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Abstract—Over the past decade, three-dimensional die stacking
technology has been considered for building large-scale in-
package memory systems. In particular, in-package DRAM cache
has been considered as a promising solution for high band-
width and large-scale cache architectures. There are, however,
significant challenges such as limited energy efficiency, costly tag
management, and physical limitations for scalability that need to
be effectively addressed before one can adopt in-package caches
in the real-world applications.

This paper proposes R-Cache, an in-package cache made by
3D die stacking of memristive memory arrays to alleviate the
above mentioned challenges. Our simulation results on a set
of memory intensive parallel applications indicate that R-Cache
outperforms the state-of-the-art proposals for in-package caches.
R-Cache improves performance by 38% and 27% over the state-
of-the-art direct mapped and set associative cache architectures,
respectively. Moreover, R-Cache results in averages of 40% and
27% energy reductions as compared to the direct mapped and
set-associative cache systems.

I. INTRODUCTION

The ever growing use of data intensive applications across
various fields of science and engineering have made large
memories and cache architectures inevitable components of
future exascale computing platforms. While on-chip memories
are limited by power and area consumption, off-chip memory
systems suffer from the so called bandwidth wall due to pin
count limitations [1] and expensive off-chip data movement.
Recently, three dimensional (3D) die stacking has enabled
integrating multiple DRAM dice within the same processor
package that can reach memory bandwidths in excess of
Tera bytes per second (TBps) using the through-silicon via
(TSV) technologies. High bandwidth memory (HBM), hybrid
memory cube (HMC), and wide 10 (WIO) are examples of
in-package memory systems mainly designed for DRAM [2]-
[4]. These recent achievements in memory technologies have
motivated numerous researchers to design giga-scale DRAM-
based in-package cache architectures.

Despite the high bandwidth interfacing technology, 3D die
stacked DRAM access is almost identical to the conventional
DDRx memories [5]-[12]. Moreover, current proposals for
in-package DRAM provide limited capacity. This limitation
may become an even more serious concern for the future
data-intensive applications as the DRAM designers cannot
provide a clear road map on how the technology will continue
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to scale [1]. Furthermore, the DRAM power consumption—
due to periodic refresh, precharge, static power in large row
buffers, and dynamic power for row activation, and data
movement over large wires—has resulted in serious thermal
issues in 3D die-stacked memories [13]. Apart from these
problems, DRAM caches need to manage a large amount of
meta data for dirty, valid, tag, and error correction code (ECC)
bits that have become a major problem for bandwidth and
energy efficiency [5]-[12].

As a result, DRAM alternative technologies have been
considered for in-package memories, such as recent propos-
als that examine 3D memory systems with resistive RAM
(RRAM) [14]-[16]. Among all DRAM alternatives, RRAM
is a non-volatile memory technology based on memristive
devices that exhibit FLASH-like density and fast read speeds
comparable to DRAM [17]. Similar to the 3D die-stacked
DRAM, building an in-package cache with RRAM remains
a significant challenge, mainly due to the excessive capacity
and bandwidth consumption for managing meta data. This
paper examines R-Cache, an in-package die-stacked memory
architecture specifically designed for highly set-associative
caches using memristive arrays. The proposed architecture
enables energy-efficient and fast in-package caching through
the following contributions.

e R-Cache provides a 3D memory structure specifically
designed for dense and highly set associative caches. The
proposed architecture benefits from the search capabilities
in the resistive memory arrays to realize parallel searches
for highly set-associative cache lookup. To the best of
our knowledge this is the first proposal that specifically
designs the memory layers and re-purposes the interface
for building an RRAM-based HBM cache.

o Through in-memory tag checking and block management,
the proposed R-Cache architecture provides a superior
bandwidth efficiency and performance compared to the
state-of-the-are direct mapped and set associative cache
architectures. Moreover, RRAM eliminates the need for
activation and refresh energy, which results in reducing
the execution time, energy consumption, and bandwidth
utilization of the in-package cache and off-chip memory.

