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Abstract— Clustering is a crucial tool for analyzing data
in virtually every scientific and engineering discipline.
The U.S. National Academy of Sciences has recently announced
“the seven giants of statistical data analysis” in which data
clustering plays a central role. This report also emphasizes
that more scalable solutions are required to enable time and
space clustering for the future large-scale data analyses. As a
result, hardware and software innovations that can significantly
improve energy efficiency and performance of the data clustering
techniques are necessary to make the future large-scale data
analysis practical. This paper proposes a novel mechanism for
computing bit-serial medians within resistive RAM arrays with
no need to read out the operands from memory cells. We propose
a novel four-transistor, four-memristor memory cell that enables
in situ median computation within the data arrays. (If necessary,
the proposed cell could be used as four ordinary one-transistor,
one-memristor memory cells to store four bits of information.)
The proposed hardware is used to accelerate a data clustering
library using breast cancer samples, indoor localization, and
the U.S. Census data sets, as well as two applications using
k-means clustering. Our simulation results for the library indicate
an average performance improvement of 15.5× and an energy
reduction of 28.5× over a baseline CPU system. Also, we observe
an overall speedup of 5.8× with an energy improvement of
14.1× over a baseline processing-in-memory accelerator. For the
k-means applications, we observe speedups of 45.7× and 1.5×

with respective energy improvements of 49.5× and 1.3× as
compared with the CPU baseline.

Index Terms— Computer architecture, in situ processing,
k-medians, resistive RAM (RRAM) technology.

I. INTRODUCTION

DATA clustering is one of the most fundamental compo-

nents in learning and understanding the natural struc-

ture of data sets. Clustering techniques are increasingly used

in science and engineering for important applications, such

as precision medicine [1], World Wide Web [2], machine

learning [3], self-driving cars [4], business marketing [5],

and economy [6]. Due to recent advances in sensor and

storage technologies, as well as the significant growth in

the applications of unsupervised learning, data clustering has
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become one of the most critical tools for the future computer

systems.

K-means [7] is one of the most commonly used algorithms

for solving data clustering problems in various fields of science

and engineering. (Detailed background on object classification

and k-means applications can be found in the literature [8].)

For instance, iterative k-means clustering is used to identify

cancerous samples [9] or to perform unsupervised learning

tasks [10]. The algorithm partitions a set of input data into

k clusters, each of which is represented with a centroid.

The original algorithm relies on the arithmetic mean to

compute the centroids; therefore, the results are very sensitive

to outliers. In response to this problem, more robust variants

of the algorithm, such as k-medians and k-medoids, have been

proposed and used in the past [11]. In particular, k-medians

achieves better solution quality by setting the centroid of each

cluster to its median. However, it requires excessive memory

accesses to the data points and significantly limits the overall

performance. Numerous techniques have been proposed in

the literature to accelerate k-medians clustering, such as

precise and approximate software solutions [12]–[14], field-

programmable gate array (FPGA) accelerators using sorting

networks [15], [16], parallel probabilistic platforms [17],

graphics processing unit (GPU) accelerators [18], and

application-specific hardware frameworks [19]. Regrettably,

the required data movement between the main memory and

the processor cores limits the performance of these recent

efforts even for moderately sized data sets. Moreover, with

the growing interest in the future data intensive applications—

such as deep learning applications that rely on unsupervised

classification—the importance of high performance data

clustering techniques is expected to increase.

This paper proposes a memory-centric hardware accelerator

for in situ k-medians clustering based on bit-serial median

rank order filters (ROFs) [20] and recently developed resistive

RAM (RRAM) technology. A bit-serial ROF—often used in

signal and image processing—is capable of identifying the

i th median of an input data set, which may be used for

k-medians clustering. The performance of a bit-serial ROF is

significantly limited due to the excessive memory accesses

required for clustering large data sets. The in situ k-medians

accelerator addresses the problem by leveraging the compu-

tational capabilities of RRAM cells to realize a memristive

platform capable of performing bit-serial rank order median

computation in situ memory arrays, thereby unlocking the

potential massive parallelism in k-medians clustering.
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Algorithm 1 Basic k-Means Clustering

The proposed hardware accelerator is evaluated on a

k-means clustering library using breast cancer, indoor local-

ization, and the U.S. census data sets, and two applications

that use k-means clustering. We observe that the proposed

accelerator achieves an average performance improvement of

15.5× and an average energy reduction of 28.5× over the soft-

ware implementation of k-means on a CPU system. Moreover,

the results indicate an overall speedup of 5.8× with an energy

improvement of 14.1× over a processing-in-memory (PIM)

accelerator. When used for accelerating k-means clustering

in gene expression analysis (GEA) and classification based

on term frequency–inverse document frequency (TF–IDF),

we observe that the proposed in situ accelerator can achieve

speedups of 45.7× and 1.5× with respective energy improve-

ments of 49.5× and 1.3× as compared with the CPU baseline.

II. BACKGROUND AND MOTIVATION

This section provides the necessary background knowledge

on data clustering algorithms, ROFs, and resistive memory

technologies.

A. Clustering Algorithms

Data clustering is a computationally difficult (NP-hard)

problem that refers to partitioning a set of objects into mean-

ingful groups (called clusters) with no predefined labels [21].

The entities of a cluster are more similar to each other

than to those in other clusters. K-means and its variants

are the most prominent clustering algorithms that have been

successfully used in numerous fields of science and engi-

neering [22]. The basic k-means operations are shown in

Algorithm 1, where k centroids are used to represent the

clusters. A centroid is either a representative member of the

cluster (e.g., median) or an additional data point computed

based on the similarities among all of the cluster members

(e.g., the arithmetic mean). The former has been proven to

find better clusters than the latter due to its resistance against

outliers [21], [22]. Prior to partitioning, the k centroids are

randomly initialized; then, the algorithm repeats two steps

(Lines 3 and 4 in Algorithm 1) until convergence is reached.

First, the clusters are formed by assigning data points to their

closest centroid; second, the centroids are recomputed for each

cluster.1

1) Example Applications of Data Clustering: Numerous

applications of k-means clustering can be found in the lit-

erature. We review two representative examples on GEA and

text data mining.

1Based on the application needs, this process may be repeated either for a
fixed number of iterations or until none of the centroids changes.

Fig. 1. Clustering gene samples to detect cancerous cells.

Fig. 2. TF–IDF text mining with k-means algorithm.

a) Gene expression analysis: Recently, clustering has

seen wide use in medical research, such as cancer diagnosis

and drug discovery. An accurate clustering algorithm often

has a profound impact on the correctness of these applications.

