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1. Introduction

Fix d ≥ 2 and s ∈ (0, d). The aim of this paper is to provide an extension of a theorem 

of David and Semmes [3] to general non-atomic measures. Their theorem provides a 

geometric characterization of the s-dimensional Ahflors–David regular measures1 for 

which a certain class of square function operators, or singular integral operators, are 

bounded in L2(μ).

Their description is given in terms of Jones’ β-coefficients, which are defined for s ∈ N

as

βμ(B(x, r)) =
( 1

μ(B(x, r))
inf

L∈Ps

ˆ

B(x,r)

(dist(y, L)

r

)2

dμ(y)
)1/2

,

where B(x, r) denotes the open ball centred at x ∈ R
d with radius r > 0, and Ps denotes 

the collection of affine s-planes in Rd. Jones introduced these coefficients (with L∞(μ)

norm replacing the L2(μ) mean) in order to give a new proof of the boundedness of the 

Cauchy Transform on a Lipschitz curve [10] and to characterize the rectifiable curves 

in R
2 [11].

Let us now state the David–Semmes theorem in the form most convenient for our 

purposes.

Theorem A. [3] Suppose that μ is an s-dimensional Ahflors–David regular measure. The 

following three statements are equivalent:

(i) For every odd function K ∈ C∞(Rd\{0}) satisfying standard decay estimates,2

and ε > 0, the truncated singular integral operator (SIO)

1 A measure μ is Ahflors–David regular if there exists a constant C > 0 such that 1
C

rs ≤ μ(B(x, r)) ≤ Crs

for every x ∈ supp(μ) and r > 0.
2 Namely, that for every multi-index α, there is a constant Cα > 0 such that |DαK(x)| ≤ Cα

|x|s+|α| for 
every x ∈ R

d\{0}.
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Tμ,ε(f)( · ) =

ˆ

Rd\B(x,ε)

K( · − y)f(y)dμ(y) (1.1)

is bounded on L2(μ) with an operator norm that can be estimated independently of ε.

(ii) For every odd function ψ ∈ C∞
0 (Rd), the square function operator

Sμ,ψ(f)( · ) =
[ ∞̂

0

∣∣∣ 1

ts

ˆ

Rd

ψ
( · − y

t

)
f(y)dμ(y)

∣∣∣
2 dt

t

] 1
2

(1.2)

is bounded in L2(μ).

(iii) s ∈ Z and there exists a constant C > 0 such that

ˆ

Q

ℓ(Q)
ˆ

0

βμ|Q(B(x, r))2 dr

r
dμ(x) ≤ Cμ(Q) (1.3)

for every cube Q ⊂ R
d, where μ|Q denotes the restriction of μ to Q.

We shall henceforth refer to (i) as the condition that all SIOs with smooth odd kernels 

are bounded in L2(μ).

The path that David and Semmes take to prove Theorem A is to show that condition 

(ii) implies (iii), and also that (iii) is equivalent to a number of geometric conditions 

on the support of μ, such as uniform rectifiability (see [3] for definitions). One can then 

apply a theorem of David [2] to conclude that (i) holds. A standard artifice takes us from 

(i) to (ii) (see Section 1.4 below).

At this point we should mention that David and Semmes asked whether replacing 

the condition (i) with just the L2(μ) boundedness of the s-Riesz transform – the SIO 

with kernel K(x) = x
|x|s+1 – is already sufficient to conclude that (iii) holds. The fact 

that s ∈ Z under this assumption was proved by Vihtilä [24]. Demonstrating that (1.3)

holds if s ∈ Z has proven more elusive, and is at present only known when s = 1, 

by the Mattila–Melnikov–Verdera theorem [16], and s = d − 1, when it was proved 

by Nazarov–Tolsa–Volberg [19] (in an equivalent form, building upon a proof scheme 

introduced in [6]).

In this paper, we do not make any progress on the Riesz transform question, but 

instead give a complete solution to another problem of David and Semmes referred to 

(rather generously) in Section 21 of [3] as a “glaring omission” in their theorem. Namely, 

we provide an analogue of Theorem A for general non-atomic locally finite Borel measures 

(without any regularity assumptions). Moreover, we do so for the somewhat smaller class 

of singular integral kernels considered by Mattila and Preiss [15]. When specialized to 

the case of Ahflors–David regular measures, our arguments yield a new direct proof of 

the assertion that (ii) implies (iii) in Theorem A above.
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1.1. The non-integer condition: the Wolff energy

The conditions that should replace (iii) in Theorem A when one considers a general 

measure are by now quite well agreed upon by specialists. This is particularly true when 

s /∈ Z, due to the work of Mateu–Prat–Verdera [12]. It turned out that a well-known 

object in non-linear potential theory, the Wolff energy, provides the key. We define the 

Wolff energy of a cube Q ⊂ R
d by

W(μ, Q) =

ˆ

Q

∞̂

0

(μ(Q ∩ B(x, r))

rs

)2 dr

r
dμ(x).

The Mateu–Prat–Verdera theorem states that, if s ∈ (0, 1), then for a non-atomic mea-

sure μ, the s-Riesz transform of μ is bounded in L2(μ) if and only if the following Wolff 

energy condition holds:

W(μ, Q) ≤ Cμ(Q) for every cube Q ⊂ R
d. (1.4)

In the proof presented in [12], the necessity of the Wolff energy condition for the 

boundedness of the s-Riesz transform relied fundamentally on the restriction to s ∈ (0, 1), 

as it made use of a variation of the Menger–Melnikov curvature formula. However, the 

sufficiency of the condition (1.4) relied on neither the particular structure of the s-Riesz 

kernel x
|x|s+1 , nor the restriction on s, and by adapting their technique one can prove the 

following result.

Theorem B (Mateu–Prat–Verdera). Fix s ∈ (0, d). If μ is a measure that satisfies (1.4), 

then all s-dimensional SIOs with all smooth odd kernels are bounded in L2(μ) (that is, 

statement (i) of Theorem A holds).

To find a proof of this theorem precisely as stated, one can consult Appendix A 

of [8], the calculation is also essentially carried out in [5]. The Mateu–Prat–Verdera 

conjecture asks whether one may extend the necessity of the condition (1.4) for the 

L2(μ) boundedness of the s-Riesz transform in L2(μ) to the range s > 1, s /∈ Z. This 

was recently proved in the case when s ∈ (d − 1, d) by M.-C. Reguera and the three of 

us [9]. It is an open problem for s ∈ (1, d − 1)\Z.

1.2. The integer condition: the Jones energy

For the case of integer s, we introduce the Jones energy of a cube Q ⊂ R
d:

J (μ, Q) =

ˆ

Q

∞̂

0

[
βμ|Q

(B(x, r))2
(μ(Q ∩ B(x, r))

rs

)2]dr

r
dμ(x). (1.5)
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Here μ|Q denotes the restriction of μ to Q. This square function appears in Azzam–Tolsa 

[1], where amongst other things, the following theorem is proved.

Theorem C. [1] Let μ be a non-atomic measure on C. Then the Cauchy transform, the 

one dimensional SIO with kernel K(z) = 1
z in C, is bounded in L2(μ), if and only if 

supz∈C,r>0
μ(B(z,r))

rs ≤ C and

J (μ, Q) ≤ Cμ(Q) for every cube Q ⊂ C.

This theorem makes essential use of the relationship between the L2-norm of the 

Cauchy transform of a measure, and the curvature of a measure. Nevertheless, by com-

bining the techniques of [1] with those in [21], Girela–Sarrión [7] succeeded in proving 

the sufficiency of the Jones energy condition for the boundedness of SIOs in greater 

generality:

Theorem D. [7] Fix s ∈ Z, s ∈ (0, d). Suppose that there is a constant C > 0 such that 

supx∈Rd
μ(B(x,r))

rs ≤ C and

J (μ, Q) ≤ Cμ(Q) for every cube Q ⊂ R
d. (1.6)

Then all s-dimensional SIOs with smooth odd kernels are bounded in L2(μ).

1.3. Statement of results

Choose a non-negative non-increasing function ϕ ∈ C∞([0, ∞)), such that supp(ϕ) ⊂
[0, 2) and ϕ ≡ 1 on [0, 1). We form the square function operator

Sμ(f)(x) =
( ∞̂

0

∣∣∣
ˆ

Rd

x − y

ts+1
ϕ

( |x − y|
t

)
f(y)dμ(y)

∣∣∣
2 dt

t

)1/2

.

We shall prove the following two results:

Theorem 1.1. Fix s /∈ Z. Let μ be a non-atomic locally finite Borel measure. If the square 

function operator Sμ is bounded in L2(μ), then there is a constant C > 0 such that

W(μ, Q) ≤ Cμ(Q) (1.7)

for every cube Q ⊂ R
d.

Theorem 1.2. Fix s ∈ Z. Let μ be a non-atomic locally finite Borel measure. If the square 

function operator Sμ is bounded in L2(μ), then there is a constant C > 0 such that 
μ(B(x,r))

rs ≤ C for every x ∈ R
d, r > 0, and
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J (μ, Q) ≤ Cμ(Q) (1.8)

for every cube Q ⊂ R
d.

1.4. Singular integrals and square functions

When combined with the theorems of Mateu–Prat–Verdera [16] and Girela–Sarrión 

[7] (Theorems B and D above), our theorems yield the following result.

Theorem 1.3. Suppose that μ is a non-atomic locally finite Borel measure. The following 

statements are equivalent.

(i) All SIOs with smooth odd kernels are bounded in L2(μ).

(ii) All SIOs of Mattila–Preiss type are bounded in L2(μ). These are the SIOs with 

kernels that have the form K(x) = x
|x|s+1 ψ(|x|) for ψ ∈ C∞([0, ∞)) satisfying

|ψ(k)(t)| ≤ Ck|t|−k for every t ∈ [0, ∞) and every k ≥ 0.

(iii) The square function operator Sμ is bounded in L2(μ).

(iv) Either

• s /∈ Z and the Wolff energy condition (1.7) holds,

or

• s ∈ Z and the Jones energy condition (1.8) holds.

That (iii) implies (iv), is merely a restatement of Theorems 1.1 and 1.2, while Theo-

rems B and D imply that (iv) implies (i). That (i) implies (ii) is trivial as every SIO of 

Mattila–Preiss type is a SIO with smooth odd kernel. Thus we only need to show that 

(ii) implies (iii). This is a standard argument, already present in [3,15]. To sketch the 

idea, let us fix a sequence εk of independent mean zero ±1-valued random variables (on 

some probability space Ω). For ω ∈ Ω, t ∈ [1, 2), and k0 ∈ N, consider the following SIO 

of Mattila–Preiss type

Tt,k0,ω(f)(x) =

ˆ

Rd

[ ∑

k∈Z,|k|≤k0

εk(ω)
x − y

(2kt)(s+1)
ϕ

( |x − y|
2kt

)]
f(y)dμ(y).

Following Section 3 of [3], one obtains that

‖Sμ(f)‖2
L2(μ) ≤ C sup

k0∈N

2
ˆ

1

Eω‖Tt,k0,ω(f)‖2
L2(μ)

dt

t
≤ C‖f‖2

L2(μ,

since all SIOs of Mattila–Preiss type are bounded in L2(μ).

Proving that (iii) implies (ii) or (ii) implies (i) without going through (iv) appears to 

be non-trivial. (At least we do not know how to do that.)
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1.5. The particular choice of the bump function ϕ doesn’t matter too much

It is natural to wonder the extent to which the mapping properties of Sμ depend on 

the particular choice of the bump function ϕ. Here we make three remarks in this regard, 

with the particular aim of convincing the reader that Theorems 1.1 and 1.2 remain valid 

if one instead defines the square function operator in a more customary way with a 

(perhaps only bounded measurable) bump function that is supported away from 0.

(1) Suppose that ψ ∈ C∞([0, ∞)) is a non-negative function that has bounded support 

and is identically equal to 1 near 0. Then the proofs of Theorems 1.1 and 1.2 can be 

adapted so that the same conclusions are reached with the L2(μ) boundedness of Sμ

replaced by that of the operator

Sμ,ψ(f)(x) =
( ∞̂

0

∣∣∣
ˆ

Rd

x − y

ts+1
ψ

( |x − y|
t

)
f(y)dμ(y)

∣∣∣
2 dt

t

)1/2

.

(2) For non-negative functions ψ and g, define the multiplicative convolution

ψg(t) =

∞̂

0

ψ
( t

u

)
g(u)

du

u
.

From a change of variable and Minkowski’s inequality we infer that

‖Sμ,ψg
(f)‖L2(μ) ≤

[ ∞̂

0

us+1g(u)
du

u

]
‖Sμ,ψ(f)‖L2(μ),

and as such, if Sμ,ψ is bounded in L2(μ), and 
´∞

0
usg(u)du < ∞, then Sμ,ψg

is bounded 

in L2(μ).

(3) Finally, suppose that ψ is non-negative, bounded, measurable, and compactly 

supported in (0, ∞) (so 0 /∈ supp(ψ)), with Sμ,ψ bounded on L2(μ).

Writing supp(ψ) ⊂ [a, A] for some a, A > 0, we choose a function g ∈ C∞([0, ∞))

supported on [0, 2a ] that takes the value 
( ´∞

0
ψ

(
1
u

)
du
u

)−1
on the interval [0, 1a ]. Then the 

function ψg ∈ C∞([0, ∞)) has support contained in 
[
0, 2A

a

]
and ψg ≡ 1 on [0, 1]. From 

remark (2) we have that Sμ,ψg
is bounded on L2(μ).

1.6. The Mayboroda–Volberg theorem

Building on the tools developed in [22,21,20], Mayboroda and Volberg [17,18] proved 

that if μ is a non-trivial finite measure with Hs(supp(μ)) < ∞, and Sμ(1) < ∞ μ-almost 

everywhere, then s ∈ Z and supp(μ) is s-rectifiable (see Section 2.6 below for the def-

inition). When combined with Theorem 1.1 of Azzam–Tolsa [1], Theorems 1.1 and 1.2

above provide another demonstration of this result. We sketch the argument here.
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One begins with a standard T (1)-theorem argument which involves finding a compact 

subset E ⊂ supp(μ) whose μ measure is as close to μ(Rd) as we wish, for which Sμ′ is 

bounded in L2(μ′) with μ′ = μ|E. This utilizes the method of suppressed kernels, see for 

instance Proposition 3.2 of [17]. But since μ′ is supported on a set of finite Hs measure, 

the conclusion of Theorem 1.1 cannot hold unless μ′ ≡ 0, and so s ∈ Z and the conclusion 

of Theorem 1.2 holds. Theorem 1.1 in [1] then yields that supp(μ′) is rectifiable. From 

this we conclude that supp(μ) is rectifiable.

2. Preliminaries

2.1. Notation

• By C > 0 we denote a constant that may change from line to line. Any constant 

may depend on d and s without mention. If a constant depends on parameters other 

than d and s, then these parameters are indicated in parentheses after the constant.

• We denote the closure of a set E by E.

• For x ∈ R
d and r > 0, B(x, r) denotes the open ball centred at x with radius r.

