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ABSTRACT

The Internet-off-Thfings (IoT) has brought fin new chaflflenges finde-
vfice fidentfificatfion–what the devfice fis, andauthentficatfion–fis the
devfice the one fit cflafims to be. Tradfitfionaflfly, the authentficatfion prob-
flem fis soflved by means off a cryptographfic protocofl. However, the
computatfionafl compflexfity off cryptographfic protocofls and/or prob-
flems reflated to key management, render aflmost aflfl cryptography
based authentficatfion protocofls fimpractficafl ffor IoT. The probflem off
devfice fidentfificatfion fis, on the other hand, sadfly negflected. Aflmost
aflways an artfificfiaflfly created fidentfity fis sofftfly assocfiated wfith the
devfice. We beflfieve that devficefingerprfintfing can be used to soflve
both these probflems effectfivefly. In thfis work, we present a method-
oflogy to perfform IoT devfice behavfioraflfingerprfintfing that can be
empfloyed to undertake strong devfice fidentfificatfion. A devfice be-
havfior fis approxfimated usfing ffeatures extracted ffrom the network
trafic off the devfice. These ffeatures are used to trafin a machfine
flearnfing modefl that can be used to detect sfimfiflar devfice-types. We
vaflfidate our approach usfingfive-ffofld cross vaflfidatfion; we report a
fidentfificatfion rate off 93-100% and a mean accuracy off 99%, across
aflfl our experfiments. Furthermore, we show preflfimfinary resuflts ffor
fingerprfintfing devfice categorfies,fi.e., fidentfiffyfing dfifferent devfices
havfing sfimfiflar ffunctfionaflfity.
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1 INTRODUCTION
The Internet-off-Thfings (IoT) devfices findustry fis rapfidfly growfing
[10] wfith an ever-fincreasfing flfist off manuffacturers offerfing a myrfiad
off smart devfices targeted to enhance the end-users’ experfience.
Unffortunatefly, securfity fis offten an affter-thought wfith manuffactur-
ers prefferrfing ffeatures and ffunctfionaflfity over securfity. Thfis resuflts
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fin vuflnerabfiflfitfies [24] that can be successffuflfly expflofited to flaunch
flarge scafle attacks, best hfighflfighted fin the notorfious fincfident off the
Mfirafi botnet [14]. Many securfity probflems, however, can be mfitfi-
gated through strong fidentfificatfion (and, authentficatfion) off devfices.
For exampfle, fiff a maflware fin a flfight buflb causes fit to behave dfiffer-
entfly mfimfickfing a thermostat, strong fidentfificatfion woufld aflflow
an admfinfistrator to enfforce approprfiate securfity controfls, such as,
fisoflate the devfice ffrom the rest off the network. In thfis work, we
deveflop a fframework to bufifld robust fidentfitfies off IoT devfices usfing
thefir observed behavfiorafl characterfistfics. As devfices are pflugged-fin
on an IoT network, we estabflfish a behavfiorafl baseflfine to fidentfiffy
the type off these devfices.
Ffingerprfintfing IoT devfices fis chaflflengfing due to the flarge varfiety

off devfices, protocofls, and controfl finterffaces across the gamut off
devfices. An IoT devfice mfight respond to querfies about fits fiden-
tfity and type, whfich fis offten a standard way off remotefly flearnfing
about the devfice when securfity fis not a major concern. However,
when securfity fis findeed a concern, suchfingerprfint shoufld not
be based on a sofft fidentfity that fis easfifly cfloned, masqueraded or
bypassed by advertfisfing reflevant ffaflse finfformatfion by an attacker.
Exampfles off such sofft fidentfitfies are devfice name, devfice-type, man-
uffacturer finfformatfion, serfiafl number, network address (even flayer 2
address) and so on. More fimportantfly, an untrusted or compromfised
IoT devfice mfight behave contrary to fits baseflfine behavfior,e.g.by
connectfing to other devfices to dfisrupt thefir ffunctfionfing or to gather
network finfformatfion.
Our hypothesfis fin thfis work fis that every IoT devfice possesses a

unfique “fingerprfint” that the IoT devfice “reveafls” when fit sends mes-
sages over a network. Thfisfingerprfint can be remotefly estabflfished
by an automaton that fis abfle to monfitor the network trafic. More-
over, thfisfingerprfint cannot be very easfifly cfloned by a maflficfious
adversary. Severafl researches have shown that many computfing
devfices may possess suchfingerprfints [1–3, 23, 26].