For example, Lu and Han [23] have shown that data clustering

algorithms can be used for more accurate cancer classifications

based on the abundance of gene expression data rather than the

traditional morphological and clinical-based methods. A gene

that forms the basic unit of heredity is defined as part of a

deoxyribonucleic acid (DNA) transferred to an offspring by

its parent. The process of transcribing a gene’s DNA sequence

into ribonucleic acid is called gene expression that changes

during biological phenomena, such as cell development. In the

case of diseases such as cancer, the genes of normal body

cells undergo multiple mutations to evolve cancerous cells.

As shown in Fig. 1, this anomaly is now possible to be detected

through GEA that requires clustering of a large number of gene

samples.

b) Document clustering: Clustering text documents is

an important branch of text mining that refers to organizing

paragraphs, sentences, and terms into meaningful clusters to

improve information retrieval and document browsing [24].

Unlike the numerical data, text clustering requires preprocess-

ing the documents to represent their features in the form of

numerical vectors (see Fig. 2). These vectors are then used to

group similar terms into the same clusters. A commonly used

feature vector for text clustering is the TF, which represents

the number of word occurrences in every document divided by

the total number of words. Moreover, an IDF for every word
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is defined as the logarithmic ratio of the total number of

documents to those that contain the word. These two metrics

are then multiplied to compute a TF–IDF score (wi, j ) for

the j th word of the i th document. Finally, the documents—

represented as rows of the TF–IDF matrix—are partitioned

into multiple groups with similar members using a clustering

algorithm—e.g., k-means.

B. Data Clustering Using Rank Order Filters

ROFs are nonlinear digital components widely used in sig-

nal and image processing to filter out noise from input signals.

In general, an ROF is characterized by: 1) the number of input

signals (N) and 2) an index (i ) that determines which input sig-

nal to appear in the output. The filter identifies the i th largest

(or smallest) input signal to be sent to the output. In particular,

a median filter can be realized if i = (N/2), which is

used to compute the centroids in the k-medians algorithm.

Rank order median filters are memory intensive operations,

for which numerous hardware and software optimizations have

been proposed in the literature [25]–[27]. These proposals

rely on two different approaches: 1) word-based search that

sequentially examines all of the objects to find the median and

2) bit-serial process that computes the majority of selected bits

from all of the objects in parallel. Both approaches suffer from

excessive memory accesses when applied to large-scale data

sets. This paper focuses on unlocking the significant potential

for extremely parallelizing the bit-serial approach by in situ

computation within memory arrays.

1) Bit-Serial Median Filter: In principle, the median of

a list can be computed using a sorting algorithm, which is

complex and inefficient. In 1981, the first bit-serial algorithm

for median filters was proposed by Danielsson [28] that

eliminates the need for sorting. Thereafter, numerous hardware

and software implementations of bit-serial median filters have

been proposed in the literature that relies on the majority

function [20]. The majority function defines a mapping from N

binary inputs to a single output, such that the output is 0 when

(N/2) or more inputs are 0; otherwise, it is 1. Assuming that

the pi values are the binary inputs, (1) can be used to compute

the majority function

M(p1, . . . , pN ) =

⌊

1

2
+

∑N
i=1 pi −

1
2

N

⌋

(1)

a) Computing the median value: Fig. 3 shows how to

compute the median of five input numbers using the bit-serial

algorithm. Every number is represented in a binary format

within a single row. Starting from the most significant bit

toward the least significant bit (LSB), the algorithm performs a

vertical computation followed by a horizontal bit propagation,

repeatedly.2 During the vertical computation, the majority vote

among all of the bits within a selected column is computed.

The result of the majority function is used: 1) to determine

a bit of the final result (median in Fig. 3) and 2) to identify

the minority bits within the selected column. In the next step,

2Notice that the total number of iterations depends on the word size rather
than the number of inputs.

Fig. 3. Illustrative example of computing the median of five input numbers
using the bit-serial algorithm. (a) Original data. (b) Compute majority.
(c) Propagate minorities. (d) Final result.

the minority bits are used to replace all of the bits on their

right-hand side.

b) Implementation challenges: Theoretically, the bit-

serial median algorithm is amenable to massively parallel

implementations: selected bits from all of the inputs can be

processed in parallel. In practice, however, this potential paral-

lelism is significantly constrained due to the required excessive

memory accesses to the input numbers per every iteration.

This paper designs a memory-centric accelerator that performs

the majority function computation and bit propagation steps

in situ memory arrays, thereby eliminating the unnecessary

accesses to the inputs. As a result, the proposed platform will

enable massively parallel execution of the bit-serial median

algorithm.

2) Related Work on Median Filters: There have been several

techniques coined in the past to implement 1-D/2-D median

filters for data and speech processing, as well as image and

video processing. Xilinx builds an FPGA-based 2-D ROF

targeting image processing applications [29]. An example

FPGA platform for computing 32-bit medians is found in

prior work [16]. A 1-D median filter from nonrecursive sorting

algorithms is proposed by Moshnyaga and Hashimoto [30].

Regrettably, the performance of these efforts has been sig-

nificantly constrained due to the excessive memory accesses

required during every iteration of the algorithm. The pro-

posed accelerator will address this problem by computing

the medians in situ novel memristive data arrays, which will

eliminate all of the reads to the data points during median

computation.

C. RRAM Array Structure

Resistive memories are nonvolatile, free of leakage

power, and largely immune to radiation-induced transient

faults [31], [32]. RRAM is one of the most promising mem-

ristive devices under commercial development that exhibits

excellent scalability, high-speed switching, a high dynamic

resistance range, and low power consumption [33]. Numerous



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 4. Illustrative example of two common cell topologies for 1T-1R.
(a) Double bitline cell. (b) Double wordline cell.

array topologies have been proposed in the literature that opti-

mize RRAM for better reliability, density, and computational

capabilities [34]–[36]. Fig. 4 shows two common example

topologies for a one-transistor, one-memristor (1T-1R) mem-

ory cell comprising an access transistor and a resistive storage

element. In both cases, the cell’s content is read or written by

applying an appropriate voltage across the memristive element.

This can be accomplished by activating the access device using

a wordline and applying the required read or write voltage

across a bitline and the third terminal of the cell, which is a

bitline∗ or wordline∗ for the dual bitline and dual wordline

topologies, respectively. The proposed accelerator builds upon

these cell topologies to design a new RRAM cell capable of

storing data and performing the essential operations required

for the bit-serial median filter (see Fig. 3).

D. Hardware Accelerators for In-Memory Processing

The proposed hardware accelerator builds upon existing

mechanisms for near data processing (NDP) and in situ

computation. Numerous hardware accelerators have been

proposed on accelerating important applications in memory

chips and arrays. PIM [37] aims at limiting round trip data

movement by processing data directly on memory chips.