• By a measure, we shall always mean a non-negative locally finite Borel measure.

• We denote by Lip(Rd) the collection of Lipschitz continuous functions on Rd. For 

an open set U , we denote by Lip0(U) the subset of Lip(Rd) consisting of those Lips-

chitz continuous functions with compact support in U . We define the homogeneous 

Lipschitz semi-norm

‖f‖Lip = sup
x,y∈Rd,x �=y

|f(x) − f(y)|
|x − y| .

• We denote by supp(μ) the closed support of μ, that is,

supp(μ) = R
d\

{
∪ B : B is an open ball with μ(B) = 0

}
.

• For a closed set E, we shall denote by μ|E the restriction of the measure μ to E, 

that is, μ|E(A) = μ(A ∩ E) for a Borel set A.

• For n ≥ 0, we denote by Hn the n-dimensional Hausdorff measure. When restricted 

to an n-plane, Hn is equal to a constant multiple of the n-dimensional Lebesgue 

measure mn.

• For a cube Q ⊂ R
d, ℓ(Q) denotes its side-length. For A > 0, we denote by AQ the 

cube concentric to Q of side-length Aℓ(Q).

• Set Q0 = (−1
2 , 12 )d. For a cube Q, we set LQ to be the canonical affine map (a com-

position of a dilation and a translation) satisfying LQ(Q0) = Q.

• We define the ratio of two cubes Q and Q′ by

[Q′ : Q] =
∣∣∣log2

ℓ(Q′)

ℓ(Q)

∣∣∣.
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• For any x ∈ R
d, r > 0, we set

Iμ(B(x, r)) =

ˆ

Rd

ϕ
( |x − y|

r

)
dμ(y),

so μ(B(x, r)) ≤ Iμ(B(x, r)) ≤ μ(B(x, 2r)).

2.2. Balls associated to cubes

We associate the ball BQ0
= B(0, 4

√
d) to the cube Q0 = (−1

2 , 12 )d. Then for an 

arbitrary cube Q, we set

BQ = LQ(BQ0
).

Notice that BQ = B(xQ, 4
√

dℓ(Q)), where xQ = LQ(0) is the centre of Q.

We associate to the cube Q0 the function ϕQ0
(x) = ϕ( |x|

2
√

d
), x ∈ R

d. For any other 

cube Q we set ϕQ = ϕQ0
◦ L−1

Q = ϕ
( | · −xQ|

2
√

dℓ(Q)

)
. The reader may wish to keep in mind the 

following chain of inclusions:

3Q ⊂ B(xQ, 2
√

dℓ(Q)) ⊂ {ϕQ = 1} ⊂ supp(ϕQ) ⊂ BQ.

We set

Iμ(Q) =

ˆ

Rd

ϕQ dμ
(

=

ˆ

BQ

ϕQ dμ
)

.

In relation to our previous notation, we have Iμ(Q) = Iμ( 1
2BQ). For n > 0, we define 

the n-density of a cube Q by

Dμ,n(Q) =
1

ℓ(Q)n

ˆ

Rd

ϕQdμ =
1

ℓ(Q)n
Iμ(Q).

Thus

μ(Q)

ℓ(Q)n
≤ Dμ,n(Q) ≤ μ(BQ)

ℓ(Q)n
≤ μ(8

√
dQ)

ℓ(Q)n
. (2.1)

If n = s, then we just write Dμ(Q) instead of Dμ,s(Q).

2.3. Flatness and transportation coefficients

For n ∈ N, the n-dimensional β-coefficient of a measure μ in a cube Q is given by

βμ,n(Q) =
[ 1

Iμ(Q)
inf

L∈Pn

ˆ

Rd

(dist(x, L)

ℓ(Q)

)2

ϕQ(x)dμ(x)
]1/2

,
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where, as before, Pn denotes the collection of n-planes in Rd. We shall write

βμ(Q) = βμ,⌊s⌋(Q).

It is easy to see that there is an n-plane LQ such that

βμ,n(Q) =
[ 1

Iμ(Q)

ˆ

Rd

(dist(x, LQ)

ℓ(Q)

)2

ϕQ(x)dμ(x)
]1/2

,

and we shall call any plane LQ satisfying this property an optimal n-plane for βμ,n(Q). 

The following classical fact will prove very useful for our analysis:

Lemma 2.1. Suppose ν is a non-zero finite measure. Every n-plane L that minimizes 

the quantity 
´

Rd dist(x, L)2dν(x) contains the centre of mass of ν, that is, the point 
1

ν(Rd)

´

Rd x dν(x) ∈ R
d.

Proof. We may assume that 
´

Rd x dν(x) = 0. For a (d − n)-dimensional orthonormal set 

vn+1, . . . , vd, consider the function F : Rd → R given by

F (b) =

ˆ

Rd

∣∣∣
d∑

j=n+1

〈(b − x), vj〉vj

∣∣∣
2

dν(x), b ∈ R
d.

For the n-plane L = b + span(vn+1, . . . , vd)⊥ to be a minimizer, we must certainly have 

that ∇F (b) = 0. But

∇F (b) =

ˆ

Rd

2
( d∑

j=n+1

〈(b − x), vj〉vj

)
dν(x) = 2ν(Rd)

d∑

j=n+1

〈b, vj〉vj .

Thus ∇F (b) = 0 if and only if b ∈ span(vn+1, . . . , vd)⊥. Therefore, should L be 

optimal, then it is necessarily a linear subspace. ✷

The n-dimensional transportation (or Wasserstein) coefficient of a measure μ in a 

cube Q ⊂ R
d is given by

αμ,n(Q) = inf
L∈Pn:

L∩ 1
4 BQ �=∅

sup
f∈Lip0(3BQ),

‖f‖Lip≤ 1
ℓ(Q)

∣∣∣
ˆ

Rd

ϕQf d(μ − ϑμ,LHn|L)
∣∣∣,

where ϑμ,L =
Iμ(Q)

IHn|L
(Q) . In the case when n = s we will write αμ(Q) = αμ,s(Q).

Notice that the β-number is a gauge of how flat the measure is within a given cube, 

while the α-number tells us how close a measure is to a constant multiple of the Lebesgue 
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measure of an n-plane. As one might expect, for n ∈ N, we have

βμ,n(Q)2 ≤ Cαμ,n(Q).

To see this, take an n-plane L that intersects 1
4BQ. Then the function

f(x) =
(dist(x, L)

ℓ(Q)

)2

ϕ3Q

is supported in 3BQ and has Lipschitz norm bounded by C
ℓ(Q) . This proves the desired 

inequality since ϕ3QϕQ = ϕQ.

2.4. The dyadic energies

Consider a dyadic lattice D. Then, for any finite measure μ we have the following two 

inequalities:

J (μ,Rd) ≤ C
∑

Q∈D
βμ(Q)2Dμ(Q)2Iμ(Q), (2.2)

and

W(μ,Rd) ≤ C
∑

Q∈D
Dμ(Q)2Iμ(Q). (2.3)

Both of these inequalities follow from integrating with respect to μ the pointwise 

inequalities, for s ∈ Z,

∞̂

0

βμ(B(x, r))2
(μ(B(x, r))

rs

)2 dr

r
≤ C

∑

Q∈D
βμ(Q)2Dμ(Q)2ϕQ(x),

and, for s ∈ (0, d),

∞̂

0

(μ(B(x, r))

rs

)2 dr

r
≤ C

∑

Q∈D
Dμ(Q)2ϕQ(x).

We shall just prove the first pointwise inequality (the second one is easier). Rewrite the 

left hand side as

∑

k∈Z

2k+1
ˆ

2k

[μ(B(x, r))

rs
inf

L∈Ps

1

rs

ˆ

B(x,r)

(dist(y, L)

r

)2

dμ(y)
]dr

r
. (2.4)
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For each x ∈ R
d and k ∈ Z, there is a cube Q ∈ D with ℓ(Q) = 2k+1 and x ∈ Q. Then, 

for r ∈ (2k, 2k+1), B(x, r) ⊂ B(xQ, 2
√

dℓ(Q)) and so, for an s-plane L,

1

rs

ˆ

B(x,r)

(dist(y, L)

r

)2

dμ(y) ≤ 2s+2 1

ℓ(Q)s

ˆ

Rd

ϕQ(y)
(dist(y, L)

ℓ(Q)

)2

dμ(y),

while also μ(B(x,r))
rs ≤ 2sDμ(Q), and ϕQ(x) = 1. Thus the sum (2.4) is dominated by a 

constant multiple of

∑

k∈Z

∑

Q∈D:ℓ(Q)=2k+1

βμ(Q)2Dμ(Q)2ϕQ(x).

2.5. Lattice stabilization

We say that a sequence of dyadic lattices D(k) stabilizes in a dyadic lattice D′ if every 

Q′ ∈ D′ lies in D(k) for sufficiently large k.

Lemma 2.2. Suppose D(k) is a sequence of dyadic lattices with Q0 ∈ D(k) for all k. Then 

there exists a subsequence of the dyadic lattices that stabilizes to some dyadic lattice D′.

The lemma is proved via a diagonal argument: For every n ≥ 0, there are 2nd ways to 

choose a dyadic cube of sidelength 2n so that (−1
2 , 12 )d is one of its dyadic descendants.

2.6. A basic density result

For an integer n, a set E is called n-rectifiable if it is contained, up to an exceptional set 

of Hn-measure zero, in the union of a countable number of images of Lipschitz mappings 

f : Rn �→ R
d. We shall require the following elementary density property of measures 

supported on rectifiable sets, whose proof may be found in Mattila [13].

Lemma 2.3. Suppose that μ is a measure supported on an n-rectifiable set. Then

lim inf
Q∋x, ℓ(Q)→0

Dμ,n(Q) > 0 for μ-almost every x ∈ R
d.

We shall actually only require this result when the support of μ is locally contained 

in a finite union of smooth n-surfaces.

2.7. The growth condition

Lemma 2.4. Fix s ∈ (0, d). If μ is a non-atomic measure for which the square function 

operator Sμ is bounded in L2(μ), then supQ∈D Dμ(Q) < ∞ for any lattice D.
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This lemma is well-known, and is essentially due to G. David. Since we could only 

locate a proof in the case of non-degenerate Calderón–Zygmund operators rather than 

the square function, we reproduce a sketch of David’s argument (Proposition 1.4 in 

Chapter 3 of [2]) in the context of the square function. We shall verify that there is a 

constant C > 0 such that for any cube Q ⊂ R
d, μ(Q) ≤ Cℓ(Q)s, from which the lemma 

certainly follows (see (2.1)).

The first step is to use the pigeonhole principle to verify the following:

Claim. For every integer A > 100, there exists C0 > 0, such that for any cube Q ⊂ R
d, 

there exists a sub-cube Q∗ ⊂ Q, with ℓ(Q∗) = ℓ(Q)/A, satisfying the property that

μ(Q∗) ≥
(

1 − C0

λ2

)
μ(Q), (2.5)

where λ = μ(Q)
ℓ(Q)s .

Set κ = 1
1000 . We first locate a cube Q′ ⊂ Q of side-length ℓ(Q′) = 2κA−1ℓ(Q)

satisfying3 μ(Q′) ≥ κ
dA−dμ(Q). If the claim fails to hold for a given C0 > 0, then one can 

find Q′′ ⊂ Q, with ℓ(Q′′) = κℓ(Q)
A , d(Q′′, Q′) ≥ ℓ(Q)

5A and satisfying μ(Q′′) ≥ C0

λ2

κ
dμ(Q)
Ad .

Notice that, if f = χQ′′ , then have Sμ(f)(x) ≥ c(A, κ)μ(Q′′)
ℓ(Q)s for x ∈ Q′. Squaring this 

bound and integrating over Q′ yields that

μ(Q′)μ(Q′′)2

ℓ(Q)2s
≤ C(A,κ)μ(Q′′), and hence

μ(Q′)μ(Q′′)

ℓ(Q)2s
≤ C(A,κ).

Plugging in the lower bounds on the measures of Q′ and Q′′ gives

C0μ(Q)2

λ2ℓ(Q)2s
≤ C(A,κ), and hence C0 ≤ C(A,κ).

But this is absurd if C0 was chosen large enough. The claim is proved.

Starting with any cube Q(0), we iterate the claim to find a sequence of cubes Q(j), 

j ≥ 0 with Q(j) ⊂ Q(j−1), ℓ(Q(j)) = ℓ(Q(j−1))/A, and, with λ(j) = μ(Q(j))
ℓ(Q(j))s ,

λ(j) ≥ As
(

1 − C0

(λ(j−1))2

)
λ(j−1).

Assuming λ(0) ≥ 1 is large enough in terms of C0, we infer by induction that λ(j) ≥
As/2λ(j−1) ≥ · · · ≥ Asj/2λ(0). Plugging this back into (2.5) yields that for every j

μ(Q(j)) ≥
j−1∏

ℓ=1

(
1 − C0

Asℓ/2(λ(0))2

)
μ(Q(0)).

3 The factor of 2 in the sidelength here is due to the fact that our cubes are open.
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Assuming λ(0) is large enough, we have that μ(Q(j)) ≥ 1
2μ(Q(0)) for every j ≥ 1, which 

implies that the non-atomic measure μ has an atom. Consequently, there is an absolute 

bound C > 0 for which λ(0) ≤ C. Since Q(0) was an arbitrary cube, we have proved the 

desired growth condition on the measure.

3. The basic scheme

3.1. Localization to square function constituents

Let us now suppose that μ is a measure for which the square function operator Sμ

is bounded in L2(μ). For a dyadic lattice D, notice that for each k ∈ Z, the balls 

{ABQ : Q ∈ D, ℓ(Q) = 2k} have overlap number at most CAd. Thus,

∑

Q∈D

ˆ

ABQ

Aℓ(Q)
ˆ

ℓ(Q)
A

∣∣∣
ˆ

Rd

x − y

ts+1
ϕ

( |x − y|
t

)
f(y)dμ(y)

∣∣∣
2 dt

t
dμ(x)

≤ C(A)‖Sμ‖2
L2(μ)→L2(μ)‖f‖2

L2(μ),

(3.1)

for every f ∈ L2(μ). Here C(A) = CAd log(A), as each t ∈ (0, ∞) can lie in at most 

C log(A) of the intervals [2k/A, 2kA], k ∈ Z. The precise form of C(A) is not important.

We shall term the quantity

SA
μ (Q) =

ˆ

ABQ

Aℓ(Q)
ˆ

ℓ(Q)
A

∣∣∣
ˆ

Rd

x − y

ts+1
ϕ

( |x − y|
t

)
dμ(y)

∣∣∣
2 dt

t
dμ(x), (3.2)

a square function constituent. Our aim is to verify the following theorems.

