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ABSTRACT
This paper is on the coprime factors reduction of distributed systems formed by discrete-time, heteroge-
neous, nonstationary linear parameter-varying subsystems. The subsystems are represented in a linear frac-
tional transformation framework and interconnected over arbitrary directed graphs, and the communica-
tion between the subsystems is subjected to a delay of one time-step. Two methods for constructing a
contractive coprime factorisation for the full-order system are proposed. This factorisation forms an aug-
mented system which is reducible by the structure-preserving balanced truncation method. A reduced-
order contractive coprime factorisation is obtained fromwhich the reduced-order system can be formed. A
robustness theorem is also provided to interpret the error bound from coprime factors reduction in terms
of robust stability of the closed-loop system. A numerical example is considered at the end of the paper.

1. Introduction
This paper deals with the coprime factors reduction (CFR)
method for distributed systems formed by discrete-time, hetero-
geneous, nonstationary linear parameter-varying (NSLPV) sub-
systems. The subsystems are represented in a linear fractional
transformation (LFT) framework and interconnected over arbi-
trary directed graphs, and the communication between the sub-
systems is subjected to a delay of one time-step. Such systems
are referred to as distributed NSLPV systems. The results herein
complement the authors’ recent work in Abou Jaoude and Far-
hood (2018), which generalises the structure-preserving bal-
anced truncation (BT) and CFR methods to the class of dis-
tributed NSLPV systems. Specifically, this paper provides two
methods for constructing contractive coprime factorisations
(CCFs) for the class of systems of interest. The CFR algorithm is
modified to account for the contractiveness of the factorisations,
and the resulting reduced-order factorisation is also proved to
be contractive. This paper also derives a result which allows to
interpret the error bound from CFR in terms of robust stability
of the closed-loop system.

A framework for describing distributed NSLPV systems is
presented in Abou Jaoude and Farhood (2017c). The NSLPV
models used to describe the subsystems are an extension of stan-
dard linear parameter-varying (LPV) models in the sense that
the state-space matrices can have an explicit dependence on
known time-varying terms, in addition to their dependence on
parameters that are not known a priori but are available formea-
surement at each time-step. A detailed presentation of NSLPV
models is given in Farhood and Dullerud (2007). The frame-
work models the interconnections between the subsystems as
states. These states are referred to as spatial states, whereas the
standard states of the subsystems are referred to as the temporal
states. The signals introduced by the LFT formulation are called
the parameter states for ease of reference. Distributed NSLPV
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systems increase in size with the number of temporal, parame-
ter, and spatial states, as well as their corresponding dimensions,
which calls for model reduction techniques that reduce the size
of the system and the computational complexity of the analysis
and synthesis problems. Specifically, structure-preserving tech-
niques are sought that preserve the interpretation of the states
in the reduced-order system and further allow for the simplifi-
cation of the interconnection and uncertainty structures of the
system.

Several works have appeared that deal with the problem
of structure-preserving model reduction for systems with an
uncertainty structure and/or an interconnection structure; see
e.g. Abou Jaoude and Farhood (2017a, 2017b, 2018), Al-Taie and
Werner (2016), Beck, Doyle, and Glover (1996), Beck (2006),
Farhood andDullerud (2007), Li and Paganini (2005), Li (2014),
Sandberg and Murray (2009). These works deal with either BT
or CFR, and are based on the existence of structured solutions
to linear matrix inequalities (LMIs). This imposed structure
ensures that the developed methods are structure-preserving,
but also introduces conservatism into the proposed approaches.
In this direction, the works of Sootla and Anderson (2016) and
Trnka, Sturk, Sandberg, Havlena, and Rehor (2013) identify
classes of systems with guaranteed structured solutions to the
LMIs therein.

Abou Jaoude and Farhood (2018) treat the problem of model
reduction for distributed NSLPV systems. BT is applied for the
model reduction of strongly stable systems, i.e. stable systems
that possess structured solutions, called generalised gramians,
to the generalised Lyapunov inequalities. CFR is then used to
reduce strongly stabilisable and strongly detectable systems: a
strongly stable coprime factorisation is constructed which is
reducible via BT. However, the CFR algorithm therein does not
address the issue of contractiveness of the resulting factorisation,
which is the main topic of the present work.
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For standard linear time-invariant (LTI) systems, normalised
coprime factorisations (NCFs) are employed in the CFR algo-
rithm, which result in the least conservative robustness condi-
tions when the CFR error bound is interpreted in a gap metric
sense. Specifically, the CFR bound specifies how far one can pro-
ceed with model reduction while guaranteeing that a controller
that stabilises the full-order system also stabilises the reduced-
order system. The reader is referred to Georgiou and Smith
(1990),Meyer (1990),McFarlane andGlover (1990), Vidyasagar
(1984), Vinnicombe (1993) for a more detailed treatment of
these topics. For systems with structural constraints, however,
ensuring normalisation is difficult, and so relaxations of NCFs
are pursued instead.Wood, Goddard, andGlover (1996) present
CCFs as the natural extension of NCFs for the class of LPV sys-
tems, as the normalisation condition may not be satisfied for all
permissible parameter trajectories; and for the same class of sys-
tems, El-Zobaidi and Jaimoukha (1998) employ CCFs in a uni-
fied approach for control synthesis andmodel reduction. InBeck
and Doyle (1993), contractiveness and expansiveness ideas are
used to extend the stability margin to behavioural systems with
uncertainty. Li and Paganini (2005) treat systems where the state
partitioning is to be preserved duringmodel reduction, and pro-
pose CFR methods that use expansive or contractive factorisa-
tions. Expansive factorisations allow the extension of the robust
stability margin, but result in a non-convex optimisation prob-
lem as the stability of the factorisation needs to be imposed sep-
arately. CCFs are more computationally attractive as they can
be constructed from solutions to LMIs and the stability of the
factorisation is automatically guaranteed. However, extending
the robustness theorem for CCFs requires imposing the diffi-
cult condition of some level of expansiveness; and so, a heuris-
tic that makes the factorisation approach normalisation is pro-
posed instead. In a similar direction, Beck and Bendotti (1997)
propose a method for finding CCFs for the class of uncertain
systems. Moreover, an iterative algorithm is proposed to ensure
a level of expansiveness as close to one as possible. An alternative
method for computing CCFs for uncertain systems is presented
in Li (2014). It is also noted therein that even for discrete-time
LTI systems, applying CFR to an NCF only guarantees the con-
tractiveness of the resulting reduced-order factorisation; and so,
one may start from CCFs in the first place for discrete-time sys-
tems. Finally, CCFs for distributed linear time-varying (LTV)
systems were treated in Abou Jaoude and Farhood (2017b).