Computational RAM [38] proposed a system that connects

single instruction, multiple data (SIMD) pipelines with sense

amplifiers. Parallel PIM [37] introduces a configurable chip

to enhance the effect of PIM by operating as a conventional

memory or for processing data as an SIMD processor. Active

Pages [39] propose a microprocessor with adequate logic

circuitry integrated near the dynamic random access mem-

ory (DRAM) arrays to reduce memory latency. FlexRAM [40]

and intelligent RAM (IRAM) [41] are other techniques for

NDP that have been evaluated on different technologies.

E. Hardware Accelerators for k-Means Clustering

The k-means and k-medians algorithms are widely used

techniques for clustering data. As a result, researchers have

proposed numerous hardware architectures for accelerating

these techniques. Hussain et al. [42] propose an FPGA

approach to accelerating k-means clustering on gene expres-

sion data sets obtained from gene microarray experiments.

A recent work on clustering hyper spectral images pro-

poses a reconfigurable hardware for accelerating the k-means

algorithm [43]. This paper shows that using a hardware/

software codesign operating at a moderate frequency can

significantly reduce the clustering time.

Fig. 5. Illustrative example of a multicore processor interfaced with the
proposed memristive data clustering accelerator.

III. K -MEDIANS CLUSTERING WITHIN RRAM ARRAYS

This section provides an overview of the proposed

memristive accelerator and explains the design principles

for realizing energy-efficient data clustering within memory

arrays. The key idea is to exploit the computational capabilities

of the memristive elements in RRAM arrays to perform the

necessary computation of the bit-serial median filter algorithm

in memory cells. As a result, the proposed architecture elimi-

nates unnecessary latency, bandwidth, and energy overheads

associated with streaming data out of the memory arrays

during the clustering process. This novel capability will then

unlock the unexploited massive parallelism in data clustering

using bit-serial median filters.

A. System Organization

As shown in Fig. 5, a memory module comprising multiple

chips is designed to perform large-scale k-medians data clus-

tering using the proposed accelerator. Each chip comprises a

hierarchy of data arrays interconnected with a reconfigurable

reduction network. The memory cells are capable of storing

data bits and computing the basic operations required for

bit-serial median filters. The interconnection network allows

for retrieving or merging partial results from the data arrays.

The accelerator module is connected to the processor via a

standard double data rate memory interface [44]. This modular

organization of the proposed accelerator allows the user to

selectively integrate the proposed hardware in those computer

systems that execute data clustering workloads.

Moreover, the proposed memory architecture supports two

operational modes: the storage mode that allows the accel-

erator module to serve ordinary read and write requests and

the compute mode, which is used for in situ data clustering.

For every computation task, three steps are followed. First,

the module is configured by software for solving a clustering

problem. Next, the in situ computation will be triggered after

transferring the data from the main memory to the accelerator

chips. Finally, the processor will be notified by the accelerator

to access the results.

B. Design Principles

Three major operations are necessary to implement a bit-

serial median filter within memory arrays: 1) computing the

majority of bits within a selected column; 2) determining
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Fig. 6. Key ideas behind the proposed memristive data clustering accelerator.
(a) Parallel resistors. (b) Serial resistors. (c) Signaling for serial resistors.
(d) Logical XNOR.

which rows hold the minority bit; and 3) replacing the LSBs

of those rows with the minority bit.3 The key idea behind the

proposed in situ data clustering with RRAM cells is shown

in Fig. 6; the serial and parallel topologies of the resistive

elements are used to build an XNOR circuit that computes the

majority function and performs bit comparison.

1) Computing the Majority Vote: Fig. 6(a) shows how the

majority function can be computed through parallel memristive

cells connected to a single bitline. Assuming that each memory

cell employs its high and low resistance states (i.e., RHI

and RLO) to represent 1 and 0, respectively. The number

of 1s determines the amount of current (I ) flowing through

the bitline. By measuring this current and comparing it with

a threshold, one can determine whether the number of 1s

is greater than the half of bits or not, thereby computing

the majority vote. This capability is leveraged to realize the

vertical computation step in the bit-serial median filtering

algorithm (see Fig. 3).

2) Performing In Situ Bit Comparison: Fig. 6(b) shows

the proposed circuit for performing in situ bit comparison

using two serially connected memristive elements that form a

voltage divider network. Depending upon the input value (V )

and the states of memristive elements (r0 and r1), the volt-

age divider produces an output (vout) that varies between

(V RHI/(RHI + RLO)) � V and (V RLO/(RHI + RLO)) � 0.

According to Fig. 6(c) and (d), this output value represents

the results of a binary XOR/XNOR on v and r . The voltage

divider circuit can greatly benefit from the high dynamic

resistance range (RHI/RLO) provided by phase-change mem-

ory and RRAM technology, which is not easily available in

other technologies, such as magnetoresistive RAM [45]. This

paper examines the use of RRAM technology in leveraging

this bit comparison concept to represent the memristive cell

and the input data in their true and complement forms. This

novel functionality is used in the bit-serial median filter

for finding the minority bits, as well as in the k-medians

algorithm for searching and selecting all the members of a

3The critical operations for these three steps are explained in Section II-B.

Fig. 7. Illustrative example of the proposed memory cell.

dynamically formed cluster prior to finding new centroids

(see Section V-B).

IV. PROPOSED ARCHITECTURAL BUILDING BLOCKS

The proposed accelerator is designed based on three funda-

mental building blocks: a memory cell, a majority unit, and

a network reduction unit. The building blocks are designed

and optimized to achieve high memory density, low energy

consumption, and massive parallel computational capabilities

at the memory cells.

A. Memory Cell

Fig. 7 shows the circuit and an example physical layout

for the proposed memory cell capable of: 1) serving ordinary

reads and writes; 2) performing in situ XNOR between the cell

and an external input; and 3) propagating the minority bit to its

adjacent cell. The proposed a four-transistor, four-memristor

cell comprises four transistors and four memristive elements

that can be viewed as a combination of four conventional

1T-1R RRAM cells, as shown in Fig. 4. Three wordlines

and four bitlines are provided to perform read, write, and

compute operations on the cell. Every memristive element

in the proposed cell can be read or written through a set

of three bitlines and wordlines, which makes it possible to

use the proposed cells as four individual 1T-1R memory cells

to store data. For example, R in the Data Bit is accessed

using {I, C, C}; R in XNOR is accessed through {E, M, I};

similarly, {E, M, I} can be employed to access R in XNOR;

and bitlines from adjacent cells are used to access low through

{P, C, C}.

1) Computing the Median Within the Cell: Computing bit-

serial median requires multiple steps, each of which involves

activating the cells using bitlines and wordlines. Fig. 8(a)

shows three adjacent memory cells in a row. On every iteration,

only one cell of each memory row will be processed. Based on

Fig. 8(b), P and I are initialized to determine if the cell should

be included in computation. This is necessary to ensure that

irrelevant data points are not included in computing the median

value. To compute the majority vote of column bi , bitlines C

from columns bi and bi−1 are connected to ground and bitline



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 8. Illustrative example of computing with the proposed memristive cell.
(a) Computing majority. (b) Computational modes. (c) Determining I and P .

