
Journal of

Low Power Electronics
and Applications

Article

MB-CNN: Memristive Binary Convolutional Neural
Networks for Embedded Mobile Devices

Arjun Pal Chowdhury 1,*,†, Pranav Kulkarni 2,† and Mahdi Nazm Bojnordi 1

1 School of Computing, University of Utah, Salt Lake City, UT 84112, USA; bojnordi@cs.utah.edu
2 Electrical & Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA; u1069755@utah.edu

* Correspondence: arjunmax@cs.utah.edu

† These authors contributed equally to this work.

Received: 1 May 2018; Accepted: 11 October 2018; Published: 13 October 2018
����������
�������

Abstract: Applications of neural networks have gained significant importance in embedded mobile

devices and Internet of Things (IoT) nodes. In particular, convolutional neural networks have emerged

as one of the most powerful techniques in computer vision, speech recognition, and AI applications

that can improve the mobile user experience. However, satisfying all power and performance

requirements of such low power devices is a significant challenge. Recent work has shown that

binarizing a neural network can significantly improve the memory requirements of mobile devices

at the cost of minor loss in accuracy. This paper proposes MB-CNN, a memristive accelerator for

binary convolutional neural networks that perform XNOR convolution in-situ novel 2R memristive

data blocks to improve power, performance, and memory requirements of embedded mobile devices.

The proposed accelerator achieves at least 13.26×, 5.91×, and 3.18× improvements in the system

energy efficiency (computed by energy × delay) over the state-of-the-art software, GPU, and PIM

architectures, respectively. The solution architecture which integrates CPU, GPU and MB-CNN

outperforms every other configuration in terms of system energy and execution time.

Keywords: convolutional neural networks; binary convolutions; in-situ processing; RRAM

technology; computer architecture; embedded systems

1. Introduction

Sensor equipped Internet of Things (IoT) devices are expected to impact the future of consumer

electronics. According to a recent prediction of ABI research [1] and IDC forecast [2], by the end of this

decade, approximately 480 million IoT wearable devices will be sold.Detecting different human

behaviors and ambient contexts and producing appropriate reaction are the core application of

any mobile IoT device. Deep learning has emerged as one of the key techniques to enable many

IoT mobile applications—extracting sensor data, identifying meaningful context, and performing

intelligent tasks such as face detection [3], image classification [4], and speech recognition [5,6].

However, the increased demand of computation, memory, and energy consumption creates serious

challenges to its applicability in IoT mobile devices. Recent studies have shown that the memory

requirements of neural networks can be reduced by applying various compression and quantization

techniques [7,8]. It has been observed that full precision value of weights or inputs is not required to get

state-of-the-art accuracy from various deep neural networks. For example, binary neural network [9]

and XNOR-Net [10] replace the power consuming floating point multiplications with bitwise XNOR

operations. As shown in Figure 1, one bit quantization helps to achieve significant performance

improvements for state-of-the-art neural networks. In addition, energy consumption and memory

footprint are significantly reduced. However, simulation results indicate that 66% of the total execution

J. Low Power Electron. Appl. 2018, 8, 38; doi:10.3390/jlpea8040038 www.mdpi.com/journal/jlpea

J. Low Power Electron. Appl. 2018, 8, 38 3 of 27

requires 61 million parameters to be processed by 1.5 billion floating point operations for classifying a

single image. Larger networks, such as VGG-Net [12] and Deepface [3], require a significant number

of parameters and operations to complete a classification task. Table 1 shows the amounts of memory

consumed for maintaining the parameters in four widely known CNN architectures. Both the input

data and the parameters of a typical CNN are real numbers that may be represented using 16-bit

single precision fixed point. Interestingly, high-precision parameters are not important to achieve

high accuracy in the outcome of a neural network; as a result, numerous optimization techniques

have been proposed in the literature focusing on trading the precision of computations for gaining

energy-efficiency and performance [8,13–16].

Table 1. Example CNN architectures.

Alex-Net VGG-16 Goggle-Net Deepface Res-Net 18

Memory Size 240 MB 560 MB 16 MB 480 MB 50 MB

2.2. Binary CNN: XNOR Network

Binary CNN is an active research topic mainly because of its advantage in performance and

energy efficiency for embedded low power applications. In a binary CNN, both the inputs and weights

are binarized. Prior work have shown comparable accuracy of binary network with respect to full

precision networks [17]. This section describes XNOR-Net [10], a binary neural network that can

achieve high accuracy on large datasets—such as ImageNet [18]. Figure 2 illustrates the difference

between a typical CNN and XNOR-Net. In XNOR-Net training phase, binary weights are used

during forward pass and backward propagation. Full precision weights are used only for the gradient

calculation. The parameters and learning rates are updated based on the stochastic gradient descent

(SGD) update with momentum or ADAM algorithm [19].

F
lo

at
in

g

C
o

n
v

o
lu

ti
o

n

B
at

ch

N
o

rm
al

iz
at

io
n

N
o

n
-L

in
ea

r

A
ct

iv
at

io
n

P
o

o
li

n
g

B
at

ch

N
o

rm
al

iz
at

io
n

B
in

ar
y

A
ct

iv
at

io
n

B
in

ar
y

C
o

n
v

o
lu

ti
o

n

P
o

o
li

n
g

Layer sequence in typical CNN Restructured Layer sequence in XNOR-Net

Figure 2. Illustrative examples of a typical CNN and an XNOR-Net architecture.

2.2.1. Deterministic Binarization

XNOR-Net relies on binarizing the input activation and weights by converting them into either

+1 or −1 using a sign function defined as

xb = sign(x) =

{

+1 x ≥ 0

−1 x < 0
(1)

where x is a real-valued weight or activation and xb is the binarized output. To directly use logical

operations for computing XNOR-Net, all −1 s are encoded to 0 s.

2.2.2. Parameter Scaling

The binary values generated by the binarization layer are then scaled to better approximate the

real-valued weights and to improve the accuracy of results. For example, a real-valued filter (W ∈ ω)

is approximated by W ≈ αB, where α is a weight scaling factor and B is an instance binary filter from

J. Low Power Electron. Appl. 2018, 8, 38 5 of 27

comparable accuracy with Alex-Net on large datasets. A most recent work by Tang et al. [17] proposes

new activation, normalization, and scaling methods that reduce the computation workload and

provides better accuracy. This highlights that the algorithmic space of binary convolutional neural

networks is still evolving. Therefore, a full fledged end to end inference ASIC accelerator for binary

neural network may not be a viable solution in current scenario. However, XNOR Convolution

is a primitive for most binary CNNs. This paper provides a complete solution where the

proposed accelerator performs in-situ XNOR convolution within RRAM based non-volatile memory

of embedded IoT devices and the rest of the operations—e.g., input normalization and weight

scaling—are performed in software either by CPU or a GPU acceleration. By leaving these components

in software, the proposed approach allows the algorithm to evolve.

2.4. IoT Applications

IoT devices are optimized for energy-efficiency. The stringent ultra low power requirements

and energy efficiency problems of the existing IoT platforms render the realization of a full-fledged

deep learning solution in IoT nodes largely impractical. Innovations at both hardware and software

levels are required to alleviate these problems for future IoT systems. Figure 4 shows the generic

system architecture of an IoT device (or edge node). Depending on the application objectives and the

design constraints, a single- or multi-core processor is employed for executing programs. Typically,

the memory system consists of both volatile and non-volatile modules to address the needs of a wide

range of software applications. L1 and L2 caches as well as scratch-pad memory units may be used

mainly for temporary data storage. Non-volatile memory is commonly used to permanently store

data and software programs. Currently, FLASH is the widely used technology for wearable and

mobile devices [23]. However, emerging non-volatile memory technologies, such as FeRAM [24,25]

and RRAM [26–28], are expected to replace conventional memories [29,30].

System Bus

On-Chip Memory Controller

Volatile Memory

(SRAM, DRAM,

eDRAM)

O-o-O Core

L1- Cache
Processor Core

L1+L2
DMA

CONTROLLER

Non-volatile Memory

(FLASH, RRAM)

IO Interface Network

Figure 4. Illustrative example of a mobile IoT system.