1.1 Probflem Descrfiptfion
An IoT devfice can befingerprfinted at varyfing flevefls off granuflar-
fity, ffrom a category to a specfific finstance, as shown fin the sampfle
ontoflogy fin Ffigure 1. A devfice category corresponds to a generafl
groupfing off devfices havfing sfimfiflar ffunctfionaflfity, say,e.g., “Lfight
Buflb”. Thfis category can have ffurther sub-dfivfisfions, flfike “Mono-
chrome” and “Hue Lfight”. A devfice-type fis a specfific devfice modefl
wfithfin a generafl devfice category. For finstance, fin Ffigure 1, a devfice-
type fis: “Lfight Buflb| Monochrome| TCP Lfight| A21” or sfimpfly “TCP
Lfight | A21”. Ffinaflfly, a devfice finstance fis a sfingfle finstantfiatfion off
a devfice-type. For exampfle, the devfice-type “TCP| A21”, has two
dfifferent buflbs wfith serfiafl numbers “A21| S.No: 1” and “A21| S.No: 2”.
Each off these fis a devfice finstance. Ideaflfly, a securfity admfinfistrator
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Figure 1: Device Category, Type and Instance

would like the capability of establishing strong identities that can
differentiate between two device instances, say, “A21| S.No: 1” and
“A21| S.No: 2”, which are of the same device-type. Towards this goal,
device-type identification is a critical first step that we address in
this work.
Problem Statement. We define the problem of fingerprinting an
IoT device-type as that of identifying the device-type from a sample
network activity of the device. We refer to the sample network activ-
ity, a, of a device, Di , as its fingerprint, F ia . We denote the collection
of all F ias of a device by Bi , i.e., Bi = {F i1, F

i
2, . . . , F

i
m } wherem is

the number of observed distinct fingerprints. The collection of all
possible network activities of Di constitutes the behavioral profile,
⟨Bi ,Di ⟩, of the device. Then, the problem we address is stated as:
Given a collection of previously recorded behavioral profiles:

B = {⟨B1, D1⟩, ⟨B2, D2⟩, · · · , ⟨Bn , Dn⟩},

of n devices and the available fingerprint Ft of a target device Dt ,
to correctly predict ⟨Bt , Dt ⟩ where Bt ∋ Ft is the corresponding
behavioral profile of Dt .
Key Contributions. (a) For the first time, we describe a practical
approach for behavioral fingerprinting of IoT devices usingmachine
learning. (b) Our fingerprinting analysis shows that with a small
number of packets we can fingerprint a device-type very accurately.
(c) We demonstrate that certain features like TCP window size,
entropy and payload lengths are very specific to device-types and
are statistically significant in fingerprinting. (d) We demonstrate
the machine learning model robustness using three different experi-
ments on 14 different device-types and 7 different device categories.
The first experiment examines the identification of device-types
based on a five-fold cross-validation and, we report a mean iden-
tification rate of 93-99%, and a mean accuracy of 99%. Similarly,
the second experiment examined the identification of device-type
into its device category and we show a mean identification rate of
91-99%. This result is the first such success reported in this prob-
lem domain and shows that we can create behavioral profiles for
classes of devices. The final experiment examined identification
of different device instances of same device-type, and achieved an
excellent mean identification rate of 99.7-100%. (e) Finally, with our
existing device set, we show preliminary results that our approach

is successful even when the device uses encryption for some of the
communication.

2 SYSTEM MODEL AND ASSUMPTIONS
NetworkModel. Our network model consists of set of IoT devices
that are connected through a single gateway router. The devices
may be wired or wireless. We assume the capability of capturing all
kinds of traffic such as device-to-device, a device to the Internet and
from the Internet to a device. We do not make any assumptions on
nature of the payload, which may be encrypted, compressed, binary
or plain-text. For this work, we focused on home IoT devices.
Threat Model. Our threat model considers the following scenar-
ios:

1. A device might be replaced with another device that is mali-
cious.

2. A compromised device has the ability to spoof soft identities
and/or IP/MAC layer addresses and any other information specific
to the device-type, such as communication patterns.

3 RELATEDWORK
Device fingerprinting has received considerable attention from the
research community. General device fingerprinting has been de-
scribed in [13, 17, 18], which explore several techniques ranging
from packet header features to physical features such as clock-
skews. Wireless device fingerprinting techniques have been dis-
cussed in [1, 5, 7, 15, 21]. These works explore the device-type
identification by exploiting the implementation differences of a
common protocol such as SIP, across similar devices. Physical layer
based device fingerprinting has received considerable attention
[3, 4, 11, 23, 27] where the focus is on analyzing the physical as-
pects of devices to fingerprint them. IoT device-type fingerprinting
research is in early stages due to the evolving nature of the IoT
industry. All these works focus on general wireless devices and
their applicability to IoT devices is an open question. One of the
major challenges in this domain is that IoT devices use numerous
protocols and it would be nearly impossible to attempt such analysis
on a per protocol and per device basis.

Vladimir et al. [3] developed a radiometric approach based on
imperfections in analog components for fingerprinting network
interface cards (NICs). Such variations result in imperfect emis-
sions when compared with the theoretical emissions and manifest
in the modulation of the transmitted signals of the device. They
used machine learning approaches to perform the fingerprinting.
However, this work relies on the availability of the frames, physical
layer transmission, from the given device. This may not be feasible
for an IoT network as the devices are spread over an area and might
be interconnected via different switches and middle-boxes.

François et al. [5] describe approaches to fingerprint devices
based on the usage of a common protocol. Broadly, this work focuses
on distinguishing various implementations of the same protocol.
This work describes interesting techniques to parse protocols and
provides an approach for representing and analyzing the behavior of
a given protocol. However, IoT devices speak a variety of protocols,
which makes it difficult to apply these techniques.