Theorem 3.1. If s /∈ Z, then there are constants C > 0 and A > 0 such that for any 

measure μ satisfying supQ∈D Dμ(Q) < ∞, we have

∑

Q∈D
Dμ(Q)2Iμ(Q) ≤ C

∑

Q∈D
SA

μ (Q). (3.3)

Theorem 3.2. If s ∈ Z, then there are constants C > 0 and A > 0 such that for any 

measure μ satisfying supQ∈D Dμ(Q) < ∞, we have

∑

Q∈D
βμ(Q)2Dμ(Q)2Iμ(Q) ≤ C

∑

Q∈D
SA

μ (Q). (3.4)

To see that Theorems 1.1 and 1.2 follow from Theorems 3.2 and 3.1 respectively, let 

us again assume that μ is a measure for which Sμ is bounded on L2(μ). Then from 
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Section 2.7 we see that the condition supQ∈D Dμ(Q) < ∞ holds. Fix a cube P ∈ D. By 

testing the inequality (3.1) against the function f = χP , we observe that the measure 

μ|P satisfies

∑

Q∈D
SA

μ|P
(Q) ≤ C(A)‖Sμ‖2

L2(μ)→L2(μ)μ(P )

for every A > 0. Now, from Theorems 3.2 and 3.1 applied to μ|P , we find that if s ∈ Z, 

then there is a constant C > 0 such that

∑

Q∈D
βμ|P

(Q)2Dμ|P
(Q)2Iμ|P

(Q) ≤ C‖Sμ‖2
L2(μ)→L2(μ)μ(P ), (3.5)

while, if s /∈ Z, then there is a constant C > 0 such that

∑

Q∈D
Dμ|P

(Q)2Iμ|P
(Q) ≤ C‖Sμ‖2

L2(μ)→L2(μ)μ(P ). (3.6)

Making reference to Section 2.4, we conclude that the energy conditions (1.8) and (1.7)

hold.

3.2. The general principle that we will use over and over again

Consider a rule Γ that associates to each measure μ a function

Γμ : D → [0, ∞).

General Principle. Fix A > 1 and Δ > 0. If we can verify the following statement:

for every measure μ and Q ∈ D, SA
μ (Q) ≥ ΔΓμ(Q)Iμ(Q), (3.7)

then we get that

∑

Q∈D
Γμ(Q)Iμ(Q) ≤ 1

Δ

∑

Q∈D
SA

μ (Q). (3.8)

Comparing (3.8) with (3.4) and (3.3), it is natural to attempt to verify (3.7) with the 

choice

Γμ(Q) =

{
βμ(Q)2Dμ(Q)2 for s ∈ Z,

Dμ(Q)2 for s /∈ Z.

Unfortunately this is not possible. As such, we shall use the general principle in a more 

convoluted way.
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The key to proving Theorems 3.2 and 3.1 is to first understand the properties of 

measures for which no non-zero square function constituent can be found in any cube. 

Following Mattila [13,14], we call such measures ϕ-symmetric.

4. The structure of ϕ-symmetric measures

A measure μ is called ϕ-symmetric if

ˆ

Rd

(x − y)ϕ
( |x − y|

t

)
dμ(y) = 0 for every x ∈ supp(μ) and t > 0.

We followed Mattila in the nomenclature: A measure is called symmetric if 
´

B(x,r)
(x − y)dμ(y) = 0 for every x ∈ supp(μ) and r > 0. Of course this is a closely 

related object to the ϕ-symmetric measure, and we will lean heavily on the theory of 

symmetric measures developed by Mattila [14] and Mattila–Preiss [15].

The reader may want to keep in mind the following example of a ϕ-symmetric measure: 

For a linear subspace V of dimension k ∈ {0, . . . , d}, a uniformly discrete set E with 

E ∩ V = {0} that is symmetric about each of its points (that is, if x ∈ E, and y ∈ E, 

then 2y −x ∈ E), and a non-negative symmetric function f on E (symmetry here means 

that if x, y ∈ E, then f(x) = f(2y − x)), form the measure

μ =
∑

x∈E

f(x)Hk|V +x.

Then μ is ϕ-symmetric. Provided that ϕ is reasonably ‘non-degenerate’, we expect that 

every ϕ-symmetric measure (with 0 ∈ supp(μ)) takes the above form, but we do not 

explore this too much here.

4.1. Doubling scales

Fix τ = 1000
√

d and a constant Cτ > τd to be chosen later. We shall call R > 0 a 

doubling scale, or doubling radius, if

Iμ(B(0, τR)) ≤ Cτ Iμ(B(0, R)).

For λ ∈ (0, ∞), we say that a measure has λ-power growth if

lim sup
R→∞

μ(B(0, R))

Rλ
< ∞. (4.1)

Lemma 4.1. Suppose that μ is a measure with λ-power growth for some λ ∈ (0, ∞). If 

Cτ > τλ, then for every R > 0, there is a doubling scale R′ > R.
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Proof. Since the statement is trivial if μ is the zero measure, we may assume that 

Iμ(B(0, R)) > 0. We consider radii of the form τkR, k ∈ N. If none of these radii are 

doubling, then for every k ∈ N we have

Iμ(B(0, τk+1R)) ≥ Cτ Iμ(B(0, τkR)) ≥ Ck
τ Iμ(B(0, τR))

≥ Ck
τ Iμ(B(0, R)).

But then as Cτ > τλ, we infer that

lim
k→∞

Iμ(B(0, τkR))

τkλ
= ∞,

which violates the growth condition (4.1). Thus, under this condition on Cτ , there exists 

some doubling scale R′ = τkR with k ≥ 1. ✷

4.2. Behaviour at infinity

We next prove a variation of a powerful perturbation result used by Mattila–Preiss 

[15].

Lemma 4.2 (The Mattila–Preiss formula). Let μ be a ϕ-symmetric measure. Suppose that 

0 ∈ supp(μ) and x ∈ supp(μ). Then, whenever R is a doubling radius with R > |x|,

sup
r∈[R,2R]

∣∣∣x +
1

Iμ(B(0, r))

ˆ

Rd

y

r
ϕ′

( |y|
r

)〈 y

|y| , x
〉

dμ(y)
∣∣∣ ≤ Cτ C|x|2

R
.

This formula does not appear precisely as stated in [15]. The formulation is rather close 

to that of Lemma 8.2 in [23], which in turn was strongly influenced by the techniques in 

[15].

Proof. Since ϕ ≡ 1 on [0, 1], the function ψ(x) = ϕ(|x|) lies in C∞
0 (B(0, 2)). Taylor’s 

theorem ensures that for each y ∈ R
d,

ϕ
( |x − y|

r

)
= ϕ

( |y|
r

)
− 1

r

〈
x,

y

|y|
〉

ϕ′
( |y|

r

)
+

Ex,r(y)

2
, (4.2)

where, for some z on the line segment between 0 and x,

Ex,r(y) =
1

r2

〈
x, D2ψ

(z − y

r

)
x

〉
.

Therefore, if r > |x|, then

|Ex,r(y)| ≤ C
|x|2
r2

χB(0,3r)(y) ≤ C
|x|2
r2

ϕ
( |y|

3r

)
.
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Now, since both x and 0 lie in supp(μ), we have

ˆ

Rd

(x − y)ϕ
( |x − y|

r

)
dμ(y) = 0,

and also 
´

Rd yϕ
( |y|

r

)
dμ(y) = 0. Whence, for r > |x|,

∣∣∣
ˆ

Rd

xϕ
( |y|

r

)
dμ(y) −

ˆ

Rd

(x − y)
1

r

〈 y

|y| , x
〉

ϕ′
( |y|

r

)
dμ(y)

∣∣∣

≤
ˆ

Rd

|x − y||Ex,r(y)|dμ(y) ≤ C
|x|2
r

Iμ(B(0, 3r)).

In conjunction with the straightforward estimate

ˆ

Rd

|x|
r

∣∣∣
〈 y

|y| , x
〉∣∣∣

∣∣∣ϕ′
( |y|

r

)∣∣∣dμ(y) ≤ C|x|2
r

μ(B(0, 2r)) ≤ C|x|2
r

Iμ(B(0, 3r)),

we infer that

∣∣∣xIμ(B(0, r)) +

ˆ

Rd

y

r
ϕ′

( |y|
r

)〈 y

|y| , x
〉

dμ(y)
∣∣∣ ≤ C|x|2

r
Iμ(B(0, 3r)). (4.3)

Finally, suppose r ∈ [R, 2R], with R > |x| a doubling radius. Then Iμ(B(0, 3r)) ≤
Iμ(B(0, τR)) ≤ Cτ Iμ(B(0, r)). Thus, after dividing both sides of (4.3) by Iμ(B(0, r)), 

we arrive at the desired inequality. ✷

A variant of this formula was used in [15] to derive a growth rate at infinity of a 

symmetric measure. We repeat their argument in the form of the following lemma, as 

we are working under different assumptions on the measure.

Lemma 4.3 (The growth lemma). Let μ be a ϕ-symmetric measure with 0 ∈ supp(μ). If 

x1, . . . , xk is a maximal linearly independent set in supp(μ), and R is a doubling radius 

with R > max(|x1|, . . . , |xk|), then

sup
r∈[R,2R]

∣∣∣k − r
d

dr Iμ(B(0, r))

Iμ(B(0, r))

∣∣∣ ≤ C(Cτ , x1, . . . , xk)

R
.

Proof. Consider the orthonormal basis v1, . . . , vk of V = span(supp(μ)) obtained via the 

Gram–Schmidt algorithm from x1, . . . , xk. By applying Lemma 4.2 to each element xj , 

and using the triangle inequality, we infer that, for every j = 1, . . . , k,
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sup
r∈[R,2R]

∣∣∣vj +
1

Iμ(B(0, r))

ˆ

Rd

y

r
ϕ′

( |y|
r

)〈 y

|y| , vj

〉
dμ(y)

∣∣∣ ≤ C(Cτ , x1, . . . , xk)

R
. (4.4)

But now observe that

sup
r∈[R,2R]

∣∣∣k +
k∑

j=1

1

Iμ(B(0, r))

ˆ

Rd

〈y, vj〉
r

ϕ′
( |y|

r

)〈 y

|y| , vj

〉
dμ(y)

∣∣∣

≤
k∑

j=1

sup
r∈[R,2R]

∣∣∣vj +
1

Iμ(B(0, r))

ˆ

Rd

y

r
ϕ′

( |y|
r

)〈 y

|y| , vj

〉
dμ(y)

∣∣∣

≤ C(Cτ , x1, . . . , xk)

R
.

(4.5)

Finally, notice that since v1, . . . , vk form an orthonormal basis of V , we have

k∑

j=1

ˆ

Rd

〈y, vj〉
r

ϕ′
( |y|

r

)〈 y

|y| , vj

〉
dμ(y) =

ˆ

Rd

|y|
r

ϕ′
( |y|

r

)
dμ(y)

= −r
d

dr
Iμ(B(0, r)),

and the lemma follows by inserting this identity into the left hand side of (4.5). ✷

Lemma 4.4 (Maximal growth at infinity). Let μ be a ϕ-symmetric measure with 0 ∈
supp(μ). Let V denote the linear span of supp(μ), and k = dim(V ). Then for any ε > 0,

lim inf
R→∞

Iμ(B(0, R))

Rk−ε
= +∞.

Proof. From Lemma 4.3, we may fix R0 > 0 such that if R ≥ R0 is a doubling scale, 

then

sup
r∈[R,2R]

∣∣∣k − r
d

dr Iμ(B(0, r))

Iμ(B(0, r))

∣∣∣ ≤ ε

2
, (4.6)

and so

d
dr Iμ(B(0, r))

Iμ(B(0, r))
≥ k − ε

2

r
for every r ∈ [R, 2R].

Integrating this inequality between R and 2R yields that

Iμ(B(0, 2R)) ≥ 2k− ε
2 Iμ(B(0, R)).
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We therefore infer the following alternative for any R ≥ R0: Either R is a non-doubling 

radius, in which case, since Cτ ≥ τd,

Iμ(B(0, τR)) ≥ Cτ Iμ(B(0, R)) ≥ τk− ε
2 Iμ(B(0, R)),

or, R is a doubling radius, in which case

Iμ(B(0, 2R)) ≥ 2k− ε
2 Iμ(B(0, R)).

Starting with R0, we repeatedly apply the alternative to obtain a sequence of radii 

Rj → ∞ with Rj equal to either 2Rj−1 or τRj−1, such that

Iμ(B(0, Rj)) ≥
(Rj

R0

)k− ε
2 Iμ(B(0, R0)).

Finally notice that for any R ≥ R0, there exists some Rj with R
τ ≤ Rj ≤ R, so

Iμ(B(0, R)) ≥ Iμ(B(0, Rj)) ≥
(Rj

R0

)k− ε
2 Iμ(B(0, R0))

≥ c
( R

R0

)k− ε
2 Iμ(B(0, R0)).

(4.7)

The lemma is proved. ✷

We shall need one additional corollary of the Mattila–Preiss formula. It is a direct 

analogue for symmetric measures of an influential result of Preiss (see Proposition 6.19 

in [4]), which states that if a uniform measure is sufficiently flat at arbitrarily large scales 

(has small enough coefficient βμ,n(Q) for all cubes Q of sufficiently large side-length), 

then the measure is flat (supported in an n-plane).

In the case of symmetric measures, this statement is much easier to achieve than 

for uniform measures due to the strength of the Mattila–Preiss formula.4 We give the 

statement in the contrapositive form as it will be convenient for our purposes.

Lemma 4.5 (Propagation of non-flatness to infinity). Let μ be a ϕ-symmetric measure 

with 0 ∈ supp(μ). Suppose that supp(μ) is not contained in an n-plane. There exists 

Rμ > 0 such that if R ≥ Rμ is a doubling scale, then

1

Iμ(B(0, R))
inf

L∈Pn

ˆ

Rd

(dist(x, L)

R

)2

ϕ
( |x|

2R

)
dμ(x) >

1

4Cτ ‖ϕ′‖2
∞

. (4.8)

4 It is not true, though, that every symmetric measure is a uniform measure.
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Proof of Lemma 4.5. Since 0 is the centre of mass of the measure ϕ
( ·

2R

)
dμ (μ is sym-

metric and 0 ∈ supp(μ)), we infer from Lemma 2.1 that it suffices to only consider linear 

subspaces L (instead of all affine subspaces) in the infimum appearing on the left hand 

side of (4.8).

Set V = span(supp(μ)). Then V has dimension k > n by the assumption of the 

lemma. Notice that if L is an n-dimensional linear subspace, then we have for every 

y ∈ V ,

dist(y, L) ≥ dist(y, LV ),

where LV denotes the orthogonal projection of L onto V .

Let v1, . . . , vk be an orthonormal basis of V . Then, using Lemma 4.2 in precisely the 

same manner as in the first paragraph of the proof of Lemma 4.3, we find Rμ > 0 large 

enough so that for each j = 1, . . . , k, and any doubling scale R ≥ Rμ,

∣∣∣vj +
1

RIμ(B(0, R))

ˆ

Rd

y

|y|ϕ
′
( |y|

R

)〈
y, vj

〉
dμ(y)

∣∣∣ <
1

2k
. (4.9)

We can find a non-zero vector x =
∑k

j=1 djvj so that x ⊥ LV . Of course, |x|2 =
∑k

j=1 |dj |2 and so |dj | ≤ |x| for every j. Thus,

∣∣∣x+
1

RIμ(B(0, R))

ˆ

Rd

y

|y|ϕ
′
( |y|

R

)
〈y, x〉dμ(y)

∣∣∣

≤
k∑

j=1

|dj |
∣∣∣vj +

1

RIμ(B(0, R))

ˆ

Rd

y

|y|ϕ
′
( |y|

R

)
〈y, vj〉dμ(y)

∣∣∣

≤
k∑

j=1

|dj | 1

2k
≤ |x|

2
.