Our simulation results on a set of 12 memory intensive
applications indicate that R-Cache improves performance by
38% and 27% over the state-of-the-art direct mapped and



set associative cache architectures, respectively. Moreover,
R-Cache results in 40% and 27% reductions the average
energy consumption compared to the direct mapped and set
associative cache systems.

II. BACKGROUND AND MOTIVATION

This section provides the necessary background knowledge
on high bandwidth memory, existing DRAM-based cache
architectures, and resistive memory technologies.

A. High Bandwidth Memory

Figure 1 illustrates an example high bandwidth memory
(HBM) system including eight 3D stacked DRAM dice and a
processor die placed in the same package. The bottom DRAM
layer and the processor die are connected to the silicon inter-
poser through micro bumps [18]. Through-silicon vias (TSVs)
are used to connect the DRAM layers, which are typically
divided into 4-8 vertically independent vaults (channels) [19].
Each vault is horizontally divided into 8-16 banks that results
in up to 128 banks to exploit data-level parallelism in user
applications. The banks comprise a hierarchy of sub-banks and
sub-arrays with a global row buffer. The DRAM technology
necessitates a sequence of precharge, activate, read,
and write operations prior to transferring data for every
memory request. Typically, one HBM controller per vault is
needed to orchestrate data movement between the processor
and DRAM layers, which involves (1) issuing the right set
of commands for each memory request and (2) enforcing
the necessary timing constraints among all the generated
commands. This paper proposes a high bandwidth RRAM
interface realized through the conventional HBM commands
with a new set of timing parameters specifically computed for
R-Cache operations.
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Fig. 1. Illustrative example of a DRAM-base cache architecture using the
high bandwidth memory interface.

B. HBM Cache Architectures

Most existing proposals for gigascale cache architectures
focus on developing control mechanisms to alleviate the band-
width and storage overheads of tag checking. Block granularity
DRAM caches have millions of cache blocks each of which
associated with a tag to make cache lookup possible. Numer-
ous architectures, such as Unison [7], TDC [9], FTDC [10],
and Banshee [11], address this problem by increasing the
access granularity from less than hundred bytes to multi-
kilobyte pages at the cost of more energy and bandwidth
consumption per cache fill and eviction. Block level DRAM
caches, however, suffer from the high cost of tag storage and

management [5], [6], [8], [12]. This paper leverages the higher
density and in-memory processing capabilities of the RRAM
technology to build a highly set-associative fine-grained gigas-
cale cache architecture for data intensive applications. Figure 2
illustrates the fundamental differences between R-Cache and
the existing proposals for direct mapped and set-associative
cache architectures.
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Fig. 2. Fundamental differences between the existing direct mapped (a), set
associative (b), and the proposed R-Cache (c) architectures.

Figure 2(a) shows the existing direct mapped HBM based
cache architectures that store the tag and data bits in HBM,
while the tag checking is carried out on the processor die. Loh
and Hill propose a DRAM based architecture that accesses
multiple tags or a data block during every HBM access [5].
Instead, Alloy [6] proposes to read both the tag and data (TAD)
bits of every cache block within an HBM access [6]. Therefore,
the Alloy cache ameliorates latency and bandwidth at the cost
of reducing hit rate. Bear [8] proposes to further optimize the
HBM bandwidth by reducing the amount of unnecessary traffic
between the processor, cache, and main memory.

To improve the limited hit-rate in direct mapped caches,
Accord [12] has been recently proposed to develop a set-
associative HBM cache. Figure 2(b) shows the key compo-
nents of such DRAM based cache architecture. Similarly to
the direct mapped cache, tag checking is carried out on the
processor die; however, the block address mapping is modified
to form cache sets in HBM. Such block organizations, on the
one hand, increases the cache hit rate; on the other hand, it
exerts significant bandwidth overheads for checking all of the
tags within every cache set. The Accord cache alleviates this
problem by (1) limiting the number of cache ways and (2)
employing a way coordinator [20] that reduces the number of
unnecessary tag checks per set.

