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Abstract—Over the past decade, three-dimensional die stacking
technology has been considered for building large-scale in-
package memory systems. In particular, in-package DRAM cache
has been considered as a promising solution for high band-
width and large-scale cache architectures. There are, however,
significant challenges such as limited energy efficiency, costly tag
management, and physical limitations for scalability that need to
be effectively addressed before one can adopt in-package caches
in the real-world applications.

This paper proposes R-Cache, an in-package cache made by
3D die stacking of memristive memory arrays to alleviate the
above mentioned challenges. Our simulation results on a set
of memory intensive parallel applications indicate that R-Cache
outperforms the state-of-the-art proposals for in-package caches.
R-Cache improves performance by 38% and 27% over the state-
of-the-art direct mapped and set associative cache architectures,
respectively. Moreover, R-Cache results in averages of 40% and
27% energy reductions as compared to the direct mapped and
set-associative cache systems.

I. INTRODUCTION

The ever growing use of data intensive applications across

various fields of science and engineering have made large

memories and cache architectures inevitable components of

future exascale computing platforms. While on-chip memories

are limited by power and area consumption, off-chip memory

systems suffer from the so called bandwidth wall due to pin

count limitations [1] and expensive off-chip data movement.

Recently, three dimensional (3D) die stacking has enabled

integrating multiple DRAM dice within the same processor

package that can reach memory bandwidths in excess of

Tera bytes per second (TBps) using the through-silicon via

(TSV) technologies. High bandwidth memory (HBM), hybrid

memory cube (HMC), and wide IO (WIO) are examples of

in-package memory systems mainly designed for DRAM [2]–

[4]. These recent achievements in memory technologies have

motivated numerous researchers to design giga-scale DRAM-

based in-package cache architectures.

Despite the high bandwidth interfacing technology, 3D die

stacked DRAM access is almost identical to the conventional

DDRx memories [5]–[12]. Moreover, current proposals for

in-package DRAM provide limited capacity. This limitation

may become an even more serious concern for the future

data-intensive applications as the DRAM designers cannot

provide a clear road map on how the technology will continue
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to scale [1]. Furthermore, the DRAM power consumption—

due to periodic refresh, precharge, static power in large row

buffers, and dynamic power for row activation, and data

movement over large wires—has resulted in serious thermal

issues in 3D die-stacked memories [13]. Apart from these

problems, DRAM caches need to manage a large amount of

meta data for dirty, valid, tag, and error correction code (ECC)

bits that have become a major problem for bandwidth and

energy efficiency [5]–[12].

As a result, DRAM alternative technologies have been

considered for in-package memories, such as recent propos-

als that examine 3D memory systems with resistive RAM

(RRAM) [14]–[16]. Among all DRAM alternatives, RRAM

is a non-volatile memory technology based on memristive

devices that exhibit FLASH-like density and fast read speeds

comparable to DRAM [17]. Similar to the 3D die-stacked

DRAM, building an in-package cache with RRAM remains

a significant challenge, mainly due to the excessive capacity

and bandwidth consumption for managing meta data. This

paper examines R-Cache, an in-package die-stacked memory

architecture specifically designed for highly set-associative

caches using memristive arrays. The proposed architecture

enables energy-efficient and fast in-package caching through

the following contributions.

• R-Cache provides a 3D memory structure specifically

designed for dense and highly set associative caches. The

proposed architecture benefits from the search capabilities

in the resistive memory arrays to realize parallel searches

for highly set-associative cache lookup. To the best of

our knowledge this is the first proposal that specifically

designs the memory layers and re-purposes the interface

for building an RRAM-based HBM cache.

• Through in-memory tag checking and block management,

the proposed R-Cache architecture provides a superior

bandwidth efficiency and performance compared to the

state-of-the-are direct mapped and set associative cache

architectures. Moreover, RRAM eliminates the need for

activation and refresh energy, which results in reducing

the execution time, energy consumption, and bandwidth

utilization of the in-package cache and off-chip memory.