C of the column bi is connected to Vdd. As shown in Fig. 8(a),

two paths are possible for flowing current between Vdd and

ground. One path is through column bi that determines the

amount of current driven from the bitline based on the content

of data bit (1). Another possible path includes the memristive

element (low) of the previous column (bi−1) to determine the

amount of current pulled from the compute bitline in case of

bit propagation (2). Notice that P and I are used to enable the

current paths. As shown in Fig. 8(b), only one (or none) of the

columns in every row contributes to the bitline current. First,

none of the cells are selected if P I = 00; second, column bi

is selected to be included in the majority vote computation if

P I = 01; and third, column bi−1 contributes to the majority

vote computation if P I = 10. By measuring the total current

driven through the compute bitline (C) and comparing it with

a threshold, the majority is computed (see Section IV-B).

One difficulty in realizing the in situ bit-serial median

computation is propagating the minority bit within each row

that results in forming long chains of cells, thereby impacting

the area, delay, and power dissipation. The proposed cell

architecture avoids forming long chains by allowing only

1s to be propagated from bi−1 to bi . (Notice that 1 and

0 are represented with the low and high resistance states,

respectively.) Because of the significant difference between

the high and low resistance states in RRAM ((RHI/RLO) ≥

105 [33], [46]), the currents contributed to the bitline by those

memristive cells in high resistance states can be omitted. This

optimization is considered by dedicating a low memristive

element in bi−1, which is included in current summation only

if P is high. After computing the majority vote in current

column (bi ), P and I are recomputed prior to processing the

next column (bi+1). Fig. 8(c) shows how the new values for

P and I are determined. The newly computed majority vote

is applied to M and M; E is connected to Vdd activating the

access transistors; and the XNOR part of the cell generates an

output (M
⊕

R) on the wordline I . On a 1-to-0 transition,

first, I is set to 0 and will remain the same until the end of

computation, and second, P is set to 1 only if M is equal to 1.

2) Updating the Cell: Recall that the proposed cell stores

the true and complement values of the data bit; therefore,

updating the contents of every cell requires additional writes

Fig. 9. Illustrative example of the proposed circuit for computing the
majority vote.

to the replicas. We employ a two-phase update mechanism

that writes all 1s in the first phase and then all of the 0s.

Notice that in a typical data clustering problem, the data set

is written in the memory once and is read by the algorithm

multiple times. As a result, the additional write operations

do not impact the overall execution, significantly. Moreover,

the performance and energy benefits of the proposed in situ

computing significantly surpass such overheads.

B. Analog Bit Counter

In k-medians clustering, the cluster size determines the

complexity of the majority vote unit. Fig. 9(a) shows an analog

bit counter designed for the proposed accelerator to compute

the majority vote per every column of data arrays. Notice that

the bit counter unit is proposed to replace the conventional

sense amplifier circuit in RRAM arrays. In addition to reading

individual cells, the proposed analog bit counter is able to

quantize the total amount of current pulled by the bitline into

a multibit digital value—i.e., the number of 1s within the

column.

A successive approximation mechanism [47] is designed

and employed to accomplish the analog bit counting for every

column. To compute the majority vote of a column, Vdd is

supplied to the compute bitline (C) using a line driver. A two-

level amplification mechanism consisting a current mirror [48]

and a current-mirror-based differential amplifier (DA) [49]

is employed to quantize the total current of the compute

bitline (C). Every time, the DA produces a high or low voltage

based on the reference and input signals. We employ five novel

digital sample and hold (S/H) units, each of which includes

a latch and a NAND gate to sample the DA output and hold

it in its data output. The S/H units produce a 5-bit input to

a digital-to-analog converter [50] that generates the analog



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RUPESH et al.: ACCELERATING k-MEDIANS CLUSTERING USING A NOVEL 4T-4R RRAM CELL 7

Fig. 10. Illustrative example of the waveforms generated by the proposed
analog bit counting circuit for 22 and 0.

reference signal fed to DA for comparison. Fig. 10 shows

example waveforms generated through SPICE4 simulations on

different input signals that correspond to data values 22 and 0.

Every input signal is quantized and sampled in five subsequent

cycles in the S/H units. The output data bits from S/H units

represent the quantized value (see time periods 6n–7n and

12n–13n in Fig. 10).

C. Reduction Unit

Theoretically, solving a large-scale data clustering problem

requires computing the majority vote of a large number of data

points stored in a single memory array, which becomes imprac-

tical due to significant sensing and reliability issues. Instead,

data points are stored in multiple limited sized arrays, and

only a fraction of the cells within each column is processed in

every iteration—e.g., 32 cells of a 256×256 array. Notice that

multiple such operations are performed in parallel data arrays

to achieve significant performance improvements. As shown

in Fig. 9, a hierarchical merging mechanism is proposed to

compute the majority vote of a large number of data points

stored in numerous data arrays across the accelerator chip.5 An

interconnection tree comprising reduction units is employed to

merge the partial counts into a single value for computing the

majority vote. The main purpose of the reduction tree is to

merge the partial counts computed by the analog bit counters.

4Simulation program with integrated circuit emphasis.
5Section V provides the details of chip organization and data layout for the

proposed accelerator.

Fig. 11. Illustrative example of the proposed accelerator module.

An energy-efficient reduction tree is designed to retrieve the

partial data from the local analog bit counters and to compute

the final bit counts. The reduction tree comprises a hierarchy

of bit-serial adders to strike a balance between throughput and

area efficiency.

V. SYSTEM ARCHITECTURE

The proposed hardware accelerator employs a hierarchical

organization of data arrays, banks, and chips to form a memory

module capable of solving clustering problems varying in

size (see Fig. 11). Similar to prior work on the memristive

Boltzmann machine [51], the accelerator module receives data

and commands from CPU over an off-chip memory bus. Soft-

ware initiates every clustering job by writing the configuration

parameters into the chip registers—e.g., size and the number of

iterations. Only, a small fraction of the memory address space

(e.g., 1 KB) is dedicated to the chip registers, through which

all of the configuration parameters, status flags, and data points

are transferred between software and the hardware accelerator.

Similar to Intel and advanced micro devices processors [52],

[53], uncachable loads and stores are employed to access the

chip registers in the same order as requested by software.

Regardless of the data size, one chip register is dedicated

for transferring data to the accelerator. The chip controller

receives the data to be clustered word-by-word and distributes

them into the data arrays across multiple accelerator banks.

Similarly, a data output port is employed to collect the results

of data clustering from the accelerator.

A. Bank Organization

As shown in Fig. 11, every accelerator chip comprises

multiple banks that perform data clustering, independently.

