properties of measures and weak convergence

In blow-up arguments, we shall often consider a sequence of measures with a weak
limit that is p-symmetric. The lemmas of this section will allow us to extract information
about the eventual behaviour of the sequence of measures from our knowledge of the limit
measure.

Lemma 5.3. Suppose p, — p, and Q is a cube with Z,,(Q) > 0. Then for any n > 0,

o limg o0 Dy n(Q) = Dy n(Q), while, forn € Z,
® ﬁ#ﬂ(Q) = limg— 00 Bukﬁn(Q% and,
o oy n(Q) =limp oo ay, 2 (Q).

Proof. The first item of course follows immediately from the definition of weak conver-
gence. For the convergence of the S-coefficients, observe that for any finite subset P’ of
the family P of n-planes that intersect Bg, we have

lim min /(pQ dist(x, L)?dpy(z) = min /@Q dist(x, L)?du(x).
k—><><>Le7>'B LeP’B
Q Q
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From this, the convergence of the §-coefficients follows from observing that the collection
of functions ¢ dist(-, L)%, L € ﬁ, is a relatively compact set in C'(Bg); and every plane
which contains the centre of mass of any of the measures g i or pgu must also intersect
By, (since B is a convex set containing supp(¢q)).

We argue similarly in the case of the a numbers: In this case we observe that

« Po ={LNBg: L€ P, LNiBy # @} is relatively compact in the Hausdorff
metric, while, for any constant K > 0,

o F ={f € Lips(3Bg) : ||fllLip < ﬁ} is a relatively compact subset in Cp(R?)
equipped with uniform norm.

For any finite subsets P, C Pq, F' C F, we have

klingo;réa]_zsgg%/wa(x)d(uk—ﬂuk,LH l2)(x)

Bq

= max Lrg;)nb / wof(x)d(p — 0L H"|L)(x).
Bq

To complete the proof, just notice that for every f € F, the function
LNBg /md%m
Rd

is continuous in the Hausdorff metric with a modulus of continuity bounded in terms of
lleo||Lip, and €(Q), while the functionals

f s / cofdus, and [ / coldu
R R

are continuous in the uniform norm with moduli of continuity bounded independently
of k. Since the numbers ¥, 1 are uniformly bounded over k and L N By € Pg, the
convergence of the a-coefficients follows. 0O

The next result is a clear consequence of Lemma 5.3 (and also Section 2.5), but it will
be useful to state it explicitly.

Corollary 5.4. Suppose that ju, — p. Fiz a sequence of lattices D*) that stabilize in a

lattice D', n € ZN (0,d), and m € (0,d). If, for a cube Q" € D', we have B,,(Q") > B
and Dy, (Q') > T, then for all sufficiently large k, we have

Q €DW, B n(Q) > B and Dy, m(Q') > T
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Lemma 5.5. Fizn € N, n < d. Suppose that p, — p, for some measure p with Z,,(Qo) = 1
for which supp(u) is n-rectifiable. Fix a sequence of lattices D) | all containing Qq, that
stabilize in a lattice D'. For any § € (0,1) and s > 0, we can find a finite collection of
cubes Q; such that

(1) UQj) < =,
(2) 3Bq, are disjoint, and 3Bq, C 3Bq,,

and, for all sufficiently large® k,

(3) Q; € DV,

(4) Dyenss(@) < (
300Bg,,
(5) Zj II—Lk(Qj) 2 %Iﬂk(QO)'

5/2
) Dy, n+5(Q;) for every Q' € D) satisfying Bg, C B C

Proof. From Lemma 2.3 we infer that, for any §’ € (0,0/2)

lim D,y (Q) = 00 for p-ae. x € supp(p).
Q'eD zeqQ’
£(Q")—0

Fix T' > 0. Consider the maximal (by inclusion of the associated balls By ) cubes Q" € D’
with Bg: C 300B¢, that intersect Bq, and satisfy D,, ,,45(Q") > T. If T is sufficiently
large then ¢(Q’) < s, and certainly 3Bg C 3Bg,, and so property (1), along with the
second assertion in property (2), hold for the maximal cubes @Q’.

For each maximal cube @’ we have that

Dy nys(Q) < 2707IID, 4 5(Q) (5.2)
for every Q" € D’ satisfying
Bg' C Bgr C 300Bg, and Bg» N Bg, # . (5.3)

As there are only finitely many Q" satisfying (5.3), we have that for large enough k
(possibly depending on Q')

é v
Dukm-&-é(Q”) < Q_Q[Q 9 ]Duk,n-i-é(Q/)

for every Q" € D’ satisfying (5.3).

(5.4)

6 This largeness threshold is purely qualitative. It may depend on s, but also on the density properties
of y, and the rate at which the lattices D*) stabilize.



B. Jaye et al. / Advances in Mathematics 339 (2018) 60-112 89

Now take a finite subcollection G of the maximal cubes with the property that
>greqLu(Q) > 17,(Qo) = 1 (p-almost every point in Bg, is contained in a maxi-
mal cube).

If k is sufficiently large, then every cube @’ in the finite collection G satisfies (5.4).
Moreover, since the lattices D*) stabilize, we infer that if k is large enough, then every
Q' € G and every Q" € D' satisfying (5.3) lies in D*). It follows that properties (3) and
(4) hold for every cube in G if k is large enough.

Finally, using the Vitali covering lemma we choose a pairwise disjoint sub-collection
{3Bq; }; of the collection of balls {3B¢ : Q" € G} such that J; 15Bg; O Ugreg 3Ba'-
From (5.2) we derive that ;(15B¢;) < CZ,(Q%). Whence

% < Z/},(lBBQi) < CZIM(Q;')
j J

Thus, as long as k is large enough, we have that 7, (Q}) > % Consequently, the
O

collection of cubes (Q}); satisfies all of the desired properties.
6. Domination from below

Fix n = [s] — 1.
We introduce two parameters, ¢ € (0,1) and 0 € (0, 1), satistying

n+2i+e<s, and s+ 2 < |s] + 1.
6.1. Domination from below

We introduce a filter on a dyadic lattice D from [9] called domination from below. Fix
a measure p, and subsets G, G’ C D.