2.5. Memristive Crosspoint Arrays

Resistive technologies have shown excellent characteristics for the future memory systems capable

of storing large amounts of data and performing in-memory computation [31–33]. Resistive RAM

(RRAM) is one of the most promising memristive devices currently under commercial development

J. Low Power Electron. Appl. 2018, 8, 38 7 of 27

3.1. System Overview

Figure 6 shows how the proposed memristive hardware is employed to accelerate B-CNN

workloads on mobile IoT platforms. The computation platform includes an application processor,

a volatile memory module (e.g., DRAM), and an RRAM-based non-volatile memory subsystem

comprising crosspoint data arrays for storing data permanently. The proposed RRAM module is

capable of performing the XNOR convolution—as explained in Section 2.2.3—with significantly better

performance and lower energy. The accelerator module is interfaced with the system processor using an

LPDDR3 standard bus [39]. Therefore, all of the accelerator-specific commands (e.g., start computation)

are converted to valid LPDDR3 transactions. All of the relevant parameters (weights) of a trained

B-CNN model are first written into the RRAM arrays, which can be later used for inference tasks

many times (the accelerator module is capable of maintaining the parameters of multiple layers). Next,

the software algorithm initiates an inference process by reading the input data and computing the

necessary values for the next XNOR convolutional layer. Prior to performing an XNOR convolution,

all of the values followed by a start command are transferred to the accelerator. Software collects the

results once they are ready and continues executing the rest of the algorithm.

Processor Cores

Volatile Memory

(DRAM)

B-CNN

Workload

Algorithm

and models

NV Memory

(RRAM)

controller
Input Data

Mobile IoT

Device

Figure 6. Accelerating B-CNN workloads with the proposed memristive binary convolutional architecture.

The RRAM crosspoint arrays are used for storing data and performing in-situ XNOR convolution.

3.2. XNOR Convolution within 2R Crosspoint

Every XNOR convolution consists of binary XNOR operations between the elements of a filter

and input channels followed by bit-counting and binary approximation to compute the results.

3.2.1. Memristive XNOR Operation

The proposed accelerator exploits the computational capabilities of the 2R crosspoint to perform

all three operations within memory arrays. Figure 7 shows how the differential form of a bit stored

in a 2R cell can help performing in-situ XNOR operation. The true and complement forms of every

filter element are stored in a cell as b and b, respectively, where logic 1 is represented by the low

resistance state (LRS) of the RRAM cell, and the high resistance state (HRS) is used for 0. Notice that

the filter weights are determined during the training phase and remain fixed for every B-CNN model.

Therefore, the proposed in-situ XNOR convolution does not impose additional switching overheads

such as energy, delay, and wear-out problems. Similarly, an input element is represented in differential

form and is applied to the cell through two wordlines w and w. The cell structure forms a simple

resistive network developing an output voltage (out). Assuming that 1 and 0 are represented by the

high voltage and ground, respectively, out indicates the logical XNOR between w and b.

J. Low Power Electron. Appl. 2018, 8, 38 8 of 27

w

out

Differential Bit
(b)

b

b
w

Wordlines (w)

w = {1 Vdd

0 Gnd

b = {1 Low Resistance

0 High Resistance

w b out

0 0 1

0 1 0

1 0 0

1 1 1

Figure 7. Performing XNOR operation using the 2R crosspoint cell.

3.2.2. Analog Bit-Count Operation

In a crosspoint array, every group of memory cells within a column are connected to a shared

bitline. Figure 8 shows how the 2R memory cells can contribute in the bit-count operation. Every cell

computes the binary XNOR between the corresponding elements of the filter and the input data

(wi ⊕ bi). All of the XNOR results are summed up along the bitline to produce an output voltage (sum).

Notice that the binary outcome of every XNOR operation is a high or low voltage indicating 1 or 0.

Regardless of the operand’s values, the high voltage (1) is produced for an XNOR operation only if

Vdd is connected to the RRAM cell with low resistance; otherwise, a low voltage (0) appears at the

output. For a bitline connected to n 2R cells, assume that m XNOR operations produce 1s in their

outputs. The resultant bitline voltage can be computed by sum = Vdd
mH+(n−m)L

n(H+L)
; where, H and L are

the amount of high and low resistances of the RRAM cells. The bitline voltage is linearly proportional

to the number of 1s produced by the XNOR operations—i.e., the bit-count. By quantizing this voltage,

the final binary value for a single convolution can be computed. For example, a comparator can be

used to output a 1 if sum ≥ Vdd/2 (= m ≥ n/2) and 0 otherwise.

Linearly
Proportional to m

≃
Vdd

sum
L/m

Gnd
H/m

H/(n-m)

L/(n-m)

sum = Vdd
mH + (n-m)L

n(H + L)

sum

m
nn/2

Vdd/2

...
w0

b0

b0
w0

w0⨁b0

S
h

a
red

 B
itlin

e

w1
b1

b1
w1

w1⨁b1

wn
bn

bn
wn

wn⨁bn

Figure 8. Performing bit-count operation within the 2R crosspoint array.

3.2.3. Hierarchical Bit-Counting

The proposed in-situ bit-counting requires having all of the operands connected to a single

bitline during an XNOR convolution. As a result, large crosspoint arrays are required to realize

the bit-counting for modern deep learning workloads. Implementing such monolithic data arrays

J. Low Power Electron. Appl. 2018, 8, 38 9 of 27

is largely impractical due to limitations in sensing circuits, significant power dissipation, excessive

delay overheads, and serious reliability issues. Instead, the proposed architecture employs a novel

hierarchical mechanism that allows for computing partial bit-counts in multiple arrays and quantizing

the aggregated sum into a single bit. This hierarchical mechanism requires converting the bitline

voltages (sum) into digital values and computing the final sum by adding all those numbers. Unlike the

conventional single-level sensing, the proposed mechanism employs an analog to digital converter

(ADC) circuit to produce each partial bit-count. Detailed explanation on converting the bitline

voltage into a digital value is provided in Section 4.3. The accuracy of this voltage quantization

is heavily dependent on the line slope (δ = Vdd
n × H−L

H+L) in Figure 9. A large slope value is desirable for

realizing more accurate and reliable sensing, which can be achieved by using higher Vdd, decreasing n,

and increasing the resistive ratio of the memristive device (γ = H−L
H+L). The proposed accelerator uses

the nominal Vdd specified for the underlying technology node; existing RRAM technologies are studied

to find an appropriate memristive device for realizing the memory cells; and the design space of bitline

sensing circuits and the arrays sizes is explored to find an appropriate value for n (see Section 5).

sum

m

x

!

x+1

sum = ! m + "

! =

H + L

H − L
×

Vdd

n
slope =

Figure 9. Impact of the technology parameters on the sensing mechanism.

4. The MB-CNN Architecture

The proposed hardware accelerator builds upon the existing memory system architectures.

As shown in Figure 10, every accelerator chip comprises an external IO interface and a memory

core with a chip controller and multiple banks. All of the data transfers among the IO interface and

memory banks are managed by the chip controller. Every bank is capable of serving a memory request

or performing the XNOR convolution, independently. Depending on the size of each layer, single or

multiple banks may be involved in every XNOR convolution. Notice that the proposed hardware is

used for inference tasks. Training is assumed to be carried out once in cloud and the resultant weights

are deployed on mobile IoT devices.

4.1. On-Chip Control

Once the new edge weights are available, an MB-CNN chip can be reconfigured regarding the

number and size of the convolutional layers. A single bank may be used to store the parameters of

one or multiple small layers, while a large layer can occupy more than one bank. The chip controller

includes local non-volatile RRAM arrays for tracking the banks that maintain the relevant parameters of

each layer. Every B-CNN model includes multiple binary convolutional layers, each of which requires

the software to make a call to the accelerator. First, the chip controller receives an initiate command

specifying which layer is used next for computing the XNOR convolution; as a result, the relevant

banks are configured accordingly. Then, the input data for the selected layer is streamed into the

accelerator and is distributed among the relevant banks by the chip controller. Local buffers are used

at the memory banks to collect the convolutional results. At the end of every computation, software is

notified by the accelerator to read the results and process the subsequent layers of the B-CNN.

J. Low Power Electron. Appl. 2018, 8, 38 10 of 27

External IO Interface

Chip Controller

Bank 0 Bank 1

Bank 2 Bank 3

Bank Controller

2R

Crosspoint

Array

Reduction

NetworkMB-CNN

Chip

Command and Data

Bank

Interconnect

Figure 10. The proposed hierarchical organization for the accelerator.

4.2. Bank Organization

Every bank comprises a controller, an H-tree based reduction network, and a set of data arrays.