Consequently, we see that for any doubling scale R > R0,

1

2
<

∣∣∣ 1

Iμ(B(0, R))

ˆ

B(0,2R)

y

|y|ϕ
′
( |y|

R

)〈
y, x

|x|
〉

R
dμ(y)

∣∣∣, (4.10)

(here we have just used that ϕ is supported in B(0, 2R)). Now notice that, since x ⊥ LV , 

|
〈
y, x

|x|
〉
| ≤ dist(y, LV ). Therefore, applying the Cauchy–Schwarz inequality to the right 

hand side of (4.10), we get that

1

2
≤ ‖ϕ′‖∞

√
μ(B(0, 2R))

Iμ(B(0, R))

( ˆ

B(0,2R)

(dist(y, LV )

R

)2

dμ(y)
)1/2

.
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The lemma now follows from the facts that R is a doubling radius, and ϕ
( |y|

2R

)
= 1 for 

y ∈ B(0, 2R) so Iμ(B(0, R)) ≥ μ(B(0, 2R)). ✷

4.3. Flat ϕ-symmetric measures

We now look at the behaviour of a ϕ-symmetric measure that is supported in an 

n-plane. Suppose that μ is a ϕ-symmetric measure with power growth (i.e. satisfies (4.1)

for some λ > 0). Then, of course,

ˆ

Rd

(x − y)
[
ϕ

( |x − y|
t

)
− ϕ

(2|x − y|
t

)]
dμ(y) = 0 for x ∈ supp(μ), t > 0.

Notice that the function t �→
[
ϕ

(
1
t

)
− ϕ

(
2
t

)]
is supported in [1/2, 2]. Consequently, if we 

take any bounded function g : (0, ∞) → R that decays faster than any power at infinity, 

then for x ∈ supp(μ),

0 =

∞̂

0

g(t)

ˆ

Rd

(x − y)
[
ϕ

( |x − y|
t

)
− ϕ

(2|x − y|
t

)]
dμ(y)

dt

t

=

ˆ

Rd

(x − y)

∞̂

0

g(|x − y|t)
[
ϕ

(1

t

)
− ϕ

(2

t

)]dt

t
dμ(y).

We shall use this idea to show that the support of a ϕ-symmetric measure is contained 

in the zero set of a real analytic function. As usual, this idea goes back to Mattila [14].

Lemma 4.6. Suppose that μ is a ϕ-symmetric measure with power growth, and supp(μ) ⊂
L for some n-plane L. Then either μ = cLHn|L for some cL > 0, or supp(μ) is (n − 1)-

rectifiable.

Proof. After applying a suitable affine transformation, we may assume that 0 ∈ supp(μ)

and L = R
n × {0}, 0 ∈ R

d−n.

For z ∈ C
n, set

w(z) =

∞̂

0

e−πz2t2
[
ϕ

(1

t

)
− ϕ

(2

t

)]dt

t
,

where z2 = z2
1 + · · ·+z2

n. Since the domain of integration may be restricted to [1/2, 2], we 

see that w is an entire function on Cn. Consider the function v : Cn → C
n given by v(z) =

zw(z). Then v is an entire vector field. Notice that, with v̂(ξ) =
´

Rn v(x)e−2πi〈x,ξ〉dmn(ξ), 

ξ ∈ R
n, the Fourier transform of v in Rn, we have
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v̂(ξ) = c∇ŵ(ξ) = c∇
∞̂

0

1

tn
e−π|ξ|2/t2

[
ϕ

(1

t

)
− ϕ

(2

t

)]dt

t

= cξ

∞̂

0

1

tn+2
e−π|ξ|2/t2

[
ϕ

(1

t

)
− ϕ

(2

t

)]dt

t
.

(4.11)

The only thing we need from this formula is that v̂ is only zero when ξ = 0.

Since μ has power growth, and the entire function v satisfies a straightforward decay 

estimate |v(x + iy)| ≤ (1 + |y|)eπ|y|2

(1 + |x|)e−π|x|2

for x, y ∈ R
n, we infer that the 

function

u(x) =

ˆ

Rn

v(x − y)dμ(y), x ∈ R
n,

is a real analytic function on Rn, and supp(μ) ⊂ u−1({0}) (recall that μ is symmetric). 

First suppose that u is identically zero in Rn. Then since μ is a tempered distribution,5

we have that

û = cv̂ · μ̂ ≡ 0.

Since v̂ is only zero at the origin, we see that supp(μ̂) ⊂ {0}. This can only happen if μ

has a polynomial density with respect to mn, μ = Pmn. Since the function 
´

Rn P ( · −
y)v(y)dmn(y) is identically zero on Rn, we have that 

´

Rn DαP (x − y)v(y)dmn(y) = 0

for any x ∈ R
n and multi-index α = (α1, . . . , αn). But then if the polynomial P is non-

constant, we can, with a suitable differentiation, find a non-constant affine polynomial 

〈a, x〉 + b, a ∈ R
n and b ∈ R, such that

ˆ

Rn

[〈a, (x − y)〉 + b]v(y)dmn(y) = 0 for every x ∈ R
n.

Since 
´

Rn v(y)dmn(y) =
´

Rn yw(y)dmn(y) = 0, evaluating this expression at x = 0, and 

taking the scalar product with a yields

ˆ

Rn

〈a, y〉2w(y)dmn(y) = 0,

which is preposterous. Consequently, μ is equal to a constant multiple of the Lebesgue 

measure mn.

If u is not identically zero, then since u is analytic,

R
n =

⋃

α multi-index

{x ∈ R
n : Dαu(x) �= 0},

5 The power growth assumption is again used here.
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and therefore

supp(μ) ⊂ u−1({0}) ∩
⋃

α multi-index

{x ∈ R
n : Dαu(x) �= 0}

=
⋃

α multi-index

{
x ∈ R

n : Dαu(x) �= 0, Dβu(x) = 0 for every β < α
}

.

The implicit function theorem ensures that each set in the union on the right hand side 

is locally contained in a smooth (n − 1)-surface. ✷

4.4. A structure theorem

Here we summarize the results of this section in a form useful for what follows.

Proposition 4.7. Suppose that μ is a ϕ-symmetric measure satisfying BQ0
∩supp(μ) �= ∅, 

and such that

lim sup
R→∞

μ(B(0, R))

Rλ
< ∞ for some λ > 0.

Then

(1) If supp(μ) is not contained in any n-plane, then

– for any ε > 0 and every T > 1, there exists ℓ > 0 such that if Q is a cube 

satisfying ℓ(Q) ≥ ℓ and 1
2BQ ⊃ BQ0

, then Dμ,n+1−ε(Q) > T .

– there exists a constant c⋆ > 0, depending on s, d, λ, and ‖ϕ′‖∞, such that when-

ever D is a dyadic lattice and ℓ > 0, there exists Q′ ∈ D with ℓ(Q′) ≥ ℓ satisfying 
1
2BQ′ ⊃ BQ0

and

βμ,n(Q′) ≥ c⋆.

(2) If supp(μ) ⊂ L for some n-plane L, then either μ = cHn|L or supp(μ) is 

(n − 1)-rectifiable.

Proof. First assume that supp(μ) is not contained in any n-plane. Fix some point x0 ∈
supp(μ) ∩Q0. To prove the first property listed in item (1), observe that from Lemma 4.4

applied to the ϕ-symmetric measure μx0
= μ( · +x0) it follows that limR→∞

Iμ(B(x0,R))
Rn+1−ε =

∞. But if 1
2BQ ⊃ BQ0

, then B(xQ, 2
√

dℓ(Q)) contains a ball B(x0, R) with R comparable 

to ℓ(Q). Then Dμ,n+1−ε(Q) ≥ c
Iμ(B(x0,R))

Rn+1−ε , and the first statement listed in item (1) 

follows.

To derive the second property listed in item (1), apply Lemma 4.1 to the ϕ-symmetric 

measure μx0
= μ( · + x0) to infer that, provided Cτ > τλ (we fix Cτ to be of this order 

of magnitude), the measure μx0
has a sequence of doubling scales Rj with Rj → ∞. 

Lemma 4.5 yields that if j is large enough, then
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1

Iμ(B(x0, Rj))
inf

L∈Pn

ˆ

B(x0,4Rj)

(dist(x, L)

Rj

)2

ϕ
( |x − x0|

2Rj

)
dμ(x) ≥ c,

for some constant c > 0 depending on s, d, λ, and ‖ϕ′‖∞.

Now, for any given lattice D, choose a cube Q intersecting B(x0, Rj) of side-length 

between 4Rj and 8Rj . For large enough j, we certainly have that 1
2BQ ⊃ BQ0

. Also notice 

that B(x0, 4Rj) ⊂ B(xQ, 2
√

dℓ(Q)) ⊂ {ϕQ = 1} ⊂ supp(ϕQ) ⊂ B(xQ, 4
√

dℓ(Q)) ⊂
B(x0, τRj). Consequently, for any n-plane L,

ˆ

B(x0,4Rj)

(dist(x, L)

Rj

)2

ϕ
( |x − x0|

2Rj

)
dμ(x)

≤ C

ˆ

BQ

(dist(x, L)

ℓ(Q)

)2

ϕQ(x)dμ(x),

while Iμ(Q) ≤ Cτ Iμ(B(x0, Rj)). Bringing these observations together proves the second 

statement listed in item (1).

Item (2) is merely a restatement of Lemma 4.6. ✷

5. The rudiments of weak convergence

We say that a sequence of measures μk converges weakly to a measure μ, written 

μk ⇀ μ, if

lim
k→∞

ˆ

Rd

fdμk =

ˆ

Rd

fdμ,

for every f ∈ C0(Rd) (the space of continuous functions on Rd with compact support).

5.1. A general convergence result

Our first result is a simple convergence lemma that we shall use in blow-up argu-

ments.

Lemma 5.1. Suppose that νk ⇀ ν. Fix ψ ∈ Lip(Rd × R
d), and a sequence of functions 

ψk ∈ Lip(Rd × R
d) such that

• ψk converge uniformly to ψ,

• there exists R > 0 such that supp(ψk(x, ·)) ⊂ B(x, R) for every x ∈ R
d and k ∈ N, 

and

• supk ‖ψk‖Lip < ∞.
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Then, for any bounded open set U ⊂ R
d,

lim inf
k→∞

ˆ

U

∣∣∣
ˆ

Rd

ψk(x, y)dνk(y)
∣∣∣
2

dνk(x)

≥
ˆ

U

∣∣∣
ˆ

Rd

ψ(x, y)dν(y)
∣∣∣
2

dν(x).

Proof. Choose M such that U ⊂ B(0, M). Notice that the function

fk(x) =

ˆ

Rd

ψk(x, y)dνk(y)

has both its modulus of continuity and supremum norm on the set B(0, M) bounded in 

terms of M , R, supk ‖ψk‖Lip and supk νk(B(0, R + M)). Consequently, the functions fk

converge uniformly to the function f(x) =
´

Rd ψ(x, y)dν(y) on B(0, M). But now, for 

g ∈ C0(B(0, M)), the sequence g|fk|2 converges to g|f |2 uniformly, and so from the weak 

convergence of νk to ν we conclude that

lim
k→∞

ˆ

Rd

g|fk|2dνk =

ˆ

Rd

g|f |2dν.

The desired lower semi-continuity property readily follows by choosing for g an increasing 

sequence of functions in Lip0(B(0, M)) that converges to χU pointwise. ✷

Lemma 5.2. Suppose that μk is a sequence of measures satisfying

(1) Iμk
(Q0) ≥ 1,

(2) supk μk(B(0, R)) < ∞ for every R > 0,

(3) Sk
μk

(Q0) ≤ 1
k .

Then there is a subsequence of the measures that converges weakly to a ϕ-symmetric 

measure μ satisfying Iμ(Q0) ≥ 1.

The reader should compare item (3) in the assumptions of the lemma with the display 

(3.7). This lemma will be used to argue by contradiction that (3.7) holds for certain 

choices of function Γ.

Proof. Using the condition (2) we pass to a subsequence of the measures that converges 

weakly to a measure μ. It is immediate from (1) that Iμ(Q0) ≥ 1. To complete the proof 

it remains to demonstrate that μ is ϕ-symmetric, that this,
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ˆ

Rd

(x − y)ϕ
( |x − y|

t

)
dμ(y) = 0 for every x ∈ supp(μ) and t > 0. (5.1)

To this end, fix M > 0 and t > 0. We apply Lemma 5.1 with νk = μk, ν = μ, and 

ψk(x, y) = (x − y)ϕ
( |x−y|

t

)
. This yields that

ˆ

B(0,M)

∣∣∣
ˆ

Rd

(x − y)ϕ
( |x − y|

t

)
dμ(y)

∣∣∣
2

dμ(x)

≤ lim inf
k→∞

ˆ

B(0,M)

∣∣∣
ˆ

Rd

(x − y)ϕ
( |x − y|

t

)
dμk(y)

∣∣∣
2

dμk(x).

After dividing both sides by 1
t2(s+1) , integrating this inequality over ( 1

M , M) with respect 

to dt
t and applying Fatou’s lemma we get

ˆ

B(0,M)

M̂

1
M

∣∣∣
ˆ

Rd

x − y

ts+1
ϕ

( |x − y|
t

)
dμ(y)

∣∣∣
2 dt

t
dμ(x) ≤ lim inf

k
SM

μk,ϕ(Q0),

and the right hand side is equal to 0 because of the condition (3) (just note that 

SM
μk,ϕ(Q0) ≤ Sk

μk,ϕ(Q0) for k > M). Since M was chosen arbitrarily, and certainly the 

function x �→
´

Rd(x − y)ϕ
( |x−y|

t

)
dμ(y) is continuous, we conclude that (5.1) holds. ✷

5.2. Geometric properties of measures and weak convergence

In blow-up arguments, we shall often consider a sequence of measures with a weak 

limit that is ϕ-symmetric. The lemmas of this section will allow us to extract information 

about the eventual behaviour of the sequence of measures from our knowledge of the limit 

measure.

Lemma 5.3. Suppose μk ⇀ μ, and Q is a cube with Iμ(Q) > 0. Then for any n > 0,

• limk→∞ Dμk,n(Q) = Dμ,n(Q), while, for n ∈ Z,

• βμ,n(Q) = limk→∞ βμk,n(Q), and,

• αμ,n(Q) = limk→∞ αμk,n(Q).