Definition 6.1. We say that QQ € G is dominated from below by a (finite) bunch of cubes
Q; € G’ if the following conditions hold:

J

We set Gaown(G') to be the set of all cubes @ in G that cannot be dominated from below
by a bunch of cubes in G’ (except for the trivial bunch consisting of @ itself in the case
when Q € GNG'). If G’ = G, then we just write Gaown instead of Gaown(G).
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Lemma 6.2. Suppose that supgeg Dy (Q) < oo. Then there exists c(e) > 0 such that

> Du(Q)PTu(Q) = c(e) Y Dyl

QEGdown QEeG

Proof. We start with a simple claim.

Claim. Every Q € G with Z,,(Q) > 0 is dominated from below by a bunch of cubes Py ;

mn gdown .

To prove the claim we make two observations. The first is transitivity: if the bunch
Q1,...,Qn dominates Q' € G from below, and if (say) @ is itself dominated from below
by a bunch Pi,..., Pys, then the bunch Pi,...,Pys, Q2,...,Qn dominates Q'. The
second observation is that there are only finitely many cubes @’ that can participate in
a dominating bunch for Q: Indeed, each such cube @’ satisfies D, (Q’) > 2‘5[69‘62/]DM(Q)7
and so

SUPgreg D,(Q") )

1

With these two observations in hand, we define a partial ordering on the finite bunches
of cubes (Q;); that dominate @) from below: For two different dominating bunches (Q(1 )j

and (Q\Y);, we say that (Q\"); < (Q'?)); if for each ball 3B o we have 3B, C

BBQ<2) for some k. Since there are only finitely many cubes that can partlclpate in a
domlnatlng bunch, there may be only finitely many different dominating bunches of @,
and hence there is a minimal (according to the partial order <) dominating bunch
(Pg,;);- Each cube Pg ; must lie in Gagwn-

Now write

ZDM(Q)Q ZZD (Po.4)°T, PQJ)2_26[Q Fa.1]

Qeg Qeg j

> Du(P)%(P)[ S gl

PEGdown Q:3BgD3Bp
The inner sum does not exceed %, and the lemma follows. O

Lemma 6.3. There exists c(e) > 0 such that

> DuQ’LQ ) > Du( Q)

Q€G\Gaown(9) Qeg’

Proof. For each Q € G\Gaown(G'), just pick a bunch of cubes Py ; in G’ that dominates
Q@ from below. Then we merely repeat the final calculation of the previous proof:
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> Du@°T.(Q)

Q€G\Gaown(9")

< Y Y DU ) Tu(Pg )2 Q]
QEG\Gaown(G') J

< Z DM(P)QIH(P)[ Z 272€[Q:P} ,

Peg’ QeD:3ByD3Bp

and the lemma follows. O

The domination from below filter is used in what follows to preclude the possibility
that the support of a measure in a cube Q € Gyown concentrates on a set of dimension
smaller than s. In particular, we shall use the following lemma:

Lemma 6.4. Suppose that p, — p, where Z,,(Qo) = 1 and supp(p) is n-rectifiable (recall
that n = [s] — 1). Fix a sequence of lattices DF) | all containing Qq, that stabilize in a
lattice D’'. Provided that » > 0 is chosen sufficiently small, for all sufficiently large k,
the bunch of cubes Q; constructed in Lemma 5.5 dominates Qo from below in the sense
of properties (1)-(4) of Definition 6.1.

Proof. First notice that, by property (4) of the conclusion of Lemma 5.5, we have that
Duk,n-‘r6(Qj) Z Duk,’rL-l-(S(QO)v and so

Dy, (Qy) =207 0Ruilp, 4 5(Q;)
> 2(5_”_5)[Q0:Q1]Duk,n+5(Qo) (6.1)
— Q(S—TL—‘;)[QOZQJ]I)WC (Q0>7

as long as k is large enough. Therefore property (1) of Definition 6.1 is satisfied, as
s —n —d > e. Since properties (2) and (3) of Definition 6.1 clearly hold, it remains to
verify that

> Dy (Q)*2 Q0T (Q;) > Dy, (Q0)* T, (Qo)-
J

Since D,,(Qo) = 1, we have D,,, (Qo) > 3 for large k and hence from (6.1) we derive that
D D (@)L, (@)
J

1 : S—n—o— HO¥
> J min 22( 6—2)[Q0:Q;] ZI”’“(Qj)'

J

Using properties (1) and (5) in the conclusion of Lemma 5.5, the right hand side here is
clearly at least
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1 PR .0, 1 osn—s—
amjm22( ’ 8)[Q0'QJ]IM(QO) > 6% A ’ E)I#k(QO)

since § < s —n — . But the right hand side here is larger than Z,, (Qo) provided that s
is small enough. O

7. Cubes with lower-dimensional density control are sparse

Recall that n = [s] — 1. Fix a measure u. For M € N, consider the set Dy (p) of
cubes @ € D such that

Du.,n+5(Q/) < Du,n+5(Q)
whenever Q" € D satisfies Bg: D Bg and [Q: Q] < M.
The aim of this section is to prove the following result:

Proposition 7.1. There exist M € N, A > 0 and C > 0 such that if p is a finite measure
satisfying supgep D, (Q) < oo, then

Y. DuQPZUQ)<C ) SHQ).
QEDm (1) QeD

To prove Proposition 7.1, we shall use the domination from below filter with the
subsets G = G' = Dy (). Write Das down (1) for the set of cubes in Djs(u) that cannot
be dominated from below. Lemma 6.2 yields that,

Y. Du@PTUQ) 2cle) Y DuQPTu(Q)

QEDm,down (1) QEDm (1)

Consequently, referring to the general principle of Section 3.2, we find that in order to
prove Proposition 7.1, we need to verify (3.7) with

£.(Q) = {D,AQ)Z if Q € Dar,down (1),

0 otherwise.
We formulate this precisely as the following lemma:

Lemma 7.2. There exist A > 0, A > 0 and M € N such that for every measure p and
every cube Q € D down(pt), we have

S:1(Q) > ADL(Q)*Z.(Q).