François et al. [6] describe a protocol grammar based approach
for fingerprinting. They characterize a device based on the set of
messages transmitted. A message is represented using the protocol
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grammar syntax. To classify a given device, the messages emitted
by the device are compared with syntactic trees of the stored fin-
gerprints and depending on a similarity metric, the device label is
assigned. However, this approach is again specific to protocols that
are well known and whose grammar rules are available.

Gao et al. [9] develop a wavelet analysis technique to fingerprint
wireless access points based on frame inter-arrival time deltas.
This technique can be seen as a black-box approach. However, this
approach relies on the fingerprinter being in or near the range of
the access point to gather sensitive time information and needs the
access point to route data to the fingerprinter. The approach does
not apply to IoT devices as these devices are usually end-points and
do not forward data to other devices.

Radhakrishnan et al. [23] described GTID for device-type identi-
fication on general purpose devices like smartphones, laptops and
tablet PCs. Their work relies on the inter-arrival times of different
packets to extract the relevant features specific to a particular ap-
plication like Skype. However, most IoT devices are usually very
conservative in terms of traffic generation and do not generate
much traffic. Applying these techniques to IoT networks will re-
quire non-trivial modifications to the original set of algorithms. In
contrast, our work extracts the behavior of an IoT device on the
available traffic.

Franklin et al. [7] describe a passive fingerprinting method for
identifying the different types of 802.11 wireless device driver imple-
mentations on clients. The authors explore the statistical relation-
ship of the active channel scanning strategy in a particular device
driver implementation. The lack of a standard for the scanning
strategy results in observable differences. This technique is useful
for identifying the type of device driver implementation but not of
the type of device. This is because a manufacturer might reuse the
same device driver implementation across several device-types.

In the IoT fingerprinting problem space, IoTSentinel byMiettinen
et al. [20] and IoTScanner by Siby et al. [25] are the currently known
solution frameworks. Miettinen et al. in [20] describes IoTSentinel,
a framework for device fingerprinting and securing IoT networks.
It focuses on device-type identification at the time of device reg-
istration into a network. This approach uses packet header based
features to identify a particular device-type and applies machine
learning models to perform the fingerprinting. One shortcoming of
this work is that it is susceptible to the two threats outlined in our
threat model. This is because packet headers can be easily spoofed.
Nonetheless, this work is a useful reference framework. Our ap-
proach provides better accuracy and stronger security. IoTSentinel
reports a mean identification rate of 50-100%, whereas our approach
reports a mean identification rate of 93-99%. Our approach comple-
ments IoTSentinel, as our approach can periodically cross-verify
the device fingerprints established at registration time.

Siby et al. describe IoTScanner in [25], an architecture that pas-
sively observes network traffic at the link layer, and analyzes this
traffic using frame header information during specific observation
time windows. This work is more concerned with discerning the
distinct devices and their presence based on the traffic patterns
observed during the traffic capture time window. A shortcoming
of this approach is that two identical device-types could be clas-
sified as two different device-types due to the variations in traffic
generated during traffic capture time window. This approach is

useful for network mapping at a high level, but performing this
analysis periodically can be cumbersome. In contrast, our approach
can re-verify a fingerprint of a device with a short signature of only
5 packets.

4 OUR FINGERPRINTING APPROACH
In this section, we describe the building blocks of our behavioral
model of an IoT device. We start by briefly describing our proposed
approach and discuss the technical challenges we face and how we
address them. This helps set the stage for describing next the static
behavioral model of an IoT device in terms of the protocols used
by the given device, followed thereafter for describing the dynamic
behavioral model of IoT device in terms of the session interactions
of the device.

4.1 Proposed Approach, Technical Challenges
and Solutions

Our fingerprinting approach generates a behavioral profile that
quantifies the behavior of a device-type. Behavioral fingerprinting
is quite valuable since it allows us to monitor the device behavior
throughout its life time. If there are deviations from the device’s
initial behavior, due to some malicious activity, we can detect such
activity by periodically observing and validating against a behav-
ioral profile. To generate such a behavioral profile, our approach is
to model the behavior of the device approximately as a collection
of protocols used, and the set of observed command and response
sequences. We collect the network traffic that is flowing into and
out of the device and extract features of interest as indicators of a
device behavior. Finally, we aggregate the features using a statis-
tical model and use it as a reference for identifying the device. To
identify a target device, we observe a few packets from the device
and compare it against the previously recorded behavioral profiles.

The first technical challenge in our proposed approach is to be
able to observe all possible protocol interactions and command-
responses of the device. Since it may not be possible to observe all
possible interactions, our approach can only approximately model
the device behavior. To solve this challenge, in the laboratory set-
ting, we used the controlling smart-phone app to interact with
the device to capture the command-response sequences. Also, we
observed the device when the user was not interacting with the
device to capture other non-interactive behavior of the device. Our
approach is essentially simulating the passive observation of net-
work traffic where the observer could be observing the traffic flows
of a new device to build the behavioral profile.