The bank controller includes: (1) local memory for buffering the computed bit-count results; and (2) full

adders and comparators for computing the final sum and quantizing the final result into a binary

value. During an XNOR convolution, partial bit-counts are computed by the memory arrays and

merged into a single bit-count when transferred over the reduction tree to the bank controller. Figure 11

shows how partial bit-counts are merged in the reduction tree. Every node employs a serial adder

element to add two single-bit operands and store the carry bit locally. The serial addition allows

for low cost and energy-efficient computation in the reduction tree. Similarly, at the bank controller,

a serial adder is used to compute the difference between the final bit-count and the quantization

threshold (n/2). The two’s complement format of the threshold is used to compute the subtraction

using the serial adder circuit, thereby realizing a serial comparator.The last bit to be computed by the

serial comparator represents the sign in two’s complement format that indicates whether the result

is negative (sum < n/2) or positive (sum ≥ n/2). The inverted version of this bit represents the

binary result.

b
1

b
3

b
0

b
2

b = ∑ b
i

C Full Adder

RL

Binary

Result

C

Full

Adder

Threshold

Serial

Comparator
Serial Adder

Figure 11. Merging bit-counts into a single result inside a bank.

Every bit serial adder at a node of the reduction tree is reconfigurable using two flip-flops R

and L, each of which is used to masking a branch of the tree. Notice that the values of R and L

determine whether the node performs a serial addition or copies the value of one branch to upstream

root. Valid values for the R-L flip-flops are 1-1 for serial addition, 1-0 for transferring the right branch,

and 0-1 for values of the left branch. After every XNOR convolution, the carry bit holder is reset. All of

the R-L flip-flops are determined once for the convolutional layers and ate maintained by the chip

controller. On computing an XNOR convolution, appropriate R-L bits are loaded into the reduction

J. Low Power Electron. Appl. 2018, 8, 38 11 of 27

tree. The latency and energy overheads for loading the configuration bit-stream and initializing the

accelerator is accurately modeled in the evaluations.

4.3. Array Structure

Every memory array is implemented using an RRAM crosspoint with M rows and N columns

(Figure 12). RRAM cells are programmed to represent the binary weights of a CNN layer. To enable

in-situ XNOR convolution within the crosspoint arrays, a set of latches are provided at the periphery

of every weight array to store the input data and apply them through the wordlines. Along the

lines of prior proposals on using multi-bit sensing mechanisms for analog computation [33,40–42],

a cost-efficient multi-bit sensing circuit is designed and used for quantizing the bit-line voltage (sum).

The proposed sensing circuit comprises a differential amplifier [43], a sample and hold unit [44],

and a digital to analog converter [45]. Due to the exponential increase in the complexity of this circuit

with the number of output bits, its precision is limited to 5 bits. Therefore, every array is capable of

computing the sum of 32 terms of every XNOR convolution.

...

...

...

Weight Array

Digital to Analog

Input

Sample and Hold
to serial

adders

Latches holding

input data in-situ

XNOR

2R Cell

Figure 12. In-situ XNOR operations within the proposed memory array.

4.4. Data Organization

In this section, we describe how the inputs and weights of a convolution layer are mapped in the

accelerator. Further, to simplify the illustration, an example mapping is shown in Figure 13, where the

size of input feature map of convolution layer i is Ic×h×w = 32 × 7 × 7, where c denotes the input

depth, while h and w are the height and width, respectively. The input is convolved with a kernel

Kc×h×w
0 = 32× 2× 2. If we have 128 such kernels then the convolution layer will produce 128 different

output feature map of size Oh×w = 6 × 6. Let us assume a memristive crosspoint array of size 64 × 64;

to map the entire convolution layer, we need four such crosspoint arrays namely a0, a1, a2, a3 in the

bank bank0. As shown in Figure 13, the kernel K0 is distributed among the first column of all the

arrays with a maximum of 32 elements per array. Similarly, all the other kernels are mapped into the

entire bank. The kernel Kn is distributed among the n%64th columns of all four arrays, where n is the

position of the bit line in the array.

For example, in Figure 13, K0 has a total of 128 (32 × 2 × 2) elements {w00, w01...w0127} ∈ K0

where w00...w031 is mapped to n0 of a0. Similarly, w032...w063 is mapped to n0 of a1 and so on. Again,

K64 where {w640, w641...w64127} ∈ K64 is mapped to lower half of n0 in all arrays. In a similar fashion,

K1...K127 is mapped to n1...n63 of a0...a3. To convolve with these kernels, 128 elements of input I are fed

to the bank by chip controller. On a XNOR convolution, the chip controller initiates streaming data to

the crosspoint. The inputs are distributed among four arrays as shown in Figure 13. When particular

J. Low Power Electron. Appl. 2018, 8, 38 12 of 27

32 rows (cell segment) are driven by the input data, the other rows of the RRAM array remain inactive

and do not contribute to in-situ computation.

a0 a1

a2 a3

a0 a1

a2 a3

K0

K127

Z0

Z127

I
Z0

Z0

Z127

K0

K127

32

Z127

32

0 1

2

32

0 1
2 3

0 1
23

0 1
32

0 1
32

0 1
32

0 1

2

0 1

33

0 1

2 3

0 1

2 3

I

64

64 64

64

n
0

n
6
3

n
1
2
7

n
1
2
7

n
1
2
7

n
1
2
7

n
6
3

n
6
3

n
6
3

n
0

Figure 13. Distribution of a convolution layer to the crosspoint arrays: input feature map is convolved

with kernel K0, and input feature map is convolved with kernel K127.

The five bit partial output of each array is given to a sequential adder tree present in H-tree

reduction network to form the final output z0 and {z0, z1...z35} ∈ Z0, where Zn is output of each

convolution between input I and kernel Kn. As 64 bit lines of each array are multiplexed to a single

sense amplifier, every five cycles the multiplexer switches its input to the next bit line. The operation

happens in the pipeline and in every seven cycles, the bank bank0 produces one output element of

Z. After 7 × 128 cycles the first element of all output feature map Z0 to Z127 is available at local

output buffer.

Once the subset of input feature map is reused by all the filters for convolution, the chip controller

feeds the next set of input to the arrays to convolve with the same kernel to produce next output

element of all the output feature maps. In this way, it takes 7 × 128 × 6 × 6 = 32,256 cycles to

produce the complete output of a convolution layer. The output of final adder is fed to a comparator,

as shown in Figure 11, to quantize the convolution output to one bit. More simultaneous operations

are possible by increasing the number of sense amplifiers in each array or by replicating the same

kernel weights in multiple banks. However, that improved performance will cause more chip area and

power consumption. In similar fashion, the FC layers are mapped to the proposed accelerator.

5. Experimental Setup

Simulations were conducted on Alex XNOR-Net [10] to assess the energy and performance

potentials of the proposed accelerator. We used a bottom up approach for the power, performance and

area evaluations all the way from circuit SPICE simulation of the 2R memory arrays, logic synthesis

for the controlling circuits with the Cadence synthesis tool chain and 45 nm standard library cell [46]

that consists of variety of cell types from flip flops and latches to multiplexers and bitwise logic

gates, which are being used for simulation of MB-CNN. The results were then scaled to 22 nm [47].

NVSim [48] was used to estimate the area, delay, and power dissipation in the crosspoint arrays.

We used CACTI IO [49] to assess the timing and power parameters for caches and memory interfaces.

We used a modified version of the ESESC simulator [50] to evaluate the performance of single and

multi-core processors for modern mobile IoT devices. Different images from Image Net dataset [51]

were used as input dataset for evaluations. We used McPat [52] to estimate the core static and dynamic

power consumption.

5.1. Neural Network Model

We chose Alex XNOR-Net [10] as the baseline architecture with single precision floating point

tensors and weights. We trained the original XNOR-Net [10] in Torch7 [53] with image net dataset.

According to prior work on XNOR-Net [10], we developed the required software kernels for Alex

XNOR-Net. We changed the storage data structure for the outputs of binary activation layer such

that the input matrices of binary convolution layers were organized in depth (channel) major instead

J. Low Power Electron. Appl. 2018, 8, 38 13 of 27

of row/column major. This technique helped us pack multiple 32 inputs into a single 32-bit value.