Proof. If the result fails to hold, then for every k € N, we can find a measure i and a
cube Qi € D down (k) such that



B. Jaye et al. / Advances in Mathematics 339 (2018) 60-112 93

Dﬁk (Qk)QIﬁk (Qk>

el

S;Lfk (Qr) <

Consider the measure p, = % Then D, (Qo) = Z,, (Qo) = 1. The preimage
of the lattice D under the affine map Lq, is some lattice D) with Qg € DX, Of course,

we have that Qo € D™}, qown (111)- In addition

Dyymss(Q) <1ifQ € D® | By D Bg,, [Q: Qo] < k. (7.1)

It readily follows from this that for every R > 0, sup,, ux(B(0, R)) < oo. In addition, we
have that Sﬁk (Qo) < % As such, we may apply Lemma 5.2 and conclude that, passing to
a subsequence if necessary, the sequence u; converges weakly to a p-symmetric measure
v with Z,,(Qo) = 1. With the passage to a further subsequence, we may assume that the
lattices D) (which all contain Q) stabilize in a lattice D’ (see Section 2.5). Then from
(7.1) we see that

Dyni5(Q') < Dy yis(Qo) for every Q' € D' such that By D Bg,.

From this property, we infer from Proposition 4.7 that supp(v) has to be contained in an
n-plane and is therefore n-rectifiable (v has insufficient growth at infinity for the other
possibilities in Proposition 4.7 to hold).

Consequently all the hypotheses of Lemma 5.5 are satisfied, and so we may consider the
finite collection of cubes @); constructed there, which may have side-length smaller than
any prescribed threshold » > 0. Lemma 6.4 ensures that the bunch of cubes (); dominate
Qo from below as long as s is small enough. Therefore, given that Qg € D(k)hdown(pk),
we will have reached our desired contradiction once we verify the following:

Claim. Provided that > is small enough, and k is sufficiently large, each cube Q; lies in
D®) (g).

To see this, notice that, for a cube Q” with Bgr O Bg, and £(Q") < 2K4(Q;),
it can only happen that property (4) of Lemma 5.5 does not immediately show that
D, n+5(Q") < Dy, nts(Q;) in the case when Bgr is not contained in 300Bg,. But
then since Bg, N Bg, # &, the cube Q" has big side-length (certainly at least 30£(Qo)).
It follows that the grandparent of Q”, say Q”, must satisfy Bg, D Bq,, while certainly

[@” : Qo] < k if 5 is small enough. But now we derive that

~ (7))
Dﬂk7n+5(Q”) < CDuk,n+5<Q”> < CDuk,nJré(QO)

Lemma 5.5, (4)

< CUQ})* Dy nt6(Q5) < Dy n+5(Q;)

as long as C'»%/2 < 1. The claim follows. O
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8. Domination from above and the proof of Theorem 1.1
Consider a lattice D, and a non-negative function Y : D — [0, 00).
8.1. Domination from above

We say that Q' € D dominates Q € D from above if %BQI D Bg and
T(@Q) > 29" (Q)

We let Dy, denote the set of cubes (Q € D that are not dominated from above by a cube
in D.

Lemma 8.1. If supgep T(Q) < oo, then
> T(QPIZUQ) = cle) D T(@
QGDup QEeD

Proof. We first claim that every @ € D\D,p with T(Q) > 0 can be dominated from
above by a cube Q € Dyy,.
Indeed, note that if @' dominates @ from above, then certainly

SUPQrep T(Q”))
T(Q) ’

or else we would have that T(Q') > supgrcp T(Q") (which is absurd). Consequently,

1
Q'+ Q) < —logy

there are only finitely many candidates for a cube that dominates ) from above. To
complete the proof of the claim, choose @ € D to be a cube of largest side-length that
dominates @ from above. Then @ € Dyp (domination from above is transitive).

For each fixed P € Dy, consider those @ € D\D,,, with Z,,(Q) > 0 and é = P. Then

Y TQL@=3 3 Y@@
QED\Dup: Q=P m>1 QED\Dup:
2(Q)=2"""¢(P), Q=P

< > oy > 7.(Q)-
m>1 QeD:
€Q)=2""E(P),BoC 3 Bp

The sum in square brackets is bounded by CZ,(P) (as ¢p = 1 on %Bp), and so by
summing over P € D, we see that

> TQPZLQ e) > TP

QED\Dyp PEDy,

and the lemma is proved. O
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We shall make the choice

_ 6M(Q)DM(Q) if s e Z,
@) = { D,(Q) if s ¢ Z.

With this function, denote by Dy, (1) those cubes that cannot be dominated from above.
Notice that if s € Z, and @ € Dyp (1), then for every Q' € D with %BQ/ D Bg,

B,(Q)D,(Q") < 2719"A3,(Q) D, (Q). (8.1)

Provided that §,(Q) > 0, we readily derive from this inequality that whenever %BQ/ D
Bq

(7Y by < Du@) < (521 D@,

wd 5,(Q) < (1) B@.

The right hand inequality in the first displayed formula perhaps deserves comment. To
see it, we plug the obvious inequality

VIAQ)B.Q) = L. QB

(8.2)

into (8.1) to find that

Z,(Q) _ et VIu(Q)
@y = T THr

Rearranging this yields the desired inequality.
If instead s ¢ Z and @ € Dy, (1) then we have much better density control:

(Q’)
¢(Q)

For the remainder of the paper, let us fix M so that Proposition 7.1 holds. Our goal
will be to prove the following alternative.

