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ABSTRACT

The Internet-of-Things (IoT) has brought in new challenges in de-
vice identification —what the device is, and authentication —is the
device the one it claims to be. Traditionally, the authentication prob-
lem is solved by means of a cryptographic protocol. However, the
computational complexity of cryptographic protocols and/or prob-
lems related to key management, render almost all cryptography
based authentication protocols impractical for IoT. The problem of
device identification is, on the other hand, sadly neglected. Almost
always an artificially created identity is softly associated with the
device. We believe that device fingerprinting can be used to solve
both these problems effectively. In this work, we present a method-
ology to perform IoT device behavioral fingerprinting that can be
employed to undertake strong device identification. A device be-
havior is approximated using features extracted from the network
traffic of the device. These features are used to train a machine
learning model that can be used to detect similar device-types. We
validate our approach using five-fold cross validation; we report a
identification rate of 93-100% and a mean accuracy of 99%, across
all our experiments. Furthermore, we show preliminary results for
fingerprinting device categories, i.e., identifying different devices
having similar functionality.
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1 INTRODUCTION

The Internet-of-Things (IoT) devices industry is rapidly growing
[10] with an ever-increasing list of manufacturers offering a myriad
of smart devices targeted to enhance the end-users’ experience.
Unfortunately, security is often an after-thought with manufactur-
ers preferring features and functionality over security. This results
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in vulnerabilities [24] that can be successfully exploited to launch
large scale attacks, best highlighted in the notorious incident of the
Mirai botnet [14]. Many security problems, however, can be miti-
gated through strong identification (and, authentication) of devices.
For example, if a malware in a light bulb causes it to behave differ-
ently mimicking a thermostat, strong identification would allow
an administrator to enforce appropriate security controls, such as,
isolate the device from the rest of the network. In this work, we
develop a framework to build robust identities of IoT devices using
their observed behavioral characteristics. As devices are plugged-in
on an IoT network, we establish a behavioral baseline to identify
the type of these devices.

Fingerprinting IoT devices is challenging due to the large variety
of devices, protocols, and control interfaces across the gamut of
devices. An IoT device might respond to queries about its iden-
tity and type, which is often a standard way of remotely learning
about the device when security is not a major concern. However,
when security is indeed a concern, such fingerprint should not
be based on a soft identity that is easily cloned, masqueraded or
bypassed by advertising relevant false information by an attacker.
Examples of such soft identities are device name, device-type, man-
ufacturer information, serial number, network address (even layer 2
address) and so on. More importantly, an untrusted or compromised
IoT device might behave contrary to its baseline behavior, e.g. by
connecting to other devices to disrupt their functioning or to gather
network information.

Our hypothesis in this work is that every IoT device possesses a
unique “fingerprint” that the IoT device “reveals” when it sends mes-
sages over a network. This fingerprint can be remotely established
by an automaton that is able to monitor the network traffic. More-
over, this fingerprint cannot be very easily cloned by a malicious
adversary. Several researches have shown that many computing
devices may possess such fingerprints [1-3, 23, 26].

1.1 Problem Description

An IoT device can be fingerprinted at varying levels of granular-
ity, from a category to a specific instance, as shown in the sample
ontology in Figure 1. A device category corresponds to a general
grouping of devices having similar functionality, say, e.g., “Light
Bulb”. This category can have further sub-divisions, like “Mono-
chrome” and “Hue Light”. A device-type is a specific device model
within a general device category. For instance, in Figure 1, a device-
type is: “Light Bulb| Monochrome| TCP Light| A21” or simply “TCP
Light | A21”. Finally, a device instance is a single instantiation of
a device-type. For example, the device-type “TCP| A21”, has two
different bulbs with serial numbers “A21| S.No: 1" and “A21| S.No: 2".
Each of these is a device instance. Ideally, a security administrator
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Figure 1: Device Category, Type and Instance

would like the capability of establishing strong identities that can
differentiate between two device instances, say, “A21| S.No: 1” and
“A21| S.No: 2”, which are of the same device-type. Towards this goal,
device-type identification is a critical first step that we address in
this work.

Problem Statement. We define the problem of fingerprinting an
IoT device-type as that of identifying the device-type from a sample
network activity of the device. We refer to the sample network activ-
ity, a, of a device, Dj, as its fingerprint, F};. We denote the collection
of all Fés of a device by B;, i.e, B; = {Fli,in, L. ,F,in} where m is
the number of observed distinct fingerprints. The collection of all
possible network activities of D; constitutes the behavioral profile,
(Bi, Dj), of the device. Then, the problem we address is stated as:
Given a collection of previously recorded behavioral profiles:

B = {(B1, D1), (B2, D2), -+, (Bn, Dn)},

of n devices and the available fingerprint F; of a target device Dy,
to correctly predict (B;, D;) where B; > F; is the corresponding
behavioral profile of D;.