The second challenge is that the types of interesting behavioral
features are non-trivial to determine. Therefore, we use available
features like packet header feature and payload based features for
this purpose. For packet header based features, we extract the device
specific features such as the protocols used and communication
patterns of the device during the observational period. Our choice
of payload features, coupled with some preliminary results, shows
that our approach can work on encrypted traffic as well.

The third challenge in our proposed approach is that statisti-
cal models can be very difficult to generate on multi-variate data.
Towards this, we apply general purpose machine learning tools
as machine learning classifiers are very good at learning local fea-
tures of interest in a collection of data. Since, we are modeling the
behavior of a device as a collection of individual fingerprints, the
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machfine flearnfing cflassfifiers are most sufitabfle ffor our approach.
Typficaflfly, one dfistfingufishfing ffeature fis suficfient to cflassfiffy a gfiven
devfice-type agafinst severafl other devfice-types and machfine flearn-
fing aflgorfithms have shown robustness fin such cflassfificatfion.
Thefinafl and most fimportant chaflflenge fis:How much off the

target devfice data needs to be observed beffore thefingerprfint can be
matched agafinst a stored behavfiorafl profifle?Ideaflfly, a smaflfl number
off packets aflflows afingerprfinter to be abfle to keep track off the
devfices perfiodficaflfly and observe any devfiatfions ffrom fits behavfior.
Our approach thereffore attempts to create a shortfingerprfint wfith
a ffew packets befing suficfient to match thefingerprfint. Thereffore,
the probflem fis to determfine, on an average, the number off devfice
packets that encapsuflate one or more behavfiorafl ffeatures off a target
devfice. To soflve thfis probflem, we determfined the average number
off packets based on the assumptfion that an findfivfiduafl protocofl
finteractfion sessfion off a devfice encapsuflates one or more behavfiorafl
ffeatures off the devfice. Thfis fis consfistent wfith our modefl ffor the
behavfiorafl profifle off a devfice, whfich maps the devfice behavfior
as coflflectfion off protocofl finteractfion sessfions. Usfing experfimentafl
anaflysfis, we estabflfish the approxfimate number off packets requfired
fforfingerprfintfing a devfice.

4.2 Statfic Behavfiorafl Modefl
IoT devfices use severafl protocofls, dependfing on the network flayer
fin context, at varfious stages off thefir operatfion such as ARP, EAPOL,
HTTP, MDNS, DNS and so on. Thereffore, the flfist off protocofls used
by an IoT devfice fis a good findficator off the devfice behavfior. In
[20], the authors used thfis notfion to capture the devfice behavfior at
regfistratfion tfime. However, many IoT devfices use common network
protocofls and the set off protocofls fis not necessarfifly specfific to a
gfiven devfice-type. As such, the flfist off protocofls used by IoT devfice
provfides onfly a partfiafl and “statfic” vfiew off the devfice’s operatfions.
As we demonstrate flater, the resuflts off Ffigure 8 strongfly emphasfize
thfis pofint. Further modeflfing fis requfired to compfletefly understand
the dynamfic nature off the devfice’s behavfior, whfich we descrfibe
next.

4.3 Dynamfic Behavfiorafl Modefl
Our modeflfing off the dynamfics off an IoT devfice fis based on the
notfion that an IoT devfice has severafl dfistfinct command-response
sequences. We caflfl each off these command response sequences as a
sessfion. A sessfion can aflso be vfiewed as a sequence off packets that
have same source/destfinatfion IP addresses and source/destfinatfion
port numbers, fin both dfirectfions off the communficatfionflow. For
finstance, consfider that a devfice responds to (or sends) the ffoflflow-
fing types off controfl messages:C1,C2,...,Cnand that the re-
sponses ffor each off these messages are (not necessarfifly fin that
order):R1,R2,...,Rm. A typficafl protocofl finteractfion can be as
ffoflflows:C1 R1 C2 R3 C1 R1. Thereffore, the devfice’s
behavfior can be vfiewed as a coflflectfion off these sequences.
Any off these sequences, saySfi, corresponds to a vaflfidfingerprfint,

Ffioff the devfice. But, fforfingerprfintfing, the aflgorfithm can onfly
examfine afixed sfized sequence off packets as storfing the sessfion
flengths off each devfice-type fis fimpractficafl. Thereffore, the chaflflenge
fis fin arrfivfing at an estfimate on the average (prefferabfly, fleast) number
off packets that need to be examfined fforfingerprfintfing the devfice.

One way to estfimate thfis average fis by consfiderfing the flfimfited
scope off IoT devfices, whfich usuaflfly have short sessfions consfistfing off
2 to 10 packets. Gfiven thfis fintufitfion, the average number off packets

per sessfion, acrossfive such devfices, fis gfiven by:
2+4+6+8+10

5 =6
packets. To check thfis rough theoretficafl estfimate, we used the
data ffrom our experfiments (Pflease see Sectfion 6 ffor experfimentafl
setup, devfices and data coflflectfion detafifls) to count the number off
sessfions and the packets per sessfion acrossfive sampfle devfices.
For thfis sampfle set off data, the average number off packets per

sessfion fis:3.89+6.18+4.41+5.13+9.485 =5.81, whfich fis very cflose
to our theoretficafl estfimate. The summary off thfis resuflt fis that, to
fingerprfint a gfiven devfice we need to capture 5 1 packets ffor any
gfiven devfice. We consfidered the average off the two bounds off thfis
range,fi.e.,4+62 =5, as themfinfimumnumber off devfice packets to
be examfined by thefingerprfintfing aflgorfithm. Based on the modefls
descrfibed fin thfis sectfion, we descrfibe the ffeature seflectfion ffor the
machfine flearnfing modefls that wfiflfl be used to create the behavfiorafl
profifles off IoT devfices.