Du(Q) < (

£
) D,,(Q) whenever Q' € D, £Bg D By,.

Alternative 8.2. For each A > 4 and o > 0, there exist A > 0 and A > 0 such that for
every measure [t and cube Q@ € Dyp(p), with the additional properties that (5,(Q) > 0
and a,(AQ) > « if s € Z, we have that either

(a) S}Q) > AD,(Q)*Z,.(Q)
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or
(b) Q is dominated from below by a bunch of cubes in Das(p).

Before we prove the alternative, let us see how we shall use it. Fix A > 0 and a > 0.
For s € Z, set

Dip(p) =1{Q € Dup(p) + au(AQ) = v and f,(Q) > 0},
while for s ¢ Z, set D}, (1) = Dup(p)-

Corollary 8.3. If s € Z, then there exist A > 0 and A > 0, depending on M, A, o such
that for every finite measure p satisfying supgep Dyu(Q) < 00,

> QL@ < 5 Y SA@)
QED;, (1) QeD

If s ¢ Z, then there exist A > 0 and A > 0, depending on M, such that for every finite
measure (i satisfying supgep D, (Q) < oo,

1
Y. DuTUQ < Y SHQ)
QeDup(M) QeD

Proof of Corollary 8.3. One uses the general principle (3.7) to control the contribution
of the sum over the cubes where alternative (a) occurs. Indeed, making the choice

D, (Q)? if Q € D}, (1) and alternative (a) holds for Q

0 otherwise,

I.(Q) = {

we get from (3.8) that

QED}, (n): QeD
alternative (a) holds

For the cubes where alternative (b) holds, we apply Lemma 6.3 with G’ = Dp;(u) and
G =D}, (). Since

{Q € D}, (p) : alternative (b) holds} C G\Gaown(G'),

we infer that

> Du(Q)°T(Q Z Du(Q)’T,(Q).

QED, () QEDwm (1
alternative (b) holds
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Proposition 7.1 ensures that the right hand side here is bounded by the sum of square
function constituents. O

Notice that, in conjunction with Lemma 8.1, Corollary 8.3 completes the proof of
Theorem 3.1, and with it Theorem 1.1.

We now move onto proving the alternative.

Proof of Alternative 8.2. We (rather predictably) proceed by contradiction. If the alter-
native fails to hold, then for some A > 0 and o > 0, and every k € N, we can find a
measure [ and a cube Qy € D;p(ﬁk) such that

Slijk (Qk) < %Dﬁk (Qk)2zﬁk (Qk)7

but also @ cannot be dominated from below by a bunch of cubes in Dy (jig).
We consider the measure L = %, which satisfies D#k (Qo) = 1. The preim-
Hi
age of the lattice D under Lg, is some lattice D) with Qo € D). Moreover,

Qo € Dl(llfa) *(ux), and so from (8.2) we have that

1
D, (Q") < Cl(Q")*** whenever §BQ/ D Bg,-

This polynomial growth bound allows us to apply Lemma 5.2 and pass to a sub-
sequence of the measures that converges weakly to a @-symmetric measure p with
D, (Qo) = Z,(Qo) = 1. With the passage to a further subsequence, we assume that
the lattices D(¥) stabilize in some lattice D’.

We first suppose that supp(u) is not contained in an |s|-plane. Then, since
w(B(0,R)) < CR?*2% for large R > 0, we may apply Proposition 4.7, and find
that there exists a cube Q' € D’ with %BQ/ D Bg, of arbitrarily large side-length
we have that 8,(Q") > ¢* and D,(Q') > £(Q")*1+1=5=¢ where ¢* > 0 depends only
on d, s, and ||¢'||co. But Lemma 5.4 then ensures that for sufficiently large k, we have
that Q' € D®), 3,.(Q") > ¢*, and D, (Q") > £(Q)*1+1=5=¢ D, (Qo). Provided that
QNI S 4/d - U(Q')° (> B, (Q0)2°19790]), this contradicts the fact that
Qo € D(k)up (1), and such a contradictory choice of £(Q’) is possible since 2¢ < 14|s|—s.
Thus supp(p) C L for some [s|-plane L (which must intersect Bg,).

Our next claim is that supp(u) is n-rectifiable, with n = [s] — 1. This is already
proved in the case when s ¢ Z, as p is supported in an n-plane in this case. If s € Z,
then we notice that Proposition 4.7 guarantees that either p = ¢H$, or that supp(p) is
n-rectifiable. But the first case is ruled out since o, (AQo) > 0 (note that A > 4), so we
must indeed have that supp(u) is n-rectifiable.

Consequently, we may apply Lemma 5.5 with 2 < 2= to find a finite collection
of cubes @;, each of sidelength less that 2=M gsuch that the balls 3Bgq, are disjoint,
3Bg,; C 3Bgq,, and for all sufficiently large k£ we have, for every j,
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Dpyn5(Q") < Dyyonts(Q5)

whenever Q' € D% with Bg, C Bg' C 300Bq, (this property is weaker than property
(4) of the conclusion of Lemma 5.5). In particular this ensures that each @; lies in
DE) pr (g

On the other hand, by choosing s smaller if necessary, we conclude from Lemma 6.4
that the bunch @; dominates )y from below. This contradicts the fact that ¢ cannot
be dominated from below by a finite bunch of cubes from D*) M (), and with this final
contradiction we complete the proof of the alternative. O

9. The reduction to one last square function estimate

For the remainder of the paper, we restrict our attention to proving Theorem 3.2, so we
shall henceforth assume that s € Z. It remains to show that there exist constants o > 0,
A >4,A>1and C > 0, such that if ;2 is a finite measure satisfying supgep D, (Q) < oo,
then

) B.(QPDu(QPT(Q) < O 3 SMQ).