The present work extends the results in Beck and Bendotti
(1997), Li (2014), Abou Jaoude and Farhood (2017b) to themore
general class of distributed NSLPV systems. The extension of
the results is carried out transparently because of the use of the
adopted framework, which models distributed NSLPV systems
in a way reminiscent of standard LPV-LFT state-space systems.
As compared to the first two works, the results derived here
gain novel interpretations, namely, the considered systems pos-
sess an interconnection structure in addition to the uncertainty
structure, and the nominal part of the system is time-varying.
As compared to Abou Jaoude and Farhood (2017b), the dif-
ferences are threefold: (1) distributed LTV systems are a spe-
cial case of distributed NSLPV systems where the uncertainty
block is fixed and known a priori; (2) the method of Section
5.2 remains novel even when specialised to distributed LTV sys-
tems; and (3) Section 6 derives an alternative robustness result

to Theorem 5.4 therein. The two CFR methods proposed here
are applicable to strongly stabilisable and strongly detectable sys-
tems, i.e. systems reducible by the method of Abou Jaoude and
Farhood (2018). Thus, the contractiveness requirement does not
introduce conservatism into CFR; however, it does induce larger
computational costs.

The paper is organised as follows. Section 2 introduces the
notation. Sections 3 and 4 summarise the adopted framework
and the structure-preserving BTmethod, respectively. Section 5
details the two CFRmethods based on CCFs. Section 6 gives the
robustness theorem. Section 7 considers a numerical example,
and the paper concludes with Section 8.

2. Notation
We denote the sets of non-negative integers, integers, and real
numbers by N0, Z, and R, respectively. diag(Mi) denotes the
block-diagonal augmentation of the sequence of operators Mi.
The i × i identity matrix is denoted by Ii.

Consider a directed graph with a countable set of vertices V
and a set of directed edges E. (i, j) � E denotes a directed edge
from i�V to j�V.We assume throughout that the graph under
consideration is d-regular, for some integer d > 0, i.e. for all
k � V, both the indegree and outdegree are equal to d. An arbi-
trary directed graph with a uniformly bounded vertex degree
can be turned into a d-regular directed graph, where d is the
maximum over all vertex degrees, via the addition of the nec-
essary virtual edges and/or vertices. For a d-regular directed
graph, we define the permutations, ρ1,…, ρd, of the set of ver-
tices such that if (i, j)� E, then one e� {1,…, d} satisfies ρe(i)=
j andρ−1

e ( j) = i. See Farhood,Di, andDullerud (2015) formore
details.

J1�J2 denotes the vector space direct sum of J1 and J2. Let H
and F be Hilbert spaces. We denote the inner product and the
norm associated with H by 〈 ·, ·〉H and ‖·‖H, respectively. The
subscript is suppressed when H is clear from context. L(H, F )

and Lc(H, F ) denote the spaces of bounded linear operators
and bounded linear causal operators mapping H to F, respec-
tively. When H = F, we employ the simplified symbols L(H)

and Lc(H). For X ∈ L(H, F ), ‖X‖ denotes the H to F induced
norm of X, and X∗ denotes the adjoint of X. X ≺ 0 means that
the operator X = X∗ ∈ L(H) is negative definite, i.e. 〈x, Xx〉 <

−μ‖x‖2 for some μ > 0 and all non-zero x � H.
Given n : (t, k) ∈ Z ×V → n(t, k) ∈ N0, �

({Rn(t,k)})
denotes the vector space of mappings w : (t, k) ∈ Z ×V →
w(t, k) ∈ R

n(t,k). The Hilbert space �2
({Rn(t,k)}) is the sub-

space of �
({Rn(t,k)}) consisting of mappings w with finite

norm ‖w‖ =
√∑

(t,k) w(t, k)∗w(t, k). �2e
({Rn(t,k)}) is the

subspace of �
({Rn(t,k)}) consisting of mappings w such that

�kw(t, k)∗w(t, k) <� for each t ∈ Z. We frequently use the
abbreviated symbols �, �2, and �2e.

An operator Q: �2 → �2 is graph-diagonal if there exists
a uniformly bounded sequence of matrices Q(t, k) such that
(Qv)(t, k) = Q(t, k)v(t, k) for all (t, k) ∈ Z ×V . An operator
W = [Wij] is partitioned graph-diagonal if each con-
stituent block Wij is graph-diagonal. The mapping defined
by [[W ]](t, k) = [Wij(t, k)] is a homomorphism from the
space of partitioned graph-diagonal operators to the space
of graph-diagonal operators. This mapping is isometric and
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preserves products, addition, and ordering. We define the
unitary temporal-shift operator, S0: �2 → �2, such that (S0v)(t,
k) = v(t − 1, k) and (S∗