Proof. The first item of course follows immediately from the definition of weak conver-

gence. For the convergence of the β-coefficients, observe that for any finite subset P̃ ′ of 

the family P̃ of n-planes that intersect BQ, we have

lim
k→∞

min
L∈P̃′

ˆ

BQ

ϕQ dist(x, L)2dμk(x) = min
L∈P̃′

ˆ

BQ

ϕQ dist(x, L)2dμ(x).
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From this, the convergence of the β-coefficients follows from observing that the collection 

of functions ϕQ dist( · , L)2, L ∈ P̃, is a relatively compact set in C(BQ); and every plane 

which contains the centre of mass of any of the measures ϕQμk or ϕQμ must also intersect 

BQ (since BQ is a convex set containing supp(ϕQ)).

We argue similarly in the case of the α numbers: In this case we observe that

• PQ = {L ∩ BQ : L ∈ Pn, L ∩ 1
4BQ �= ∅} is relatively compact in the Hausdorff 

metric, while, for any constant K > 0,

• F = {f ∈ Lip0(3BQ) : ‖f‖Lip ≤ 1
ℓ(Q)} is a relatively compact subset in C0(Rd)

equipped with uniform norm.

For any finite subsets P ′
Q ⊂ PQ, F ′ ⊂ F , we have

lim
k→∞

max
f∈F ′

min
L∈P′

Q

ˆ

BQ

ϕQf(x)d(μk − ϑμk,LHn|L)(x)

= max
f∈F ′

min
L∈P′

Q

ˆ

BQ

ϕQf(x)d(μ − ϑμ,LHn|L)(x).

To complete the proof, just notice that for every f ∈ F , the function

L ∩ BQ �→
ˆ

Rd

fϕQdHn|L

is continuous in the Hausdorff metric with a modulus of continuity bounded in terms of 

‖ϕQ‖Lip, and ℓ(Q), while the functionals

f �→
ˆ

Rd

ϕQfdμk, and f �→
ˆ

Rd

ϕQfdμ

are continuous in the uniform norm with moduli of continuity bounded independently 

of k. Since the numbers ϑμk,L are uniformly bounded over k and L ∩ BQ ∈ PQ, the 

convergence of the α-coefficients follows. ✷

The next result is a clear consequence of Lemma 5.3 (and also Section 2.5), but it will 

be useful to state it explicitly.

Corollary 5.4. Suppose that μk ⇀ μ. Fix a sequence of lattices D(k) that stabilize in a 

lattice D′, n ∈ Z ∩ (0, d), and m ∈ (0, d). If, for a cube Q′ ∈ D′, we have βμ,n(Q′) > β

and Dμ,m(Q′) > T , then for all sufficiently large k, we have

Q′ ∈ D(k), βμk,n(Q′) > β and Dμk,m(Q′) > T.
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Lemma 5.5. Fix n ∈ N, n < d. Suppose that μk ⇀ μ, for some measure μ with Iμ(Q0) = 1

for which supp(μ) is n-rectifiable. Fix a sequence of lattices D(k), all containing Q0, that 

stabilize in a lattice D′. For any δ ∈ (0, 1) and κ > 0, we can find a finite collection of 

cubes Qj such that

(1) ℓ(Qj) ≤ κ,

(2) 3BQj
are disjoint, and 3BQj

⊂ 3BQ0
,

and, for all sufficiently large6 k,

(3) Qj ∈ D(k),

(4) Dμk,n+δ(Q′) ≤
(ℓ(Qj)

ℓ(Q′)

)δ/2

Dμk,n+δ(Qj) for every Q′ ∈ D(k) satisfying BQj
⊂ BQ′ ⊂

300BQ0
,

(5)
∑

j Iμk
(Qj) ≥ 1

C Iμk
(Q0).

Proof. From Lemma 2.3 we infer that, for any δ′ ∈ (0, δ/2)

lim
Q′∈D′,x∈Q′

ℓ(Q′)→0

Dμ,n+δ′(Q′) = ∞ for μ-a.e. x ∈ supp(μ).

Fix T > 0. Consider the maximal (by inclusion of the associated balls BQ′) cubes Q′ ∈ D′

with BQ′ ⊂ 300BQ0
that intersect BQ0

and satisfy Dμ,n+δ′(Q′) > T . If T is sufficiently 

large then ℓ(Q′) ≤ κ, and certainly 3BQ′ ⊂ 3BQ0
, and so property (1), along with the 

second assertion in property (2), hold for the maximal cubes Q′.

For each maximal cube Q′ we have that

Dμ,n+δ(Q′′) ≤ 2−(δ−δ′)[Q′′:Q′]Dμ,n+δ(Q′) (5.2)

for every Q′′ ∈ D′ satisfying

BQ′ ⊂ BQ′′ ⊂ 300BQ0
and BQ′′ ∩ BQ0

�= ∅. (5.3)

As there are only finitely many Q′′ satisfying (5.3), we have that for large enough k

(possibly depending on Q′)

Dμk,n+δ(Q′′) ≤ 2− δ
2 [Q′′:Q′]Dμk,n+δ(Q′)

for every Q′′ ∈ D′ satisfying (5.3).
(5.4)

6 This largeness threshold is purely qualitative. It may depend on κ, but also on the density properties 
of μ, and the rate at which the lattices D(k) stabilize.
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Now take a finite subcollection G of the maximal cubes with the property that ∑
Q′∈G Iμ(Q′) > 1

2Iμ(Q0) = 1
2 (μ-almost every point in BQ0

is contained in a maxi-

mal cube).

If k is sufficiently large, then every cube Q′ in the finite collection G satisfies (5.4). 

Moreover, since the lattices D(k) stabilize, we infer that if k is large enough, then every 

Q′ ∈ G and every Q′′ ∈ D′ satisfying (5.3) lies in D(k). It follows that properties (3) and 

(4) hold for every cube in G if k is large enough.

Finally, using the Vitali covering lemma we choose a pairwise disjoint sub-collection 

{3BQ′
j
}j of the collection of balls {3BQ′ : Q′ ∈ G} such that 

⋃
j 15BQ′

j
⊃ ⋃

Q′∈G 3BQ′ . 

From (5.2) we derive that μ(15BQ′
j
) ≤ CIμ(Q′

j). Whence

1

2
<

∑

j

μ(15BQj
) ≤ C

∑

j

Iμ(Q′
j).

Thus, as long as k is large enough, we have that 
∑

j Iμk
(Q′

j) ≥ 1
C . Consequently, the 

collection of cubes (Q′
j)j satisfies all of the desired properties. ✷

6. Domination from below

Fix n = ⌈s⌉ − 1.

We introduce two parameters, ε ∈ (0, 1) and δ ∈ (0, 1), satisfying

n + 2δ + ε < s, and s + 2ε < ⌊s⌋ + 1.

6.1. Domination from below

We introduce a filter on a dyadic lattice D from [9] called domination from below. Fix 

a measure μ, and subsets G, G′ ⊂ D.

Definition 6.1. We say that Q ∈ G is dominated from below by a (finite) bunch of cubes

Qj ∈ G′ if the following conditions hold:

(1) Dμ(Qj) > 2ε[Q:Qj ]Dμ(Q),

(2) 3BQj
are disjoint,

(3) 3BQj
⊂ 3BQ,

(4)
∑

j

Dμ(Qj)22−2ε[Q:Qj ]Iμ(Qj) > Dμ(Q)2Iμ(Q).

We set Gdown(G′) to be the set of all cubes Q in G that cannot be dominated from below 

by a bunch of cubes in G′ (except for the trivial bunch consisting of Q itself in the case 

when Q ∈ G ∩ G′). If G′ = G, then we just write Gdown instead of Gdown(G).
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Lemma 6.2. Suppose that supQ∈G Dμ(Q) < ∞. Then there exists c(ε) > 0 such that

∑

Q∈Gdown

Dμ(Q)2Iμ(Q) ≥ c(ε)
∑

Q∈G
Dμ(Q)2Iμ(Q).

Proof. We start with a simple claim.

Claim. Every Q ∈ G with Iμ(Q) > 0 is dominated from below by a bunch of cubes PQ,j

in Gdown.

To prove the claim we make two observations. The first is transitivity: if the bunch 

Q1, . . . , QN dominates Q′ ∈ G from below, and if (say) Q1 is itself dominated from below 

by a bunch P1, . . . , PN ′ , then the bunch P1, . . . , PN ′ , Q2, . . . , QN dominates Q′. The 

second observation is that there are only finitely many cubes Q′ that can participate in 

a dominating bunch for Q: Indeed, each such cube Q′ satisfies Dμ(Q′) ≥ 2ε[Q:Q′]Dμ(Q), 

and so

[Q : Q′] ≤ 1

ε
log2

( supQ′′∈G Dμ(Q′′)

Dμ(Q)

)
.

With these two observations in hand, we define a partial ordering on the finite bunches 

of cubes (Qj)j that dominate Q from below: For two different dominating bunches (Q
(1)
j )j

and (Q
(2)
j )j , we say that (Q

(1)
j )j ≺ (Q

(2)
j )j if for each ball 3B

Q
(1)
j

, we have 3B
Q

(1)
j

⊂
3B

Q
(2)
k

for some k. Since there are only finitely many cubes that can participate in a 

dominating bunch, there may be only finitely many different dominating bunches of Q, 

and hence there is a minimal (according to the partial order ≺) dominating bunch 

(PQ,j)j . Each cube PQ,j must lie in Gdown.

Now write

∑

Q∈G
Dμ(Q)2Iμ(Q) ≤

∑

Q∈G

∑

j

Dμ(PQ,j)2Iμ(PQ,j)2−2ε[Q:PQ,j ]

≤
∑

P ∈Gdown

Dμ(P )2Iμ(P )
[ ∑

Q:3BQ⊃3BP

2−2ε[Q:P ]
]
.

The inner sum does not exceed C
ε , and the lemma follows. ✷

Lemma 6.3. There exists c(ε) > 0 such that

∑

Q∈G\Gdown(G′)

Dμ(Q)2Iμ(Q) ≤ C(ε)
∑

Q∈G′

Dμ(Q)2Iμ(Q).

Proof. For each Q ∈ G\Gdown(G′), just pick a bunch of cubes PQ,j in G′ that dominates 

Q from below. Then we merely repeat the final calculation of the previous proof:
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∑

Q∈G\Gdown(G′)

Dμ(Q)2Iμ(Q)

≤
∑

Q∈G\Gdown(G′)

∑

j

Dμ(PQ,j)2Iμ(PQ,j)2−2ε[Q:PQ,j ]

≤
∑

P ∈G′

Dμ(P )2Iμ(P )
[ ∑

Q∈D:3BQ⊃3BP

2−2ε[Q:P ]
]
,

and the lemma follows. ✷

The domination from below filter is used in what follows to preclude the possibility 

that the support of a measure in a cube Q ∈ Gdown concentrates on a set of dimension 

smaller than s. In particular, we shall use the following lemma:

Lemma 6.4. Suppose that μk ⇀ μ, where Iμ(Q0) = 1 and supp(μ) is n-rectifiable (recall 

that n = ⌈s⌉ − 1). Fix a sequence of lattices D(k), all containing Q0, that stabilize in a 

lattice D′. Provided that κ > 0 is chosen sufficiently small, for all sufficiently large k, 

the bunch of cubes Qj constructed in Lemma 5.5 dominates Q0 from below in the sense 

of properties (1)–(4) of Definition 6.1.

Proof. First notice that, by property (4) of the conclusion of Lemma 5.5, we have that 

Dμk,n+δ(Qj) ≥ Dμk,n+δ(Q0), and so

Dμk
(Qj) = 2(s−n−δ)[Q0:Qj ]Dμk,n+δ(Qj)

≥ 2(s−n−δ)[Q0:Qj ]Dμk,n+δ(Q0)

= 2(s−n−δ)[Q0:Qj ]Dμk
(Q0),

(6.1)

as long as k is large enough. Therefore property (1) of Definition 6.1 is satisfied, as 

s − n − δ > ε. Since properties (2) and (3) of Definition 6.1 clearly hold, it remains to 

verify that

∑

j

Dμk
(Qj)22−2ε[Q0:Qj ]Iμk

(Qj) > Dμk
(Q0)2Iμk

(Q0).

Since Dμ(Q0) = 1, we have Dμk
(Q0) ≥ 1

2 for large k and hence from (6.1) we derive that

∑

j

Dμk
(Qj)2e−2ε[Q0:Qj ]Iμk

(Qj)

≥ 1

4
min

j
22(s−n−δ−ε)[Q0:Qj ]

∑

j

Iμk
(Qj).

Using properties (1) and (5) in the conclusion of Lemma 5.5, the right hand side here is 

clearly at least
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1

C
min

j
22(s−n−δ−ε)[Q0:Qj ]Iμk

(Q0) ≥ 1

C
κ

−2(s−n−δ−ε)Iμk
(Q0)

since δ < s − n − ε. But the right hand side here is larger than Iμk
(Q0) provided that κ

is small enough. ✷

7. Cubes with lower-dimensional density control are sparse

Recall that n = ⌈s⌉ − 1. Fix a measure μ. For M ∈ N, consider the set DM (μ) of 

cubes Q ∈ D such that

Dμ,n+δ(Q′) ≤ Dμ,n+δ(Q)

whenever Q′ ∈ D satisfies BQ′ ⊃ BQ and [Q′ : Q] ≤ M .

The aim of this section is to prove the following result:

Proposition 7.1. There exist M ∈ N, A > 0 and C > 0 such that if μ is a finite measure 

satisfying supQ∈D Dμ(Q) < ∞, then

∑

Q∈DM (μ)

Dμ(Q)2Iμ(Q) ≤ C
∑

Q∈D
SA

μ (Q).

To prove Proposition 7.1, we shall use the domination from below filter with the 

subsets G = G′ = DM (μ). Write DM,down(μ) for the set of cubes in DM(μ) that cannot 

be dominated from below. Lemma 6.2 yields that,

∑

Q∈DM,down(μ)

Dμ(Q)2Iμ(Q) ≥ c(ε)
∑

Q∈DM (μ)

Dμ(Q)2Iμ(Q).

Consequently, referring to the general principle of Section 3.2, we find that in order to 

prove Proposition 7.1, we need to verify (3.7) with

Γμ(Q) =

{
Dμ(Q)2 if Q ∈ DM,down(μ),

0 otherwise.

We formulate this precisely as the following lemma:

Lemma 7.2. There exist A > 0, Δ > 0 and M ∈ N such that for every measure μ and 

every cube Q ∈ DM,down(μ), we have

SA
μ (Q) ≥ ΔDμ(Q)2Iμ(Q).

Proof. If the result fails to hold, then for every k ∈ N, we can find a measure μ̃k and a 

cube Qk ∈ Dk,down(μ̃k) such that
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Sk
μ̃k

(Qk) ≤ 1

k
Dμ̃k

(Qk)2Iμ̃k
(Qk).