Our simulation results on a set of 12 memory intensive

applications indicate that R-Cache improves performance by

38% and 27% over the state-of-the-art direct mapped and







individually. The cell can be used for performing bitwise XOR

based comparison between a search key and stored tags. The

differential format (R and R) of a tag-bit is stored in every

cell. To perform a tag search, a bitwise format of the key value,

an incoming tag including the true and complement of each

bit, is applied to the search and search wires. Prior to the tag

search, the match line wires are precharged to a high voltage

level. Each match line stays at a high level only if all of its

tag bits match with the key bits; otherwise, the match line

reaches a low voltage level. All of the match lines follow the

same process during a tag search to produce an output vector

indicating the matches and mismatches in the tag array. (The

R-Cache set controller ensures no repeated tags are stored in

the tag array; therefore, no more than one match is possible

per every tag search.)
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Fig. 6. Illustrative examples of the resistive arrays used for the R-Cache
CAM (a) and RAM (b) units.

As shown in Figure 6(b), the data arrays are designed

based on the conventional 1T-1R RRAM cells. Every memory

cell comprises a transistor and a memristor to store a bit of

information. A single row of the sub-array is activated on every

access using the signals generated by the row decoder or the

CAM match lines. A control signal, called lookup, is used

to choose between a normal read/write operation and a cache

lookup.

C. R-Cache Controller

Figure 7 shows the R-Cache controller as a gateway between

L3, 3D R-Cache layers, and the main memory controller. First,

an input stream of read and write requests from L3 is routed to

the R-Cache controller through a channel router. The requests

are then converted to the HBM commands. Ultimately, data is

exchanged between the R-Cache controller and the memory

layers through three main components: a Transaction Unit, a

Transaction Queue, and a Data Buffer.

1) Transaction Unit: The transaction unit (TU) is respon-

sible for converting the memory requests to transactions,

and initiating block eviction and fill operations based on

cache miss and dirty indication. In addition, all of the timing
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Fig. 7. An overview of the R-Cache controller .

requirements dictated by the WideIO interface are ensured by

TU. The cache block hit/miss and dirty evaluation, however,

are carried out inside the memory dice and are signaled to the

controller through the WideIO interface.

2) Transaction Queue: A transaction queue is employed by

every channel controller that stores up to 64 R-Cache transac-

tions. Each entry of the queue is dequeued and translated to a

set of WideIO commands (e.g., read, write, precharge,

and activate) using a scheduler to manage the memory

layers and orchestrate data on the R-Cache interface.

R-Cache set the data burst and activation size to a single

cache block to limit the energy consumption; therefore, every

R-Cache transaction results in activating 64B data blocks.1

3) Data Buffer: The R-Cache controller employs a data

buffer for storing and transferring data between the L3 cache

and the 3D memory layers.

D. R-Cache Timing Protocol

Similar to prior work on non-volatile main memories [23],

R-Cache employs the WideIO interface, originally designed

for DRAM arrays, with proper timing parameters to operate

the resistive memory layers with longer write latencies. The

important changes in the timing parameters are related to the

row precharge (tRP) and the read to precharge (tRTP) delays,

which are set to zero; all other timing parameters are computed

based on the RRAM read, write, and search latencies. The

details of parameters are provided in Table III.

IV. R-CACHE CONTROL FLOWS

This section explains the proposed control flows required

for serving every memory request arriving at R-Cache. The

control tasks for every new request are divided between the

controller and an R-Cache set. Two tightly coordinated control

flows are proposed such that one is responsible for transaction

processing on the processor die and the other one is performed

by the set controller to maintain the set status.

A. Transaction Processing

The transaction unit inside the R-Cache controller is respon-

sible for generating appropriate transactions for the read and

write requests generated by L3. Table I shows the transactions

supported by the proposed transaction unit. The R-Cache read

and write require a tag check followed by a data access at the

target set. In contrast, the read dirty and write fill transactions

are issued under certain conditions to perform pure read and

1Our experiments indicate that increasing the number of bits per activated
rows in 3D RRAM cache results in negligible performance improvements but
significant energy consumption.



write accesses with no tag check. These transactions carry the

necessary indexing information for cache block replacement

under write misses. During these transactions the lookup signal

is set to low for the resistive RAM arrays (see part (b)

of Figure 6). The read dirty transaction is used to read an

identified dirty block from the R-Cache layers before a write

update; whereas, the write fill transaction updates the contents

of a requested block after eviction from the R-Cache set.
TABLE I

R-CACHE TRANSACTIONS.

Name Tag Check Description

Read requests from the L3 cache

read Required are issued to R-Cache as normal read transaction.

1- In the case of an L3 block eviction, write backs

write Required from L3 are placed as ordinary writes in

the transaction queue to write into R-Cache;

2-In the case of R-Cache read miss, read fills from

main memory are converted to normal writes.