QEDup (1), ¢u(AQ)<La QeD

When combined with Corollary 8.3, this would show that (with a possibly larger con-
stant A),

Y. Bu@PDu@)1TQ) <C Y SHQ).

QEDup (1) QeD

Then Theorem 3.2 follows from Lemma 8.1. Following the general principle (3.7) with
the choice

0 otherwise,

T, (Q) = {ﬁu(Q)H)M(Q)? if Q € Dyp () satisfies o, (AQ) < «

it will suffice to demonstrate the following proposition:

Proposition 9.1. There exist A >0, a >0, A > 1, and A > 0 such that for every measure
wand Q € Dyp(p) satisfying o, (AQ) < o and B,,(Q) > 0, we have

S1(Q) = ABL(Q)* Du(Q)°Lu(Q)- (9.1)

Notice here that the S-number is present on the right hand side of (9.1). It is not
possible to estimate the square function coefficient in terms of the density alone (i.e.,
(9.1) couldn’t possibly be true in general if one removes the BM(Q)2 term on the right
hand side), as p may well be the s-dimensional Hausdorff measure associated to an
s-plane, in which case the left hand side of (9.1) equals to zero.
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10. The pruning lemma
dist(x, L) < B} denotes the closed

For an n-plane L and 8 > 0, Lg = {z € R¢ :
(B-neighbourhood of L.

Lemma 10.1. Let R > 0. Fiz a measure p with p(B(0, R)) > 0. Suppose that for some
hyperplane H and B > 0, we have

1 dist(z, H)\2
wmomy | (TR ww <
B(0,10R)

Then

(,u(B(O,R)))2 / (dist(;,H))Qdu(x)

Rs
B(0,2R)\Hssr
(10.1)
2dt
o [ I an 2
B(0,2R) 3R Rd
L for

Proof. We may assume that R = 1 and pu(B(0, R)) = 1. Suppose that H = b+ e
b€ R? and e € RY with |e| = 1, and for x € RY set z, = (x — b,e). Then

‘/ szyl ‘/ Iw;y|>dﬂ(y)‘.

Fix « € B(0,2) with |z,| = dist(z, H) > 38. We will assume that z, > 35. Then

[ aw > [ o ae(E ) autw)

t
Rd {zy <28}
(10.2)

- / (Zy—zx)w(lm;m)du(y)

{zy>za}

Notice that p({y € B(0,1) : z, > 28}) < # fB(O 1 z2dp < 5. Consequently, if ¢ € (3,4),

we get that the first integral appearing on the right hand side of (10.2) is at least
Zenu(B(0,1)N{zy < 28}) > Z=. On the other hand, the second integral on the right hand

side of (10.2) is at most

4/duty) < 5 [ b <

B(0,10)N{z,>38} B(0,10)Nn{z,>38}
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Thus

\/ e () auty)| > 2l

It is easy to see that the conclusion also holds when z, < —3(. Squaring this inequality
and integrating it yields,

JR
B(0,2)\Hsps
Iw—y\ 2dt
/ /‘/ ts+1 )du(y)‘ s du(z),

B(0,2) 3 R4

as required. O
We shall use this lemma as an alternative:

Corollary 10.2 (The pruning alternative). Fix a measure p satisfying u(B(0, R)) > 0.
Fix A > 0. Suppose that, for some s-plane L, and R > 0,

1 dist(z, L)\ 2
(B0, R)) / () duta) < 7
B(0,10R)

Then, we have that either

[ 1l o e

B(0,2R) 3R Rd

B(0,R))\?

> a2 (MR (500,
or

dist(z, L)\ 2

(BN 40) < cagu(0, B)).
B(0,2R)\L3ga—s)r
Suppose L = b+ {vg—s41,- .. ,vd}J— for an orthonormal set of vectors vg_sy1,...,v4.

One derives the corollary by applying Lemma 10.1 to the collection of d — s hy-
perplanes HW = b+ {vg_ o1}, ..., H@9) = b 4 {vy}+, whose intersection is L.
One merely needs to notice that, on the one hand, for each j € {1,...,d — s}, we

have dist(-, HU)) < dist(-,L). But on the other hand dist(-,L) < > dist( -, HY)),
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and so for each 2 ¢ Lsgg_s)r there is some j such that = ¢ H(J)R and moreover

dist(z, L) < (d — s) dist(z, H).
11. The cylinder blow-up argument: the conclusion of the proof of Proposition 9.1

We shall work in the following parameter regime: Fix A > 1 to be chosen later, and
let « — 0, A = 0, and A — oc.

Suppose that, for each k € N, there is a measure fig, a cube Qy € Dyp(jix) such that
ag, (AQr) < %, B, (Qr) > 0, and

(Qk) Buk (Qk) 3 (Qk) (Qk)

Proposition 9.1 will follow if we deduce a contradiction for some sufficiently large A > 0.

Consider the measure i, = gf“((ﬁQ’“l;)). Then D,, (Qo) = Z,, (Qo) = 1. The preimage of
HE

D under L, is some lattice D¥) containing Q. Passing to a subsequence we may assume
that the lattices D) stabilize in some lattice D’. Also observe that

i (Qo) < ﬁuk (Qo). (11.1)
Inasmuch as Qo € D(k)up(uk) and £, (Qo) > 0, we infer from (8.2) that for any N > 1
D, (NQo) < CN*T22, (11.2)

Notice that, since a,, (AQo) < , we have 5, (AQo) < % From this and (11.2) we
find that 8, (Qo) — 0 as k — oc.

11.1. Good density bounds for medium sized cubes containing Qg
In this section we shall prove the following result.

Lemma 11.1. There exists C > 0 such that if Q' € D*) with %BQO D 1By D Bg,, then

<D, (Q)<cC. (11.3)

Ql=

(Here C' depends only on d and s.)