0v )(t, k) = v(t + 1, k), and the unitary
spatial-shift operators, Si: �2 → �2 for i = 1,…, d, such that
(Siv )(t, k) = v(t, ρ−1

i (k)) and (S∗
i v )(t, k) = v(t, ρi(k)). We

do not distinguish between the shift operators for different
Hilbert spaces �2. The definitions in this paragraph extend to �

and �2e. Further details are found in Farhood et al. (2015).
Let X � 0 be a graph-diagonal operator such that X(t, k) is

a diagonal matrix for all (t, k) ∈ Z ×V . φ(X) denotes the sum
of distinct diagonal entries of X, i.e. φ(X) is the sum of the dis-
tinct diagonal entries in diag (X (t, k))(t,k)∈Z×V . For instance, let
X(t, k) be equal to diag(w1, w1, w2, w2) for (t, k) = (t0, k0),
diag(w1, w3, w4) for (t, k) = (t0, k1), diag(w3, w4) for (t, k) =
(t1, k1), and 0 otherwise. Then, φ(X) = w1 + w2 + w3 + w4.
For a partitioned graph-diagonal operator W = diag(Wi) � 0,
where Wi(t, k) are diagonal matrices for all (t, k) ∈ Z ×V , we
define �(W) as the sum of distinct diagonal entries of W, i.e.
�(W ) = φ([[W ]]).

3. Operator theoretic framework
This section summarises the framework and the analysis results
of Abou Jaoude and Farhood (2017c). Consider a distributed
NSLPV system Gδ . The interconnection structure of Gδ is rep-
resented using a d-regular directed graph, where each sub-
system G(k) corresponds to a vertex k � V, and the inter-
connection from G(i) to G(j) corresponds to the directed edge
(i, j) � E. The subsystems are described using discrete-time
NSLPV models formulated in an LFT framework. Let t ∈ Z

denote the discrete time-step. Then, for all (t, k) ∈ Z ×V , the
state-space equations of system Gδ are given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xT (t + 1, k)
x1 (t + 1, ρ1(k))

...
xd (t + 1, ρd(k))

α (t, k)
y (t, k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣
ĀTT (t, k) ĀTS(t, k) ĀTP(t, k) B̄T (t, k)
ĀST (t, k) ĀSS(t, k) ĀSP(t, k) B̄S(t, k)
ĀPT (t, k) ĀPS(t, k) ĀPP(t, k) B̄P(t, k)
C̄T (t, k) C̄S(t, k) C̄P(t, k) D̄(t, k)

⎤
⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xT (t, k)
x1 (t, k)

...
xd (t, k)
β (t, k)
u (t, k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

β(t, k) = diag
(
δ1(t, k)InP1 (t,k), . . . , δr(t, k)InPr (t,k)

)
α(t, k)

= 	(t, k) α(t, k). (1)

In (1), the state corresponding to subsystem G(k) is denoted by
xT(t, k) and has a possibly time-varying dimension nT(t, k).
Such states are referred to as the temporal states. The sig-
nals introduced by the LFT formulation are denoted by β(t, k)

and α(t, k). α(t, k) and β(t, k) are partitioned into r vector-
valued channels conformably with the partitioning of 	(t, k),
e.g. α(t, k) = [α∗

1 (t, k) α∗
2 (t, k) . . . α∗

r (t, k) ]∗, where αj(t, k)
and β j(t, k) have a dimension nPj (t, k). For simplicity, β(t, k)
and α(t, k) are referred to as the parameter states. For each
j = 1, ..., r, δj(t, k) is a time-varying scalar parameter that is
not known a priori, but is measurable at each time-step t. The
framework allows for heterogeneous subsystems and for a local
dependence of the state-space matrices on the parameters. Dif-
ferent subsystems can depend on different parameters, and if
two subsystems are affected by the same parameters, the evo-
lution of the parameters is assumed to be independent in each
subsystem. Let rk be the number of parameters affecting G(k).
Then, r=max k�Vrk. If rk0 < r for some k0 � V, then the corre-
sponding δj(t, k0) and nPj (t, k0) are equal to 0 for all t ∈ Z and
j = rk0 + 1, ..., r. The interconnections between the subsystems
are modelled as spatial states. The spatial state xi(t, ρ i(k)),
with dimension nSi (t, ρi(k)), corresponds to the edge (k, ρ i(k)),
i.e. the outgoing edge from vertex k along the permutation ρi,
and the spatial state xi(t, k), with dimension nSi (t, k), corre-
sponds to the edge (ρ−1

i (k), k), i.e. the incoming edge to vertex
k along the permutation ρ i. The virtual edges are not present
in the actual interconnection structure and are only added to
render the directed graph d-regular, and so the corresponding
spatial states are of zero dimensions for all time-steps. Due to
the communication latency, the data sent by a subsystem at the
current time-step reaches the target subsystem at the next time-
step. Finally, the control inputs and the output measurements
corresponding to subsystem G(k) are denoted by u(t, k) and y(t,
k) with dimensions nu(t, k) and ny(t, k), respectively.

Figure 1 shows a distributed NSLPV system and the graph
defining its interconnection structure. The dashed arrows cor-
respond to the virtual edges. The permutations ρ1 and ρ2 and
the spatial states are also specified. S0 marks the communication
latency between the subsystems.

The state-space matrices are known a priori and are assumed
to be uniformly bounded. These matrices are partitioned con-
formably with the permutations ρ1,…, ρd and the blocks of
	(t, k). For instance,

ĀST (t, k) = [
AST
1 (t, k)∗ . . . AST

d (t, k)∗
]∗

,

ĀTP(t, k) = [
ATP
1 (t, k) . . . ATP

r (t, k)
]
,

ĀSS(t, k) = [
ASS
ie (t, k)

]
i=1,...,d;e=1,...,d ,

ĀPP(t, k) =
[
APP

j f (t, k)
]
j=1,...,r; f=1,...,r

.