Tabfle 1: Average Number off Packets Per Sessfion

Devfice Totafl SessfionsPackets Sessfions Packets/Sessfion
AWOX Speaker 12755 3274 3.89
D-Lfink Camera 8600 1390 6.18
MUSAIC Speaker 1346 305 4.41
OMNA Camera 8253 1608 5.13
TP Lfink Lfight 1660 175 9.48

5 MACHINE LEARNING FEATURES FOR
BEHAVIORAL PROFILING

We use two avafiflabfle types off ffeatures ffrom the network packets:
packet header ffeatures and payfload based ffeatures. Broadfly speak-
fing, the packet header ffeatures are useffufl fin quantfiffyfing the statfic
behavfiorafl modefl off the devfice, and the payfload based ffeatures are
useffufl fin quantfiffyfing the dynamfic behavfiorafl modefl off the devfice.

5.1 Packet Header Features

For the statfic behavfiorafl modefl, we use a subset off the ffeatures,
shown fin Tabfle 2, ffrom those outflfined by Mfiettfinenet afl.fin [20].
Essentfiaflfly, these ffeatures are extracted ffrom the packet headers
off the trafic data ffrom the devfice. These ffeatures are bfinary,fi.e.
they have vaflues off 0 or 1 ffor the absence or presence off a ffeature,
respectfivefly. Note that, unflfike the work fin [20], we do not consfider

Tabfle 2: Packet Header Features

Protocofl Layer/Type Features
Lfink Layer ARP
Network IP/ICMP/ICMPv6/EAPoL
Transport TCP/UDP
Appflficatfion HTTP/HTTPS/DHCP/BOOTP/SSDP/DNS/MDNS/NTP
IP Optfions Paddfing/Router Aflert

network specfific ffeatures flfike IP addresses, source or destfinatfion
portsetc., as these ffeatures are not necessarfifly dependent on the
devfice behavfior.

5.2 Payfload Based Features
Prfimarfifly, we consfider the use off three fimportant ffeatures: entropy
off payfload, TCP payfload flength and TCP wfindow sfize. To vaflfidate
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(a) Entropy (b) TCP Window Size

Figure 2: ECDF of Payload Based Features

(a) Packet Length (b) Payload Length

Figure 3: ECDF of Packet Length vs Payload Length

the intuition behind each feature, we tested the empirical cumula-

tive distribution function (ECDF) of the feature for four different

types of devices. The ECDF of a real-valued random variable X ,

or just distribution function of X , evaluated at p, is the probability

that X will take a value less than or equal to p. For x-axis distribu-

tion, we used the feature values in the dataset, and for y-axis, we

used the probability that feature value will take values less than or

equal to p and the notation Fn X denotes the fraction of data with

probability p.

Entropy. The entropy of the payload is indicative of the infor-

mation content inside a packet, which correlates to message types

and sizes. From the analysis described by Khakpour et al. in [12],

if a packet is carrying plain-text then the entropy of the payload

is lowest and, if the packet is carrying audio/XML/JSON encoded

or compressed or encrypted data, then the entropy will increase

proportionately in that order. To calculate Shannon entropy of a

sequence ofm bytes with a symbol length of 8-bits or 1 byte, the

following formula is used:

hm =

256∑

i=1

pi log2 pi

where pi is the probability of the occurrence of byte value i in them

bytes, i.e., pi =
count i

m
. By using entropy as a feature, we are only

focusing on the nature of the data and not on the data itself. We

performed a statistical analysis of this feature across a few devices

and show the result in Figure 2(a).

TCPWindow size. This feature has been suggested by Alvin et

al. in [18] as method to fingerprint general purpose devices. The

intuition behind this feature is that the TCP window size depends

on the memory of the IoT device and the speed of its processing.

Small constrained devices, such as light bulbs, typically tend to

have small window sizes and more powerful devices, such as video

cameras, have variable and larger window sizes. Figure 2(b) shows

the variation of the TCP window sizes across different categories

of devices and show the variability of this feature among these

devices. Such variability is the key factor for effective machine

learning based classification. In the case that a device uses only

UDP, this factor in itself is sufficient to distinguish against devices

using TCP.