Key Contributions. (a) For the first time, we describe a practical
approach for behavioral fingerprinting of IoT devices using machine
learning. (b) Our fingerprinting analysis shows that with a small
number of packets we can fingerprint a device-type very accurately.
(c) We demonstrate that certain features like TCP window size,
entropy and payload lengths are very specific to device-types and
are statistically significant in fingerprinting. (d) We demonstrate
the machine learning model robustness using three different experi-
ments on 14 different device-types and 7 different device categories.
The first experiment examines the identification of device-types
based on a five-fold cross-validation and, we report a mean iden-
tification rate of 93-99%, and a mean accuracy of 99%. Similarly,
the second experiment examined the identification of device-type
into its device category and we show a mean identification rate of
91-99%. This result is the first such success reported in this prob-
lem domain and shows that we can create behavioral profiles for
classes of devices. The final experiment examined identification
of different device instances of same device-type, and achieved an
excellent mean identification rate of 99.7-100%. (e) Finally, with our
existing device set, we show preliminary results that our approach
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is successful even when the device uses encryption for some of the
communication.

2 SYSTEM MODEL AND ASSUMPTIONS

Network Model. Our network model consists of set of IoT devices
that are connected through a single gateway router. The devices
may be wired or wireless. We assume the capability of capturing all
kinds of traffic such as device-to-device, a device to the Internet and
from the Internet to a device. We do not make any assumptions on
nature of the payload, which may be encrypted, compressed, binary
or plain-text. For this work, we focused on home IoT devices.
Threat Model. Our threat model considers the following scenar-
ios:

1. A device might be replaced with another device that is mali-
cious.

2. A compromised device has the ability to spoof soft identities
and/or IP/MAC layer addresses and any other information specific
to the device-type, such as communication patterns.

3 RELATED WORK

Device fingerprinting has received considerable attention from the
research community. General device fingerprinting has been de-
scribed in [13, 17, 18], which explore several techniques ranging
from packet header features to physical features such as clock-
skews. Wireless device fingerprinting techniques have been dis-
cussed in [1, 5, 7, 15, 21]. These works explore the device-type
identification by exploiting the implementation differences of a
common protocol such as SIP, across similar devices. Physical layer
based device fingerprinting has received considerable attention
[3, 4, 11, 23, 27] where the focus is on analyzing the physical as-
pects of devices to fingerprint them. IoT device-type fingerprinting
research is in early stages due to the evolving nature of the IoT
industry. All these works focus on general wireless devices and
their applicability to IoT devices is an open question. One of the
major challenges in this domain is that IoT devices use numerous
protocols and it would be nearly impossible to attempt such analysis
on a per protocol and per device basis.

Vladimir et al. [3] developed a radiometric approach based on
imperfections in analog components for fingerprinting network
interface cards (NICs). Such variations result in imperfect emis-
sions when compared with the theoretical emissions and manifest
in the modulation of the transmitted signals of the device. They
used machine learning approaches to perform the fingerprinting.
However, this work relies on the availability of the frames, physical
layer transmission, from the given device. This may not be feasible
for an IoT network as the devices are spread over an area and might
be interconnected via different switches and middle-boxes.

Francois et al. [5] describe approaches to fingerprint devices
based on the usage of a common protocol. Broadly, this work focuses
on distinguishing various implementations of the same protocol.
This work describes interesting techniques to parse protocols and
provides an approach for representing and analyzing the behavior of
a given protocol. However, IoT devices speak a variety of protocols,
which makes it difficult to apply these techniques.

Frangois et al. [6] describe a protocol grammar based approach
for fingerprinting. They characterize a device based on the set of
messages transmitted. A message is represented using the protocol
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grammar syntax. To classify a given device, the messages emitted
by the device are compared with syntactic trees of the stored fin-
gerprints and depending on a similarity metric, the device label is
assigned. However, this approach is again specific to protocols that
are well known and whose grammar rules are available.

Gao et al. [9] develop a wavelet analysis technique to fingerprint
wireless access points based on frame inter-arrival time deltas.
This technique can be seen as a black-box approach. However, this
approach relies on the fingerprinter being in or near the range of
the access point to gather sensitive time information and needs the
access point to route data to the fingerprinter. The approach does
not apply to IoT devices as these devices are usually end-points and
do not forward data to other devices.