Figure 2(c) shows the proposed R-Cache architecture that
addresses both the bandwidth and latency problems through
architecting the memory layers with RRAM arrays. R-Cache
introduces an energy-efficient in-memory tag checking mech-
anism that eliminates unnecessary HBM accesses for transfer-
ring tag bits between HBM and the processor. Moreover, the
novel architecture of R-Cache provides a high set associativity
that significantly improves the cache hit rate. Nevertheless,



the higher density of RRAM compared to DRAM holds the
promise to keep developing more energy-efficient memory
systems for the future data intensive computing.

C. RRAM Technology

Resistive memories are non-volatile, free of leakage power,
and immune to radiation induced transient faults. RRAM is
one of the most promising memristive devices under com-
mercial development that exhibits excellent scalability, high-
speed switching, a high dynamic resistance range, and low
power consumption [17]. Numerous array topologies have
been proposed in the literature that optimize RRAM for better
reliability, density, and computational capabilities [21], [22].
Figure 3 shows example schematic and device structure of the
conventional one-transistor, one-memristor (1T-1R) memory
cell. The read and write operations are performed by activat-
ing the access device through a wordline and applying the
required read or write voltage across a bitline and a bitline*

wires.
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Fig. 3. Example circuit schematic (a) and physical structure (b) of a 1T-1R
RRAM cell.

III. R-CACHE ARCHITECTURE

Figure 4 illustrates an example computer system comprising
a multicore processor interfaced with three levels of on-chip
cache, an in-package 3D die-stacked R-Cache, and an off-
chip DRAM memory. Each core has private L1 and L2 cache
units. All of the L2 caches are connected to a shared L3
cache. An R-Cache controller connects the L3 cache, the
R-Cache layers, and the main memory controller. R-Cache
employs a WidelO interface to realize a fine granularity high-
bandwidth memory cache. As compared to the conventional
DRAM based HBM cache, R-Cache employs RRAM based
arrays that provide a higher density as well as additional
in-memory search capabilities that enable highly-associative
lookup within memory layers. The R-Cache controller and the
RRAM arrays are designed to efficiently perform highly set-
associative cache lookups under the WidelO interface.
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Fig. 4. Illustrative top view of the proposed R-Cache architecture used in a
multicore system.

A. R-Cache Memory Organization

R-Cache memory layers are divided into multiple chan-
nels; where, each channel comprises independent supersets
distributed across eight memory dice. An entire superset is
responsible for an ongoing R-Cache memory access. Figure 5
depicts the overall organization of an R-Cache superset divided
into multiple sets. Each set consists of a resistive content
addressable memory (RCAM) array for storing tags and mul-
tiple resistive random accessible memory (RRAM) arrays for
maintaining data blocks.
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Fig. 5. Illustrative example of the R-Cache set and superset organization.

A search line (SL) signal is generated for every incoming
memory address (ADDR) and is used to lookup the RCAM
based TAG array. Every 64B data block is distributed among
eight RRAM arrays, where every array stores 8B of data.
Every set is equipped with a simple in-memory logic, called
set controller, that includes a pseudo least-recently used (P-
LRU) unit, dirty and invalid bit detectors. P-LRU identifies the
least recently used block of the set for eviction prior to every
block replacement. During a read/write hit, the row decoder
receives a signal for the matching way through match lines
(MLs). On a miss, the P-LRU provides an index to the row
decoder if an invalid or non-dirty block is found in the set. The
row decoder’s output is used to activate a word line (WL) of
the data arrays. In addition to the address, command, and data
buses, R-Cache uses eight output wires from existing WidelO
wires for sending the hit/miss, dirty, valid, and LRU index to
the R-Cache controller. For example, the data bus invert (DBI)
wires may be used for transferring the flag bits from RRAM
sets to the R-Cache controller. Unlike the existing solutions
for DRAM based in-package cache architectures [9], [10],
the highly associative R-Cache design performs all of the tag
checks, replacement decision, and dirty block evacuation in
memory.