The partitions ĀTT (t, k), ATS
1 (t, k), and so on define graph-

diagonal operators, e.g. ATT, ATS
1 , which in turn are augmented

to form partitioned graph-diagonal operators A, B, and C such
that [[C]](t, k) = [ C̄T (t, k) C̄S(t, k) C̄P(t, k) ],

[[A]](t, k) =
⎡
⎣ ĀTT (t, k) ĀTS(t, k) ĀTP(t, k)
ĀST (t, k) ĀSS(t, k) ĀSP(t, k)
ĀPT (t, k) ĀPS(t, k) ĀPP(t, k)

⎤
⎦ , and

[[B]](t, k) =
⎡
⎣ B̄T (t, k)
B̄S(t, k)
B̄P(t, k)

⎤
⎦ .
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Figure . A distributed NSLPV system (right) and the graph defining its interconnection structure (left).

Figure . LFT interpretation of a distributed NSLPV system G
δ
with realisation

(A, B,C,D, �).

Thematrices D̄(t, k) define the graph-diagonal operatorD such
that [[D]](t, k) = D̄(t, k). It is useful to construct the parti-
tioned graph-diagonal operator APP from the terms APP

j f such
that [[APP]](t, k) = ĀPP(t, k) for all (t, k) ∈ Z ×V .

We define the partitioned graph-diagonal operator 	P =
diag(	1,…,	r) such that [[	P]](t, k) = 	(t, k), where
	 j(t, k) = δ j(t, k)InPj (t,k) for j = 1,…, r and all (t, k) ∈ Z ×V .
We also construct the partitioned graph-diagonal operator 	 =
diag(I,	P), where the partitioned graph-diagonal identity oper-
ator satisfies [[I]](t, k) = InT (t,k)+nS1(t,k)+···+nSd (t,k)

. 	 belongs to
� = {	 : ‖	‖ ≤ 1}. We also define the composite-shift opera-
tor S = diag(S0, S0S1,…, S0Sd, I), where the partitioned graph-
diagonal identity operator satisfies [[I]](t, k) = InP1 (t,k)+···+nPr (t,k).
For a fixed 	 ∈ �, the Equations (1) are rewritten in compact
operator form as

ϕ = 	ξ, ξ = SAϕ + SBu, y = Cϕ + Du, (2)

where ϕ = [x∗ β∗]∗, x = [ x∗
T x∗

1 . . . x∗
d ]

∗, and β =
[β∗

1 . . . β∗
r ]∗. Assuming that the inverse exists, the input–

output map can be expressed as Gδ = C(I − 	SA)−1	SB + D
for every 	 ∈ �. The distributed NSLPV system is defined as
Gδ = {Gδ : 	 ∈ �}. We denote the realisation of Gδ described
by (2) using the quintuple (A,B,C,D,�). A distributedNSLPV
system can be interpreted as an LFT on	, as shown in Figure 2.

Definition 3.1: System Gδ is said to be well-posed if I − 	SA
has a causal inverse on �2e({RnT (t,k)}) ⊕ (⊕d

i=1�2e({RnSi (t,k)})) ⊕
(⊕r

j=1�2e({RnPj (t,k)})) for all 	 ∈ �.

If [[A]](t, k) = 0 for all k � V and t< 0 and if I− 	PAPP has
a causal inverse on ⊕r

j=1�2e({RnPj (t,k)}) for all 	 ∈ �, then Gδ is
well-posed. Hereafter, all state-space matrices are taken as zeros
for t < 0.
Definition 3.2: System Gδ is �2-stable if I − 	SA has a bounded
causal inverse for all 	 ∈ �.

The next result provides a sufficient condition for �2-stability;
systems that satisfy this condition are referred to as strongly sta-
ble systems. Strong stability implies �2-stability, but the converse
is not true in general. To give this result, we first need to make
the following definitions. Let the set of transformations, T , be
defined as

T = {
X : X = diag

(
XT ,XS

1 , . . . ,X
S
d ,X

P
1 , . . . ,XP

r
)
,

where XT ,XS
i ,X

P
j are bounded graph-diagonal

operators for i = 1, . . . , d and j = 1, . . . , r, and

X−1 ∈ L
(
�2({RnT (t,k)})⊕( ⊕i �2({RnSi (t,k)}))

⊕( ⊕ j �2({RnPj (t,k)})))},

and let X = {X : X = X∗ ∈ T , X � 0}. The sets T and X are
commutants of �.
Lemma 3.1 (Abou Jaoude & Farhood, 2017c): System Gδ is
strongly stable if and only if there exists X ∈ X such that

A∗S∗XSA − X ≺ 0. (3)

Inequality (3) can be equivalently expressed in terms
of sequences of LMIs, namely, XT(t, k) � μI, XS

i (t, k) �
μI, XP

j (t, k) � μI, and [[A∗]](t, k)[[S∗XS]](t, k)[[A]](t, k) −
[[X]](t, k) ≺ −μI for some scalar μ > 0 and all (t, k) ∈ Z ×V ,
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where

[[X]](t, k) = diag
(
XT (t, k),XS

1 (t, k), . . . ,

XS
d (t, k),XP

1 (t, k), . . . ,XP
r (t, k)

)
,

[[S∗XS]](t, k) = diag
(
XT (t + 1, k),XS

1 (t + 1, ρ1(k)), ...,

XS
d (t + 1, ρd(k)),XP

1 (t, k), . . . ,XP
r (t, k)

)
.

Remark 3.1: Due to the explicit dependence on time in the state-
space equations of the subsystems, there is an infinite sequence
of LMIs associated with each subsystem G(k). Since the state-
space matrices are zeros for t < 0, the sequences of LMIs are
trivial for t < 0, and t can be restricted to N0. For subsystems
that are (h, q)-eventually time-periodic (ETP) for some integers
h � 0 and q > 0, i.e. for all t, z ∈ N0 and k � V, the state-space
matrices satisfy [[Z]](t + h + zq, k) = [[Z]](t + h, k) for Z = A,
B, C, D, the existence of a solution X ∈ X to (3) is equivalent to
the existence of an (h, q)-ETP solution Xeper; see Farhood and
Dullerud (2002) and Dullerud and Lall (1999). When solving
for Xeper, t can be restricted to the finite time-horizon h and the
first time-period truncation, i.e. 0 � t � h + q − 1.