A reconfigurable reduction tree is used inside every bank to

interconnect the data arrays and the chip controller. The pro-

posed tree is capable of selectively merging the partial counts

from the data arrays into a single count value. For exam-

ple, Fig. 12 shows the proposed reduction unit employed to

realize nine possible ways of reading data from the children

arrays A, B, C, and D. All of the reduction units at every node

of the tree are connected to a shared four-bit mode register.

The nodes are programmed to appropriate operational modes

prior to solving a clustering problem. The nodes at the same

tree level are programmed to the same mode value—e.g., m0

in Fig. 12. It is now possible to read the individual arrays

that are used for serving ordinary read requests or to read

the sum of values provided by every two or four adjacent
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Fig. 12. Proposed configurable reduction tree for banks.

Fig. 13. Illustrative example of the proposed array comprising the cells and
peripheral circuits.

arrays, which is used for computing the count value. This

flexibility is essential to achieve significant energy efficiency in

computing those problems that partially occupy the accelerator

banks. In the proposed data clustering platform, software is

responsible for computing the mode bits for a given problem

size. The mode bits are then streamed into the accelerator

during the chip initialization phase.

B. Array Organization

As shown in Fig. 11, every bank includes a controller con-

sisting of buffers for maintaining local data (e.g., centroids),

serial adders, comparators, and logic for controlling iterative

tasks, such as partitioning and recomputing the centroids.

Moreover, the bank controller makes it possible to read,

write, and compute a set of selected data arrays efficiently.

For energy-efficient k-medians clustering, two subarrays are

used to build an array that maintains the data points and

the corresponding labels (see Fig. 13). On every clustering

iteration, seven major steps are followed by the bank controller

to cluster the data points.

1) Initializing Centroids: Every k-medians clustering task

begins with randomly initializing the centroids, which are

maintained by the bank controller in local buffers (1).

The index of each centroid in this table is used as a label

for the corresponding cluster.

2) Forming New Clusters: The bank controller forms new

partitions by reading the data points from the data subarrays

and comparing them with the centroids (2). The index of the

closest centroid to every data point is used as the new cluster

label for that data and will be written to the label array (3).

This is accomplished through a set of serial comparators at

the bank controller. As the data points are read out, the serial

comparator determines the index of the closest centroid to

the data.

3) Computing Medians: The centroid of every cluster must

be recomputed by applying the bit-serial median algorithm

Fig. 14. Proposed mechanism for clustering real numbers. (a) Floating point
data set. (b) Fixed-point numbers. (c) Median of fixed-point numbers.

to all the elements of every cluster. This requires the bank

controller to keep track of the cluster members at all time.

The label array uses the same structure as the data array to

carry out the required book keeping for all of the data points.

At the beginning of every median computation, the label arrays

are searched for matching entries using the cluster labels one

after another (4). The outcome of every search operation is

the matching lines in the label subarray connected to a row

selector unit to determine the I and P values for the data

array (5). Next, the median’s bits are computed by iteratively

performing the vertical majority vote computation followed by

the horizontal minority propagation (6). As being serially com-

puted, the median’s bits are streamed to the bank controller

for updating the centroids (7). This process will end after a

certain number of iterations defined by software or when all

of the newly computed centroids are the same as the old ones

(i.e., convergence is reached).

C. Data Representation

Due to the limitations of the bit-serial median algorithm for

negative or real numbers, the proposed accelerator requires the

data points to be represented in a fixed-point positive format.

The necessary data conversion and preprocessing for clustering

real numbers and negative values are performed by software

prior to loading the data points into the accelerator chips.

1) Clustering Real Numbers: Our experiments indicates that

the energy and delay overheads of this required preprocess-

ing are negligible compared with the energy and delay of

transferring data to/from the accelerator and performing the

actual clustering computations. Moreover, we observed that a

64-bit fixed-point format for the evaluated applications and

data sets achieves virtually the same results obtained with

a double precision IEEE floating point format. Nevertheless,

for sensitive applications, the proposed accelerator is flexible

enough to compute the medians of wider bit representations by

increasing the number of vertical majority vote computation

and applying minimal changes to the control logic. Fig. 14

shows an example of floating point to fixed-point conversion.

The input floating point data are scaled by a factor of 23 and

then are converted to fixed-point data. We now apply an ROF

to compute the median of the fixed-point data.

2) Handling Negative Numbers: The median computa-

tion by an ROF algorithm assumes that the input data are

positive integers. However, for real-time applications, the input

data set need not be positive integers. The proposed accelerator

addresses this concern by representing the input data set in

biased notation, i.e., a bias value 2n is added to all of the

negative and positive elements. Fig. 15 shows an example of

computing the median of four-bit integer data. A bias of 23 is
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Fig. 15. Illustrative example of handling negative numbers in the proposed
clustering framework.

Fig. 16. Illustrative example of even number of data points. (a) Original
data. (b) Append 0 and compute Median. (c) Append 15 (0× f) and compute
Median.

added to each of the data points to make them positive, and

the median is then computed by applying the ROF algorithm.

D. Handling Even Number of Data Points

The ROF algorithm can compute the median of an odd num-

ber of data points only. The proposed accelerator, however,

is capable of computing the median of both even and odd

numbers of input data. The members of a given cluster may

be spread across different arrays and banks of the accelerator.

The number of cluster elements in each cluster may change

per iteration due to cluster reformations. In order to find the

median for a given cluster, we first send the cluster label to

the label array. Similar analog bit counting is used to find the

number of matches in all label arrays. As shown in Fig. 16,

if the cluster contains an even number of elements, the median

of the cluster is computed in two steps. First, we append a

new data point with value 0 to the cluster elements so that

the number of data points becomes odd; then, we find the

median M1 using the median ROF algorithm. In the second

step, we append an all 1s data point to the cluster elements

and compute the median M2. The average of M1 and M2

gives the true median M for the cluster.

VI. EXPERIMENTAL SETUP

We evaluate the system performance and energy consump-

tion of the proposed hardware accelerator using a modified

version of the enhanced superscalar simulator (ESESC) [54].

A library with real data sets [55]–[57] and two applications

pertaining to k-means clustering is used to assess the hardware

accelerator against a baseline CPU and a PIM accelerator.

We employ the cache access and cycle time models [58] with

the multicore power, area, and timing tool [59] to calculate

the overall system energy for every configuration.

A. Methodology

K-means computation in CPU involves excessive data

movement between the core and the main memory. As the

input size and the number of clusters increase, system

performance deteriorates further. Moreover, in the case of

k-medians clustering, significant computations are required to

calculate the median. The baseline CPU configuration imple-

ments the k-means algorithm for floating point real data sets.

As mentioned before, the quality of k-medians is higher than

k-means, because the latter is susceptible to outliers [21], [22].