B. Data and Tag Arrays

As shown in Figure 6(a), 2T-2R RRAM cells are em-
ployed to build content addressable memory (CAM) arrays
for maintaining tags at every cache set. Every cell comprises
a pair of IT-1IR memory cells, each of which can be written



individually. The cell can be used for performing bitwise XOR
based comparison between a search key and stored tags. The
differential format (R and R) of a tag-bit is stored in every
cell. To perform a tag search, a bitwise format of the key value,
an incoming tag including the true and complement of each
bit, is applied to the search and search wires. Prior to the tag
search, the match line wires are precharged to a high voltage
level. Each match line stays at a high level only if all of its
tag bits match with the key bits; otherwise, the match line
reaches a low voltage level. All of the match lines follow the
same process during a tag search to produce an output vector
indicating the matches and mismatches in the tag array. (The
R-Cache set controller ensures no repeated tags are stored in
the tag array; therefore, no more than one match is possible
per every tag search.)
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CAM (a) and RAM (b) units.

As shown in Figure 6(b), the data arrays are designed
based on the conventional 1T-1R RRAM cells. Every memory
cell comprises a transistor and a memristor to store a bit of
information. A single row of the sub-array is activated on every
access using the signals generated by the row decoder or the
CAM match lines. A control signal, called lookup, is used
to choose between a normal read/write operation and a cache
lookup.

C. R-Cache Controller

Figure 7 shows the R-Cache controller as a gateway between
L3, 3D R-Cache layers, and the main memory controller. First,
an input stream of read and write requests from L3 is routed to
the R-Cache controller through a channel router. The requests
are then converted to the HBM commands. Ultimately, data is
exchanged between the R-Cache controller and the memory
layers through three main components: a Transaction Unit, a
Transaction Queue, and a Data Buffer.

1) Transaction Unit: The transaction unit (TU) is respon-
sible for converting the memory requests to transactions,
and initiating block eviction and fill operations based on
cache miss and dirty indication. In addition, all of the timing
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Fig. 7. An overview of the R-Cache controller .

requirements dictated by the WidelO interface are ensured by
TU. The cache block hit/miss and dirty evaluation, however,
are carried out inside the memory dice and are signaled to the
controller through the WidelO interface.

2) Transaction Queue: A transaction queue is employed by
every channel controller that stores up to 64 R-Cache transac-
tions. Each entry of the queue is dequeued and translated to a
set of WidelO commands (e.g., read, write, precharge,
and activate) using a scheduler to manage the memory
layers and orchestrate data on the R-Cache interface.

R-Cache set the data burst and activation size to a single
cache block to limit the energy consumption; therefore, every
R-Cache transaction results in activating 64B data blocks.!

3) Data Buffer: The R-Cache controller employs a data
buffer for storing and transferring data between the L3 cache
and the 3D memory layers.

D. R-Cache Timing Protocol

Similar to prior work on non-volatile main memories [23],
R-Cache employs the WidelO interface, originally designed
for DRAM arrays, with proper timing parameters to operate
the resistive memory layers with longer write latencies. The
important changes in the timing parameters are related to the
row precharge (tRP) and the read to precharge (tRTP) delays,
which are set to zero; all other timing parameters are computed
based on the RRAM read, write, and search latencies. The
details of parameters are provided in Table III.

IV. R-CACHE CONTROL FLOWS

This section explains the proposed control flows required
for serving every memory request arriving at R-Cache. The
control tasks for every new request are divided between the
controller and an R-Cache set. Two tightly coordinated control
flows are proposed such that one is responsible for transaction
processing on the processor die and the other one is performed
by the set controller to maintain the set status.