Proof. The growth property (11.2) ensures that px(Bag,) < C(A). Consequently, from
the fact that ay, (AQo) < 1, we infer that for each k there exists an s-plane Vj that
intersects 5 Bg, such that for every f € Lip,y(Bag,) with || f|Lip <
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‘/‘PAQofd[Nk — UeH’ |y ]| < % (11.4)
]Rd

7, (AQu)
Tiis 1y, (AQo)"
Since D,,, (Qo) = 1, we readily see by testing (11.4) with f = ¢q, that ﬁkIHS\Vk (Qo) >
% if k is large enough. Thus the plane Vj intersects Bg,. Consequently, %E(Q’ )E <
Iys)y, (Q') < CUQ')* whenever 4Bg, D $Bg D Bg,. But also 1 < 7, (3Qo) < C from
(11.2). Testing (11.4) with f = ¢3¢, therefore yields that & < o) < C (for large k).
Finally, testing (11.4) against f = ¢¢/, with Q' as in the statement of the lemma, we
infer that (11.3) holds. O

where ¥ =

Fix R to be an integer power of 2 that satisfies 1 < R < A. We choose a dyadic
ancestor of Qg in D', say @0, of sidelength 16R. Since the lattices D*) stabilize, @0 is a
dyadic ancestor of Qq in the lattice D*) for large enough k. Insofar as Qg € D(k)up(uk),
from (8.1) and (11.3) we derive that

By (Qo) < CRB,, (Qo). (11.5)
Set B, = B, (Qo). Note that limy_,s B = 0.
11.2. Concentration around the optimal least squares plane
Denote by Lj an optimal s-plane for j3,, (@0). Since 7, (Qo) = 1, it is easily seen
from Chebyshev’s inequality that Ly passes through Bg, = B(0,4+/d) for all sufficiently
large k, so the closest point xj, in L to 0 lies in Bg,. Then clearly we have that
B(xy, 5) C B(0,r) C B(xy,2r) for every r > 8Vd. (11.6)

In this section our aim is to demonstrate the following lemma:s:

Lemma 11.2. There is a constant Cy > 0, depending on d and s, such that if Ek = C1 5k,
then

32
/ dist(z, L) *dug () < C(%m, (11.7)
B(02R)\Ly 5, »
where Ly 5 p={x € R® : dist(z, L) < BpR}.

This is a much stronger concentration property around the plane Ly than the one
that the S-number alone provides us with. It will play a crucial role in the subsequent
argument.
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Proof of Lemma 11.2. We look to apply the pruning alternative. Observe that, provided

[ 1 anio Lo

B(0,2R) 3R Rd (11.8)

3) CRS

k is large enough

(1.1) 1

1
_Sﬁk(Qo) < Eﬂuk(Qo) S

Br.

On the other hand, using (11.3) once again we derive that Iﬂk(éo) < Cur(B(0,R)),
while ©g, = 1 on B(0,10R), so we certainly have that

1 diSt(z,Lk)2 9
—_— ————du(x) < CPB%. 11.9
waE | ) <0 ()
B(0,10R)
Consider the alternative in Corollary 10.2, with A = ¥ and § = Bk = C18. If Cy

is chosen appropriately in terms of d and s, the mequahty (11.8) forces us into the first
case of Corollary 10.2, which is to say that

dist(x, Lj)? CR*p2
B ) < T2 (0, ),

B(02R)\Ly, 5

as required. O
11.3. Stretching the measure around the least squares plane
Let A®) denote a rigid motion that maps the s-plane {0} x R® (with 0 € R?~*) to L

and 0 € R to x;. We introduce the co-ordinates z = (2/,2"), 2’ € R?*, 2" € R®. Then
from (11.6) and (11.7) we have

P g 0 A ', 27 <
k

Q
HE)

(11.10)

B(OvR)\({O}XRS)BkR

We define the squash mapping Sg(x) = (82',2") for 8 > 0, along with the stretched
measure

() = pe(AY 0 S5 (+)).
Since B, < 1 for large enough k, we have ve(B(0,N)) < (g o A®)(B(0, N)) for

N > 0. As g satisfies (11.2), we see that we may pass to a subsequence such that v
converge weakly to a measure v.
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For m € N, denote by B™(z,r) the m-dimensional ball centred at z € R” with radius
r > 0. Under our change of variables, the inequality (11.10) becomes

/ |2’ |2dvg(x) < @. (11.11)

(S5 1(BO.R)N\ (BT (0, R)xR*)
Whence,
supp(v) N [RY™* x B*(0, R)] € BT>(0, R) x B*(0, R). (11.12)

On the other hand, p; 0 A®(B(0,8Vd)) > D,,, (Qo) = 1, and so from (11.11) we derive
that v;,(B4=(0, R) x B*(0,8Vd)) > 1 — <& Thus

V(R4 x B*(0,8Vd)) = v(B¥+(0, R) x B*(0,8Vd)) > 1
Lemma 11.3. The following three properties hold:

(1) If f € Lipy(B(0, R)), then

hm/fxm )d(pg 0 AR (2 ") /anc Ydv (', 2").

k—o0

(2) If f € Lipy(R%=* x B*(0, R)), then

lim/f~7 d(pg 0 AW /fxxdl/xx)

k—o0

(3) Ift € (0, %), then

I _ 2
lim inf / ‘/ z — y cp(lx y|)d(uk OA(k))(y’,y”) d
k—o0 ﬁk t

B(0,R/2) Rd

2 "

_y| N
>
> / ‘/ ; )dV(y7y)

Rd—sx Bs(0,R/2) R¢

(i 0 AM) (', 2")

dv(x',z").