The trained weights were also packed in the same fashion and stored in main memory prior to

inference phase. With this bit packing mechanism, we employed SIMD behavior for data parallel

XNOR operations in CPU cores. Figure 14 depicts the bit packing mechanism by arranging 3D

input matrix in depth/channel major format. The binary operation was followed by a population

count (popcount) and threshold comparison, as shown in Figure 3, to generate the output of XNOR

convolution. The optimization showed a 19× performance improvement as compared with an

unoptimized software where each binary operation is performed individually. We also developed an

open-CL kernel for floating point convolution layers to run the application in a LP GPU based system.

12
5 6

7

11

13 14

15
9 10

4 8

12
3 7

11

1 2

3 4

2 6

10

139

1 5

Figure 14. Input data representation.

5.2. Architecture

The proposed hardware accelerator can be integrated in both single- and multi-core mobile

systems. We considered both systems for evaluations using the ESESC simulator [50] to model

single- and multi-core out-of-order processors. All of the processor cores realized the MIPS64 ISA.

We also considered GPU based and PIM-like ASIC accelerators for evaluating power and performance

potentials of MB-CNN. For the GPU implementations, we considered the Nvidia Tegra X1 low power

GPU platform with 256 cores [54]. The low power GPU was used to implement floating point

convolutions in first and last layer of the end to end inference. We used Tegra X1 GPU for evaluation

purposes only, which can be replaced by an efficient floating-point implementation run on CPU or

any state-of-the-art low power GPU without incurring any performance impact. The GPU code was

optimized to achieve high-performance similar to that of the industrial solution.

The PIM accelerator integrates additional gates for XNOR trees and pop-counts close to RRAM

arrays to fetch data from arrays and compute XNOR convolution. The PIM accelerator we modeled to

compare with our proposed accelerator comprises of memory subarray and hardware logic associated

for XNOR convolution [55]. A hardware controller was employed to fetch operands from data arrays

and compute the XNOR convolution. Similar to MB-CNN, the outcome of every XNOR convolution is

transferred to software for generating the layer outputs.Unlike MB-CNN, the PIM baseline does not

support in-situ RRAM arrays computation.The PIM-like hardware was optimized so that it occupies

the same area as that of MB-CNN. Table 2 summarizes the key simulation parameters.

We optimized the PIM architecture to achieve high performance while consuming the same area

as MB-CNN.

J. Low Power Electron. Appl. 2018, 8, 38 14 of 27

Table 2. Simulation parameters.

CPU Single-core Multi-core

a2-issue OoO cores, multiple 2-issue OoO
Core Type 128 ROB entries cores, 128 ROB entries,

2.4 GHz 2.4 GHz

IL1 cache 32 KB, 2-way, LRU, 64B block,
(per core) hit/miss delay 1/1

DL1 cache 32 KB, 4-way, LRU, 64B block,
(per core) hit/miss delay 2/2

L2 cache 1 MB, 8-way, LRU, 64B block,
shared hit/miss delay 8/6, MESI protocol

Temperature 350 K (77 ◦C)

DRAM LPDDR3-800, FR-FCFS,
Organization channel/rank/bank: 1/2/8, 8KB row buffer

RAS: 36, BURST: 4, FAW: 40
DRAM Timing (cycles) RCD: 15, CL: 12, WL: 9, RP: 15, RC: 48,

WTR: 8, RTP: 8, RRD: 8

GPU Nvidia Tegra X1 low power GPU (256 cores)

Chip/Banks/Arrays: 1/128/2048, 1 GB,
MB-CNN LPDDR3-800, Read Latency: 4.4 ns,

Write Latency: 100 ns, Compute Latency: 8.5 ns,
Read Voltage: 0.8 V, Write Voltage: 1.3 V

5.3. Hardware–Software Integration

To achieve high energy-efficiency, careful mapping of the XNOR-Net layers onto hardware

and software components was necessary. We mapped the compute and memory intensive XNOR

convolution layers onto the proposed memristive accelerator, while other layers—i.e., pooling,

relu, batch normalization, and softmax—were computed in the application software using CPU.

We evaluated the end-to-end execution that includes loading images, preparing inputs to all layers,

computing the outputs, and interpreting the results, for system power and performance evaluations in

this paper. The memristive accelerator can be seen as a segment of main memory Figure 6 dedicated

for XNOR convolution acceleration. The input and output data transaction between main memory and

the accelerator was done using DMA. We accurately modeled the delay and energy overheads of this

transaction in all of the evaluations in which data are moved between main memory and the accelerator.

Once the software triggers the accelerator for XNOR convolution, it waits for an XNOR-done signal

from the accelerator, which indicates the end of XNOR convolution. Then, a DMA request is generated

to initiate a DMA transaction to retrieve XNOR convolution output and make them available in main

memory for further computation. Table 3 details the required size of input and output data transfer

from/to the accelerator for implementing various layers of Alex XNOR-Net and VGG-16 XNOR-Net.

Alex XNOR-Net needs about 7 MB of permanent storage to store the trained weights, which were

appropriately programmed into the accelerator memory cells prior to inference phase.

5.4. Design Space Exploration

We studied existing memory technologies to find an appropriate cell type that provides more

reliable and energy efficient hardware for accelerating the XNOR convolution layers. Table 4 reports

the γ ratio for different memory technologies. As mentioned in Section 3.2.3, we employed the highest

ratio of γ from the existing memory technologies to achieve more accurate and reliable bit sensing.

The RRAM and PCM technologies have higher γ than STT-MRAM. However, endurance of the RRAM

technology is higher than PCM [56,57] for the highest values of γ. As a result, we chose to employ the

RRAM memory technology proposed by Cheng et al. [56] for building the accelerator memory arrays.

J. Low Power Electron. Appl. 2018, 8, 38 15 of 27

Table 3. Network parameters for mapping XNOR convolutional layers to the hardware accelerator.

Total Input Total Output Total Filter Total
Model No. Data Data Size XNOR

(bits) (bits) (bits) Operations

1 9.22 × 104 18.66 × 104 6.14 × 105 44.79 × 107

2 5.76 × 104 6.49 × 104 8.85 × 105 14.95 × 107

Alex XNOR 3 8.64 × 104 6.49 × 104 13.27 × 105 22.44 × 107

Net 4 8.64 × 104 4.33 × 104 8.85 × 105 14.95 × 107

5 9216 4096 37.75 × 106 37.75 × 106

6 4096 4096 16.78 × 106 16.78 × 106

Total 33.6 × 104 36.79 × 104 58.24 × 106 10.26 × 108

1 32.69 × 105 32.11 × 105 36.66 × 103 18.50 × 108

2 83.17 × 104 16.06 × 105 73.73 × 103 92.48 × 107

3 16.635 × 105 16.06 × 105 14.75 × 104 18.50 × 108

4 43.06 × 104 80.28 × 104 29.49 × 104 92.48 × 107

5 86.12 × 104 80.28 × 104 58.98 × 104 18.50 × 108

VGG16 6 86.12 × 104 80.28 × 104 58.98 × 104 18.50 × 108

XNOR-Net 7 23.04 × 104 40.14 × 104 11.8 × 105 92.48 × 107

8 46.08 × 104 40.14 × 104 23.59 × 105 18.50 × 108

9 46.08 × 104 40.14 × 104 23.59 × 105 18.50 × 108

10 13.11 × 104 10.035 × 104 23.59 × 105 46.24 × 107

11 13.11 × 104 10.035 × 104 23.59 × 105 46.24 × 107

12 13.11 × 104 10.035 × 104 23.59 × 105 46.24 × 107

13 25.09 × 103 4096 10.28 × 107 10.28 × 107

14 4096 4096 16.78 × 106 16.78 × 106

Total 94.91 × 105 10.34 × 106 13.42 × 107 15.38 × 109

Table 4. Resistive characteristics of different memristive technologies.