A. Transaction Processing

The transaction unit inside the R-Cache controller is respon-
sible for generating appropriate transactions for the read and
write requests generated by L3. Table I shows the transactions
supported by the proposed transaction unit. The R-Cache read
and write require a tag check followed by a data access at the
target set. In contrast, the read_dirty and write_fill transactions
are issued under certain conditions to perform pure read and

'Our experiments indicate that increasing the number of bits per activated
rows in 3D RRAM cache results in negligible performance improvements but
significant energy consumption.



write accesses with no tag check. These transactions carry the
necessary indexing information for cache block replacement
under write misses. During these transactions the lookup signal
is set to low for the resistive RAM arrays (see part (b)
of Figure 6). The read_dirty transaction is used to read an
identified dirty block from the R-Cache layers before a write
update; whereas, the write_fill transaction updates the contents

of a requested block after eviction from the R-Cache set.
TABLE I
R-CACHE TRANSACTIONS.
Tag Check | Description |

[ Name |

Read requests from the L3 cache
are issued to R-Cache as normal read transaction.
1- In the case of an L3 block eviction, write backs
from L3 are placed as ordinary writes in
the transaction queue to write into R-Cache;
2-In the case of R-Cache read miss, read fills from
main memory are converted to normal writes.
This transaction is issued when
a write miss happens and a dirty block is found
for replacement.
This transaction is issued after a write miss once
a dirty block is evicted and the target block is read
from the main memory.

read Required

write Required

read_dirty | Not Required

write_fill Not Required

Please notice in the case of a read miss, a read_fill trans-
action may not be sufficient to place an incoming block from
main memory to R-Cache. The main reason is the status of the
set that may change during the long latency between detecting
a cache miss and receiving the missing block from main
memory. Therefore, a write transaction comprising a fresh tag
checking operation followed by updating the cache contents
is necessary. In contrast, a write miss carries data with the
request from L3 and can immediately update the contents of
the memory layers without any tag checking.

B. Set Maintenance Processing

R-Cache relies on a distributed control mechanism be-
tween the memory arrays and the R-Cache controller for
set maintenance that includes in-memory tag checking, block
eviction, tracking the replacement candidates, and block trans-
fer. Figure 8 shows the flow of operations required for set
maintenance upon receiving a command at the memory arrays
which happens inside HBM. R-Cache follows two phases for
processing every memory request. The first phase comprises
a normal read/write operation with flag outputs indicating
hit/miss and whether a read_dirty or writ_fill transaction
is required (Figure 8). In the latter case, the second phase
(Figure 8) will be performed as the set controller receives
the signals from the target set. Here, we explain the required
operations for serving read and write requests, separately.

1) Read Operation: The target R-Cache set receives a
read command over the WidelO interface. In the case of a
read_dirty, no lookup operation is required and the way index
provided along the transaction is used to directly access the
resistive RAM arrays. Otherwise, a normal read transaction
requires a tag check to find a matching way prior to accessing
the data blocks. Along with the read data, the R-Cache set
returns status bits including hit and dirty flags. A response is
then sent to the R-Cache controller based on the current state
of the set. Figure 9 illustrates the flow of operations performed
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Fig. 8. Flow of operations required for set maintenance in memory layers.

by the R-Cache controller based on the set response. On a
cache hit, the read block is sent to the L3 cache when the
response arrives at the R-Cache controller. If the response
indicates a read miss, the R-Cache controller issues a read
request to the main memory that fetches the missing block.
Once the data is ready on chip, (1) the block is sent to the L3
cache and (2) a write transaction is generated and enqueued
in the transaction queue for updating the R-Cache memory
arrays.
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Fig. 9. Flow of the control operations in the R-Cache controller in response
to an R-Cache access.

2) Write Operation: Similar to the read operation, write
transactions are generated and sent by the R-Cache controller
to the memory layers (Figure 9). A write_fill transaction
directly updates a particular way of the target set using the way
index provided along the transaction. However, an in-memory
tag check is required for normal write transactions. On a hit
or an invalid block being found in the set, the block contents
are directly updated by the transferred data. Otherwise, the in-
memory P-LRU logic computes the way index to be replaced
by the incoming block. The R-Cache set returns the selected



index and the hit and dirty flags to the R-Cache controller for
eviction and replacement.