This transaction is issued when

read dirty Not Required a write miss happens and a dirty block is found

for replacement.

This transaction is issued after a write miss once

write fill Not Required a dirty block is evicted and the target block is read

from the main memory.

Please notice in the case of a read miss, a read fill trans-

action may not be sufficient to place an incoming block from

main memory to R-Cache. The main reason is the status of the

set that may change during the long latency between detecting

a cache miss and receiving the missing block from main

memory. Therefore, a write transaction comprising a fresh tag

checking operation followed by updating the cache contents

is necessary. In contrast, a write miss carries data with the

request from L3 and can immediately update the contents of

the memory layers without any tag checking.

B. Set Maintenance Processing

R-Cache relies on a distributed control mechanism be-

tween the memory arrays and the R-Cache controller for

set maintenance that includes in-memory tag checking, block

eviction, tracking the replacement candidates, and block trans-

fer. Figure 8 shows the flow of operations required for set

maintenance upon receiving a command at the memory arrays

which happens inside HBM. R-Cache follows two phases for

processing every memory request. The first phase comprises

a normal read/write operation with flag outputs indicating

hit/miss and whether a read dirty or writ fill transaction

is required (Figure 8). In the latter case, the second phase

(Figure 8) will be performed as the set controller receives

the signals from the target set. Here, we explain the required

operations for serving read and write requests, separately.

1) Read Operation: The target R-Cache set receives a

read command over the WideIO interface. In the case of a

read dirty, no lookup operation is required and the way index

provided along the transaction is used to directly access the

resistive RAM arrays. Otherwise, a normal read transaction

requires a tag check to find a matching way prior to accessing

the data blocks. Along with the read data, the R-Cache set

returns status bits including hit and dirty flags. A response is

then sent to the R-Cache controller based on the current state

of the set. Figure 9 illustrates the flow of operations performed
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Fig. 8. Flow of operations required for set maintenance in memory layers.

by the R-Cache controller based on the set response. On a

cache hit, the read block is sent to the L3 cache when the

response arrives at the R-Cache controller. If the response

indicates a read miss, the R-Cache controller issues a read

request to the main memory that fetches the missing block.

Once the data is ready on chip, (1) the block is sent to the L3

cache and (2) a write transaction is generated and enqueued

in the transaction queue for updating the R-Cache memory

arrays.
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Fig. 9. Flow of the control operations in the R-Cache controller in response
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2) Write Operation: Similar to the read operation, write

transactions are generated and sent by the R-Cache controller

to the memory layers (Figure 9). A write fill transaction

directly updates a particular way of the target set using the way

index provided along the transaction. However, an in-memory

tag check is required for normal write transactions. On a hit

or an invalid block being found in the set, the block contents

are directly updated by the transferred data. Otherwise, the in-

memory P-LRU logic computes the way index to be replaced

by the incoming block. The R-Cache set returns the selected



index and the hit and dirty flags to the R-Cache controller for

eviction and replacement.

Overall, a hit or a non-dirty signal to the controller indicates

a successful cache write operation. On a miss and a dirty

signal with an LRU index for block eviction, the controller

generates and sends a read dirty transaction to the transaction

queue. Then, the set directly reads the data from the provided

index and returns it to the controller. Upon receiving the

evicted data from the R-Cache set, the R-Cache controller

issues a write request to main memory for the evicted block.

At the same time, it generates a write fill transaction to update

the contents of the set. Upon receiving the write fill transaction

at the set, the contents of memory arrays are updated.

V. EXPERIMENTAL SETUP

In this section, the simulation environment, methodology

of experiments, characteristics of applications, and power and

performance evaluation tools are explained.

A. Methodology

We heavily modify CACTI 7.0 [24] and borrow some

components from NVSIM [25] and NVSIM-CAM [26] to

develop an in-house tool, named NVCACTI, to model the

proposed R-Cache architecture for area, power, energy, and

latency estimations. The newly developed NVCACTI supports

non-volatile memories with the multi-banking capabilities and

parameterized set and superset modeling. (Notice that NVSim

and NVSim-CAM do not support multi banking; whereas,

CACTI does not support non-volatile memories.)

To carry out cycle-accurate performance and energy sim-

ulations, we develop an HBM simulator interfaced with a

multicore processor and DDR4 main memory by heavily

modifying the ESESC [27] simulator. McPAT [28] is used

in coordination with ESESC to estimate the processor power

and system energy. For all of the circuit modeling efforts,

we employ the 22nm CMOS technology and the RRAM

parameters from prior work [29]. Table II shows the RRAM

parameters used for modeling R-Cache memory layers.
TABLE II

THE RRAM PARAMETERS USED FOR MODELING R-CACHE ARRAYS.