Radhakrishnan et al. [23] described GTID for device-type identi-
fication on general purpose devices like smartphones, laptops and
tablet PCs. Their work relies on the inter-arrival times of different
packets to extract the relevant features specific to a particular ap-
plication like Skype. However, most IoT devices are usually very
conservative in terms of traffic generation and do not generate
much traffic. Applying these techniques to IoT networks will re-
quire non-trivial modifications to the original set of algorithms. In
contrast, our work extracts the behavior of an IoT device on the
available traffic.

Franklin et al. [7] describe a passive fingerprinting method for
identifying the different types of 802.11 wireless device driver imple-
mentations on clients. The authors explore the statistical relation-
ship of the active channel scanning strategy in a particular device
driver implementation. The lack of a standard for the scanning
strategy results in observable differences. This technique is useful
for identifying the type of device driver implementation but not of
the type of device. This is because a manufacturer might reuse the
same device driver implementation across several device-types.

In the IoT fingerprinting problem space, IoTSentinel by Miettinen
et al. [20] and IoTScanner by Siby et al. [25] are the currently known
solution frameworks. Miettinen et al. in [20] describes IoTSentinel,
a framework for device fingerprinting and securing IoT networks.
It focuses on device-type identification at the time of device reg-
istration into a network. This approach uses packet header based
features to identify a particular device-type and applies machine
learning models to perform the fingerprinting. One shortcoming of
this work is that it is susceptible to the two threats outlined in our
threat model. This is because packet headers can be easily spoofed.
Nonetheless, this work is a useful reference framework. Our ap-
proach provides better accuracy and stronger security. IoTSentinel
reports a mean identification rate of 50-100%, whereas our approach
reports a mean identification rate of 93-99%. Our approach comple-
ments IoTSentinel, as our approach can periodically cross-verify
the device fingerprints established at registration time.

Siby et al. describe IoTScanner in [25], an architecture that pas-
sively observes network traffic at the link layer, and analyzes this
traffic using frame header information during specific observation
time windows. This work is more concerned with discerning the
distinct devices and their presence based on the traffic patterns
observed during the traffic capture time window. A shortcoming
of this approach is that two identical device-types could be clas-
sified as two different device-types due to the variations in traffic
generated during traffic capture time window. This approach is

43

ASHES’18, October 19, 2018, Toronto, ON, Canada

useful for network mapping at a high level, but performing this
analysis periodically can be cumbersome. In contrast, our approach
can re-verify a fingerprint of a device with a short signature of only
5 packets.

4 OUR FINGERPRINTING APPROACH

In this section, we describe the building blocks of our behavioral
model of an IoT device. We start by briefly describing our proposed
approach and discuss the technical challenges we face and how we
address them. This helps set the stage for describing next the static
behavioral model of an IoT device in terms of the protocols used
by the given device, followed thereafter for describing the dynamic
behavioral model of IoT device in terms of the session interactions
of the device.

4.1 Proposed Approach, Technical Challenges
and Solutions

Our fingerprinting approach generates a behavioral profile that
quantifies the behavior of a device-type. Behavioral fingerprinting
is quite valuable since it allows us to monitor the device behavior
throughout its life time. If there are deviations from the device’s
initial behavior, due to some malicious activity, we can detect such
activity by periodically observing and validating against a behav-
ioral profile. To generate such a behavioral profile, our approach is
to model the behavior of the device approximately as a collection
of protocols used, and the set of observed command and response
sequences. We collect the network traffic that is flowing into and
out of the device and extract features of interest as indicators of a
device behavior. Finally, we aggregate the features using a statis-
tical model and use it as a reference for identifying the device. To
identify a target device, we observe a few packets from the device
and compare it against the previously recorded behavioral profiles.

The first technical challenge in our proposed approach is to be
able to observe all possible protocol interactions and command-
responses of the device. Since it may not be possible to observe all
possible interactions, our approach can only approximately model
the device behavior. To solve this challenge, in the laboratory set-
ting, we used the controlling smart-phone app to interact with
the device to capture the command-response sequences. Also, we
observed the device when the user was not interacting with the
device to capture other non-interactive behavior of the device. Our
approach is essentially simulating the passive observation of net-
work traffic where the observer could be observing the traffic flows
of a new device to build the behavioral profile.

The second challenge is that the types of interesting behavioral
features are non-trivial to determine. Therefore, we use available
features like packet header feature and payload based features for
this purpose. For packet header based features, we extract the device
specific features such as the protocols used and communication
patterns of the device during the observational period. Our choice
of payload features, coupled with some preliminary results, shows
that our approach can work on encrypted traffic as well.