Type Material Endurance H/L γ

GeO/STO [56] 106 5 × 105 0.999

Pt/H f O2:Cu/Cu [58] 108 103 0.998

RRAM Ni/GeOx/HfON/TaN [59] 106 9 × 102 0.998

H f O2 [60] 106 102 0.980

H f Ox/PCMO [61] 105–107 58.3 0.966

PCM

GeTe/Sb [57] 6.3 × 106 102 0.980

Ge2Sb2Te5(GST) [62] 105 30 0.935

Chalcogenide alloy [63] 1010 16.7 0.890

Ge2Sb2Te5(GST) [64] 108 15.8 0.880

Ultra thin MgO layer between 1015 2 0.333

STT MRAM two ferromagnetic layers or 1015 2 0.333

other tunneling oxide [65–67] 1015 1.66 0.248

J. Low Power Electron. Appl. 2018, 8, 38 20 of 27

computing. Similarly, Esmaeilzadeh et al. [41] introduced the potential of energy and performance

improvement in general purpose code which can tolerate small errors by using approximate neural

network accelerators for computations. PRIME [75] proposes to perform matrix-vector multiplications

of neural networks in RRAM arrays to accelerate the overall process. Moreover, it proposes a

software/hardware interface to implement various NNs on their proposed accelerators. Unlike all

prior work, the proposed accelerator can be used for wide range of binary neural networks not only to

improve energy efficiency but also performance.

7.2. CNN and DNN Hardware Accelerators

High performance and energy efficient hardware accelerators have been proposed for compute

and memory intensive neural network applications. Dian-Nao [76] exploits the scope of parallelism in

CNN and DNN by introducing parallel MAC unit. It also addresses long latency in data movement

between main memory and compute engine by introducing the concept of tiling and prefetch buffer.

DaDian-nao [77] extends the previous architecture by addressing the problem of huge memory

bandwidth requirement for CNN and DNN computations. However, both solutions limit the

performance of large benchmarks due to excessive memory bandwidth. Eyeriss [71] introduces

a new technique to feed input data and weight to different PEs to maximize their reuse. It also

mentions hierarchical memory organization to minimize the cost of data movement from main

memory to Process Engine. ShiDian-nao [78] proposes similar concepts and introduces systolic

array based convolution computation to reuse input data and intermediate outputs. ISAAC [42]

proposes memristive in situ computations of dot product to accelerate high performance computing

of convolution and FC layers. Redeye [79] moves the convolution computation in analog domain to

reduce power consumption of data movement between sensor and micro-controller and to minimize

the cost of analog readout. Tianqi et al. [80] proposed RRAM based full fledged BNN accelerator

that employs binarized hardware for all layers (including first and last), which limits the scope of

introducing new algorithm [10]. Qiu et al. [81] proposed FPGA solution to accelerate convolution

neural network in an embedded device. GPU based CNN acceleration for low power embedded

device was proposed by Motamedi et al. [82]. IMCE [83] employs SOT-MRAM based accelerator to

perform in memory convolution computations of low bit width CNNs. The IMCE sub-arrays along

with some digital sub-blocks (Bit-Counter, Shifter and Adder) perform the convolution computation

of CNN. However, MB-CNN is capable of performing XNOR, partial summation or bit counting

operations of multiple kernels in parallel inside a single RRAM arrays with efficient data movement

due to pre-programmed kernels. This further ameliorates XNOR computation speed. In addition,

the highly dense RRAM based MB-CNN accelerator evaluated in this work has a memory capacity of

1 GB and can support much larger networks such as VGG-16 [12] and DeepFace [3] with less area.

7.3. Compressing and Quantizing Network Parameters

Numerous optimization techniques have been proposed in the literature focusing on trading the

precision of computations for gaining energy-efficiency and performance. Recent work [13] exploits

redundancy inherent in deep CNNs and applies linear compression (singular value decomposition)

technique on a pre-trained model to speedup convolution operation during inference. Han et al. [84]

exploited sparsity in network parameters and applies pruning to reduce the number of redundant

weights and represented them in compressed CSR matrix format for efficient storage. They further

extended it to deep-compression [7] by quantizing weights and applying Huffman encoding to reduce

the memory footprint to 49× for VGG-16 Net. They designed a hardware accelerator EIE [8] for

the compressed network to achieve substantial speedup and energy saving by doing a sequential

operation on compressed data set. It is proven that high precision weights are not very important

to achieve high accuracy in deep neural network. DaDian-Nao [77] has shown that using 16 bit

fixed point weights during inference has no impact in network accuracy. Liu et al. [85] proposed to

quantize the weights of FC layer using vector quantization technique at the expense of 1% accuracy

J. Low Power Electron. Appl. 2018, 8, 38 21 of 27

loss on state-of-the-art CNN models. Binary Connect [86] quantizes the weights into binary form

during forward pass and backward propagation of training phase while retaining full precision

weights for gradient accumulation and parameter updates. BNN [9] and XNOR-Net [10] extend the

binarization further by binarizing both input and weights with massive reducing storage and runtime

for convolution neural network.

7.4. Processing in Memory

Convolutional Neural Networks require many data in the form of synapses which obtained

from training. Thus, there is lot of data movement from main memory to processor for obtaining

the synapses which increase power consumption. This introduced the concept for in situ memory

computations which could increase the energy efficiency and make it possible to use CNNs for

mobile devices where energy consumption matters the most. Initial works proposed near memory

computations where processors along with programmable arrays can be placed near DRAM for fast

processing [87–89]. Neural Network applications which run on mobile devices can tolerate some

errors in results which can be later improved by off line intensive training algorithm. However,

what matters most in such applications is performance and energy consumption of the application.

Memristive Memory technologies have been recently used for in situ computations. Energy Efficient

architectures performing computations like neural branch predictors, using memristive crossbars

have been explored [90]. Yakopcic et al. [91] studied Memristive Crossbar arrays using SPICE

Models to how that Neural Network algorithms can be computed on such memories to reduce

area and power overhead. Bojnordi et al. [33] proposed an accelerator using RRAM memory

technology to perform in situ operations on combinatorial logic and deep learning algorithm thereby

eliminating the need for data exchange between main memory and processor. Many works propose to

perform analog computations in convolution layers of CNNS and DNNS by accelerating them using

memristive crossbar arrays [8,42,75]. None of the above works are targeted towards performing binary

computations in convolution layers using crossbar arrays, which we propose in this paper to eliminate

the need of ADCs and reduce the total number of operations by further optimizing the binarized

weights and inputs using bit packing.

7.5. Mobile IoT Applications

To accelerate deep learning tasks such as speech recognition (speech-to-text and

speech-to-command) and computer vision (face detection and image classification), low power mobile

GPUs accelerated software library have been proposed [82,92]. Although efficient, continuous deep

learning inference in GPU contributes to the overall power consumption of the device. Sanyam et al.

in their recent research [93] on wear bench application showed that high performance can be achieved

for deep learning along with other wearable applications (e.g., image compression, audio play back

and video rendering) using Out of Order 32 bit CPU core with SIMD feature (e.g., ARM-A15 with

NEON). Non-volatile processor architecture has been proposed [94] for energy harvesting IoT device

to maximize the forward progress of IoT application in unstable and intermittent power supply

environment. This paper considers out-of-order core as a base line processor for IoT wearable

applications and introduces memristive accelerator to offload compute intensive CNN calculations

from the core not only to reduce core dynamic power consumption but also to limit data movement

between memory and core. At the same, we also achieve improved performance in comparison to

other existing low power solutions.

8. Conclusions

Convolutional neural networks have emerged as one of the important techniques in the field

of computer vision and are being used in various image classification algorithms. However,

the convolution operations are memory intensive and require a lot of data movement between

main memory and processor, which degrades the overall system performance and increases energy

J. Low Power Electron. Appl. 2018, 8, 38 22 of 27

dissipation. As CNN algorithms are used in mobile applications, energy-efficiency becomes a

significant challenge. MB-CNN enables in-situ computation of XNOR computations within memristive

RRAM crossbars, thereby eliminating data movement between memory arrays and processor cores.

The proposed accelerator was studied in single-core and multi-core mobile systems. For both platforms,

we observed significant improvements in energy-efficiency as compared with CPU, GPU, and PIM

based solutions. MB-CNN has total memory of 1 GB in its current design, which can be used for storing

parameters of larger CNNs such as VGG-16. Using the MB-CNN solution on different state-of-the-art

CNNs and evaluating its performance is definitely a future work in this field. Developing the MB-CNN

hardware and evaluating the solution for practical implementations on different platforms (e.g., FPGA

boards and cellphones) is another area which can be explored.

Author Contributions: Conceptualization and methodology is done by A.P.C. and M.N.B. Software, validation,
formal analysis, investigation is done by P.K. and A.P.C. Writing original draft preparation is done by A.P.C.
Writing review and editing is done by P.K. and M.N.B. Visualization, supervision, project administration, funding
acquisition by M.N.B.