Payload Length. This is the length of the payload carried inside

a TCP/UDP message, in other words, this is indicative of the length

of the messages sent by a given device. This is a very device specific
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feature and shows significant variation from device to device as

shown in Figure 3(b). This parameter is different from packet length

that has earlier been used [20] and shows a higher variation across

devices. We compared this feature with packet length across three

sample devices and the results are shown in Figure 3. For instance,

in Figure 3(a), 40% of the feature values have same values for all

three devices, which does not aid the machine learning classifier

for distinguishing among these devices. In comparison, Figure 3(b)

shows that the payload lengths exhibit remarkable variations that

might be very useful for a machine learning classifier to distinguish

among these devices. Now, even if the messages are encrypted,

for instance, the video camera feeds, the underlying block-cipher

and padding result in deterministic patterns in the command and

response message payload lengths. Typically, we observed that

most control messages, exchanged by the device from the smart

phone or over the local area network, are in plain-text. In various

distinct sessions used by a device, the properties of payload are

likely to remain uniform for sessions with same functionality, and

therefore, are good indicators of the device behavior.

5.3 Behavioral Profile and Fingerprint
Based on above discussion, we now define the structure of a device-

type fingerprint. From Section 1.1, the behavioral profile of a device

is defined as a collection of various fingerprints. Based on the anal-

ysis of Section 4.3, the number of messages in a session contribute

to the fingerprint of that session, which is 5 1. We choose five

packets as the number of session packets whose features corre-

spond to a fingerprint of the device. This implies that any given

set of five session packets will represent a fingerprint of the device

and should be sufficient to identify the device. For each of the five

packets we extract 20 features, i.e., the 17 packet header features

and the 3 payload based features, and group them together, to give

us a feature vector of 100 features. We consider consecutive packets,

i.e., pi pi+1 pi+2 pi+3 pi+4, to generate a single fea-

ture vector, as the sequence of the packets is important to capture

the session semantics. Specifically, in this work, we only consider

the response packets of the device for the fingerprint and not the

packets sent to the device1. This feature vector represents the fin-

gerprint of the device with respect to the five chosen packets. Now,

to create a behavioral profile from the network traffic captured from

a device, we group the packets into groups of five and generate the

feature vectors. The set of all such feature vectors corresponds to

the observed behavioral profile of the device. These feature vectors

can then be used to train a machine learning classifier that will

be able to predict the device-type when presented with a target

feature vector of the same device-type.

6 EXPERIMENTAL EVALUATION
In this section, we describe our experimental setup and the various

devices on which the fingerprinting tests were carried out. We re-

port several interesting results with different variations of features.

6.1 Experimental Setup and Data Sets
We tested our approach on the latest home IoT devices, listed in

Table 3, available in the market. The device label corresponds to

1However, we detected similar results even when the bi-directional traffic was consid-
ered for fingerprinting.

the unique identifier given to this device-type. The category corre-

sponds to the general category under which one or more device-

types are grouped, e.g., AWOX light and iView light are grouped

together. The connectivity refers to the physical layer connectivity

supported by these devices. To enable data capture from these

devices, we constructed a software bridge setup using a general

purpose laptop running Kali Linux on an Intel� processor with 8

GB RAM. The laptop acted as a WiFi access point and removed the

WPA/WPA2 encryption, giving us access to the actual packets sent

by the device. This setup allowed us to capture all traffic, from both

the wireless and wired devices as well as traffic passing through

the network switch from the mobile phone control apps.

To collect the necessary data sets for training the machine learn-

ing classifiers, we emulated the normal usage of a device, i.e., the

device is in control of a smart phone app and/or the device performs

some action without control messages. Our method for data set

collection is as follows. First, the device is booted up and allowed

to perform any initial configuration or firmware upgrade. Second,

when the device is in steady state, we contacted the device through

its smart app and started interacting with the device. Finally, we

allowed periods of idle time for the device to perform some com-

munication without user intervention. Depending on the device

activity, we captured 1000 to 10000 packets of network traffic from

each device. The various device operations are described in Table

3. In a real-world environment, our approach passively observes

all traffic and generates the corresponding behavioral profile of the

device. To generate a single data instance, based on the discussion

in Section 4.3 and Section 5.3, we aggregated five consecutive pack-

ets into one feature vector. The resulting data instances for each

device are shown in Table 3.

Note on Device Diversity and Scale. Although we have experi-

mented on a small set (14) of device-types, we have ensured that

these device-types represent a significant spectrum of home IoT de-

vice categories. In fact, we demonstrate that it is possible to identify

a device-type into its particular category. Also, to ensure that our

device-type fingerprinting approach emulates a real-world scenario,

i.e., to be able to identify a device-type when the traffic is a vast mix

of different device-types, we collected sufficient data samples from

each device-type and performed fingerprinting of each device-type

using this large data set. Previous approaches like IoTSentinel [20]

used a similar technique to ensure sufficient diversity of data.