The third challenge in our proposed approach is that statisti-
cal models can be very difficult to generate on multi-variate data.
Towards this, we apply general purpose machine learning tools
as machine learning classifiers are very good at learning local fea-
tures of interest in a collection of data. Since, we are modeling the
behavior of a device as a collection of individual fingerprints, the
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machine learning classifiers are most suitable for our approach.
Typically, one distinguishing feature is sufficient to classify a given
device-type against several other device-types and machine learn-
ing algorithms have shown robustness in such classification.

The final and most important challenge is: How much of the
target device data needs to be observed before the fingerprint can be
matched against a stored behavioral profile? Ideally, a small number
of packets allows a fingerprinter to be able to keep track of the
devices periodically and observe any deviations from its behavior.
Our approach therefore attempts to create a short fingerprint with
a few packets being sufficient to match the fingerprint. Therefore,
the problem is to determine, on an average, the number of device
packets that encapsulate one or more behavioral features of a target
device. To solve this problem, we determined the average number
of packets based on the assumption that an individual protocol
interaction session of a device encapsulates one or more behavioral
features of the device. This is consistent with our model for the
behavioral profile of a device, which maps the device behavior
as collection of protocol interaction sessions. Using experimental
analysis, we establish the approximate number of packets required
for fingerprinting a device.

4.2 Static Behavioral Model

IoT devices use several protocols, depending on the network layer
in context, at various stages of their operation such as ARP, EAPOL,
HTTP, MDNS, DNS and so on. Therefore, the list of protocols used
by an IoT device is a good indicator of the device behavior. In
[20], the authors used this notion to capture the device behavior at
registration time. However, many IoT devices use common network
protocols and the set of protocols is not necessarily specific to a
given device-type. As such, the list of protocols used by IoT device
provides only a partial and “static” view of the device’s operations.
As we demonstrate later, the results of Figure 8 strongly emphasize
this point. Further modeling is required to completely understand
the dynamic nature of the device’s behavior, which we describe
next.

4.3 Dynamic Behavioral Model
Our modeling of the dynamics of an IoT device is based on the
notion that an IoT device has several distinct command-response
sequences. We call each of these command response sequences as a
session. A session can also be viewed as a sequence of packets that
have same source/destination IP addresses and source/destination
port numbers, in both directions of the communication flow. For
instance, consider that a device responds to (or sends) the follow-
ing types of control messages: C1, Ca,..., Cp and that the re-
sponses for each of these messages are (not necessarily in that
order): Ry, Rs,..., Rp. A typical protocol interaction can be as
follows:C; Ry Cs Rs Ci Ry Therefore, the device’s
behavior can be viewed as a collection of these sequences.

Any of these sequences, say 5, corresponds to a valid fingerprint,
F; of the device. But, for fingerprinting, the algorithm can only
examine a fixed sized sequence of packets as storing the session
lengths of each device-type is impractical. Therefore, the challenge
is in arriving at an estimate on the average (preferably, least) number
of packets that need to be examined for fingerprinting the device.
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One way to estimate this average is by considering the limited
scope of IoT devices, which usually have short sessions consisting of

2 to 10 packets. Given this intuition, the average number of packets

. . P 2+4+6+8+10
per session, across five such devices, is given by: ———— =6

packets. To check this rough theoretical estimate, we used the
data from our experiments (Please see Section 6 for experimental
setup, devices and data collection details) to count the number of
sessions and the packets per session across five sample devices.

For this sample set of data, the average number of packets per
3.89+6.18+4.41+5.13+9.48

session is: = = 5.81, which is very close
to our theoretical estimate. The summary of this result is that, to
fingerprint a given device we need to capture 5 1 packets for any
given device. We considered the average of the two bounds of this
range, iLe., % = 5, as the minimum number of device packets to
be examined by the fingerprinting algorithm. Based on the models
described in this section, we describe the feature selection for the
machine learning models that will be used to create the behavioral
profiles of IoT devices.

Table 1: Average Number of Packets Per Session

Device Total S sEPacket Sessi Packets/S,
AWOX Speaker | 12755 3274 3.89
D-Link Camera 8600 1390 6.18
MUSAIC Speaker | 1346 305 441
OMNA Camera 8253 1608 5.13
TP Link Light 1660 175 9.48

5 MACHINE LEARNING FEATURES FOR
BEHAVIORAL PROFILING

We use two available types of features from the network packets:

packet header features and payload based features. Broadly speak-

ing, the packet header features are useful in quantifying the static

behavioral model of the device, and the payload based features are

useful in quantifying the dynamic behavioral model of the device.