This section concludes with the following result from Abou
Jaoude and Farhood (2017c) and an associated optimisation
problem.

Lemma 3.2 (Abou Jaoude & Farhood, 2017c): System Gδ is
strongly stable and satisfies ‖Gδ‖ < γ for all	 ∈ � if there exists
X ∈ X such that

[
A B
C D

]∗ [
S∗XS 0
0 I

] [
A B
C D

]
−

[
X 0
0 γ 2I

]
≺ 0. (4)

Associatedwith this result is the following optimisation prob-
lem:

(P1): minimise γ 2 subject to X ∈ X and (4).

4. Balanced truncation
This section summarises the BT method of Abou Jaoude and
Farhood (2018).

Lemma 4.1 (Abou Jaoude & Farhood, 2018): Consider a dis-
tributedNSLPV systemGδ with realisation (A,B,C,D,�). Then,
the following are equivalent:

� System Gδ is strongly stable.
� There exists a solution X ∈ X to

AXA∗ − S∗XS + BB∗ ≺ 0. (5)

� There exists a solution Y ∈ X to

A∗S∗YSA −Y +C∗C ≺ 0. (6)

Inequalities (5) and (6) are called the generalised Lyapunov
inequalities, and X and Y are called the generalised gramians;
see Hinrichsen and Pritchard (1990) and Beck et al. (1996).

Definition 4.1: The realisation of system Gδ is said to be bal-
anced if there exists
 ∈ X that simultaneously satisfies (5) and

(6), where [[
]](t, k) is a diagonal matrix for each (t, k) ∈ Z ×
V . 
 is referred to as a balanced generalised gramian.

Lemma 4.2 (Abou Jaoude & Farhood, 2018): A strongly stable
system Gδ admits a balanced realisation.

The proof of this result in Abou Jaoude and Farhood (2018)
gives an algorithm that uses any generalised gramians X and
Y to construct a balancing transformation T ∈ T , a balanced
generalised gramian 
 = TXT∗ = (T∗)−1YT−1, and a balanced
realisation for Gδ given by (Abal,Bbal,Cbal,D,�), where Abal =
(S∗TS)AT−1, Bbal = (S∗TS)B, and Cbal = CT−1.

We now show how to apply the BT method to a strongly sta-
ble system Gδ with balanced realisation (A,B,C,D,�) and bal-
anced generalised gramian
. The truncation procedure is illus-
trated for 
T, and a similar procedure is repeated for 
S

i and

P

j for all i = 1, ..., d and j = 1, ..., r. For each (t, k) ∈ Z ×V ,

T(t, k) is an nT(t, k)× nT(t, k) positive definite, diagonalmatrix
with the entries sorted in a decreasing order. The dimensions
of the temporal states are to be reduced from nT(t, k) to mT(t,
k), where 0 � mT(t, k) � nT(t, k). 
T(t, k) is partitioned as in

T(t, k)=diag(�T(t, k),�T(t, k)), where�T(t, k) is anmT(t, k)×
mT(t, k) matrix. �T(t, k) and �T(t, k) define the graph-diagonal
operators denoted by �T and �T, respectively. The dimensions
of the spatial states and the parameter states in the reduced-
order system are given by mS

i (t, k) and mP
j (t, k), respectively,

where 0 ≤ mS
i (t, k) ≤ nSi (t, k) and 0 ≤ mP

j (t, k) ≤ nPj (t, k). �

and� are then defined as � = diag
(
�T , �S

1, ..., �
S
d, �

P
1 , ..., �

P
r
)

and � = diag
(
�T ,�S

1, ..., �
S
d,�

P
1 , ..., �

P
r
)
.

The state-space matrices are partitioned conformably
with 
T = [[diag(�T ,�T )]], 
S

i = [[diag(�S
i ,�

S
i )]], and


P
j = [[diag(�P

j ,�
P
j )]]. For instance,

ĀSS(t, k) = [
ASS
ie (t, k)

]
i=1,...,d;e=1,...,d

=
[[

ÂSS
ie (t, k) ASS

ie,12(t, k)
ASS
ie,21(t, k) ASS

ie,22(t, k)

]]
i=1,...,d;e=1,...,d

,

where ÂSS
ie (t, k) is an mS

i (t + 1, ρi(k)) × mS
e (t, k) matrix. The

non-truncated blocks (marked with a hat) define the graph-
diagonal operators that are augmented to form the reduced-
order system operators Ared, Bred, and Cred. Let 	red =
diag(I, 	̂P), where [[I]](t, k) = ImT (t,k)+mS

1(t,k)+···+mS
d (t,k)

, 	̂P =
diag(	̂1, ..., 	̂r), and the graph-diagonal operators 	̂ j satisfy
	̂ j(t, k) = δ j(t, k)ImP

j (t,k) for j = 1, ..., r. The realisation of the
reduced-order system Gred,δ is (Ared,Bred,Cred,D,�red), where
�red is defined similarly to � but using 	red instead of 	.

Theorem 4.1 (Abou Jaoude & Farhood, 2018): Gred,δ is strongly
stable, the realisation (Ared,Bred,Cred,D,�red) is balanced with
balanced generalised gramian �, and ‖(Gδ − Gred, δ)‖ < 2�(�)
for all 	 ∈ �.