However, since k-means does not need data sorting, it is much

faster than the k-medians. To better evaluate the performance

and energy of the proposed accelerator as compared with CPU,

we consider a k-means implementation that provides the best

performance and energy on CPUs. [Notice that the proposed

memristive hardware accelerator achieves higher clustering

quality (using k-medians) having performance and energy

numbers significantly better than the k-means.]

Present day, energy-efficient big data processing techniques

use parallel compute substrates, such as FPGA, GPU, and

many-core systems, to better utilize the memory bandwidth

and computational resources. For example, advanced GPU

architectures [60] employ in-package DRAM to achieve TBps

memory bandwidths for data intensive applications. To provide

a comparison against such compute systems, we develop a

PIM specifically designed and optimized for k-means data

clustering. By virtue of being specifically designed, the PIM

accelerator eliminates some of the limitations in the general

purpose CPU, GPU, and FPGA baselines. PIM places the

functional units next to the data arrays on memory dice to

alleviate the significant cost of data movement between the

processor and the memory in every iteration of the algorithm.

Despite a higher bandwidth provided by in-package DRAM,

notice that the bandwidth of such system is still limited by the

through silicon vias and microbumps used for die-to-die com-

munication, whereas a PIM architecture can directly access

data in the memory arrays without such limitations. To build

a strong PIM baseline, we consider many dense memristive

arrays connected to CMOS functional units that implement

the k-means algorithm.

Notice that k-medians requires sorting of data before median

computation and majority vote if calculated by the ROF

method. These prerequisites for median computation are both

time-consuming and demand a large hardware setup for a

PIM architecture. In contrast, the in situ accelerator addresses

these issues and achieves significantly higher performance

and energy efficiency due to: 1) in situ computations that

eliminates unnecessary data movement at the data arrays

and simplifies the additional logic on the memory dice and

2) median computation that enables massively parallel process-

ing at the memory cells for finding centroids through rank

order median filtering. For fair comparison, we explore the

design space of both PIM and the proposed accelerators to

find instances that achieve the best energy efficiency within

similar area consumption.

B. Architecture

We model a single core system configuration on

ESESC [54] that runs at a clock frequency of 3.2 GHz

and employs a two-level cache hierarchy with a four-way
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TABLE I

BASELINE CPU CONFIGURATION

TABLE II

APPLICATION AND DATA SETS

32-KB L1 cache and an eight-way 2-MB last-level cache.

The single core system interfaces to two DDR4-3200 DRAM

channels, as shown in Table I. For the CPU baseline, both

DDR4 channels are plugged with DRAM and serve as a

main memory, whereas in the PIM and the proposed in situ

baselines, one of the channels is employed for communicating

with the accelerator. For every clustering problem, the data

points and the configuration parameters are first transferred to

the accelerator. For transferring data points, a direct memory

access mechanism is implemented in ESESC that is con-

figured by the software and simulates the process in cycle-

accurate fashion.

C. Applications

We evaluate the accelerator for a k-means library with

three real data sets belonging to different domains. First,

data set profiles breast cancer samples [55] containing nearly

12 000 proteins per sample. Second, an indoor localization

data set [56] with nearly 20 000 training records validated

with more than 1000 points, and the last data set contains

nearly 1% sample of the total U.S. census from 1990 [57].

We further assess the proposed hardware on two k-means-

specific applications—GEA and text mining using TF–IDF.

Table II summarizes the data sets used for the library and

applications.

The data set used for GEA is a 2-D input file, wherein

the rows show various genes, while every column repre-

sents experimental results of these genes over time. For

evaluating TF–IDF-based document clustering, we use BBC

data sets consisting of 737 documents from the BBC Sport

website corresponding to sports news articles in five topical

areas (athletics, cricket, football, rugby, and tennis) from

2004 to 2005 [61]. The input data set for this algorithm

includes a corpus and a collection of words that exists across

all the documents as mentioned in Table II. The product of

the number of word occurrences in every document divided by

the total number of words (TF) and the logarithmic ratio of

the total number of documents to the number of documents

in which the word occurs (IDF) forms a 2-D TF–IDF matrix

that represents the frequency of occurrence of each word in

every document present in the corpus. Finally, the words are

clustered into multiple groups based on their frequency of

occurrence in the corpus.

We study all of the applications and input data sets to

determine appropriate ways of representing real and negative

numbers. The floating point to fixed-point conversion may

induce a rounding error that impacts the final cluster assign-

ments. The choice of scaling factor depends on the range of the

input data set. We have evaluated the k-means clustering for

various scaling factors ranging from 218 to 224 and observed

no change in the final cluster assignments. As discussed

in Section V-C, a fixed bias value is added to every data

point in order to convert the data set to positive integers.

We have evaluated the k-means clustering for various bias

values ranging from 224 to 232 and observed no change in

the final cluster assignments.

D. Circuits

SPICE predictive technology models [62] of the CMOS

transistors at a 22-nm technology node are used to evaluate

the proposed RRAM arrays. Area, delay, and energy of the

data arrays are evaluated with memristive parameters RLO =

315 K and RHI = 1.1G based on prior work [46] using

NVSim [63]. The RRAM element is simulated using the

Verilog-A model provided by prior work on the threshold

adaptive memristor model [64] that is tuned for a switching

time of 50 ns. The parasitic resistance and capacitance of

the wordlines and bitlines are modeled based on the inter-

connect projections from international technology roadmap

for semiconductor [45]. Area, timing, dynamic energy, and

leakage power are computed by performing circuit simulations

and hardware synthesis on the controller logic at the 45-nm

technology node [65]. The results are scaled to 16 nm using

the scaling parameters provided by prior work [66]. A charge

pump circuit [67] is used to provide higher voltage, as RRAM

cells require a write voltage more than supply Vdd.

VII. EVALUATION

This section presents potential performance improvements

and system energy savings that are attainable for the proposed

accelerator compared with the CPU and PIM baselines.

A. Energy

We evaluate the energy potentials of the proposed in situ

accelerator by comparing its total system energy with that
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Fig. 17. ASA Library—system energy consumption normalized to the
CPU baseline.

Fig. 18. ASA Library—system energy consumption normalized to the
PIM baseline.

of two baseline implementations of k-means on a general

purpose CPU and a PIM-like hardware accelerator. Fig. 17

shows the overall system energy consumption normalized to

the CPU baseline when accelerating the applied statistics

algorithm (ASA) library for clustering various data sets of

sizes 1, 2, 4, and 8 MB with 100, 200, 400, and 800 iterations

to form four clusters. The data sets are selected from breast

cancer, indoor localization, and U.S. census data explained

in Section VI. The results indicate that the proposed in situ

accelerator can significantly reduce the average system energy

over the CPU baseline: 18.7×, 38.4×, and 36.2× for the

breast cancer, indoor localization, and U.S. census data sets,

respectively.