5.1 Packet Header Features

For the static behavioral model, we use a subset of the features,
shown in Table 2, from those outlined by Miettinen et al. in [20].
Essentially, these features are extracted from the packet headers
of the traffic data from the device. These features are binary, i.e.
they have values of 0 or 1 for the absence or presence of a feature,
respectively. Note that, unlike the work in [20], we do not consider

Table 2: Packet Header Features

Protocol Layer/Type | Features

Link Layer ARP

Network IP/ICMP/ICMPve6/EAPoL

Transport TCP/UDP

Application HTTP/HTTPS/DHCF/BOOTP/SSDP/DNS/MDNS/NTP
IP Options Padding/Router Alert

network specific features like IP addresses, source or destination
ports etc., as these features are not necessarily dependent on the
device behavior.

5.2 Payload Based Features

Primarily, we consider the use of three important features: entropy
of payload, TCP payload length and TCP window size. To validate
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the intuition behind each feature, we tested the empirical cumula-
tive distribution function (ECDF) of the feature for four different
types of devices. The ECDF of a real-valued random variable X,
or just distribution function of X, evaluated at p, is the probability
that X will take a value less than or equal to p. For x-axis distribu-
tion, we used the feature values in the dataset, and for y-axis, we
used the probability that feature value will take values less than or
equal to p and the notation Fn X denotes the fraction of data with
probability p.

Entropy. The entropy of the payload is indicative of the infor-
mation content inside a packet, which correlates to message types
and sizes. From the analysis described by Khakpour et al. in [12],
if a packet is carrying plain-text then the entropy of the payload
is lowest and, if the packet is carrying audio/XML/JSON encoded
or compressed or encrypted data, then the entropy will increase
proportionately in that order. To calculate Shannon entropy of a
sequence of m bytes with a symbol length of 8-bits or 1 byte, the
following formula is used:

256
hm =) pilog,p;
i=1
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where p; is the probability of the occurrence of byte value i in the m
. _ count i .
bytes, i.e, p; = —,,—. By using entropy as a feature, we are only
focusing on the nature of the data and not on the data itself. We
performed a statistical analysis of this feature across a few devices

and show the result in Figure 2(a).

TCP Window size. This feature has been suggested by Alvin et
al. in [18] as method to fingerprint general purpose devices. The
intuition behind this feature is that the TCP window size depends
on the memory of the IoT device and the speed of its processing.
Small constrained devices, such as light bulbs, typically tend to
have small window sizes and more powerful devices, such as video
cameras, have variable and larger window sizes. Figure 2(b) shows
the variation of the TCP window sizes across different categories
of devices and show the variability of this feature among these
devices. Such variability is the key factor for effective machine
learning based classification. In the case that a device uses only
UDP, this factor in itself is sufficient to distinguish against devices
using TCP.

Payload Length. This is the length of the payload carried inside
a TCP/UDP message, in other words, this is indicative of the length
of the messages sent by a given device. This is a very device specific
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feature and shows significant variation from device to device as
shown in Figure 3(b). This parameter is different from packet length
that has earlier been used [20] and shows a higher variation across
devices. We compared this feature with packet length across three
sample devices and the results are shown in Figure 3. For instance,
in Figure 3(a), 40% of the feature values have same values for all
three devices, which does not aid the machine learning classifier
for distinguishing among these devices. In comparison, Figure 3(b)
shows that the payload lengths exhibit remarkable variations that
might be very useful for a machine learning classifier to distinguish
among these devices. Now, even if the messages are encrypted,
for instance, the video camera feeds, the underlying block-cipher
and padding result in deterministic patterns in the command and
response message payload lengths. Typically, we observed that
most control messages, exchanged by the device from the smart
phone or over the local area network, are in plain-text. In various
distinct sessions used by a device, the properties of payload are
likely to remain uniform for sessions with same functionality, and
therefore, are good indicators of the device behavior.