The proof is a slightly cumbersome exercise in weak convergence, using the property
(11.11). As such, we postpone the proof Section 11.7.
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11.4. The limit measure v is a cylindrically p-symmetric measure

For r € (0, %), let us examine the inequality

/ ‘/(w —y)w<|$_ y|>dﬂk(y)‘2duk(m> < C(i)ﬁi

r
B(0,R) Rd

(see (11.8)). We would like to see what happens to this inequality under the change of
variables that takes py to vg. First notice that, because of (11.6) (and the fact that a
rigid motion is an isometry)

' —y T — ! 2 /
[ e (o A9 i A0
B(0,R/2) Rd k
_om)
-k

From this, we deduce from item (3) of Lemma 11.3 that

//|

' —y L”_y vy, y") =
R/d( y)@( " )d (v',y") =0 (11.13)

for every (z’,2”) € supp(v) N [RY™* x B*(0, R/2)].

We will establish the following lemma:

Lemma 11.4. There exists a constant C > 0 such that for sufficiently large k,

B#k (QO) § %Ek

The estimate in this lemma is inconsistent with (11.5) if R is large enough. A con-
tradictory choice of R is possible once A is chosen large enough in terms of d and s.
As such, we will have completed the proof of Proposition 9.1 once the lemma is estab-
lished.

The key to proving Lemma 11.4 will be to show that, when restricted to R%~* x
B*(0,R/2), the support of v is the graph of an RI~*-valued harmonic function on
B*(0,R/2). For this, we shall use the fact that a,, (AQo) tends to zero as k — oo
in a more substantial way than we have up to this point.

11.5. Large projections of the limit measure

In this section we shall prove the following result.
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Lemma 11.5. There exists ¥g > 0 such that for every f : R® — R, f € Lip,(B*(0, %)),
we have

/f(x”)d(u oMoy e (@ 2") = O
Rd

Proof. Recall (see the proof of Lemma 11.1) that for every k there is an s-plane Vj, for
which (11.4) holds for every f € Lipy(Bag,) with || fllLip < 1, and & < 9 < C. Also

~

recall that Ly is an optimal s-plane for 3, (Qo). Both Vj, and Ly, pass through Bg, if &
is sufficiently large.

Consider a cut-off function h € Lipy(B(0,R)), with h = 1 on B(0,3R/4) and
|hllLip < 1. Then the function z — h(z)(dist(z, Lx))? is C(R)-Lipschitz, and so, by
(11.4) and the definition of the S-coefficient, we infer that

C(R)

— C(R)5:.

dist(z, Ly,)2dH* |y, (z) <

B(0,3R/4)

Given that the planes Lj and V, both pass through Bg,, this implies that the intersection
of the plane [A®)]~1(V}) with the ball B(0, 2£) lies within a C(R)wy, neighbourhood of
[{0} x R*] N B(0, 2&), where wy — 0 as k — oco. Consequently, if F' € Lipy(B(0, 2£)),
| FllLip <1, then

’/F(x',:r")d(,uk o A — 9115 10y xre ) (@, 2") | < C(R)wg. (11.14)
]Rd

Passing to a subsequence so that ¥ converges to ¢y, we get from item (1) of
Lemma 11.3 that

/F(O, ") d(v — 9o M| oy xre ) (2, ") = 0.
Rd

The lemma follows immediately from this statement. O

As a consequence of the lemma, note that whenever z’/ € B*(0, %) and t < R/8, we
have

"o 1
SD(M)du(ylay”) = YoIy-(B*(z",t))
Rd—sx Bs (2" ,t)
= DoTwn=(B*(0,1)).
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11.6. The final contradiction: the proof of Lemma 11.4

From the observations of the previous section along with the property (11.13), we find
if (2/,2") € supp(v) N [R~* x B*(0, £)] and r € (0, R/8), then

/ 1 / / ‘x// - y//| oo
= - _ d .
v YoLys (BS(O,T)) 4 s0( r ) vy, y")
Rd

This formula determines z’ in terms of #”. From this, we derive that supp(v) N (R4~% x
B*(0, %)) is a graph given by {(u(z"),z") : 2" € B*(0,£)} for some u : B*(0, %) —
Bid=5(0, R). As, for each Borel set E C B*(0, &),

v(R™% x E) = v(B15(0,R) x E) = 0gH*(E), (11.15)

we have that whenever B*(z”,2r) C B*(0, R/2),

/l|

R e A

Rs

)d"HS(y”).

This certainly ensures that u is a smooth function, but moreover it is harmonic. Indeed,
for each " € B(0, R/2) we have that for small enough r,

0= [ o(E=E )ty - uteane )

Rs

= c/r / [u(x” + tw) — u(:c”)]do(oﬁ(p(z)tsﬁ’

r t
0 §s—1

(11.16)

where do denotes the surface area measure on the unit s-sphere S*~1. With A, denoting
the Laplacian in R®, we infer from Taylor’s formula (or the divergence theorem) that

/ [u(z” + tw) — u(z")|do(w) = ct? Aqu(z”) + O(t3) as t — 0
§s—1

for some constant ¢ > 0. Plugging the preceding identity into (11.16) yields that
2| Au(z”)| < Cr*+3 for all small r. Hence Au(z”) = 0 for 2" € B(0, §).

Since |u(z”)| < R for every 2 € B*(0, ) (see (11.12)), standard gradient estimates
yield that |Vu(z”)| < C if 2” € B*(0,4£). In order to prove Lemma 11.4, we shall
employ the following simple estimate for harmonic functions. We introduce the notation
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Lemma 11.6. If B*(x",r) C B(0, &), then

» 16

|u(y”)—u(m”) _ Du(m”)(y” _ x")|2d7-ls(y”)

gc(%f ]1 lu|2dH>.

Bs(z',r)

s
s
N

Proof. Note that if y’ € B*(z”,r), then Taylor’s theorem ensures that for some 2" €
B (a2, r),

u(y”) — u(z") = Du(a")(y" — 2")| < Cr?|D?u(z").