The error bound can become infinitely large as the number
of distinct entries in � increases. If the state-space matrices of
Gδ are (h, q)-ETP, then there exists an (h, q)-ETP balanced gen-
eralised gramian
eper, and the realisation of Gred,δ is (h, q)-ETP.
In this case, when evaluating �(�eper), t is restricted to 0 � t �
h + q − 1. If, in addition, V and E are finite sets, then �(�eper)
is guaranteed to be finite.
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Remark 4.1: The balanced generalised gramian and the bal-
anced realisation for system Gδ depend on the generalised
gramians X and Y employed in the balancing algorithm, as
well as the balancing algorithm itself. For model reduction
purposes, generalised gramians with minimum traces are
usually sought; see Sandberg and Murray (2009) and Bendotti
and Beck (1999). Namely, one finds the solution X ∈ X to (5)
that minimises

∑
(t,k)(traceXT (t, k) + ∑d

i=1 traceX
S
i (t, k) +∑r

j=1 traceX
P
j (t, k)) and the solution Y ∈ X to (6) that

minimises
∑

(t,k)(traceYT (t, k) + ∑d
i=1 traceY

S
i (t, k) +∑r

j=1 traceY
P
j (t, k)). After obtaining the balanced realisa-

tion, Abou Jaoude and Farhood (2017a) propose to solve the
following problem, denoted by (P2):

(P2): minimise

a1 × ε +
∑
(t,k)

(
‖vec(
T (t, k) − εI)‖1

+
d∑
i=1

∥∥vec(
S
i (t, k) − εI)

∥∥
1

+
r∑

j=1

∥∥∥vec(
P
j (t, k) − εI)

∥∥∥
1

)

subject to ε > 0, 
�εI, (5) and (6) expressed for the balanced
realization of the system, and X = Y = 
 ∈ X , with [[
]](t, k)
being a diagonal matrix for all (t, k) ∈ Z ×V . Here, vec(Q)

denotes the vector formed by the diagonal entries of a square
matrixQ, and ‖v‖1 is the 1-norm of vector v .

In (P2), a balanced generalised gramian is sought that simul-
taneously satisfies both of the generalised Lyapunov inequali-
ties. Such a gramian is guaranteed to exist by the definition of
a balanced realisation. ε is the truncation cut-off value, i.e. all
the state variables corresponding to an entry equal to ε in 


are truncated. By Theorem 4.1, ‖(Gδ − Gred, δ)‖ < 2ε for all
	 ∈ �, and so a small ε is desirable as it results in a mean-
ingful error bound. The 1-norm heuristic is used in the sec-
ond term of the objective function to yield a solution 
 with
many entries equal to ε as this increases the number of trun-
cated state variables. Thus, the chosen cost function accounts
for two competing objectives, a small error bound and a large
number of truncated state variables. The design parameter a1 is
varied to determine the optimal trade-off point. An alternative
log-determinant heuristic is proposed in Al-Taie and Werner
(2016).

5. Coprime factors reduction
This section presents two CFR methods based on CCFs.

5.1 First method
First, the notion of strong stabilisability is defined and an equiv-
alent convex characterisation is provided. Then, it is shown how
to construct a strongly stable CCF for a strongly stabilisable and
strongly detectable system Gδ . Using this factorisation, an aug-
mented strongly stable systemHc

δ is formed, which is reducible
via BT. The reduced-order system Hc

red,δ results in a CCF from
which the reduced-order system Gred,δ is constructed.

Let F be the set of operators F = [FT FS
1 ... FS

d FP
1 ... FP

r ],
where the blocks FT ∈ Lc(�2({RnT (t,k)}), �2({Rnu(t,k)})), FS

i ∈
Lc(�2({RnSi (t,k)}), �2({Rnu(t,k)})), for i = 1, . . . , d, and FP

j ∈
Lc(�2({RnPj (t,k)}), �2({Rnu(t,k)})), for j = 1, . . . , r, are graph-
diagonal operators.

Definition 5.1: Awell-posed system Gδ is strongly stabilisable if
there exists F ∈ F such that the resulting closed-loop system is
strongly stable, or equivalently, if there exist F ∈ F and P ∈ X
such that (A + BF)P(A + BF)∗ − S∗PS ≺ 0. Strong detectability
is defined as the dual notion to strong stabilisability.

Theorem 5.1: Gδ is strongly stabilisable if and only if there exist
P ∈ X and Q ∈ F such that

⎡
⎢⎢⎣

−P (AP + BQ)∗ Q∗ (CP + DQ)∗

AP + BQ −S∗PS 0 0
Q 0 −I 0

CP + DQ 0 0 −I

⎤
⎥⎥⎦ ≺ 0. (7)

Then, one choice for a strongly stabilising feedback operator is
F = QP−1.

Proof: FromLemma4.1 andDefinition 5.1, systemGδ is strongly
stabilisable if and only if there existY ∈ X and F ∈ F such that

(A + BF )∗S∗YS(A + BF ) −Y +
[
C + DF

F

]∗ [
C + DF

F

]
≺ 0.

(8)

Assume Gδ is strongly stabilisable and (8) holds. Pre- and post-
multiplying (8) by Y−1, and letting P = Y−1 and Q = FY−1, one
retrieves

(AP + BQ)∗S∗P−1S(AP + BQ) − P

+
[
CP + DQ

Q

]∗ [
CP + DQ

Q

]
≺ 0,

which is equivalent by the Schur complement formula to (7).
Conversely, assume there exist P ∈ X and Q ∈ F such that (7)
holds. Then, applying the Schur complement formula to (7) and
pre- and post-multiplying the resulting inequality by P−1 yield

−P−1 + (A + BQP−1)∗S∗P−1S(A + BQP−1)

+ (QP−1)∗(QP−1) + (C + DQP−1)∗(C + DQP−1) ≺ 0.