5.3 Behavioral Profile and Fingerprint

Based on above discussion, we now define the structure of a device-
type fingerprint. From Section 1.1, the behavioral profile of a device
is defined as a collection of various fingerprints. Based on the anal-
ysis of Section 4.3, the number of messages in a session contribute
to the fingerprint of that session, which is 5 1. We choose five
packets as the number of session packets whose features corre-
spond to a fingerprint of the device. This implies that any given
set of five session packets will represent a fingerprint of the device
and should be sufficient to identify the device. For each of the five
packets we extract 20 features, i.e., the 17 packet header features
and the 3 payload based features, and group them together, to give
us a feature vector of 100 features. We consider consecutive packets,
ie., pi DPiv1 Pi+2 Pi+3 pi+4, to generate a single fea-
ture vector, as the sequence of the packets is important to capture
the session semantics. Specifically, in this work, we only consider
the response packets of the device for the fingerprint and not the
packets sent to the device!. This feature vector represents the fin-
gerprint of the device with respect to the five chosen packets. Now,
to create a behavioral profile from the network traffic captured from
a device, we group the packets into groups of five and generate the
feature vectors. The set of all such feature vectors corresponds to
the observed behavioral profile of the device. These feature vectors
can then be used to train a machine learning classifier that will
be able to predict the device-type when presented with a target
feature vector of the same device-type.

6 EXPERIMENTAL EVALUATION

In this section, we describe our experimental setup and the various
devices on which the fingerprinting tests were carried out. We re-
port several interesting results with different variations of features.

6.1 Experimental Setup and Data Sets
We tested our approach on the latest home IoT devices, listed in
Table 3, available in the market. The device label corresponds to

"However, we detected similar results even when the bi-directional traffic was consid-
ered for fingerprinting.
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the unique identifier given to this device-type. The category corre-
sponds to the general category under which one or more device-
types are grouped, e.g., AWOX light and iView light are grouped
together. The connectivity refers to the physical layer connectivity
supported by these devices. To enable data capture from these
devices, we constructed a software bridge setup using a general
purpose laptop running Kali Linux on an Intel® processor with 8
GB RAM. The laptop acted as a WiFi access point and removed the
WPA/WPA2 encryption, giving us access to the actual packets sent
by the device. This setup allowed us to capture all traffic, from both
the wireless and wired devices as well as traffic passing through
the network switch from the mobile phone control apps.

To collect the necessary data sets for training the machine learn-

ing classifiers, we emulated the normal usage of a device, i.e., the
device is in control of a smart phone app and/or the device performs
some action without control messages. Our method for data set
collection is as follows. First, the device is booted up and allowed
to perform any initial configuration or firmware upgrade. Second,
when the device is in steady state, we contacted the device through
its smart app and started interacting with the device. Finally, we
allowed periods of idle time for the device to perform some com-
munication without user intervention. Depending on the device
activity, we captured 1000 to 10000 packets of network traffic from
each device. The various device operations are described in Table
3. In a real-world environment, our approach passively observes
all traffic and generates the corresponding behavioral profile of the
device. To generate a single data instance, based on the discussion
in Section 4.3 and Section 5.3, we aggregated five consecutive pack-
ets into one feature vector. The resulting data instances for each
device are shown in Table 3.
Note on Device Diversity and Scale. Although we have experi-
mented on a small set (14) of device-types, we have ensured that
these device-types represent a significant spectrum of home IoT de-
vice categories. In fact, we demonstrate that it is possible to identify
a device-type into its particular category. Also, to ensure that our
device-type fingerprinting approach emulates a real-world scenario,
i.e., to be able to identify a device-type when the traffic is a vast mix
of different device-types, we collected sufficient data samples from
each device-type and performed fingerprinting of each device-type
using this large data set. Previous approaches like IoTSentinel [20]
used a similar technique to ensure sufficient diversity of data.