Fig. 18 provides a similar energy comparison between

the proposed in situ accelerator and a PIM-like baseline.

We observe a significant energy reduction achieved by the

proposed in situ accelerator due to eliminating data accesses

to the memory arrays for fetching data prior to data clustering.

The results indicate averages of 18.7×, 7.3×, and 32.1×

energy savings for the proposed in situ accelerator as compared

with the PIM-like baseline. Also, we observe more significant

energy improvements that are achieved as the number of

iterations of the clustering algorithm increases.

We further evaluate the system energy improvements by

accelerating two different applications of data clustering.

Fig. 19 shows the overall system energy normalized to the

CPU baseline when accelerating the GEA application. To bet-

ter evaluate the systems, we vary the size of data sets and the

number of iterations to form four clusters on the gene data.

The results indicate that the PIM-like baseline achieves an

average of 10.7× improvement over the CPU k-means base-

line, whereas the proposed accelerator improves the system

Fig. 19. GEA—system energy consumption normalized to the CPU baseline.

Fig. 20. TF–IDF—system energy consumption normalized to the
CPU baseline.

energy by more than 49×. For further evaluations, we include

a k-medians version of GEA implemented on CPU, which

results in consuming 2.1× system energy compared with the

k-means CPU baseline.

Most of energy and execution time of the GEA appli-

cation are consumed by clustering the data point. Unlike

GEA, document clustering with TF–IDF comprises multiple

significant components, including text-to-number conversion

and data classification. Therefore, TF–IDF represents a group

of data clustering applications with moderate potentials for

hardware acceleration. Fig. 20 shows the system energy of the

in situ accelerator and PIM normalized to that of the k-means

implementation on CPU.6 Similar to previous experiments,

the data points are processed to form four clusters. The results

indicate that PIM consumes more energy than the CPU, while

the in situ accelerator improves energy an average of 1.3×.

As shown in Fig. 20, the energy improvements by the in situ

accelerator increases to 2.2×, as the number of clustering

iterations varies from 100 to 800.

B. Performance

Fig. 21 shows performance improvements gained by the

in situ accelerator over the CPU baseline for accelerating

the ASA library for clustering various data sets (1, 2, 4,

and 8 MB) with 100, 200, 400, and 800 iterations to form

four clusters. The results indicate average speedups of 11×,

8.3×, and 41.2× over the CPU baseline for the breast can-

cer, indoor localization, and U.S. census data sets, respec-

tively. Similarly, Fig. 22 shows significant speedup over the

6We notice that this increase is mainly due to the significant static energy
consumed by the additional functional units used in PIM. The PIM-like
accelerator is optimized for performance.
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Fig. 21. ASA Library—performance normalized to the CPU baseline.

Fig. 22. ASA Library—performance normalized to the PIM baseline.

Fig. 23. GEA—performance normalized to the CPU baseline.

Fig. 24. TF–IDF—performance normalized to the CPU baseline.

PIM hardware: averages of 3.7×, 6.5×, and 8.1× for the

breast cancer, indoor localization, and U.S. census data sets,

respectively.

As shown in Fig. 23, the proposed in situ accelerator and

PIM baseline achieve respective average speedups of 45.7×

and 27.2× over the baseline CPU implementation. How-

ever, the CPU version of k-medians increases the execution

time by 70% on average. For the TF–IDF document clustering,

we observe an average drop in performance by 10% for

small data sets. As the input size increases, the performance

rise of 1.5× is observed (see Fig. 24). Overall, we observe

more performance improvements, as the number of iterations

increases.

Fig. 25. Execution time and total system energy with increase in the number
of clusters.

C. Discussion

1) Finite Switching Endurance: The switching endurance

exhibited by RRAM cells varies between 106 and 1012

writes [33], [46], [68]. The number of possible writes affects

the lifetime of RRAM cells. Therefore, the number of writes

to RRAM cells is monitored to estimate the lifetime of the

proposed hardware accelerator. It is important to know that

the input data set is written only once into the accelerator

and the memory cells maintain content during clustering

iterations. To find the minimum lifetime of the accelerator

dual in-line memory module, we conservatively consider the

hardware being used constantly to solve clustering problems

that require the full capacity of the accelerator.7 We assume

that every new problem requires all of the memory cells to

switch when loading the data points; therefore, we find the

time between the switching of the memory cells in this setup,

which is Ts = 2.258� s. � is the product of the number

of clusters and the number of iterations that are defined by

the application. Notice that Ts increases as the number of

clusters and iterations increase. Assuming 108 for write cycles

and 1 for �, the minimum lifetime of the proposed hardware

accelerator is estimated to be seven years while constantly

solving clustering problems.

2) Increase in the Number of Clusters: Fig. 25 shows the

impact of increase in the number of clusters on the overall sys-

tem energy and execution time of the CPU, the PIM, and the

memristive accelerator. This sensitivity analysis is performed

on the ASA 136 library with 400 iterations while increasing

the number of clusters from 4 to 1024 by a step of 2n .

Each design point represents the relative execution time and

system energy averaged on three runs of the library for 8-MB

data from breast cancer, indoor localization, and U.S. census

data sets. The results indicate that the energy and execution

time of data clustering increase as the number of clusters

grows; however, such increase is much more significant for

the PIM and CPU baselines. Overall, the proposed in situ

accelerator achieves 22–290k× and 8–81× better energy-

delay-products compared with the CPU and PIM baselines,

respectively.

7In the case of clustering small problems, memory allocation techniques
may be employed to distribute write across memory cells to alleviate the
endurance problem.
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VIII. CONCLUSION

K-means and k-medians clustering are widely used tech-

niques for data clustering in scientific research and engineering

disciplines. Most of the available solutions suffer in perfor-

mance and energy due to excessive data movement involved

throughout the clustering process. The proposed RRAM-based

in situ data clustering accelerator successfully addresses these

concerns by implementing bit-serial ROF algorithm for median

calculation and performing in situ computations within novel

RRAM memory cells, thereby eliminating unnecessary data

movement between the core and the main memory. Based

on our simulation results, the proposed accelerator achieves

significantly better energy and performance improvements as

compared with CPU and PIM-like accelerators. In conclusion,

the proposed hardware accelerator significantly improves the

performance and energy for clustering applications involving

processing of very large data sets.
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[1] V. Gligorijević, N. Malod-Dognin, and N. Pržulj, “Integrative methods
for analyzing big data in precision medicine,” Proteomics, vol. 16, no. 5,
pp. 741–758, 2016.

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets,” HotCloud, vol. 10, no. 10,
pp. 1–7, 2010.