(8) is retrieved by defining F = QP−1 and Y = P−1. Thus, Gδ

is strongly stabilisable, and F is a strongly stabilizing feedback
operator. �
Lemma 5.1: If P ∈ X and Q ∈ F satisfy (7), then P and Qc ∈ F
satisfy (7), where

Z = I + D∗D + B∗S∗P−1SB = Z∗,
Qc = −Z−1(B∗S∗P−1SAP + D∗CP). (9)

Moreover, Fc = QcP−1 = −Z−1(B∗S∗P−1SA + D∗C) strongly sta-
bilises system Gδ .
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Proof: By the Schur complement formula and since P ∈ X , (7)
is equivalent to

−P + (AP + BQ)∗S∗P−1S(AP + BQ)

+Q∗Q + (CP + DQ)∗(CP + DQ) ≺ 0.

Adding and subtracting (PC∗D + PA∗S∗P−1SB)Z−1(D∗CP +
B∗S∗P−1SAP), and after some algebraic manipulations, the pre-
vious inequality can be rewritten as

−P + PC∗CP + PA∗S∗P−1SAP
− (PC∗D + PA∗S∗P−1SB)Z−1(D∗CP + B∗S∗P−1SAP)

+ (
Q∗ + (PC∗D + PA∗S∗P−1SB)Z−1)

×Z
(
Q + Z−1(D∗CP + B∗S∗P−1SAP)

) ≺ 0.

In other words, P and Q satisfy (7) if and only if they satisfy the
above inequality. Since replacing Q with Qc in the last term on
the left-hand-side (LHS) of the above inequalitymakes that term
zero, then it is not difficult to see that P and Qc also satisfy the
above inequality and, hence, satisfy (7). In addition, Fc =QcP−1

strongly stabilises system Gδ as per Theorem 5.1. �
Definition 5.2: Two operators Nδ andMδ in Lc(�2, �2) are said
to be right coprime if there exist two operators Uδ and Vδ in
Lc(�2, �2) such thatUδNδ +VδMδ = I. Two �2-stable distributed
NSLPV systemsNδ andMδ are said to be right coprime if their
input–output maps Nδ andMδ are right coprime for all 	 ∈ �.

Definition 5.3: The pair (Nδ,Mδ ) of �2-stable distributed
NSLPV systems is said to be a right coprime factorisation (RCF)
for system Gδ if Nδ and Mδ are right coprime and, for all 	 ∈
�, Mδ has a causal inverse on �2e and Gδ = NδM−1

δ . Further-
more, the RCF (N c

δ ,Mc
δ ) is said to be contractive if (Nc

δ )
∗Nc

δ +
(Mc

δ )
∗Mc

δ 
 I for all 	 ∈ �.

Theorem5.2: Given a strongly stabilisable and strongly detectable
system Gδ , let P ∈ X and Q ∈ F satisfy (7), and define Z and
Fc ∈ F as in Lemma 5.1. Then, the pair (N c

δ ,Mc
δ ) of strongly

stable systems with the following realisations forms a CCF for sys-
tem Gδ :

N c
δ : (A + BFc,BZ−1/2,C + DFc,DZ−1/2,�),

Mc
δ : (A + BFc,BZ−1/2, Fc,Z−1/2,�). (10)

Proof: The proof of this theorem is twofold. First, (N c
δ ,Mc

δ )

is shown to be an RCF for Gδ . Second, this RCF is shown
to be contractive. The factorisation (N c

δ ,Mc
δ ) is defined

similarly to the RCF in Abou Jaoude and Farhood (2018)
with the additional scaling factor Z−1/2. N c

δ and Mc
δ are

strongly stable as a consequence of Lemma 5.1. For each
	 ∈ �, the input–output maps of N c

δ and Mc
δ are given

by Nc
δ = (C + DFc)(I − 	S(A + BFc))−1	SBZ−1/2 + DZ−1/2

and Mc
δ = Fc(I − 	S(A + BFc))−1	SBZ−1/2 + Z−1/2. System

Rδ with realisation (A,B,−Z1/2Fc,Z1/2,�) is the inverse sys-
tem of Mc

δ , i.e. RδMc
δ = Mc

δRδ = I for all 	 ∈ �, where Rδ =
−Z1/2Fc(I − 	SA)−1	SB + Z1/2. Rδ is well-posed since Gδ is
well-posed, i.e. by Definition 3.1, I − 	SA has a causal inverse
for all	 ∈ �. One can then verify thatGδ = Nc

δ (M
c
δ )

−1 = Nc
δRδ

for all	 ∈ �. Since system Gδ is strongly detectable, there exists

an operator K with a structure similar to (Fc)∗ and appropri-
ate dimensions such that the resulting closed-loop system is
strongly stable. Using K, the strongly stable systems Uδ and
Vδ are defined with realisations (A + KC,K,Z1/2Fc, 0,�) and
(A + KC,B + KD,−Z1/2Fc,Z1/2,�), respectively, and input–
output maps Uδ = Z

1
2 Fc(I − 	S(A + KC))−1	SK and Vδ =

−Z
1
2 Fc(I − 	S(A + KC))−1	S(B + KD) + Z

1
2 for all 	 ∈ �.

These systems are used to show that N c
δ and Mc

δ are right
coprime, namely, some algebraic manipulations allow to verify
thatUδNc

δ +VδMc
δ = I for all	 ∈ �. Thus, (N c

δ ,Mc
δ ) is anRCF

for system Gδ .
It remains to show that this RCF is contractive, i.e. (Nc

δ )
∗Nc

δ +
(Mc

δ )
∗Mc

δ 
 I or ‖Hc
δ‖ ≤ 1 for all	 ∈ �, whereHc

δ is the input–
output map of the augmented system Hc

δ = [ (N c
δ )∗ (Mc

δ )
∗ ]∗.