6.2 Machine Learning Methodology

We used several classifiers available in Scikit-learn tool [22] such
as k-nearest-neighbors, Decision trees, Gradient boosting and Ma-
jority voting. We describe Gradient boosting here, as this classifier
gave consistently good results across all the experiments. Gradient
boosting [8, 19] is a gradient descent based learning approach that
produces a prediction model as an ensemble of weak prediction
models. The learning starts with a “weak” model, typically Gra-
dient Boost Regression Tree (GBRT) that tries to learn the data
space and is iteratively improved by the next model that reduces
the error of the previous model. The goal of gradient boosting is
to combine weak learning models into a single strong model as
shown: F x = Zﬁ\n/[:l Ymhm x . Typically, hy, is GBRT of fixed
depth, which is iteratively improved over M trials and y,, is the
regression parameter for that particular iteration. At each step, the
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Table 3: Device Descriptions, Operations and Data Instances
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Device Label: Device Model Category Connectivity Mode of Operations Data Instances
1: TCP Light GL30002-TP Light Wi-Fi Connects through a Hub 1151
2: AWOX Light SLCW13-14:D4:41 | Hue light Wi-Fi Connects with a mobile app 2000
3: MUSAIC Music Speaker | MP10 Music Player Wi-Fi, Ethernet Connects with a mobile app 1003
4: D-Link Camera DCS-932L Camera ‘Wi-Fi, Ethernet Connects through laptop 1991
5: iDevice Socket IDEV0002 Socket Wi-Fi, Bluetooth | Connects with a mobile app 415
6: iView Light R60 Hue light Wi-Fi Connects with a mobile app 571
7: Lutron Hub L-BDG2 Hub Wi-Fi Connects with a mobile app 108
8: Netatmo Climate Home Coach Climate Control | Wi-Fi Connects with a mobile app 70
9: Omna Camera DSH-C310 Camera Wi-Fi Connects with a mobile app 1072
10: Philips Hue Light Hue 2.1 Light Wi-Fi Connects through hub 986
11: TPLink Light Lb100 Hue Light Wi-Fi Connects with a mobile app 519
12: WEMO Outlet Insight Outlet Wi-Fi Connects with a mobile app 592
13: Wink Hub 2 Light Wi-Fi Connects with a mobile app 286
14: SmartThings Hub -no model- Hub Wi-Fi Connects with a mobile app 103

model is improved as follows:
Fm+1 x = Fm X+ Ym+1hm+1 x

The hp,+1 is chosen to minimize the loss function L in the current
model’s fitting of a data point x;: Fp, x; as shown:

n
Fn+1 x =Fm x +argm}inZL Yi.Fm xi +hx
i=1

For implementation we used Scikit-learn library [22] and we set
the tool-kit specific parameters as follows: n_estimators = 100,
which denotes the number of weak learners, and the maximum
depth of each tree is controlled by max_depth parameter. We set
the learning_rate = 1.0 and max_depth = 1.
Evaluation Metrics. For testing, we label the device being tested
as “1” and the remaining data as © 1”. During classification, the “1”
data instances correctly classified are denoted by, true positive (TP)
and incorrectly classified are denoted by, false negatives (FN), and
total “ 17 correctly classified are denoted by, true negatives (TN)
and incorrectly classified are denoted by, false positive (FP). We
report the standard classification metrics such as, positive predictive
value, PPV = %> which indicates the ability of the classifier to
truly identify the positive instances in a given data set; true positive
rate, TPR = TPT+1;‘ N which indicates the ability of the classifier
to correctly identify the device when presented with all positive
instances; and, accuracy, ACC = %, which shows the
overall performance of the classifier against tested data instances.
We performed all experiments under two variations: (a) In the
first variation, we included all the features described in Section 5.
(b) In the second variation, to demonstrate the applicability of our
approach for cases where data might be encrypted, we performed
the experiments without the “payload entropy” feature.

6.3 Device-type Fingerprinting
In this experiment, we evaluated the accuracy of the classifier for
device-type fingerprinting. For testing against a given device-type,
we treated the class label of the device-type to be 1 and the rest of
the 13 devices data as 1. Therefore, our learning model created
an imbalance in the data wherein the positive labels were less than
10% of the total data set that consisted of 10887 data instances. We
used five-fold cross-validation to avoid issues of over-fitting and
to test the robustness of the classifier learning on unknown data
instance classification.

For this experiment, although we collected data from 14 distinct
devices, we could test the approach only on 10 devices due the

47

following reasons. First, for the Netatmo Climate device, there
were very less data instances as this device generated very less
data during experimentation and we excluded fingerprinting this
device. But, we still included it for testing against other device-
types. Second, the hubs like Lutron Hub, SmartThings Hub and
Wink Hub exhibit a different behavior compared to other devices.
These devices act as conduits to other devices, by relaying com-
mands and response, and do not have any specific behavior of their
own. However, based on their observed behavior like advertising
their presence and connecting to devices, we were able to perform
fingerprinting of these devices to a limited extent and show these
results as well.

On the remaining 10 device-types, as shown in Figure 4, this ex-
periment achieved an high true positive rate of 99 100% and when
“payload entropy” was not included we achieved nearly identical
results with a variation of 2% on an average. In Figure 5, we show
that our approach achieves an average PPV of over 99%, which
shows that the learning model has very good ability to distinguish
the tested device-type from among a host of other device-types.
This result is very significant given the skewed nature of our data
set, most of the times the classifier was correctly able to recognize
that a particular data instance did not correspond to the target class
label. In real-world networks, this is the most likely situation for
fingerprinting and it is essential that the classifier does not gener-
ate too many false positives. Finally, in Figure 6, we show that the
average accuracy across all the tested devices is consistently above
99%, which shows the quality of the machine learning classifier.
Experiments on Hubs. In Figures 7(a)-7(b), we show the results of
fingerprinting the three hubs in our data set. For hubs with some
activity, our approach worked quite well, 97 98% TPR, and for
other hubs it performed moderately well with a TPR of 86% .
Feature Robustness. Finally, we demonstrate the robustness and
importance of the payload features we have used, i.e., payload size,
entropy and TCP window size, in the classification as compared to
only packet header features used in [20]. As shown in Figure 8, the
results confirm that the fingerprinting accuracy is high for the three
features, we have used, showing their robustness and importance
when excluding the packet header features.