[3] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspec-
tives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[4] B. Huval et al. (Apr. 2015). “An empirical evaluation of deep learning on
highway driving.” [Online]. Available: https://arxiv.org/abs/1504.01716

[5] A. Seret, T. Verbraken, and B. Baesens, “A new knowledge-based
constrained clustering approach: Theory and application in direct mar-
keting,” Appl. Soft Comput., vol. 24, pp. 316–327, Nov. 2014.

[6] P. Liu, “Special issue ‘Intuitionistic fuzzy theory and its application in
economy, technology and management,”’ Technol. Econ. Develop. Econ.,
vol. 22, no. 3, pp. 327–335, 2016.

[7] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proc. 5th Berkeley Symp. Math. Statist. Probab.,
Oakland, CA, USA, 1967, vol. 1. no. 14, pp. 281–297.

[8] R. T. Ionescu and M. Popescu, “Learning based on similarity,” in Knowl-

edge Transfer Between Computer Vision and Text Mining (Advances
in Computer Vision and Pattern Recognition). Cham, Switzerland:
Springer, 2016.

[9] H. T. Nguyen et al., “Prediction of chemotherapeutic response in
bladder cancer using k-means clustering of dynamic contrast-enhanced
(DCE)-MRI pharmacokinetic parameters,” J. Magn. Reson. Imag.,
vol. 41, no. 5, pp. 1374–1382, 2015.

[10] S. Krishnan et al., “Unsupervised surgical task segmentation with
milestone learning,” in Proc. Int. Symp. Robot. Res. (ISRR), 2015,
pp. 1–16.

[11] L. Kaufman and P. J. Rousseeuw, Clustering by Means of Medoids.
Amsterdam, The Netherlands: North Holland, 1987.

[12] C. Elkan, “Using the triangle inequality to accelerate k-means,” in Proc.

20th Int. Conf. Mach. Learn. (ICML), 2003, pp. 147–153.
[13] D. Sculley, “Web-scale k-means clustering,” in Proc. 19th Int. Conf.

World Wide Web, 2010, pp. 1177–1178.

[14] A. Vedaldi and B. Fulkerson, “Vlfeat: An open and portable library of
computer vision algorithms,” in Proc. 18th ACM Int. Conf. Multimedia,
2010, pp. 1469–1472.

[15] R. Mueller, J. Teubner, and G. Alonso, “Data processing on FPGAs,”
Proc. VLDB Endowment, vol. 2, no. 1, pp. 910–921, 2009.

[16] P. Wendt, E. Coyle, and N. Gallagher, “Stack filters,” IEEE Trans.
Acoust., Speech, Signal Process., vol. ASSP-34, no. 4, pp. 898–911,
Aug. 1986.

[17] G. E. Blelloch, A. Gupta, and K. Tangwongsan, “Parallel probabilis-
tic tree embeddings, k-median, and buy-at-bulk network design,” in
Proc. 24th Annu. ACM Symp. Parallelism Algorithms Archit., 2012,
pp. 205–213.

[18] M. Zechner and M. Granitzer, “Accelerating k-means on the graph-
ics processor via CUDA,” in Proc. 1st Int. Conf. Intensive Appl.
Ser. (INTENSIVE), Apr. 2009, pp. 7–15.

[19] D. Liu et al., “PuDianNao: A polyvalent machine learning accelerator,”
ACM SIGPLAN Notices, vol. 50, no. 4, pp. 369–381, Mar. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2775054.2694358

[20] I. Hatirnaz, F. K. Gurkaynak, and Y. Leblebici, “Realization of a
programmable rank-order filter architecture using capacitive threshold
logic gates,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 1.
May 1999, pp. 435–438.

[21] A. Vattani. (2009). The Hardness of k-Means Clustering in the Plane.
[Online]. Available: http://cseweb.ucsd.edu/avattani/papers/kmeans_
hardness.pdf

[22] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data.
Upper Saddle River, NJ, USA: Prentice-Hall, 1988.

[23] Y. Lu and J. Han, “Cancer classification using gene expression data,”
Inf. Syst., vol. 28, no. 4, pp. 243–268, 2003.

[24] P. G. Anick and S. Vaithyanathan, “Exploiting clustering and phrases
for context-based information retrieval,” ACM SIGIR Forum, vol. 31,
pp. 314–323, Jul. 1997.

[25] P. V. Tymoshchuk and S. V. Shatny, “Hardware implementation design
of analog neural rank-order filter,” in Proc. 11th Int. Conf. Perspective

Technol. Methods MEMS Design (MEMSTECH), Sep. 2015, pp. 88–91.
[26] A. Gasteratos, I. Andreadis, and P. Tsalides, “A new hardware structure

for implementation of soft morphological filters,” in Proc. Int. Conf.

Comput. Anal. Images Patterns, 1997, pp. 488–494.
[27] T. Yamamoto and V. G. Moshnyaga, “A new bit-serial architecture of

rank-order filter,” in Proc. 52nd IEEE Int. Midwest Symp. Circuits Syst.,
Aug. 2009, pp. 511–514.

[28] P.-E. Danielsson, “Getting the median faster,” Comput. Graph. Image

Process., vol. 17, no. 1, pp. 71–78, 1981. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0146664X8180010X

[29] G. Szedo, “Two-dimensional rank order filter,” XililL, Appl.
Note XAPP953, 2006, pp. 15–26, accessed: Nov. 22, 2017.
[Online]. Available: https://pdfs.semanticscholar.org/790d/
aac5bbe4caf8cb7c2ed8394cbb69e0753a00.pdf

[30] V. G. Moshnyaga and K. Hashimoto, “An efficient implementation of
1-D median filter,” in Proc. 52nd IEEE Int. Midwest Symp. Circuits
Syst., Aug. 2009, pp. 451–454.

[31] B.-Y. Tsui, K.-C. Chang, B.-Y. Shew, H.-Y. Lee, and M.-J. Tsai,
“Investigation of radiation hardness of HfO2 resistive random access
memory,” in Proc. Int. Symp. VLSI Technol., Syst. Appl. (VLSI-TSA),
Apr. 2014, pp. 1–2.

[32] Resistive Memory Devices for Radiation Resistant Non-
Volatile Memory. Accessed: Nov. 22, 2017. [Online]. Available:
https://www.nasa.gov/content/resistive-memory-devices-for-radiation-
resistant-non-volatile-memory/

[33] H. Akinaga and H. Shima, “Resistive random access memory (ReRAM)
based on metal oxides,” Proc. IEEE, vol. 98, no. 12, pp. 2237–2251,
Dec. 2010.

[34] M. Zangeneh and A. Joshi, “Design and optimization of non-
volatile multibit 1T1R resistive RAM,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 22, no. 8, pp. 1815–1828, Aug. 2014.
[35] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and

R. S. Williams, “Memristive switching mechanism for metal/oxide/metal
nanodevices,” Nature Nanotechnol., vol. 3, no. 7, pp. 429–433, 2008.
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