Overall, a hit or a non-dirty signal to the controller indicates
a successful cache write operation. On a miss and a dirty
signal with an LRU index for block eviction, the controller
generates and sends a read_dirty transaction to the transaction
queue. Then, the set directly reads the data from the provided
index and returns it to the controller. Upon receiving the
evicted data from the R-Cache set, the R-Cache controller
issues a write request to main memory for the evicted block.
At the same time, it generates a write_fill transaction to update
the contents of the set. Upon receiving the write_fill transaction
at the set, the contents of memory arrays are updated.

V. EXPERIMENTAL SETUP

In this section, the simulation environment, methodology
of experiments, characteristics of applications, and power and
performance evaluation tools are explained.

A. Methodology

We heavily modify CACTI 7.0 [24] and borrow some
components from NVSIM [25] and NVSIM-CAM [26] to
develop an in-house tool, named NVCACTI, to model the
proposed R-Cache architecture for area, power, energy, and
latency estimations. The newly developed NVCACTI supports
non-volatile memories with the multi-banking capabilities and
parameterized set and superset modeling. (Notice that NVSim
and NVSim-CAM do not support multi banking; whereas,
CACTI does not support non-volatile memories.)

To carry out cycle-accurate performance and energy sim-
ulations, we develop an HBM simulator interfaced with a
multicore processor and DDR4 main memory by heavily
modifying the ESESC [27] simulator. McPAT [28] is used
in coordination with ESESC to estimate the processor power
and system energy. For all of the circuit modeling efforts,
we employ the 22nm CMOS technology and the RRAM
parameters from prior work [29]. Table II shows the RRAM

parameters used for modeling R-Cache memory layers.
TABLE II
THE RRAM PARAMETERS USED FOR MODELING R-CACHE ARRAYS.
[ Rhigh/Rlow [ Peak Voltage [ Peak Current | Speed [  Retention | Endurance |
[ >10 | <2v | 170pA | 10ns |10 years@85°C| 10 |

B. System Configuration

Table III shows the simulation parameters for three different
HBM structures including DRAM-Cache, RRAM-Cache, and
R-Cache. The memory capacity and the necessary timing
parameters related to the HBM interface for the RRAM and R-
Cache systems are extracted using NVCACTI. We consider iso
area configurations for all of the evaluated memory systems.
We use CACTI to estimate the die area consumption of
an eight-layer, 1GB 3D stacked DRAM. For the RRAM
baselines and R-Cache, the NVCACTT tool is employed to find
optimized configurations based on energy-delay products. All
of the evaluated designs are limited to fit within the same area
as the one of the DRAM cache. (As the RRAM technology
provides denser memory arrays than DRAM, the RRAM and
R-Cache systems can store up to 2.25GB data within the same

area size of a 1IGB DRAM.) The HBM timing parameters are

then set accordingly.
TABLE III
THE EVALUATED SYSTEM CONFIGURATIONS.

Processor
Core eight 4-issue 00O cores, 128 ROB entries, 3.2 GHz
IL1/DL1 cache 32KB, 2-way, LRU, 64B block
L2 cache 128KB, 4-way, LRU, 64B block
L3 cache IMB, 8-way, LRU, 64B block

HBM Cache
DRAM RRAM R-Cache
1GB, 8 channels, 2.25GB, 8 channels, 2.25GB, 8 channels,
Specifications 16 banks/channel, 64 banks/channel, 64 supersets/channel,
800MHz DDR4 800MHz DDR4 800MHz DDR4
tRCD: 44, tCAS: 44, tRCD: 11, tCAS: 0, tRCD: 15, tCAS: 0,
Timing tRP: 44, tRTP: 46, tRP: 0, tRTP: 0, tRP: 0, tRTP: 0,
(CPU cycles) tRAS: 112, tWR: 4 tRAS: 44, tWR: 205 tRAS: 44, tWR: 207
Off-Chip Main Memory
Specifications 32GB, DDR4, 1 channel, 2 ranks/channel, 8 banks/rank
Timing tRCD: 44, tCCD: 61, tWTR: 31,