6.4 Device category Fingerprinting

In this experiment, we explored the capability of our model in
classifying devices into device-categories. For this, we generated a
data set from the original data set by grouping devices into device-
categories, e.g., light bulbs. The data set is shown in Table 4, which
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Table 4: Device category Data

consists of categories described in Table 3 (Note: “w/” means all
features including “payload entropy” and “w/o” is excluding this
feature). As shown in Table 6, the device category identification rate
(TPR) ranged from 91-99% across the different device-categories
with an average accuracy of 97-99%, which shows the robustness of
the classifier even when trained against data instances from differ-
ent device types in same category. This result is very significant as
it demonstrates the feasibility of categorizing devices into common
device-types. Our work is the first to report this kind of result.

6.5 Cross-instance Recognition

In this experiment, we collected data from different device instances
of Wemo Outlet, iDevice Socket and iView light, shown in Table 5.
The goal was to check how well the learning model could recognize
different device instances. The training set used for this experiment
was from Table 3, as would be done in a real-world scenario. The
experiments reported a high recognition rate of 99.7-100%, indicat-
ing that the classifier was very successful in matching instances
against previously stored profiles of the device-type.

6.6 Performance Across Multiple Classifiers

All the above experiments were repeated across multiple machine
learning classifiers like: k-nearest-neighbors (kNN), Decision tree
and Majority voting. We show the results for the device-type classi-
fication on two selected devices: TCP Light and D-Link camera, for
all 20 features. Decision trees performed almost as good as Gradient
boosting, mainly because Decision trees [16] are good at handling
imbalanced data sets while the other classifiers reported lower ac-
curacy. The classifiers reported a TPR ranging from 88-99%, shown
in Figure 9, and an average accuracy ranging from 95-99%.
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Device category | Data Instances Table 5: Device-instance Data
1: Light 2422

2: Music Player 1003 Device Label: Device | Data Instances

3: Camera 3063 5 :iDevice Socket 415

4: Socket 415 6: 1View Light 571

5: Hub 210 12: Wemo Outlet 592

6: Outlet 592

7: Colored Light 3090

7 CONCLUSION

In conclusion, we re-affirm that the problem of IoT device finger-
printing is very important in the context of security. The identi-
fication of IoT device-types is a strong step towards identifying
IoT device instances, which will be useful in establishing strong
authentication of a device. The existing IoT devices have too much
variation in protocols/functionality and it is difficult to come out
with one general approach for fingerprinting. However, as our
methodology showed, it is possible to fingerprint device-types with
high accuracy. The high accuracy reported by our experiments
show that it is possible to reduce false positives during device
fingerprinting even in the presence of several other devices. Fin-
gerprinting categories of devices is an entirely different challenge
and we demonstrated some promising results in this direction. Our
work is the first to report such cross-category identification of de-
vices. There are many open questions remaining in fingerprinting
and this will continue to be an interesting research area for the IoT
domain for quite some time. One question is how to leverage device
fingerprinting towards the development of strong authentication
schemes for IoT devices that are difficult to clone. Such schemes
should not require manufacturers to make changes to their device
architectures or enforce unreasonable computational overhead on
the devices themselves.
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Table 6: Device Category Classification Metrics

Dataset TPR PPV ACC
atase w/ Entropy | w/o Entropy | w/Entropy | w/o Entropy | w/ Entropy | w/o Entropy
1: Light 99.30 99.26 99.51 99.26 99.73 99.67
2: Music Player 95.31 94.11 99.57 98.76 99.53 99.34
3: Camera 98.01 97.52 98.79 98.45 99.09 98.86
4: Socket 99.02 99.27 100 100 99.96 99.97
5: Hub 91.36 92.38 98.02 98.12 99.80 99.81
6: Outlet 97.12 96.29 99.66 99.65 99.82 99.78
7: Colored Light 95.50 94.63 98.86 97.16 98.40 97.67
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