Funding: This work was supported in part by the National Science Foundation (NSF) under Grant CCF-1755874
and in part by The University of Utah Seed.

Conflicts of Interest: The founding sponsors had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

References

1. Wearable Computing Devices. Available online: https://www.abiresearch.com/press/wearable-computing-

devices-like-apples-iwatch-will/ (accessed on 21 February 2013).

2. Wearable Device Prediction. Available online: http://www.idc.com/getdoc.jsp?containerId=prUS41530816

(accessed on 15 June 2016).

3. Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. DeepFace: Closing the Gap to Human-Level Performance in

Face Verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Columbus, OH, USA, 23–28 June 2014.

4. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural

Networks. In Advances in Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L.,

Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105.

5. Povey, D.; Ghoshal, A.; Boulianne, G.; Burget, L.; Glembek, O.; Goel, N.; Hannemann, M.; Motlicek, P.;

Qian, Y.; Schwarz, P.; et al. The Kaldi speech recognition toolkit. In Proceedings of the IEEE 2011 Workshop

on Automatic Speech Recognition and Understanding, Waikoloa Village, HI, USA, 11–15 December 2011;

Number EPFL-CONF-192584; IEEE Signal Processing Society: Piscataway, NJ, USA, 2011.

6. Lei, X.; Senior, A.W.; Gruenstein, A.; Sorensen, J. Accurate and compact large vocabulary speech recognition

on mobile devices. In Proceedings of the Interspeech, Lyon, France, 25–29 August 2013; ISCA: Singapore,

2013; Volume 1.

7. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained

quantization and huffman coding. arXiv 2015, arXiv:1510.00149.

8. Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.A.; Dally, W.J. EIE: Efficient inference engine

on compressed deep neural network. In Proceedings of the 43rd International Symposium on Computer

Architecture, Seoul, Korea, 18–22 June 2016; IEEE Press: Piscataway, NJ, USA, 2016; pp. 243–254.

9. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized Neural Networks. In Advances in

Neural Information Processing Systems 29; Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R., Eds.;

Curran Associates, Inc.: Red Hook, NY, USA, 2016; pp. 4107–4115.

10. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. XNOR-Net: ImageNet Classification Using Binary

Convolutional Neural Networks. arXiv 2016, arXiv:1603.05279.

11. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation

applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

12. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv

2014, arXiv:1409.1556.

J. Low Power Electron. Appl. 2018, 8, 38 23 of 27

13. Denton, E.L.; Zaremba, W.; Bruna, J.; LeCun, Y.; Fergus, R. Exploiting linear structure within convolutional

networks for efficient evaluation. In Advances in Neural Information Processing Systems; Curran Associates,

Inc.: Red Hook, NY, USA, 2014; pp. 1269–1277.

14. Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing fpga-based accelerator design for deep

convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2015; ACM: New York, NY, USA,

2015; pp. 161–170.

15. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level

accuracy with 50× fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

16. Chen, W.; Wilson, J.T.; Tyree, S.; Weinberger, K.Q.; Chen, Y. Compressing Neural Networks with the Hashing

Trick. In Proceedings of the ICML, Lille, France, 6–11 July 2015; pp. 2285–2294.

17. Tang, W.; Hua, G.; Wang, L. How to Train a Compact Binary Neural Network with High Accuracy? AAAI:

Menlo Park, CA, USA, 2017; pp. 2625–2631.

18. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database.

In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR09, Miami,

FL, USA, 20–25 June 2009.

19. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

20. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.

Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

21. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; University

of Toronto: Toronto, ON, Canada, 2009.

22. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading digits in natural images with

unsupervised feature learning. In Proceedings of the NIPS Workshop on Deep Learning and Unsupervised

Feature Learning, Granada, Spain, 12–17 December 2011; Volume 2011, p. 5.

23. Li, Y.; Lee, S.; Oowada, K.; Nguyen, H.; Nguyen, Q.; Mokhlesi, N.; Hsu, C.; Li, J.; Ramachandra, V.;

Kamei, T.; et al. 128Gb 3b/Cell NAND flash memory in 19nm technology with 18MB/s write rate and

400Mb/s toggle mode. In Proceedings of the 2012 IEEE International on Solid-State Circuits Conference

Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 19–23 February 2012; pp. 436–437.

24. Takashima, D.; Nagadomi, Y.; Ozaki, T. A 100 MHz ladder FeRAM design with capacitance-coupled-bitline

(CCB) cell. IEEE J. Solid-State Circuits 2011, 46, 681–689. [CrossRef]

25. Hoya, K.; Takashima, D.; Shiratake, S.; Ogiwara, R.; Miyakawa, T.; Shiga, H.; Doumae, S.M.; Ohtsuki, S.;

Kumura, Y.; Shuto, S.; et al. A 64-Mb chain FeRAM with quad BL architecture and 200 MB/s burst mode.

IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2010, 18, 1745–1752. [CrossRef]

26. Simpson, R.; Krbal, M.; Fons, P.; Kolobov, A.; Tominaga, J.; Uruga, T.; Tanida, H. Toward the ultimate limit of

phase change in Ge2Sb2Te5. Nano Lett. 2009, 10, 414–419. [CrossRef] [PubMed]

27. Chien, T.K.; Chiou, L.Y.; Sheu, S.S.; Lin, J.C.; Lee, C.C.; Ku, T.K.; Tsai, M.J.; Wu, C.I. Low-Power MCU with

Embedded ReRAM Buffers as Sensor Hub for IoT Applications. IEEE J. Emerg. Sel. Top. Circuits Syst. 2016,

6, 247–257. [CrossRef]

28. Kawahara, A.; Azuma, R.; Ikeda, Y.; Kawai, K.; Katoh, Y.; Hayakawa, Y.; Tsuji, K.; Yoneda, S.; Himeno, A.;

Shimakawa, K.; et al. An 8 Mb multi-layered cross-point ReRAM macro with 443 MB/s write throughput.

IEEE J. Solid-State Circuits 2013, 48, 178–185. [CrossRef]

29. Benoist, A.; Blonkowski, S.; Jeannot, S.; Denorme, S.; Damiens, J.; Berger, J.; Candelier, P.; Vianello, E.;

Grampeix, H.; Nodin, J.; et al. 28 nm advanced CMOS resistive RAM solution as embedded non-volatile

memory. In Proceedings of the 2014 IEEE International Reliability Physics Symposium, Waikoloa, HI, USA,

1–5 June 2014; p. 2E-6.

30. Ueki, M.; Akeuchi, K.; Yamamoto, T.; Tanabe, A.; Ikarashi, N.; Saitoh, M.; Nagumo, T.; Sunamura, H.;

Narihiro, M.; Uejima, K.; et al. Low-power embedded ReRAM technology for IoT applications.

In Proceedings of the 2015 Symposium on VLSI Circuits (VLSI Circuits), Kyoto, Japan, 16–18 June 2015;

pp. T108–T109.

31. Yang, J.J.; Pickett, M.D.; Li, X.; Ohlberg, D.A.; Stewart, D.R.; Williams, R.S. Memristive switching mechanism

for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433. [CrossRef] [PubMed]

J. Low Power Electron. Appl. 2018, 8, 38 24 of 27

32. Xu, C.; Niu, D.; Muralimanohar, N.; Balasubramonian, R.; Zhang, T.; Yu, S.; Xie, Y. Overcoming the challenges

of crossbar resistive memory architectures. In Proceedings of the 2015 IEEE 21st International Symposium on

High Performance Computer Architecture (HPCA), Burlingame, CA, USA, 7–11 February 2015; pp. 476–488.

33. Bojnordi, M.N.; Ipek, E. Memristive boltzmann machine: A hardware accelerator for combinatorial

optimization and deep learning. In Proceedings of the 2016 IEEE International Symposium on High

Performance Computer Architecture (HPCA), Barcelona, Spain, 12–16 March 2016; pp. 1–13.

34. Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent progress in resistive random access memories: Materials,

switching mechanisms, and performance. Mater. Sci. Eng. R: Rep. 2014, 83, 1–59. [CrossRef]

35. Niu, D.; Xu, C.; Muralimanohar, N.; Jouppi, N.P.; Xie, Y. Design trade-offs for high density cross-point

resistive memory. In Proceedings of the 2012 ACM/IEEE International Symposium on Low Power Electronics

and Design, Redondo Beach, CA, USA, 30 July–1 August 2012; ACM: New York, NY, USA, 2012; pp. 209–214.