(CPU cycles) tWR: 4, (RTP: 46, tRP: 44, (RRD: 16, tRAS: 112, tRC: 271, tFAW: 181

To assess the energy and performance potentials of the
proposed R-Cache system, we evaluate four different archi-
tectures: a DRAM Alloy cache, an RRAM Alloy cache,
a 2-way RRAM Accord cache, and R-Cache. Both Alloy
and Accord are the state-of-the-art architectures for direct
mapped and set-associative DRAM cache systems. To create
strong baselines for comparisons, we develop versions of the
two architectures that significantly benefit from the energy-
efficiency and density of the RRAM technology. All of the
evaluated cache systems rely on the block granularity data
and tag storage; where, every 64B data is associated with a
8B tag. Thanks to the efficient 2T-2R RCAM arrays, each R-
Cache set realizes 128 ways; whereas, the Accord cache can
efficiently implements a 2-way set associative cache. Notice
that in Accord increasing the number of associative ways per
set results in a significant bandwidth and energy consumption
with performance degradation.

C. Benchmark Applications

We choose a mix of 12 data-intensive benchmark ap-
plications from three parallel suites, namely Phoenix [30],
SPLASH-2 [31], and NAS [32]. Applications are compiled
using GCC with the -O3 optimization flag. Table IV shows
the benchmarks description and their input sets. All of these
parallel applications are simulated to completion for perfor-
mance evaluations. Similar to prior work [11], we define a
fixed capacity quota for all of the evaluated applications to
exert enough pressure on the HBM cache interface.

TABLE IV
APPLICATIONS AND DATA SETS.
[ Label | Benchmarks [ Suite ] Input |

FT Fourier Transform NAS Class A

IS Integer Sort NAS Class A

MG Multi-Grid NAS Class A

CG Conjugate Gradient NAS Class A

CH Cholesky SPLASH-2 tk29.0

RDX Radix SPLASH-2 2M integer
OCN Ocean SPLASH-2 514x514 ocean
FFT FFT SPLASH-2 | 1048576 data points
FMM | Fast Multiple Methods | SPLASH-2 | 1048576 data points

LU | Lower/Upper Triangular | SPLASH-2 isiz02=64
BRN Barnes SPLASH-2 16K particles
HIST Histogram Phoenix 100MB file
LREG Linear Regression Phoenix S50MB key file

VI. EVALUATION

We evaluate the area overheads, system performances, HBM
cache hit rates, bandwidth efficiencies, and system energy



consumption of the proposed R-Cache and baseline DRAM
and RRAM architectures.

A. Area Consumption

Compared to pure RRAM based cache architectures, the
proposed R-Cache replaces some of the RRAM arrays with
RCAM to store tags and employs CMOS logic on the mem-
ory dice for in-memory tag checking. We observe that the
peripheral circuits (e.g., sense amplifiers and line drivers)
in RRAM and RCAM arrays significantly contribute to die
area consumption; therefore, replacing the 1T-1R RRAM cells
with 2T-2R RCAM cells does not introduce significant area
overheads. However, the additional logic for in-memory set
management requires a considerable amount of area over-
heads, which results in limiting the number of supersets
per channel. Through a thorough design exploration using
the newly developed NVCACTI tool, we find an R-Cache
configuration with 64 supersets and 8 sets per superset that
requires only 6.9% area overhead compared to the optimized
RRAM HBM.