6.2 Machine Learning Methodology
We used several classifiers available in Scikit-learn tool [22] such

as k-nearest-neighbors, Decision trees, Gradient boosting and Ma-

jority voting. We describe Gradient boosting here, as this classifier

gave consistently good results across all the experiments. Gradient

boosting [8, 19] is a gradient descent based learning approach that

produces a prediction model as an ensemble of weak prediction

models. The learning starts with a “weak” model, typically Gra-

dient Boost Regression Tree (GBRT) that tries to learn the data

space and is iteratively improved by the next model that reduces

the error of the previous model. The goal of gradient boosting is

to combine weak learning models into a single strong model as

shown: F x =

∑
M

m=1 γmhm x . Typically, hm is GBRT of fixed

depth, which is iteratively improved over M trials and γm is the

regression parameter for that particular iteration. At each step, the
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Table 3: Device Descriptions, Operations and Data Instances

Device Label: Device Model Category Connectivity Mode of Operations Data Instances
1: TCP Light GL30002-TP Light Wi-Fi Connects through a Hub 1151
2: AWOX Light SLCW13-14:D4:41 Hue light Wi-Fi Connects with a mobile app 2000
3: MUSAIC Music Speaker MP10 Music Player Wi-Fi, Ethernet Connects with a mobile app 1003
4: D-Link Camera DCS-932L Camera Wi-Fi, Ethernet Connects through laptop 1991
5: iDevice Socket IDEV0002 Socket Wi-Fi, Bluetooth Connects with a mobile app 415
6: iView Light R60 Hue light Wi-Fi Connects with a mobile app 571
7: Lutron Hub L-BDG2 Hub Wi-Fi Connects with a mobile app 108
8: Netatmo Climate Home Coach Climate Control Wi-Fi Connects with a mobile app 70
9: Omna Camera DSH-C310 Camera Wi-Fi Connects with a mobile app 1072
10: Philips Hue Light Hue 2.1 Light Wi-Fi Connects through hub 986
11: TPLink Light Lb100 Hue Light Wi-Fi Connects with a mobile app 519
12: WEMO Outlet Insight Outlet Wi-Fi Connects with a mobile app 592
13: Wink Hub 2 Light Wi-Fi Connects with a mobile app 286
14: SmartThings Hub -no model- Hub Wi-Fi Connects with a mobile app 103

model is improved as follows:

Fm+1 x = Fm x + γm+1hm+1 x

The hm+1 is chosen to minimize the loss function L in the current

model’s fitting of a data point xi : Fm xi as shown:

Fm+1 x = Fm x + argmin
h

n∑

i=1

L yi , Fm xi + h x

For implementation we used Scikit-learn library [22] and we set

the tool-kit specific parameters as follows: n_estimators = 100,

which denotes the number of weak learners, and the maximum

depth of each tree is controlled bymax_depth parameter. We set

the learninд_rate = 1.0 andmax_depth = 1.

Evaluation Metrics. For testing, we label the device being tested

as “1” and the remaining data as “ 1”. During classification, the “1”

data instances correctly classified are denoted by, true positive (TP)

and incorrectly classified are denoted by, false negatives (FN), and

total “ 1” correctly classified are denoted by, true negatives (TN)

and incorrectly classified are denoted by, false positive (FP). We

report the standard classificationmetrics such as, positive predictive

value, PPV = T P

T P+F P
, which indicates the ability of the classifier to

truly identify the positive instances in a given data set; true positive

rate, TPR = T P

T P+FN
, which indicates the ability of the classifier

to correctly identify the device when presented with all positive

instances; and, accuracy,ACC = T P+FN

T P+F P+FN+T N
, which shows the

overall performance of the classifier against tested data instances.

We performed all experiments under two variations: (a) In the

first variation, we included all the features described in Section 5.

(b) In the second variation, to demonstrate the applicability of our

approach for cases where data might be encrypted, we performed

the experiments without the “payload entropy” feature.

6.3 Device-type Fingerprinting
In this experiment, we evaluated the accuracy of the classifier for

device-type fingerprinting. For testing against a given device-type,

we treated the class label of the device-type to be 1 and the rest of

the 13 devices data as 1. Therefore, our learning model created

an imbalance in the data wherein the positive labels were less than

10% of the total data set that consisted of 10887 data instances. We

used five-fold cross-validation to avoid issues of over-fitting and

to test the robustness of the classifier learning on unknown data

instance classification.

For this experiment, although we collected data from 14 distinct

devices, we could test the approach only on 10 devices due the

following reasons. First, for the Netatmo Climate device, there

were very less data instances as this device generated very less

data during experimentation and we excluded fingerprinting this

device. But, we still included it for testing against other device-

types. Second, the hubs like Lutron Hub, SmartThings Hub and

Wink Hub exhibit a different behavior compared to other devices.

These devices act as conduits to other devices, by relaying com-

mands and response, and do not have any specific behavior of their

own. However, based on their observed behavior like advertising

their presence and connecting to devices, we were able to perform

fingerprinting of these devices to a limited extent and show these

results as well.

On the remaining 10 device-types, as shown in Figure 4, this ex-

periment achieved an high true positive rate of 99 100% and when

“payload entropy” was not included we achieved nearly identical

results with a variation of 2% on an average. In Figure 5, we show

that our approach achieves an average PPV of over 99%, which

shows that the learning model has very good ability to distinguish

the tested device-type from among a host of other device-types.