36. Xu, C.; Dong, X.; Jouppi, N.P.; Xie, Y. Design implications of memristor-based RRAM cross-point structures.

In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble,

France, 14–18 March 2011; pp. 1–6.

37. Zidan, M.A.; Fahmy, H.A.H.; Hussain, M.M.; Salama, K.N. Memristor-based memory: The sneak paths

problem and solutions. Microelectron. J. 2013, 44, 176–183. [CrossRef]

38. Chiu, P.F.; Nikolić, B. A Differential 2R Crosspoint RRAM Array With Zero Standby Current. IEEE Trans.

Circuits Syst. II Express Briefs 2015, 62, 461–465. [CrossRef]

39. Dumas, S. Mobile Memory Forum: LPDDR3 and WideIO. JEDEC Mobile Forum; 2011; Volume 201. Available

online: https://www.jedec.org/sites/default/files/Sophie_Dumas_11%2006%20Mobile%20Memory%

20Forum.pdf (accessed on 13 october 2018).

40. Qureshi, M.K.; Franceschini, M.M.; Lastras-Montaño, L.A.; Karidis, J.P. Morphable memory system: A robust

architecture for exploiting multi-level phase change memories. In ACM SIGARCH Computer Architecture

News; ACM: New York, NY, USA, 2010; Volume 38, pp. 153–162.

41. Esmaeilzadeh, H.; Sampson, A.; Ceze, L.; Burger, D. Neural acceleration for general-purpose

approximate programs. In Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on

Microarchitecture, Vancouver, BC, Canada, 1–5 December 2012; IEEE Computer Society: Washington, DC,

USA, 2012; pp. 449–460.

42. Shafiee, A.; Nag, A.; Muralimanohar, N.; Balasubramonian, R.; Strachan, J.P.; Hu, M.; Williams, R.S.;

Srikumar, V. ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars.

In Proceedings of the 43rd International Symposium on Computer Architecture, Seoul, Korea, 18–22 June

2016; IEEE Press: Piscataway, NJ, USA, 2016; pp. 14–26.

43. Allen, P.E.; Geiger, R.L.; Strade, N.S. VLSI Design Techniques for Analog and Digital Circuits; McGraw-Hill

Publishing Company: New York, NY, USA, 1990.

44. Razavi, B. Principles of Data Conversion System Design; Wiley-IEEE Press: New York, NY, USA, 1995.

45. Kester, W.; Analog Devices, I. Data Conversion Handbook; Analog Devices, Inc.: Norwood, MA, USA, 2005;

ISBN 0-916550-27-3.

46. Free PDK 45 nm Open-Access Based PDK for the 45 nm Technology Node. Available online: http://www.

eda.ncsu.edu/wiki/FreePDK (accessed on 1 March 2017).

47. Esmaeilzadeh, H.; Blem, E.; Amant, R.S.; Sankaralingam, K.; Burger, D. Dark Silicon and the End of Multicore

Scaling. In Proceedings of the 38th International Symposium on Computer Architecture (ISCA’11) , San Jose,

CA, USA, 4–8 June 2011.

48. Dong, X.; Xu, C.; Xie, Y.; Jouppi, N.P. NVSim: A Circuit-Level Performance, Energy, and Area Model for

Emerging Nonvolatile Memory. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2012, 31, 994–1007.

[CrossRef]

49. Jouppi, N.P.; Kahng, A.B.; Muralimanohar, N.; Srinivas, V. CACTI-IO: CACTI with off-chip power-area-timing

models. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2015, 23, 1254–1267. [CrossRef]

50. Ardestani, E.K.; Renau, J. ESESC: A fast multicore simulator using time-based sampling. In Proceedings of

the 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA2013),

Shenzhen, China, 23–27 February 2013; pp. 448–459.

51. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;

Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 2015,

115, 211–252. [CrossRef]

J. Low Power Electron. Appl. 2018, 8, 38 25 of 27

52. Li, S.; Ahn, J.H.; Strong, R.D.; Brockman, J.B.; Tullsen, D.M.; Jouppi, N.P. McPAT: An integrated power, area,

and timing modeling framework for multicore and manycore architectures. In Proceedings of the 42nd

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-42, New York, NY, USA, 12–16

December 2009; pp. 469–480.

53. A SCIENTIFIC COMPUTING FRAMEWORK FOR LUAJIT. Available online: https://github.com/torch/

torch7 (accessed on 1 February 2017).

54. GPU-Based Deep Learning Inference: A Performance and Power Analysis. Available online: https://www.

nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf (accessed on 1 March 2017).

55. Rupesh, Y.K.; Behnam, P.; Pandla, G.R.; Miryala, M.; Bojnordi, M.N. Accelerating k-Medians Clustering

Using a Novel 4T-4R RRAM Cell. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 1–14. [CrossRef]

56. Cheng, C.; Chin, A.; Yeh, F. Novel ultra-low power RRAM with good endurance and retention.

In Proceedings of the 2010 Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 15–17 June

2010; pp. 85–86.

57. Hu, Y.; You, H.; Zhu, X.; Zou, H.; Zhang, J.; Song, S.; Song, Z. Superlattice-like GeTe/Sb thin film for

ultra-high speed phase change memory applications. J. Non-Cryst. Solids 2017, 457, 141–144. [CrossRef]

58. Liu, S.; Wang, W.; Li, Q.; Zhao, X.; Li, N.; Xu, H.; Liu, Q.; Liu, M. Highly improved resistive switching

performances of the self-doped Pt/HfO2: Cu/Cu devices by atomic layer deposition. Sci. China Phys.

Mech. Astron. 2016, 59, 127311. [CrossRef]

59. Cheng, C.; Chin, A.; Yeh, F. Ultralow switching energy Ni/GeOx/HfON/TaN RRAM. IEEE Electron

Device Lett. 2011, 32, 366–368. [CrossRef]

60. Luo, Q.; Xu, X.; Liu, H.; Lv, H.; Gong, T.; Long, S.; Liu, Q.; Sun, H.; Banerjee, W.; Li, L.; et al. Super non-linear

RRAM with ultra-low power for 3D vertical nano-crossbar arrays. Nanoscale 2016, 8, 15629–15636. [CrossRef]

[PubMed]

61. Lee, J.; Jo, M.; Seong, D.J.; Shin, J.; Hwang, H. Materials and process aspect of cross-point RRAM.

Microelectron. Eng. 2011, 88, 1113–1118. [CrossRef]

62. Ahn, C.; Fong, S.W.; Kim, Y.; Lee, S.; Sood, A.; Neumann, C.M.; Asheghi, M.; Goodson, K.E.; Pop, E.;

Wong, H.S.P. Energy-efficient phase-change memory with graphene as a thermal barrier. Nano Lett. 2015,

15, 6809–6814. [CrossRef] [PubMed]

63. Zhou, P.; Zhao, B.; Yang, J.; Zhang, Y. A durable and energy efficient main memory using phase change

memory technology. In ACM SIGARCH Computer Architecture News; ACM: New York, NY, USA, 2009;

Volume 37, pp. 14–23.

64. Pellizzer, F.; Pirovano, A.; Ottogalli, F.; Magistretti, M.; Scaravaggi, M.; Zuliani, P.; Tosi, M.; Benvenuti, A.;

Besana, P.; Cadeo, S.; et al. Novel/spl mu/trench phase-change memory cell for embedded and stand-alone

non-volatile memory applications. In Proceedings of the 2004 Symposium on VLSI Technology, Honululu,

HI, USA, 15–19 June 2004; Digest of Technical Papers; IEEE: Piscataway, NJ, USA, 2004; pp. 18–19.

65. Ohashi, T.; Yamaguchi, A.; Hasumi, K.; Inoue, O.; Ikota, M.; Lorusso, G.; Donadio, G.L.; Yasin, F.; Rao, S.;

Kar, G.S. Variability study with CD-SEM metrology for STT-MRAM: Correlation analysis between physical

dimensions and electrical property of the memory element. In Proceedings of the SPIE Metrology, Inspection,

and Process Control for Microlithography XXXI, San Jose, CA, USA, 26 February–2 March 2017; p. 101450H.

66. Chen, Y.; Wang, X.; Li, H.; Xi, H.; Yan, Y.; Zhu, W. Design margin exploration of spin-transfer torque RAM

(STT-RAM) in scaled technologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2010, 18, 1724–1734.