Consider the measure μk =
μ̃k(LQk

( · ))

Iμ̃k
(Qk) . Then Dμk

(Q0) = Iμk
(Q0) = 1. The preimage 

of the lattice D under the affine map LQk
is some lattice D(k) with Q0 ∈ D(k). Of course, 

we have that Q0 ∈ D(k)
k,down(μk). In addition

Dμk,n+δ(Q′) ≤ 1 if Q′ ∈ D(k), BQ′ ⊃ BQ0
, [Q′ : Q0] ≤ k. (7.1)

It readily follows from this that for every R > 0, supk μk(B(0, R)) < ∞. In addition, we 

have that Sk
μk

(Q0) ≤ 1
k . As such, we may apply Lemma 5.2 and conclude that, passing to 

a subsequence if necessary, the sequence μk converges weakly to a ϕ-symmetric measure 

ν with Iν(Q0) = 1. With the passage to a further subsequence, we may assume that the 

lattices D(k) (which all contain Q0) stabilize in a lattice D′ (see Section 2.5). Then from 

(7.1) we see that

Dν,n+δ(Q′) ≤ Dν,n+δ(Q0) for every Q′ ∈ D′ such that BQ′ ⊃ BQ0
.

From this property, we infer from Proposition 4.7 that supp(ν) has to be contained in an 

n-plane and is therefore n-rectifiable (ν has insufficient growth at infinity for the other 

possibilities in Proposition 4.7 to hold).

Consequently all the hypotheses of Lemma 5.5 are satisfied, and so we may consider the 

finite collection of cubes Qj constructed there, which may have side-length smaller than 

any prescribed threshold κ > 0. Lemma 6.4 ensures that the bunch of cubes Qj dominate 

Q0 from below as long as κ is small enough. Therefore, given that Q0 ∈ D(k)
k,down(μk), 

we will have reached our desired contradiction once we verify the following:

Claim. Provided that κ is small enough, and k is sufficiently large, each cube Qj lies in 

D(k)
k(μk).

To see this, notice that, for a cube Q′′ with BQ′′ ⊃ BQj
and ℓ(Q′′) ≤ 2kℓ(Qj), 

it can only happen that property (4) of Lemma 5.5 does not immediately show that 

Dμk,n+δ(Q′′) ≤ Dμk,n+δ(Qj) in the case when BQ′′ is not contained in 300BQ0
. But 

then since BQj
∩ BQ0

�= ∅, the cube Q′′ has big side-length (certainly at least 30ℓ(Q0)). 

It follows that the grandparent of Q′′, say Q̃′′, must satisfy BQ̃′′ ⊃ BQ0
, while certainly 

[Q̃′′ : Q0] ≤ k if κ is small enough. But now we derive that

Dμk,n+δ(Q′′) ≤ CDμk,n+δ(Q̃′′)
(7.1)

≤ CDμk,n+δ(Q0)

Lemma 5.5, (4)

≤ Cℓ(Qj)δ/2Dμk,n+δ(Qj) ≤ Dμk,n+δ(Qj)

as long as Cκ
δ/2 < 1. The claim follows. ✷
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8. Domination from above and the proof of Theorem 1.1

Consider a lattice D, and a non-negative function Υ : D → [0, ∞).

8.1. Domination from above

We say that Q′ ∈ D dominates Q ∈ D from above if 1
2BQ′ ⊃ BQ and

Υ(Q′) > 2ε[Q′:Q]Υ(Q)

We let Dup denote the set of cubes Q ∈ D that are not dominated from above by a cube 

in D.

Lemma 8.1. If supQ∈D Υ(Q) < ∞, then

∑

Q∈Dup

Υ(Q)2Iμ(Q) ≥ c(ε)
∑

Q∈D
Υ(Q)2Iμ(Q).

Proof. We first claim that every Q ∈ D\Dup with Υ(Q) > 0 can be dominated from 

above by a cube Q̃ ∈ Dup.

Indeed, note that if Q′ dominates Q from above, then certainly

[Q′ : Q] ≤ 1

ε
log2

( supQ′′∈D Υ(Q′′)

Υ(Q)

)
,

or else we would have that Υ(Q′) > supQ′′∈D Υ(Q′′) (which is absurd). Consequently, 

there are only finitely many candidates for a cube that dominates Q from above. To 

complete the proof of the claim, choose Q̃ ∈ D to be a cube of largest side-length that 

dominates Q from above. Then Q̃ ∈ Dup (domination from above is transitive).

For each fixed P ∈ Dup, consider those Q ∈ D\Dup with Iμ(Q) > 0 and Q̃ = P . Then

∑

Q∈D\Dup: Q̃=P

Υ(Q)2Iμ(Q) =
∑

m≥1

∑

Q∈D\Dup:

ℓ(Q)=2−mℓ(P ), Q̃=P

Υ(Q)2Iμ(Q)

≤
∑

m≥1

2−2εmΥ(P )2
[ ∑

Q∈D:

ℓ(Q)=2−mℓ(P ),BQ⊂ 1
2 BP

Iμ(Q)
]
.

The sum in square brackets is bounded by CIμ(P ) (as ϕP ≡ 1 on 1
2BP ), and so by 

summing over P ∈ Dup, we see that

∑

Q∈D\Dup

Υ(Q)2Iμ(Q) ≤ C(ε)
∑

P ∈Dup

Υ(P )2Iμ(P ),

and the lemma is proved. ✷
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We shall make the choice

Υ(Q) =

{
βμ(Q)Dμ(Q) if s ∈ Z,

Dμ(Q) if s /∈ Z.

With this function, denote by Dup(μ) those cubes that cannot be dominated from above.

Notice that if s ∈ Z, and Q ∈ Dup(μ), then for every Q′ ∈ D with 1
2BQ′ ⊃ BQ,

βμ(Q′)Dμ(Q′) ≤ 2ε[Q′:Q]βμ(Q)Dμ(Q). (8.1)

Provided that βμ(Q) > 0, we readily derive from this inequality that whenever 1
2BQ′ ⊃

BQ

( ℓ(Q)

ℓ(Q′)

)s

Dμ(Q) ≤ Dμ(Q′) ≤
(ℓ(Q′)

ℓ(Q)

)s+2ε

Dμ(Q),

and βμ(Q′) ≤
(ℓ(Q′)

ℓ(Q)

)s+ε

βμ(Q).

(8.2)

The right hand inequality in the first displayed formula perhaps deserves comment. To 

see it, we plug the obvious inequality

√
Iμ(Q′)βμ(Q′) ≥

√
Iμ(Q)βμ(Q)

into (8.1) to find that

√
Iμ(Q′)

ℓ(Q′)s
≤ 2ε[Q′:Q]

√
Iμ(Q)

ℓ(Q)s
.

Rearranging this yields the desired inequality.

If instead s /∈ Z and Q ∈ Dup(μ) then we have much better density control:

Dμ(Q′) ≤
(ℓ(Q′)

ℓ(Q)

)ε

Dμ(Q) whenever Q′ ∈ D, 1
2BQ′ ⊃ BQ.

For the remainder of the paper, let us fix M so that Proposition 7.1 holds. Our goal 

will be to prove the following alternative.

Alternative 8.2. For each Λ > 4 and α > 0, there exist A > 0 and Δ > 0 such that for 

every measure μ and cube Q ∈ Dup(μ), with the additional properties that βμ(Q) > 0

and αμ(ΛQ) ≥ α if s ∈ Z, we have that either

(a) SA
μ (Q) ≥ ΔDμ(Q)2Iμ(Q)
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or

(b) Q is dominated from below by a bunch of cubes in DM(μ).

Before we prove the alternative, let us see how we shall use it. Fix Λ > 0 and α > 0. 

For s ∈ Z, set

D⋆
up(μ) = {Q ∈ Dup(μ) : αμ(ΛQ) ≥ α and βμ(Q) > 0},

while for s /∈ Z, set D⋆
up(μ) = Dup(μ).

Corollary 8.3. If s ∈ Z, then there exist Δ > 0 and A > 0, depending on M , Λ, α such 

that for every finite measure μ satisfying supQ∈D Dμ(Q) < ∞,

∑

Q∈D⋆
up(μ)

Dμ(Q)2Iμ(Q) ≤ 1

Δ

∑

Q∈D
SA

μ (Q).

If s /∈ Z, then there exist Δ > 0 and A > 0, depending on M , such that for every finite 

measure μ satisfying supQ∈D Dμ(Q) < ∞,

∑

Q∈Dup(μ)

Dμ(Q)2Iμ(Q) ≤ 1

Δ

∑

Q∈D
SA

μ (Q).

Proof of Corollary 8.3. One uses the general principle (3.7) to control the contribution 

of the sum over the cubes where alternative (a) occurs. Indeed, making the choice

Γμ(Q) =

{
Dμ(Q)2 if Q ∈ D⋆

up(μ) and alternative (a) holds for Q

0 otherwise,

we get from (3.8) that

∑

Q∈D⋆
up(μ):

alternative (a) holds

Dμ(Q)2Iμ(Q) ≤ 1

Δ

∑

Q∈D
SA

μ (Q).

For the cubes where alternative (b) holds, we apply Lemma 6.3 with G′ = DM (μ) and 

G = D⋆
up(μ). Since

{Q ∈ D⋆
up(μ) : alternative (b) holds} ⊂ G\Gdown(G′),

we infer that

∑

Q∈D⋆
up(μ):

alternative (b) holds

Dμ(Q)2Iμ(Q) ≤ C(ε)
∑

Q∈DM (μ)

Dμ(Q)2Iμ(Q).
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Proposition 7.1 ensures that the right hand side here is bounded by the sum of square 

function constituents. ✷

Notice that, in conjunction with Lemma 8.1, Corollary 8.3 completes the proof of 

Theorem 3.1, and with it Theorem 1.1.

We now move onto proving the alternative.

Proof of Alternative 8.2. We (rather predictably) proceed by contradiction. If the alter-

native fails to hold, then for some Λ > 0 and α > 0, and every k ∈ N, we can find a 

measure μ̃k and a cube Qk ∈ D⋆
up(μ̃k) such that

Sk
μ̃k

(Qk) ≤ 1

k
Dμ̃k

(Qk)2Iμ̃k
(Qk),

but also Qk cannot be dominated from below by a bunch of cubes in DM(μ̃k).

We consider the measure μk =
μ̃k(LQk

( · ))

Iμ̃k
(Qk) , which satisfies Dμk

(Q0) = 1. The preim-

age of the lattice D under LQk
is some lattice D(k) with Q0 ∈ D(k). Moreover, 

Q0 ∈ D(k) ⋆
up (μk), and so from (8.2) we have that

Dμk
(Q′) ≤ Cℓ(Q′)s+1 whenever

1

2
BQ′ ⊃ BQ0

.

This polynomial growth bound allows us to apply Lemma 5.2 and pass to a sub-

sequence of the measures that converges weakly to a ϕ-symmetric measure μ with 

Dμ(Q0) = Iμ(Q0) = 1. With the passage to a further subsequence, we assume that 

the lattices D(k) stabilize in some lattice D′.

We first suppose that supp(μ) is not contained in an ⌊s⌋-plane. Then, since 

μ(B(0, R)) ≤ CR2s+2ε for large R > 0, we may apply Proposition 4.7, and find 

that there exists a cube Q′ ∈ D′ with 1
2BQ′ ⊃ BQ0

of arbitrarily large side-length 

we have that βμ(Q′) > c⋆ and Dμ(Q′) > ℓ(Q′)⌊s⌋+1−s−ε, where c⋆ > 0 depends only 

on d, s, and ‖ϕ′‖∞. But Lemma 5.4 then ensures that for sufficiently large k, we have 

that Q′ ∈ D(k), βμk
(Q′) > c⋆, and Dμk

(Q′) > ℓ(Q′)⌊s⌋+1−s−εDμk
(Q0). Provided that 

c⋆ℓ(Q′)⌊s⌋+1−s−ε > 4
√

d · ℓ(Q′)ε (≥ βμk
(Q0)2ε[Q′:Q0]), this contradicts the fact that 

Q0 ∈ D(k)
up(μk), and such a contradictory choice of ℓ(Q′) is possible since 2ε < 1 +⌊s⌋ −s. 

Thus supp(μ) ⊂ L for some ⌊s⌋-plane L (which must intersect BQ0
).

Our next claim is that supp(μ) is n-rectifiable, with n = ⌈s⌉ − 1. This is already 

proved in the case when s /∈ Z, as μ is supported in an n-plane in this case. If s ∈ Z, 

then we notice that Proposition 4.7 guarantees that either μ = cHs
L, or that supp(μ) is 

n-rectifiable. But the first case is ruled out since αμ(ΛQ0) > 0 (note that Λ > 4), so we 

must indeed have that supp(μ) is n-rectifiable.

Consequently, we may apply Lemma 5.5 with κ ≤ 2−M to find a finite collection 

of cubes Qj , each of sidelength less that 2−M , such that the balls 3BQj
are disjoint, 

3BQj
⊂ 3BQ0

, and for all sufficiently large k we have, for every j,
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Dμk,n+δ(Q′) ≤ Dμk,n+δ(Qj)

whenever Q′ ∈ D(k) with BQj
⊂ BQ′ ⊂ 300BQ0

(this property is weaker than property 

(4) of the conclusion of Lemma 5.5). In particular this ensures that each Qj lies in 

D(k)
M (μk).

On the other hand, by choosing κ smaller if necessary, we conclude from Lemma 6.4

that the bunch Qj dominates Q0 from below. This contradicts the fact that Q0 cannot 

be dominated from below by a finite bunch of cubes from D(k)
M (μk), and with this final 

contradiction we complete the proof of the alternative. ✷

9. The reduction to one last square function estimate

For the remainder of the paper, we restrict our attention to proving Theorem 3.2, so we 

shall henceforth assume that s ∈ Z. It remains to show that there exist constants α > 0, 

Λ > 4, A > 1 and C > 0, such that if μ is a finite measure satisfying supQ∈D Dμ(Q) < ∞, 

then

∑

Q∈Dup(μ), αμ(ΛQ)≤α

βμ(Q)2Dμ(Q)2Iμ(Q) ≤ C
∑

Q∈D
SA

μ (Q).

When combined with Corollary 8.3, this would show that (with a possibly larger con-

stant A),

∑

Q∈Dup(μ)

βμ(Q)2Dμ(Q)2Iμ(Q) ≤ C
∑

Q∈D
SA

μ (Q).

Then Theorem 3.2 follows from Lemma 8.1. Following the general principle (3.7) with 

the choice

Γμ(Q) =

{
βμ(Q)2Dμ(Q)2 if Q ∈ Dup(μ) satisfies αμ(ΛQ) ≤ α

0 otherwise,

it will suffice to demonstrate the following proposition:

Proposition 9.1. There exist Λ > 0, α > 0, A > 1, and Δ > 0 such that for every measure 

μ and Q ∈ Dup(μ) satisfying αμ(ΛQ) ≤ α and βμ(Q) > 0, we have

SA
μ (Q) ≥ Δβμ(Q)2Dμ(Q)2Iμ(Q). (9.1)

Notice here that the β-number is present on the right hand side of (9.1). It is not 

possible to estimate the square function coefficient in terms of the density alone (i.e., 

(9.1) couldn’t possibly be true in general if one removes the βμ(Q)2 term on the right 

hand side), as μ may well be the s-dimensional Hausdorff measure associated to an 

s-plane, in which case the left hand side of (9.1) equals to zero.
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10. The pruning lemma

For an n-plane L and β > 0, Lβ = {x ∈ R
d : dist(x, L) ≤ β} denotes the closed 

β-neighbourhood of L.