This result is very significant given the skewed nature of our data

set, most of the times the classifier was correctly able to recognize

that a particular data instance did not correspond to the target class

label. In real-world networks, this is the most likely situation for

fingerprinting and it is essential that the classifier does not gener-

ate too many false positives. Finally, in Figure 6, we show that the

average accuracy across all the tested devices is consistently above

99%, which shows the quality of the machine learning classifier.

Experiments on Hubs. In Figures 7(a)-7(b), we show the results of

fingerprinting the three hubs in our data set. For hubs with some

activity, our approach worked quite well, 97 98% TPR, and for

other hubs it performed moderately well with a TPR of 86% .

Feature Robustness. Finally, we demonstrate the robustness and

importance of the payload features we have used, i.e., payload size,

entropy and TCP window size, in the classification as compared to

only packet header features used in [20]. As shown in Figure 8, the

results confirm that the fingerprinting accuracy is high for the three

features, we have used, showing their robustness and importance

when excluding the packet header features.

6.4 Device category Fingerprinting
In this experiment, we explored the capability of our model in

classifying devices into device-categories. For this, we generated a

data set from the original data set by grouping devices into device-

categories, e.g., light bulbs. The data set is shown in Table 4, which
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Figure 4: True Positive Rate

Figure 5: Positive Predictive Value

Figure 6: Detection Accuracy

(a) (b)

Figure 7: Fingerprinting Hubs: (a) TPR (b) PPV
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(a) (b)

Figure 8: Feature robustness: (a) TPR (b) PPV

Table 4: Device category Data

Device category Data Instances
1: Light 2422
2: Music Player 1003
3: Camera 3063
4: Socket 415
5: Hub 210
6: Outlet 592
7: Colored Light 3090

Table 5: Device-instance Data

Device Label: Device Data Instances
5 :iDevice Socket 415
6: iView Light 571
12: Wemo Outlet 592

consists of categories described in Table 3 (Note: “w/” means all
features including “payload entropy” and “w/o” is excluding this
feature). As shown in Table 6, the device category identification rate
(TPR) ranged from 91-99% across the different device-categories
with an average accuracy of 97-99%, which shows the robustness of
the classifier even when trained against data instances from differ-
ent device types in same category. This result is very significant as
it demonstrates the feasibility of categorizing devices into common
device-types. Our work is the first to report this kind of result.

6.5 Cross-instance Recognition
In this experiment, we collected data from different device instances
of Wemo Outlet, iDevice Socket and iView light, shown in Table 5.
The goal was to check how well the learning model could recognize
different device instances. The training set used for this experiment
was from Table 3, as would be done in a real-world scenario. The
experiments reported a high recognition rate of 99.7-100%, indicat-
ing that the classifier was very successful in matching instances
against previously stored profiles of the device-type.

6.6 Performance Across Multiple Classifiers
All the above experiments were repeated across multiple machine
learning classifiers like: k-nearest-neighbors (kNN), Decision tree
and Majority voting. We show the results for the device-type classi-
fication on two selected devices: TCP Light and D-Link camera, for
all 20 features. Decision trees performed almost as good as Gradient
boosting, mainly because Decision trees [16] are good at handling
imbalanced data sets while the other classifiers reported lower ac-
curacy. The classifiers reported a TPR ranging from 88-99%, shown
in Figure 9, and an average accuracy ranging from 95-99%.

7 CONCLUSION
In conclusion, we re-affirm that the problem of IoT device finger-
printing is very important in the context of security. The identi-
fication of IoT device-types is a strong step towards identifying
IoT device instances, which will be useful in establishing strong
authentication of a device. The existing IoT devices have too much
variation in protocols/functionality and it is difficult to come out
with one general approach for fingerprinting. However, as our
methodology showed, it is possible to fingerprint device-types with
high accuracy. The high accuracy reported by our experiments
show that it is possible to reduce false positives during device
fingerprinting even in the presence of several other devices. Fin-
gerprinting categories of devices is an entirely different challenge
and we demonstrated some promising results in this direction. Our
work is the first to report such cross-category identification of de-
vices. There are many open questions remaining in fingerprinting
and this will continue to be an interesting research area for the IoT
domain for quite some time. One question is how to leverage device
fingerprinting towards the development of strong authentication
schemes for IoT devices that are difficult to clone. Such schemes
should not require manufacturers to make changes to their device
architectures or enforce unreasonable computational overhead on
the devices themselves.
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Table 6: Device Category Classification Metrics

Dataset
TPR PPV ACC

w/ Entropy w/o Entropy w/ Entropy w/o Entropy w/ Entropy w/o Entropy
1: Light 99.30 99.26 99.51 99.26 99.73 99.67
2: Music Player 95.31 94.11 99.57 98.76 99.53 99.34
3: Camera 98.01 97.52 98.79 98.45 99.09 98.86
4: Socket 99.02 99.27 100 100 99.96 99.97
5: Hub 91.36 92.38 98.02 98.12 99.80 99.81
6: Outlet 97.12 96.29 99.66 99.65 99.82 99.78
7: Colored Light 95.50 94.63 98.86 97.16 98.40 97.67

(a) (b)

Figure 9: Device-type Classification Metrics : (a) TCP Light (b) D-Link Camera
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