Rhigh/Rlow Peak Voltage Peak Current Speed Retention Endurance

>10 <2V 170µA 10 ns 10 years@85°C 10
9

B. System Configuration

Table III shows the simulation parameters for three different

HBM structures including DRAM-Cache, RRAM-Cache, and

R-Cache. The memory capacity and the necessary timing

parameters related to the HBM interface for the RRAM and R-

Cache systems are extracted using NVCACTI. We consider iso

area configurations for all of the evaluated memory systems.

We use CACTI to estimate the die area consumption of

an eight-layer, 1GB 3D stacked DRAM. For the RRAM

baselines and R-Cache, the NVCACTI tool is employed to find

optimized configurations based on energy-delay products. All

of the evaluated designs are limited to fit within the same area

as the one of the DRAM cache. (As the RRAM technology

provides denser memory arrays than DRAM, the RRAM and

R-Cache systems can store up to 2.25GB data within the same

area size of a 1GB DRAM.) The HBM timing parameters are

then set accordingly.
TABLE III

THE EVALUATED SYSTEM CONFIGURATIONS.
Processor

Core eight 4-issue OoO cores, 128 ROB entries, 3.2 GHz

IL1/DL1 cache 32KB, 2-way, LRU, 64B block

L2 cache 128KB, 4-way, LRU, 64B block

L3 cache 1MB, 8-way, LRU, 64B block

HBM Cache

DRAM RRAM R-Cache

1GB, 8 channels, 2.25GB, 8 channels, 2.25GB, 8 channels,

Specifications 16 banks/channel, 64 banks/channel, 64 supersets/channel,

800MHz DDR4 800MHz DDR4 800MHz DDR4

tRCD: 44, tCAS: 44, tRCD: 11, tCAS: 0, tRCD: 15, tCAS: 0,

Timing tRP: 44, tRTP: 46, tRP: 0, tRTP: 0, tRP: 0, tRTP: 0,

(CPU cycles) tRAS: 112, tWR: 4 tRAS: 44, tWR: 205 tRAS: 44, tWR: 207

Off-Chip Main Memory

Specifications 32GB, DDR4, 1 channel, 2 ranks/channel, 8 banks/rank

Timing tRCD: 44, tCCD: 61, tWTR: 31,

(CPU cycles) tWR: 4, tRTP: 46, tRP: 44, tRRD: 16, tRAS: 112, tRC: 271, tFAW: 181

To assess the energy and performance potentials of the

proposed R-Cache system, we evaluate four different archi-

tectures: a DRAM Alloy cache, an RRAM Alloy cache,

a 2-way RRAM Accord cache, and R-Cache. Both Alloy

and Accord are the state-of-the-art architectures for direct

mapped and set-associative DRAM cache systems. To create

strong baselines for comparisons, we develop versions of the

two architectures that significantly benefit from the energy-

efficiency and density of the RRAM technology. All of the

evaluated cache systems rely on the block granularity data

and tag storage; where, every 64B data is associated with a

8B tag. Thanks to the efficient 2T-2R RCAM arrays, each R-

Cache set realizes 128 ways; whereas, the Accord cache can

efficiently implements a 2-way set associative cache. Notice

that in Accord increasing the number of associative ways per

set results in a significant bandwidth and energy consumption

with performance degradation.

C. Benchmark Applications

We choose a mix of 12 data-intensive benchmark ap-

plications from three parallel suites, namely Phoenix [30],

SPLASH-2 [31], and NAS [32]. Applications are compiled

using GCC with the -O3 optimization flag. Table IV shows

the benchmarks description and their input sets. All of these

parallel applications are simulated to completion for perfor-

mance evaluations. Similar to prior work [11], we define a

fixed capacity quota for all of the evaluated applications to

exert enough pressure on the HBM cache interface.
TABLE IV

APPLICATIONS AND DATA SETS.