Lemma 10.1. Let R > 0. Fix a measure μ with μ(B(0, R)) > 0. Suppose that for some 

hyperplane H and β > 0, we have

1

μ(B(0, R))

ˆ

B(0,10R)

(dist(x, H)

R

)2

dμ(x) ≤ β2.

Then

(μ(B(0, R))

Rs

)2
ˆ

B(0,2R)\H3βR

(dist(x, H)

R

)2

dμ(x)

≤ C

ˆ

B(0,2R)

4R
ˆ

3R

∣∣∣
ˆ

Rd

x − y

ts+1
ϕ

(x − y

t

)
dμ(y)

∣∣∣
2 dt

t
dμ(x).

(10.1)

Proof. We may assume that R = 1 and μ(B(0, R)) = 1. Suppose that H = b + e⊥ for 

b ∈ R
d and e ∈ R

d with |e| = 1, and for x ∈ R
d set zx = 〈x − b, e〉. Then

∣∣∣
ˆ

Rd

(x − y)ϕ
( |x − y|

t

)
dμ(y)

∣∣∣ ≥
∣∣∣
ˆ

Rd

(zx − zy)ϕ
( |x − y|

t

)
dμ(y)

∣∣∣.

Fix x ∈ B(0, 2) with |zx| = dist(x, H) > 3β. We will assume that zx > 3β. Then

ˆ

Rd

(zx − zy)ϕ
( |x − y|

t

)
dμ(y) ≥

ˆ

{zy<2β}

(zx − zy)ϕ
( |x − y|

t

)
dμ(y)

−
ˆ

{zy>zx}

(zy − zx)ϕ
( |x − y|

t

)
dμ(y).

(10.2)

Notice that μ({y ∈ B(0, 1) : zy ≥ 2β}) ≤ 1
4β2

´

B(0,1)
z2

ydμ ≤ 1
4 . Consequently, if t ∈ (3, 4), 

we get that the first integral appearing on the right hand side of (10.2) is at least 
zx

3 μ(B(0, 1) ∩{zy < 2β}) ≥ zx

4 . On the other hand, the second integral on the right hand 

side of (10.2) is at most

ˆ

B(0,10)∩{zy>3β}

|zy|dμ(y) ≤ 1

3β

ˆ

B(0,10)∩{zy>3β}

|zy|2dμ(y) ≤ β

3
≤ zx

9
.
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Thus

∣∣∣
ˆ

Rd

(x − y)ϕ
( |x − y|

t

)
dμ(y)

∣∣∣ ≥ |zx|
8

.

It is easy to see that the conclusion also holds when zx < −3β. Squaring this inequality 

and integrating it yields,

ˆ

B(0,2)\H3β

|zx|2dμ(x)

≤ C

ˆ

B(0,2)

4
ˆ

3

∣∣∣
ˆ

Rd

x − y

ts+1
ϕ

( |x − y|
t

)
dμ(y)

∣∣∣
2 dt

t
dμ(x),

as required. ✷

We shall use this lemma as an alternative:

Corollary 10.2 (The pruning alternative). Fix a measure μ satisfying μ(B(0, R)) > 0. 

Fix Δ > 0. Suppose that, for some s-plane L, and R > 0,

1

μ(B(0, R))

ˆ

B(0,10R)

(dist(x, L)

R

)2

dμ(x) ≤ β2.

Then, we have that either

ˆ

B(0,2R)

4R
ˆ

3R

∣∣∣
ˆ

Rd

x − y

ts+1
ϕ

(x − y

t

)
dμ(y)

∣∣∣
2 dt

t
dμ(x)

≥ Δβ2
(μ(B(0, R))

Rs

)2

μ(B(0, R)),

or

ˆ

B(0,2R)\L3β(d−s)R

(dist(x, L)

R

)2

dμ(x) ≤ CΔβ2μ(B(0, R)).

Suppose L = b + {vd−s+1, . . . , vd}⊥ for an orthonormal set of vectors vd−s+1, . . . , vd. 

One derives the corollary by applying Lemma 10.1 to the collection of d − s hy-

perplanes H(1) = b + {vd−s+1}⊥, . . . , H(d−s) = b + {vd}⊥, whose intersection is L. 

One merely needs to notice that, on the one hand, for each j ∈ {1, . . . , d − s}, we 

have dist( · , H(j)) ≤ dist( · , L). But on the other hand dist( · , L) ≤ ∑
j dist( · , H(j)), 
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and so for each x /∈ L3β(d−s)R there is some j such that x /∈ H
(j)
3βR and moreover 

dist(x, L) ≤ (d − s) dist(x, H(j)).

11. The cylinder blow-up argument: the conclusion of the proof of Proposition 9.1

We shall work in the following parameter regime: Fix Λ ≫ 1 to be chosen later, and 

let α → 0, Δ → 0, and A → ∞.

Suppose that, for each k ∈ N, there is a measure μ̃k, a cube Qk ∈ Dup(μ̃k) such that 

αμ̃k
(ΛQk) ≤ 1

k , βμ̃k
(Qk) > 0, and

Sk
μ̃k

(Qk) ≤ 1

k
βμ̃k

(Qk)2Dμ̃k
(Qk)2Iμ̃k

(Qk).

Proposition 9.1 will follow if we deduce a contradiction for some sufficiently large Λ > 0.

Consider the measure μk = μ̃k(Lk·)
Iμ̃k

(Qk) . Then Dμk
(Q0) = Iμk

(Q0) = 1. The preimage of 

D under Lk is some lattice D(k) containing Q0. Passing to a subsequence we may assume 

that the lattices D(k) stabilize in some lattice D′. Also observe that

Sk
μk

(Q0) ≤ 1

k
βμk

(Q0)2. (11.1)

Inasmuch as Q0 ∈ D(k)
up(μk) and βμk

(Q0) > 0, we infer from (8.2) that for any N ≥ 1

Dμk
(NQ0) ≤ CNs+2ε. (11.2)

Notice that, since αμk
(ΛQ0) ≤ 1

k , we have βμk
(ΛQ0) ≤ C√

k
. From this and (11.2) we 

find that βμk
(Q0) → 0 as k → ∞.

11.1. Good density bounds for medium sized cubes containing Q0

In this section we shall prove the following result.

Lemma 11.1. There exists C > 0 such that if Q′ ∈ D(k) with Λ
2 BQ0

⊃ 1
2BQ′ ⊃ BQ0

, then

1

C
≤ Dμk

(Q′) ≤ C. (11.3)

(Here C depends only on d and s.)

Proof. The growth property (11.2) ensures that μk(BΛQ0
) ≤ C(Λ). Consequently, from 

the fact that αμk
(ΛQ0) ≤ 1

k , we infer that for each k there exists an s-plane Vk that 

intersects 1
4BΛQ0

such that for every f ∈ Lip0(BΛQ0
) with ‖f‖Lip ≤ 1,
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∣∣∣
ˆ

Rd

ϕΛQ0
fd[μk − ϑkHs|Vk

]
∣∣∣ ≤ C(Λ)

k
, (11.4)

where ϑk =
Iμk

(ΛQ0)

IHs|Vk
(ΛQ0) .

Since Dμk
(Q0) = 1, we readily see by testing (11.4) with f = ϕQ0

that ϑkIHs|Vk
(Q0) ≥

1
2 if k is large enough. Thus the plane Vk intersects BQ0

. Consequently, 1
C ℓ(Q′)s ≤

IHs|Vk
(Q′) ≤ Cℓ(Q′)s whenever Λ

2 BQ0
⊃ 1

2BQ′ ⊃ BQ0
. But also 1 ≤ Iμk

(3Q0) ≤ C from 

(11.2). Testing (11.4) with f = ϕ3Q0
therefore yields that 1

C ≤ ϑk ≤ C (for large k). 

Finally, testing (11.4) against f = ϕQ′ , with Q′ as in the statement of the lemma, we 

infer that (11.3) holds. ✷

Fix R to be an integer power of 2 that satisfies 1 ≪ R ≪ Λ. We choose a dyadic 

ancestor of Q0 in D′, say Q̂0, of sidelength 16R. Since the lattices D(k) stabilize, Q̂0 is a 

dyadic ancestor of Q0 in the lattice D(k) for large enough k. Insofar as Q0 ∈ D(k)
up(μk), 

from (8.1) and (11.3) we derive that

βμk
(Q̂0) ≤ CRεβμk

(Q0). (11.5)

Set βk = βμk
(Q̂0). Note that limk→∞ βk = 0.

11.2. Concentration around the optimal least squares plane

Denote by Lk an optimal s-plane for βμk
(Q̂0). Since Iμk

(Q0) = 1, it is easily seen 

from Chebyshev’s inequality that Lk passes through BQ0
= B(0, 4

√
d) for all sufficiently 

large k, so the closest point xk in Lk to 0 lies in BQ0
. Then clearly we have that

B(xk, r
2) ⊂ B(0, r) ⊂ B(xk, 2r) for every r ≥ 8

√
d. (11.6)

In this section our aim is to demonstrate the following lemma:

Lemma 11.2. There is a constant C1 > 0, depending on d and s, such that if β̃k = C1βk, 

then

ˆ

B(0,2R)\L
k,β̃kR

dist(x, Lk)2dμk(x) ≤ C(R)β̃2
k

k
, (11.7)

where Lk,β̃kR = {x ∈ R
d : dist(x, Lk) ≤ β̃kR}.

This is a much stronger concentration property around the plane Lk than the one 

that the β-number alone provides us with. It will play a crucial role in the subsequent 

argument.
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Proof of Lemma 11.2. We look to apply the pruning alternative. Observe that, provided 

k is large enough

ˆ

B(0,2R)

4R
ˆ

3R

∣∣∣
ˆ

Rd

x − y

ts+1
ϕ

( |x − y|
t

)
dμk(y)

∣∣∣
2 dt

t
dμk(x)

≤ Sk
μk

(Q0)
(11.1)

≤ 1

k
βμk

(Q0)2
(11.3)

≤ CRs

k
β2

k.

(11.8)

On the other hand, using (11.3) once again we derive that Iμk
(Q̂0) ≤ Cμk(B(0, R)), 

while ϕQ̂0
≥ 1 on B(0, 10R), so we certainly have that

1

μk(B(0, R))

ˆ

B(0,10R)

dist(x, Lk)2

R2
dμk(x) ≤ Cβ2

k. (11.9)

Consider the alternative in Corollary 10.2, with Δ = CRs

k , and β = β̃k = C1βk. If C1

is chosen appropriately in terms of d and s, the inequality (11.8) forces us into the first 

case of Corollary 10.2, which is to say that

ˆ

B(0,2R)\L
k,β̃kR

dist(x, Lk)2

R2
dμk(x) ≤ CRsβ̃2

k

k
μ(B(0, R)),

as required. ✷

11.3. Stretching the measure around the least squares plane

Let A(k) denote a rigid motion that maps the s-plane {0} ×R
s (with 0 ∈ R

d−s) to Lk

and 0 ∈ R
d to xk. We introduce the co-ordinates x = (x′, x′′), x′ ∈ R

d−s, x′′ ∈ R
s. Then 

from (11.6) and (11.7) we have

ˆ

B(0,R)\({0}×Rs)
β̃kR

|x′|2

β̃2
k

d(μk ◦ A(k))(x′, x′′) ≤ C(R)

k
. (11.10)

We define the squash mapping Sβ(x) = (βx′, x′′) for β > 0, along with the stretched 

measure

νk( · ) = μk(A(k) ◦ Sβ̃k
( · )).

Since β̃k < 1 for large enough k, we have νk(B(0, N)) ≤ (μk ◦ A(k))(B(0, N)) for 

N > 0. As μk satisfies (11.2), we see that we may pass to a subsequence such that νk

converge weakly to a measure ν.
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For m ∈ N, denote by Bm(z, r) the m-dimensional ball centred at z ∈ R
m with radius 

r > 0. Under our change of variables, the inequality (11.10) becomes

ˆ

[S−1

β̃k
(B(0,R))]\(Bd−s(0,R)×Rs)

|x′|2dνk(x) ≤ C(R)

k
. (11.11)

Whence,

supp(ν) ∩ [Rd−s × Bs(0, R)] ⊂ Bd−s(0, R) × Bs(0, R). (11.12)

On the other hand, μk ◦ A(k)(B(0, 8
√

d)) ≥ Dμk
(Q0) = 1, and so from (11.11) we derive 

that νk(Bd−s(0, R) × Bs(0, 8
√

d)) ≥ 1 − C(R)
k . Thus

ν(Rd−s × Bs(0, 8
√

d)) = ν(Bd−s(0, R) × Bs(0, 8
√

d)) ≥ 1.

Lemma 11.3. The following three properties hold:

(1) If f ∈ Lip0(B(0, R)), then

lim
k→∞

ˆ

Rd

f(x′, x′′)d(μk ◦ A(k))(x′, x′′) =

ˆ

Rd

f(0, x′′)dν(x′, x′′).

(2) If f ∈ Lip0(Rd−s × Bs(0, R)), then

lim
k→∞

ˆ

Rd

f
( x′

β̃k

, x′′)d(μk ◦ A(k))(x′, x′′) =

ˆ

Rd

f(x′, x′′)dν(x′, x′′).

(3) If t ∈ (0, R8 ), then

lim inf
k→∞

ˆ

B(0,R/2)

∣∣∣
ˆ

Rd

x′ − y′

β̃k

ϕ
( |x − y|

t

)
d(μk ◦ A(k))(y′, y′′)

∣∣∣
2

d(μk ◦ A(k))(x′, x′′)

≥
ˆ

Rd−s×Bs(0,R/2)

∣∣∣
ˆ

Rd

(x′ − y′)ϕ
( |x′′ − y′′|

t

)
dν(y′, y′′)

∣∣∣
2

dν(x′, x′′).

The proof is a slightly cumbersome exercise in weak convergence, using the property 

(11.11). As such, we postpone the proof Section 11.7.
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11.4. The limit measure ν is a cylindrically ϕ-symmetric measure

For r ∈ (0, R8 ), let us examine the inequality

ˆ

B(0,R)

∣∣∣
ˆ

Rd

(x − y)ϕ
( |x − y|

r

)
dμk(y)

∣∣∣
2

dμk(x) ≤ C(R)β̃2
k

k

(see (11.8)). We would like to see what happens to this inequality under the change of 

variables that takes μk to νk. First notice that, because of (11.6) (and the fact that a 

rigid motion is an isometry)

ˆ

B(0,R/2)

∣∣∣
ˆ

Rd

x′ − y′

β̃k

ϕ
( |x − y|

r

)
d(μk ◦ A(k))(y′, y′′)

∣∣∣
2

d(μk ◦ A(k))(x′, x′′)

≤ C(R)

k
.