B. System Performance

Figure 10 shows the relative system performance of the
RRAM Alloy, Accord, and R-Cache architectures while exe-
cuting all of the 12 benchmark applications. All of the numbers
are normalized to the DRAM Alloy baseline architecture.
Compared to the DRAM cache, all of the RRAM based
caches achieve higher performances; for example, RRAM
Alloy achieves an average 2.18 x performance improvement
due to replacing DRAM technology with RRAM. RRAM
Accord improves the system performance by 8% over the
RRAM Alloy mainly through increasing the cache hit rate.
R-Cache, however, achieves a superior performance compared
to all of the baselines; in particular, it gains an average of 38%
performance improvement over the RRAM Alloy cache and
27% over the RRAM Accord architecture.
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Fig. 10. Relative performance.

C. Cache Hit Rate

The superior performance of R-Cache is due to improving
the hit rate and bandwidth efficiency at the same time. Fig-
ure 11 illustrates the hit rates of all the evaluated applications
on the RRAM based systems using the same capacity. The
average hit rate of the direct mapped cache (i.e., RRAM Alloy)
is about 67%; the average hit rate of the 2-way RRAM Accord
is 70%; while, R-Cache reaches an average hit rate of 90.3%,
which is due to its high set-associativity.
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Fig. 11. Observed hit rates for the RRAM based architectures.
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D. Bandwidth Efficiency

We compute the relative amount of data and tag bits
transferred over the HBM interface per every memory re-
quest to evaluate the efficiency of bandwidth utilization in
every cache system. Figure 12 shows the average per-access
bandwidth utilization (PABU) for all of the 12 applications
executed on the evaluated cache systems. All of the numbers
are normalized to the DRAM Alloy cache. RRAM Alloy
provides the same PABU as the DRAM Alloy cache. RRAM
Accord increases PABU by an average of 19% due to the
additional bandwidth consumptions for 2-way tag checking.
R-Cache, however, reduces PABU by 31% compared to the
DRAM Alloy due to eliminating the tag checking on the HBM
interface.
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Fig. 12. Average bandwidth utilizations per cache access.

E. System Energy

R-Cache significantly improves the system energy by (1)
eliminating the need for refresh and activation, (2) reducing
data movement on the HBM interface, and (3) improving
the overall execution time. Figure 13 illustrates the system
energy consumption for the evaluated cache architectures. The
proposed R-Cache architecture achieves averages of 70% and
40% reductions in system energy compared to the DRAM and
RRAM Alloy caches, respectively. As compared with RRAM
Accord, R-Cache achieves an average of 27% reduction in the
overall system energy.
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Fig. 13. Normalized system energy consumption.



VII. R-CACHE LIFETIME

One of the main challenges in designing RRAM-based sys-
tems is the limited number of writes can be performed before
a memory cell stops functioning. The problem may translate
into a short system lifetime. Generally, a longer memory
lifetime may be achieved by (1) employing RRAM materials
that endure more writes and (2) distributing write operations
across all memory location evenly (i.e., wear leveling [33]).
Nevertheless, not all applications generate high write rates. For
example, Figure 14 shows the average and maximum rates of
writes per block generated by the evaluated applications. OCN
produces the highest maximum rate among all the benchmarks.
Assuming a write endurance of 10% [29] and a processor
frequency of 3.2GHz, OCN results in 2.89 months of life
for the most frequently written block. The memory lifetime,
however, may be extended significantly through page-grained
wear-leveling: less frequently written blocks be assigned to
highly updated pages on every execution. This optimization
results in a 400-year lifetime for OCN.
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Fig. 14. The average and maximum rates of writes per R-Cache blocks.

VIII. CONCLUSIONS

This paper examined a novel in-package cache architecture,
called R-Cache. The proposed cache system leverages the
RRAM technology to design a highly set-associate cache
structure in the processor package using 3D die stacking
techniques. R-Cache eliminates the need for on-die tag check-
ing due to integrating logic and set-associative arrays on
the memory layers. The superior performance and energy
efficiency of R-Cache holds the promise to build efficient
computer systems for the future large scale data processing.
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