Label Benchmarks Suite Input

FT Fourier Transform NAS Class A

IS Integer Sort NAS Class A

MG Multi-Grid NAS Class A

CG Conjugate Gradient NAS Class A

CH Cholesky SPLASH-2 tk29.0

RDX Radix SPLASH-2 2M integer

OCN Ocean SPLASH-2 514x514 ocean

FFT FFT SPLASH-2 1048576 data points

FMM Fast Multiple Methods SPLASH-2 1048576 data points

LU Lower/Upper Triangular SPLASH-2 isiz02=64

BRN Barnes SPLASH-2 16K particles

HIST Histogram Phoenix 100MB file

LREG Linear Regression Phoenix 50MB key file

VI. EVALUATION

We evaluate the area overheads, system performances, HBM

cache hit rates, bandwidth efficiencies, and system energy



consumption of the proposed R-Cache and baseline DRAM

and RRAM architectures.

A. Area Consumption

Compared to pure RRAM based cache architectures, the

proposed R-Cache replaces some of the RRAM arrays with

RCAM to store tags and employs CMOS logic on the mem-

ory dice for in-memory tag checking. We observe that the

peripheral circuits (e.g., sense amplifiers and line drivers)

in RRAM and RCAM arrays significantly contribute to die

area consumption; therefore, replacing the 1T-1R RRAM cells

with 2T-2R RCAM cells does not introduce significant area

overheads. However, the additional logic for in-memory set

management requires a considerable amount of area over-

heads, which results in limiting the number of supersets

per channel. Through a thorough design exploration using

the newly developed NVCACTI tool, we find an R-Cache

configuration with 64 supersets and 8 sets per superset that

requires only 6.9% area overhead compared to the optimized

RRAM HBM.

B. System Performance

Figure 10 shows the relative system performance of the

RRAM Alloy, Accord, and R-Cache architectures while exe-

cuting all of the 12 benchmark applications. All of the numbers

are normalized to the DRAM Alloy baseline architecture.

Compared to the DRAM cache, all of the RRAM based

caches achieve higher performances; for example, RRAM

Alloy achieves an average 2.18× performance improvement

due to replacing DRAM technology with RRAM. RRAM

Accord improves the system performance by 8% over the

RRAM Alloy mainly through increasing the cache hit rate.

R-Cache, however, achieves a superior performance compared

to all of the baselines; in particular, it gains an average of 38%

performance improvement over the RRAM Alloy cache and

27% over the RRAM Accord architecture.
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Fig. 10. Relative performance.

C. Cache Hit Rate

The superior performance of R-Cache is due to improving

the hit rate and bandwidth efficiency at the same time. Fig-

ure 11 illustrates the hit rates of all the evaluated applications

on the RRAM based systems using the same capacity. The

average hit rate of the direct mapped cache (i.e., RRAM Alloy)

is about 67%; the average hit rate of the 2-way RRAM Accord

is 70%; while, R-Cache reaches an average hit rate of 90.3%,

which is due to its high set-associativity.

0

0.2

0.4

0.6

0.8

1

B
R
N

C
G

C
H

FFT FT

H
IS

T IS

LR
E
G LU

M
G

O
C
N

R
D

X

G
EO

M
E
A
N

H
it

 R
a

t
e
 o

f
 t

h
e
 H

B
M

 

b
a

s
e
d

 C
a

c
h

e
 

A
r
c
h

it
e
c
t
u

r
e

RRAM Alloy RRAM Accord R-Cache

Fig. 11. Observed hit rates for the RRAM based architectures.

D. Bandwidth Efficiency

We compute the relative amount of data and tag bits

transferred over the HBM interface per every memory re-

quest to evaluate the efficiency of bandwidth utilization in

every cache system. Figure 12 shows the average per-access

bandwidth utilization (PABU) for all of the 12 applications

executed on the evaluated cache systems. All of the numbers

are normalized to the DRAM Alloy cache. RRAM Alloy

provides the same PABU as the DRAM Alloy cache. RRAM

Accord increases PABU by an average of 19% due to the

additional bandwidth consumptions for 2-way tag checking.

R-Cache, however, reduces PABU by 31% compared to the

DRAM Alloy due to eliminating the tag checking on the HBM

interface.
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E. System Energy

R-Cache significantly improves the system energy by (1)

eliminating the need for refresh and activation, (2) reducing

data movement on the HBM interface, and (3) improving

the overall execution time. Figure 13 illustrates the system

energy consumption for the evaluated cache architectures. The

proposed R-Cache architecture achieves averages of 70% and

40% reductions in system energy compared to the DRAM and

RRAM Alloy caches, respectively. As compared with RRAM

Accord, R-Cache achieves an average of 27% reduction in the

overall system energy.
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