From this, we deduce from item (3) of Lemma 11.3 that

ˆ

Rd

(x′ − y′)ϕ
( |x′′ − y′′|

r

)
dν(y′, y′′) = 0

for every (x′, x′′) ∈ supp(ν) ∩ [Rd−s × Bs(0, R/2)].

(11.13)

We will establish the following lemma:

Lemma 11.4. There exists a constant C > 0 such that for sufficiently large k,

βμk
(Q0) ≤ C

R
β̃k.

The estimate in this lemma is inconsistent with (11.5) if R is large enough. A con-

tradictory choice of R is possible once Λ is chosen large enough in terms of d and s. 

As such, we will have completed the proof of Proposition 9.1 once the lemma is estab-

lished.

The key to proving Lemma 11.4 will be to show that, when restricted to Rd−s ×
Bs(0, R/2), the support of ν is the graph of an Rd−s-valued harmonic function on 

Bs(0, R/2). For this, we shall use the fact that αμk
(ΛQ0) tends to zero as k → ∞

in a more substantial way than we have up to this point.

11.5. Large projections of the limit measure

In this section we shall prove the following result.
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Lemma 11.5. There exists ϑ0 > 0 such that for every f : Rs → R, f ∈ Lip0(Bs(0, 3R
4 )), 

we have

ˆ

Rd

f(x′′)d(ν − ϑ0Hs|{0}×Rs)(x′, x′′) = 0

Proof. Recall (see the proof of Lemma 11.1) that for every k there is an s-plane Vk for 

which (11.4) holds for every f ∈ Lip0(BΛQ0
) with ‖f‖Lip ≤ 1, and 1

C ≤ ϑk ≤ C. Also 

recall that Lk is an optimal s-plane for βμk
(Q̂0). Both Vk and Lk pass through BQ0

if k

is sufficiently large.

Consider a cut-off function h ∈ Lip0(B(0, R)), with h ≡ 1 on B(0, 3R/4) and 

‖h‖Lip ≤ 1. Then the function x �→ h(x)(dist(x, Lk))2 is C(R)-Lipschitz, and so, by 

(11.4) and the definition of the β-coefficient, we infer that

ˆ

B(0,3R/4)

dist(x, Lk)2dHk|Vk
(x) ≤ C(R)

k
+ C(R)β̃2

k.

Given that the planes Lk and Vk both pass through BQ0
, this implies that the intersection 

of the plane [A(k)]−1(Vk) with the ball B(0, 3R
4 ) lies within a C(R)ωk neighbourhood of 

[{0} × R
s] ∩ B(0, 3R

4 ), where ωk → 0 as k → ∞. Consequently, if F ∈ Lip0(B(0, 3R
4 )), 

‖F‖Lip ≤ 1, then

∣∣∣
ˆ

Rd

F (x′, x′′)d(μk ◦ A(k) − ϑkHs|{0}×Rs)(x′, x′′)
∣∣∣ ≤ C(R)ωk. (11.14)

Passing to a subsequence so that ϑk converges to ϑ0, we get from item (1) of 

Lemma 11.3 that

ˆ

Rd

F (0, x′′)d(ν − ϑ0Hs|{0}×Rs)(x′, x′′) = 0.

The lemma follows immediately from this statement. ✷

As a consequence of the lemma, note that whenever x′′ ∈ Bs(0, R2 ) and t < R/8, we 

have

ˆ

Rd−s×Bs(x′′,t)

ϕ
( |x′′ − y′′|

t

)
dν(y′, y′′) = ϑ0IHs(Bs(x′′, t))

= ϑ0IHs(Bs(0, t)).
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11.6. The final contradiction: the proof of Lemma 11.4

From the observations of the previous section along with the property (11.13), we find 

if (x′, x′′) ∈ supp(ν) ∩ [Rd−s × Bs(0, R2 )] and r ∈ (0, R/8), then

x′ =
1

ϑ0IHs(Bs(0, r))

ˆ

Rd

y′ϕ
( |x′′ − y′′|

r

)
dν(y′, y′′).

This formula determines x′ in terms of x′′. From this, we derive that supp(ν) ∩ (Rd−s ×
Bs(0, R2 )) is a graph given by {(u(x′′), x′′) : x′′ ∈ Bs(0, R2 )} for some u : Bs(0, R2 ) →
Bd−s(0, R). As, for each Borel set E ⊂ Bs(0, R2 ),

ν(Rd−s × E) = ν(Bd−s(0, R) × E) = ϑ0Hs(E), (11.15)

we have that whenever Bs(x′′, 2r) ⊂ Bs(0, R/2),

u(x′) =
1

IHs(B(x′′, r))

ˆ

Rs

u(y′′)ϕ
( |x′′ − y′′|

r

)
dHs(y′′).

This certainly ensures that u is a smooth function, but moreover it is harmonic. Indeed, 

for each x′′ ∈ B(0, R/2) we have that for small enough r,

0 =

ˆ

Rs

ϕ
( |x′′ − y′′|

r

)
[u(y′′) − u(x′′)]dHs(y′′)

= c

2r
ˆ

0

ˆ

Ss−1

[u(x′′ + tω) − u(x′′)]dσ(ω)ϕ
( t

r

)
ts dt

t
,

(11.16)

where dσ denotes the surface area measure on the unit s-sphere Ss−1. With Δs denoting 

the Laplacian in Rs, we infer from Taylor’s formula (or the divergence theorem) that

ˆ

Ss−1

[u(x′′ + tω) − u(x′′)]dσ(ω) = ct2Δsu(x′′) + O(t3) as t → 0

for some constant c > 0. Plugging the preceding identity into (11.16) yields that 

rs+2|Δu(x′′)| ≤ Crs+3 for all small r. Hence Δu(x′′) = 0 for x′′ ∈ B(0, R2 ).

Since |u(x′′)| ≤ R for every x′′ ∈ Bs(0, R2 ) (see (11.12)), standard gradient estimates 

yield that |∇u(x′′)| ≤ C if x′′ ∈ Bs(0, R4 ). In order to prove Lemma 11.4, we shall 

employ the following simple estimate for harmonic functions. We introduce the notation 

−
´

E
fdHs := 1

Hs(E)

´

E
fdHs.
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Lemma 11.6. If Bs(x′′, r) ⊂ B(0, R
16 ), then

−
ˆ

Bs(x′′,r)

|u(y′′)−u(x′′) − Du(x′′)(y′′ − x′′)|2dHs(y′′)

≤ C
( r

R

)4

−
ˆ

Bs(0,
R
2 )

|u|2dHs.

Proof. Note that if y′′ ∈ Bs(x′′, r), then Taylor’s theorem ensures that for some z′′ ∈
Bs(x′′, r),

|u(y′′) − u(x′′) − Du(x′′)(y′′ − x′′)| ≤ Cr2|D2u(z′′)|.

But now since u is harmonic, from standard gradient estimates and the mean value 

property we obtain that

|D2u(z′′)| ≤ C

R2
sup

B(z′′,
R
4 )

|u| ≤ C

R2
−
ˆ

Bs(x′′,R/2)

|u|dHs.

Squaring both sides of the resulting inequality, taking the integral average over B(x′′, r), 

and using the Cauchy–Schwarz inequality, we arrive at the desired statement. ✷

Written in terms of ν, the previous estimate, along with the property (11.15), ensures 

that there exist a (d − s) × s matrix A and a vector b ∈ R
s such that

−
ˆ

Rd−s×Bs(0,300
√

dℓ(Q0))

|x′ − Ax′′ − b|2dν(x′, x′′)

≤
(C

R

)2

−
ˆ

Rd−s×Bs(0,
R
2 )

( |x′|
R

)2

dν(x′, x′′).
(11.17)

Furthermore we have A = ∇u(0), and b = u(0), and so |b| ≤ R and |A| ≤ C.

Consider the function f : Rs → R given by f(x′′) = ϕ
( |x′′|

100
√

d

)
and fix a non-negative 

function g ∈ Lip0(Bd−s(0, 2R) with g ≡ 1 on Bd−s(0, R). Then from statement (2) of 

Lemma 11.3 we get that

ˆ

Rd

g(x′)f(x′′)|x′ − Ax′′ − b|2dν(x′, x′′)

= lim
k→∞

1

β̃2
k

ˆ

Rd

g( x′

β̃k

)f(x′′)|x′ − β̃kAx′′ − β̃kb|2d(μk ◦ A(k))(x′, x′′)
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≥ lim sup
k→∞

1

β̃2
k

ˆ

{|x′|≤β̃kR}

ϕ25Q0
(x)|x′ − β̃kAx′′ − β̃kb|2d(μk ◦ A(k))(x′, x′′).

(In the final line we have used the trivial observation that f(x′′) ≥ ϕ25Q0
(x) for x =

(x′, x′′) ∈ R
d.) On the other hand, using (11.10) and (11.3), statement (2) of Lemma 11.3

ensures that

−
ˆ

Rd−s×Bs(0,
R
2 )

( |x′|
R

)2

dν(x′, x′′)

≤ lim inf
k→∞

C

Iμk
(Q̂0)

ˆ

B(0, R
2 )

( |x′|
Rβ̃k

)2

d(μk ◦ A(k))(x′, x′′)

≤ lim inf
k→∞

Cβ2
k

β̃2
k

≤ C.

Comparing the previous two observations with (11.17), and using our bounds for A and b, 

we find for all sufficiently large k some s-plane L̃k with B(0, R2 ) ∩ L̃k ⊂ {dist(x, Lk) ≤
Cβ̃kR}, such that

1

β̃2
k

ˆ

{dist(x,Lk)≤β̃kR}

ϕ25Q0
(A(k)x) dist(x, L̃k)2dμk(x) ≤ C

R2
.

On the other hand, if x ∈ B(0, R2 ) satisfies dist(x, Lk) > β̃kR, then certainly dist(x, L̃k) ≤
C dist(x, Lk). Whence, from (11.7), we infer that all for large enough k,

ˆ

{dist(x,Lk)>β̃kR}

ϕ25Q0
(A(k)x) dist(x, L̃k)2dμk(x)

≤ C

ˆ

B(0,
R
2 )∩{dist(x,Lk)>β̃kR}

dist(x, Lk)2dμk(x) ≤ C(R)

k
β̃2

k ≤ 1

R2
β̃2

k.

Notice that (11.6) ensures that ϕ25Q0
(A(k) · ) ≥ ϕQ0

. Consequently, by combining our 

observations, we see that for sufficiently large k,

βμk
(Q0) ≤ C

R
β̃k, (11.18)

and so Lemma 11.4 is proved.

11.7. The proof of Lemma 11.3

We now turn to proving Lemma 11.3.
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Proof of Lemma 11.3. Note the identity

ˆ

Rd

f(x′, x′′)d(μk ◦ A(k))(x′, x′′) =

ˆ

Rd

f(β̃kx′, x′′)dνk(x′, x′′).

By replacing f in this identity with (x′, x′′) �→ f( x′

β̃k

, x′′), we see that item (2) of the 

Lemma follows directly from the weak convergence of νk to ν. Fix g ∈ Lip0(Bd−s(0, 2R))

satisfying g ≡ 1 on Bd−s(0, R). Because of (11.11), if f ∈ Lip0(B(0, R)), ‖f‖Lip ≤ 1, 

then

∣∣∣
ˆ

Rd

f(β̃kx′, x′′)dνk(x′, x′′) −
ˆ

Rd

g(x′, x′′)f(β̃kx′, x′′)dνk(x′, x′′)
∣∣∣ ≤ C(R)

k
.

But the function (x′, x′′) �→ g(x′, x′′)f(β̃kx′, x′′) converges to the function (x′, x′′) �→
g(x′, x′′)f(0, x′′) uniformly on Bd−s(0, 2R) × Bs(0, R), and 

´

Rd f(0, x′′)dν(x′, x′′) =
´

Rd g(x′, x′′)f(0, x′′)dν(x′, x′′). Item (1) follows immediately from these two observations.

To prove item (3), we shall look to apply Lemma 5.1. For t ∈ (0, R8 ), consider the 

integral Ik given by

ˆ

S−1

β̃k
(B(0,

R
2 ))

∣∣∣
ˆ

Rd

(x′ − y′)ϕ
( |(β̃k[x′ − y′], [x′′ − y′′])|

t

)
dνk(y′, y′′)

∣∣∣
2

dνk(x′, x′′).

Notice that if we choose f ∈ Lip0(Bs(0, R)) with f ≡ 1 on Bs(0, 3R
4 ), then inserting a 

factor of f(y′′)f(x′′) in the inner integral does not affect the value of the double integral. 

Consider the measure dν̃k(x′, x′′) = f(x′′)dνk(x′, x′′). The error introduced by replacing 

Ik with the integral Ĩk, defined by

ˆ

S−1

β̃k
(B(0,

R
2 ))

∣∣∣
ˆ

Rd

[
(x′ − y′)ϕ

( |(β̃k[x′ − y′], [x′′ − y′′])|
t

)

· g(x′)g(y′)
]
dν̃k(y′, y′′)

∣∣∣
2

dν̃k(x′, x′′),

(11.19)

is bounded by a constant multiple of

ˆ

[S−1

β̃k
(B(0,

R
2 ))]\[Bd−s(0,R)×Bs(0,

R
2 )]

|x′|2dνk(x′, x′′)νk(S−1

β̃k

(B(0, R)))2

+ νk(S−1

β̃k

(B(0, R
2 )))

( ˆ

[S−1

β̃k
(B(0,R))]\[Bd−s(0,R)×Bs(0,R)]

|y′|dνk(y′, y′′)
)2

.
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From (11.11) we therefore infer that limk→∞ |Ik − Ĩk| ≤ limk→∞
C(R)

k = 0. (Note that, 

from (11.6), νk(S−1

β̃k

(B(0, R2 ))) ≤ μk(B(0, R)) ≤ CRs.)

Observe that the function

ψk(x, y) = (x′ − y′)ϕ
( |β̃k(x′ − y′), x′′ − y′′|

t

)
g(x′)g(y′)

converges uniformly as k → ∞ to

ψ(x, y) = (x′ − y′)ϕ
( |x′′ − y′′|

t

)
g(x′)g(y′),

and for each x ∈ R
d, supp(ψk(x, ·)) ⊂ B(x, 2

√
dR). Clearly supk ‖ψk‖Lip < ∞, as 

the β̃k factor can only decrease the Lipschitz norm of ϕ. Appealing to Lemma 5.1

with the sequence of measures ν̃k, which converge weakly to the measure dν̃(x′, x′′) =

f(x′′)dν(x′, x′′), and U = Bd−s(0, 2R) × Bs(0, R2 ), we infer that lim infk Ik is at least

ˆ

Bd−s(0,2R)×Bs(0, R
2 )

∣∣∣
ˆ

Rd

(x′ − y′)ϕ
( |x′′ − y′′|

t

)
g(x′)g(y′)dν̃(y′, y′′)

∣∣∣
2

dν̃(x′, x′′),

and, after recalling the basic properties of g and f , this proves (3). ✷
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