But now since u is harmonic, from standard gradient estimates and the mean value
property we obtain that

C C
|D?u(2")| < R S lu| < g ][ |uldH?.
B(=".7%) Bs(2'",R/2)

Squaring both sides of the resulting inequality, taking the integral average over B(z”,r),
and using the Cauchy—Schwarz inequality, we arrive at the desired statement. O

Written in terms of v, the previous estimate, along with the property (11.15), ensures
that there exist a (d — s) x s matrix A and a vector b € R® such that

][ 2" — Az” — bdv (2, 2")
R4—5 x B5(0,300v/d€(Qo))
(11.17)

< (e

.o R
Ri==xB=(0,%)

Furthermore we have A = Vu(0), and b = u(0), and so [b] < R and |A4| < C.
|="]

Consider the function f : R® — R given by f(z”) = <p( 100\/3) and fix a non-negative

function g € Lipy(B9=%(0,2R) with ¢ = 1 on B?~5(0, R). Then from statement (2) of
Lemma 11.3 we get that

/g(gc')f(x”)|x’ _ A(L‘” _ b|2dV({EI7.TH)
Rd

T / A(Z) (@2 — BuAn” — Bb2d(uy 0 AP (!, 2"
k—so00 5]% | B
R
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1 ~ ~
2 limsup — / pa50, (@)@ — Br Az — Brb[*d(jx 0 AW) (2, 2").
—00
{l2'|<Pr R}

(In the final line we have used the trivial observation that f(z”) > ¢as0,(x) for =
(2/,2") € RZ.) On the other hand, using (11.10) and (11.3), statement (2) of Lemma 11.3
ensures that

o EY e

R
Ri=x B*(0,%)

2
< liminfLA / ( |a:~ ) d(py, 0 AR (2 2"

ko0 I,U«k (QO)

2
< lim inf % <C.
k—o00 ﬁ%

Comparing the previous two observations with (11.17), and using our bounds for A and b,
we find for all sufficiently large k some s-plane Ly with B(0,2) N Ly C {dist(z, L) <
Cpr R}, such that

1 ; T ¢
E / 0250, (A(k)x) dlst(x,Lk)Qd,uk(x) < R2
k{dist(x,Lk)SEkR}

On the other hand, if z € B(0, &) satisfies dist(z, Ly) > BrR, then certainly dist(z, L) <
C dist(z, Li). Whence, from (11.7), we infer that all for large enough k&,

/ ¥25Q0 (AR ) dist (z, Ek)Qduk(x)
{dist(z,Ly)>Br R}
C(R)
k

. Py 1 Py
<C / dist(x, Ly ) dug (z) < Bi < ﬁﬁi
B(0,8)n{dist(z,L1)> B R}

Notice that (11.6) ensures that @asq,(A*) ) > ¢g,. Consequently, by combining our
observations, we see that for sufficiently large k,

B (Qo) < %Bk, (11.18)

and so Lemma 11.4 is proved.
11.7. The proof of Lemma 11.5

We now turn to proving Lemma 11.3.
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Proof of Lemma 11.3. Note the identity

/fxx V(g 0 AR (2, 2" /fﬁkx ) dvg (', 2").

By replacing f in this identity with (2/,2") — f(;f—/,x”), we see that item (2) of the
k

Lemma follows directly from the weak convergence of vy, to v. Fix g € Lipy(B¢~*(0,2R))

satisfying ¢ = 1 on B?~5(0, R). Because of (11.11), if f € Lipy(B(0,R)), || fllLip < 1,
then

~ ~ C(R

’/f(ﬂkx’,x")dyk(x’,x”) _ /g(a:',x")f(ﬁkx’,x")dyk(x’,x'/)‘ S %

Rd

Rd

But the function (z/,2”) — g(a’,2")f(Bra’,2") converges to the function (2/,z")
g(«’,2") f(0,2”) uniformly on B4=$(0,2R) x B*(0,R), and [, f(0,2")dv (a2’ 2") =
Jpa 9@, 2") f(0,2")dv (2, x"). Item (1) follows 1mmed1ately from these two observations.

To prove item (3), we shall look to apply Lemma 5.1. For ¢ € (0, %), consider the
integral Iy, given by

[ |fe e Gele’ =¥ " =D gy a2,

_ R d
55 BO.5) *

Notice that if we choose f € Lip,(B*(0, R)) with f = 1 on B*(0, 2£), then inserting a
factor of f(y”)f(z") in the inner integral does not affect the value of the double integral.
Consider the measure dvg(2',2") = f(z")dvi(2',2"). The error introduced by replacing
I, with the integral I, &, defined by

/ ‘/ [(x, B y/)(p(KBk[x/ - y’]t, 2" — y”DI)

s[gkl(B(o,%)) R (11.19)

9oty v | amla’, ),

is bounded by a constant multiple of

/ P (2S5 (B0, R))?

k

(5 (BOS)NBET0,R)x B0, 5)]

(5180, 5))( / ("))

[Sgkl(B(O’R))]\[B""S (0,R)x B*(0,R)]



B. Jaye et al. / Advances in Mathematics 339 (2018) 60-112 111

From (11.11) we therefore infer that limg_ye0 |l — f;c| < limp 00 % = 0. (Note that,
from (11.6), yk(Sﬁil(B(O, £))) < ur(B(0,R)) < CR®.)
k
Observe that the function

|Ek(37/ _ y’),x” _ y//|
t

iz, y) = (¢ — y’)so( )g(fﬂ')g(y’)

converges uniformly as k — oo to

B2V g(agtu).

Pz, y) = (' — y’)cp<|x” -

and for each z € R?, supp(¢y(r,-)) C B(z,2vdR). Clearly supy, ||[¢x|lLp, < oo, as
the Ek factor can only decrease the Lipschitz norm of ¢. Appealing to Lemma 5.1
with the sequence of measures Uy, which converge weakly to the measure dv(z’,z"”) =
f(@")dv(a’,2"), and U = B~%(0,2R) x B*(0, %), we infer that lim inf}, I); is at least

[ | = e(EEawaehat f avtet o),

B4=s(0,2R)xB*(0,4&) R4
and, after recalling the basic properties of g and f, this proves (3). O
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