[CrossRef]

67. Zhang, Y.; Zhang, L.; Wen, W.; Sun, G.; Chen, Y. Multi-level cell STT-RAM: Is it realistic or just a dream?

In Proceedings of the 2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

DresDen, Germany, 12–16 March 2012; pp. 526–532.

68. Collobert, R.; Bengio, S.; Mariéthoz, J. Torch: A Modular Machine Learning Software Library; Technical

Report; Idiap, 2002. Available online: https://infoscience.epfl.ch/record/82802/files/rr02-46.pdf (accessed

on 13 October 2018).

69. Jiang, L.; Kim, M.; Wen, W.; Wang, D. XNOR-POP: A processing-in-memory architecture for binary

Convolutional Neural Networks in Wide-IO2 DRAMs. In Proceedings of the 2017 IEEE/ACM International

Symposium on Low Power Electronics and Design (ISLPED), Taipei, Taiwan, 24–26 July 2017; pp. 1–6.

70. Bahou, A.A.; Karunaratne, G.; Andri, R.; Cavigelli, L.; Benini, L. XNORBIN: A 95 TOp/s/W Hardware

Accelerator for Binary Convolutional Neural Networks. arXiv 2018, arXiv:1803.05849.

J. Low Power Electron. Appl. 2018, 8, 38 26 of 27

71. Chen, Y.H.; Emer, J.; Sze, V. Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional

neural networks. In Proceedings of the 2016 ACM/IEEE 43rd Annual International Symposium on Computer

Architecture (ISCA), Seoul, Korea, 18–22 June 2016; pp. 367–379.

72. Chen, T.; Chen, Y.; Duranton, M.; Guo, Q.; Hashmi, A.; Lipasti, M.; Nere, A.; Qiu, S.; Sebag, M.; Temam, O.

BenchNN: On the broad potential application scope of hardware neural network accelerators. In Proceedings

of the 2012 IEEE International Symposium on Workload Characterization (IISWC), San Diego, CA, USA, 4–6

November 2012; pp. 36–45.

73. Bienia, C.; Kumar, S.; Singh, J.P.; Li, K. The PARSEC benchmark suite: Characterization and architectural

implications. In Proceedings of the 17th International Conference on Parallel Architectures and Compilation

Techniques, Toronto, ON, Canada, 25–29 October 2008; ACM: New York, NY, USA, 2008; pp. 72–81.

74. Grigorian, B.; Farahpour, N.; Reinman, G. BRAINIAC: Bringing reliable accuracy into neurally-implemented

approximate computing. In Proceedings of the 2015 IEEE 21st International Symposium on High

Performance Computer Architecture (HPCA), San Francisco, CA, USA, 7–11 February 2015; pp. 615–626.

75. Chi, P.; Li, S.; Xu, C.; Zhang, T.; Zhao, J.; Liu, Y.; Wang, Y.; Xie, Y. PRIME: A novel processing-in-memory

architecture for neural network computation in reram-based main memory. In Proceedings of the 43rd

International Symposium on Computer Architecture, Seoul, Korea, 18–22 June 2016; IEEE Press: Piscataway,

NJ, USA, 2016; pp. 27–39.

76. Chen, T.; Du, Z.; Sun, N.; Wang, J.; Wu, C.; Chen, Y.; Temam, O. Diannao: A small-footprint high-throughput

accelerator for ubiquitous machine-learning. In ACM Sigplan Notices; ACM: New York, NY, USA, 2014;

Volume 49, pp. 269–284.

77. Chen, Y.; Luo, T.; Liu, S.; Zhang, S.; He, L.; Wang, J.; Li, L.; Chen, T.; Xu, Z.; Sun, N.; et al. Dadiannao:

A machine-learning supercomputer. In Proceedings of the 47th Annual IEEE/ACM International Symposium

on Microarchitecture, Cambridge, UK, 13–17 December 2014; IEEE Computer Society: Washington, DC,

USA, 2014; pp. 609–622.

78. Du, Z.; Fasthuber, R.; Chen, T.; Ienne, P.; Li, L.; Luo, T.; Feng, X.; Chen, Y.; Temam, O. ShiDianNao: Shifting

vision processing closer to the sensor. In ACM SIGARCH Computer Architecture News; ACM: New York, NY,

USA, 2015; Volume 43, pp. 92–104.

79. LiKamWa, R.; Hou, Y.; Gao, J.; Polansky, M.; Zhong, L. RedEye: Analog ConvNet image sensor architecture

for continuous mobile vision. In Proceedings of the 43rd International Symposium on Computer Architecture,

Seoul, Korea, 18–22 June 2016; IEEE Press: Piscataway, NJ, USA, 2016; pp. 255–266.

80. Tang, T.; Xia, L.; Li, B.; Wang, Y.; Yang, H. Binary convolutional neural network on RRAM. In Proceedings

of the 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), Chiba, Japan, 16–19

January 2017; pp. 782–787.

81. Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.; Tang, T.; Xu, N.; Song, S.; et al. Going deeper

with embedded fpga platform for convolutional neural network. In Proceedings of the 2016 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2016;

ACM: New York, NY, USA, 2016; pp. 26–35.

82. Motamedi, M.; Fong, D.; Ghiasi, S. Fast and Energy-Efficient CNN Inference on IoT Devices. arXiv 2016,

arXiv:1611.07151.

83. Angizi, S.; He, Z.; Parveen, F.; Fan, D. IMCE: Energy-efficient bit-wise in-memory convolution engine for

deep neural network. In Proceedings of the 23rd Asia and South Pacific Design Automation Conference,

Jeju, Korea, 22–25 January 2018; IEEE Press: Piscataway, NJ, USA, 2018; pp. 111–116.

84. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network.

In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2015;

pp. 1135–1143.

85. Gong, Y.; Liu, L.; Yang, M.; Bourdev, L. Compressing deep convolutional networks using vector quantization.

arXiv 2014, arXiv:1412.6115.

86. Courbariaux, M.; Bengio, Y.; David, J.P. Binaryconnect: Training deep neural networks with binary weights

during propagations. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook,

NY, USA, 2015; pp. 3123–3131.

87. Gokhale, M.; Holmes, B.; Iobst, K. Processing in memory: The Terasys massively parallel PIM array. Computer

1995, 28, 23–31. [CrossRef]

J. Low Power Electron. Appl. 2018, 8, 38 27 of 27

88. Elliott, D.G.; Stumm, M.; Snelgrove, W.M.; Cojocaru, C.; McKenzie, R. Computational RAM: Implementing

processors in memory. IEEE Des. Test Comput. 1999, 16, 32–41. [CrossRef]

89. Oskin, M.; Chong, F.T.; Sherwood, T. Active Pages: A Computation Model for Intelligent Memory; IEEE Computer

Society: Washington, DC, USA, 1998; Volume 26.

90. Wang, J.; Tim, Y.; Wong, W.F.; Li, H.H. A practical low-power memristor-based analog neural branch

predictor. In Proceedings of the 2013 International Symposium on Low Power Electronics and Design,

Beijing, China, 4–6 September 2013; IEEE Press: Piscataway, NJ, USA, 2013; pp. 175–180.

91. Yakopcic, C.; Hasan, R.; Taha, T.; McLean, M.; Palmer, D. Memristor-based neuron circuit and method for

applying learning algorithm in SPICE. Electron. Lett. 2014, 50, 492–494. [CrossRef]

92. Latifi Oskouei, S.S.; Golestani, H.; Hashemi, M.; Ghiasi, S. CNNdroid: GPU-Accelerated Execution

of Trained Deep Convolutional Neural Networks on Android. In Proceedings of the 2016 ACM on

Multimedia Conference, Amsterdam, The Netherlands, 15–19 October 2016; ACM: New York, NY, USA,

2016; pp. 1201–1205.

93. Mehta, S.; Torrellas, J. WearCore: A core for wearable workloads? In Proceedings of the 2016 International

Conference on Parallel Architecture and Compilation Techniques (PACT), Haifa, Israel, 11–15 September

2016; pp. 153–164.

94. Ma, K.; Li, X.; Swaminathan, K.; Zheng, Y.; Li, S.; Liu, Y.; Xie, Y.; Sampson, J.J.; Narayanan, V. Nonvolatile

Processor Architectures: Efficient, Reliable Progress with Unstable Power. IEEE Micro 2016, 36, 72–83.

[CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