The realisation ofHc
δ is denoted by (Ac

H,Bc
H ,Cc

H,Dc
H ,�), where

Ac
H = A + BFc, Bc

H = BZ− 1
2 , Cc

H = [(C + DFc)∗ (Fc)∗]∗, and
Dc

H = [(DZ− 1
2 )∗ Z− 1

2 ]∗. To prove the contractiveness of the
RCF, we need to show that there exists a solution in X to (4)
for the realization ofHc

δ and all γ > 1. In the following, we ver-
ify that P−1 ∈ X is one such solution. Specifically, we substi-
tute P−1 and the state-space operators ofHc

δ into the LHS of (4)
and carry out the necessary algebraic operations to arrive at a
2 × 2 block operator. Then, we show that the diagonal blocks of
this operator are negative definite and the off-diagonal ones are
zeros, hence proving that P−1 satisfies (4) for the realization of
Hc

δ and all γ > 1. To start, the (1, 1)-block can be expressed as
the LHS of (8) with Y = P−1 and F replaced with Fc. Then, by
Lemma 5.1 and following a similar argument to the one used in
the proof of the ‘if direction’ of Theorem 5.1, we can show that
the (1, 1)-block is negative definite. The off-diagonal blocks are
zeros since

(
Ac
H
)∗S∗P−1SBc

H + (
Cc
H
)∗Dc

H

= (
(A + BFc)∗S∗P−1SB + (C + DFc)∗D + (Fc)∗

)
Z− 1

2

= (
A∗S∗P−1SB +C∗D + (Fc)∗(B∗S∗P−1SB + D∗D + I)

)
Z− 1

2

= (
A∗S∗P−1SB +C∗D + (ZFc)∗

)
Z− 1

2

= (
A∗S∗P−1SB +C∗D − A∗S∗P−1SB −C∗D

)
Z− 1

2 = 0.

The (2, 2)-block can be written as (Bc
H )∗S∗P−1SBc

H +
(Dc

H )∗Dc
H − γ 2I = (1 − γ 2)I, since (Bc

H )∗S∗P−1SBc
H +

(Dc
H )∗Dc

H = Z− 1
2 (B∗S∗P−1SB + D∗D + I)Z− 1

2 = Z− 1
2ZZ− 1

2 =
I. Thus, the (2, 2)-block is negative definite for all γ > 1. �

Consider a strongly stabilisable and strongly detectable sys-
temGδ with realisation (A,B,C,D,�). The procedure to reduce
Gδ via CFR is given in the following algorithm, which modifies
the algorithmofAbou Jaoude and Farhood (2018) to account for
the CCF defined in Theorem 5.2. The resulting reduced-order
RCF is then proved to be contractive.

Algorithm 1:

(1) Find solutions P ∈ X and Q ∈ F to (7).
(2) Define the operatorsZ= I+D∗D+B∗S∗P−1SB and Fc =

−Z−1(B∗S∗P−1SA + D∗C).
(3) Construct a strongly stable CCF (N c

δ ,Mc
δ ) for systemGδ

as in (10).
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(4) Form the augmented strongly stable distributed
NSLPV system Hc

δ = [(N c
δ )∗ (Mc

δ )
∗]∗ with reali-

sation (Ac
H, Bc

H , Cc
H, Dc

H, �) = (A + BFc, BZ− 1
2 ,

[(C + DFc)∗ (Fc)∗]∗, [(DZ− 1
2 )∗ Z− 1

2 ]∗,�).
(5) Find a generalised controllability gramian X ∈ X

that satisfies Ac
H X (Ac

H )∗ − S∗ XS + Bc
H (Bc

H )∗ =
(A + BFc)X (A + BFc)∗ − S∗XS + BZ−1B∗ ≺ 0.
– Set the generalised observability gramian Y equal to

P−1.
– See Remark 5.1 for choosing the objective functions.

(6) Construct a balanced realisation (Ac
H,bal, Bc

H,bal, Cc
H,bal,

Dc
H,�) for systemHc

δ .
– Construct a balancing transformation T ∈ T and

define 
 = TXT∗ = (T−1)∗P−1T−1.
– Define Abal = (S∗TS)AT−1, Bbal = (S∗TS)B, Cbal =

CT−1, and Fc
bal = FcT−1.

– Define Ac
H,bal = (S∗TS)Ac

HT−1 = Abal + BbalFc
bal,

Bc
H,bal = (S∗TS)Bc

H = BbalZ− 1
2 , and

Cc
H,bal = Cc

HT−1 = [ (Cbal + DFc
bal)

∗ (Fc
bal)

∗ ]∗.
(7) Reduce this balanced realisation via the BT method of

Section 4 and obtain a reduced-order system
Hc

red,δ = [(N c
red,δ )

∗ (Mc
red,δ )

∗]∗.
– Denote the realisation of the reduced-order sys-

tem Hc
red,δ by (Ac

H,red,B
c
H,red,C

c
H,red,D

c
H ,�red), the

input–output map by Hc
red,δ , and the reduced-order

balanced generalised gramian by �.
– Obtain an upper bound on ‖(Hc

δ − Hc
red,δ )‖ for all

	 ∈ � from Theorem 4.1.
(8) Define the operators Ared, Bred, Cred, and Fc

red as follows:
Cc
H,red = [(Cred + DFc

red)
∗ (Fc

red)
∗]∗, Bred = Bc

H,redZ
1
2 ,

and Ared = Ac
H,red − BredFc

red.
– SystemsN c

red,δ andMc
red,δ with realisations

(Ared+BredFc
red,BredZ− 1

2 ,Cred+DFc
red,DZ

− 1
2 ,�red)

and (Ared + BredFc
red, BredZ− 1

2 , Fc
red, Z

− 1
2 , �red),

respectively, are strongly stable and right coprime.
(9) If I − 	redSAred has a causal inverse for all 	red ∈ �red

(see Remark 5.2), then
(a) (Ared,Bred,Cred,D,�red) is a realisation for the

reduced-order system Gred,δ ;
(b) (N c

red,δ,Mc
red,δ ) is an RCF for system Gred,δ ; and

(c) Fc
red strongly stabilises system Gred,δ .

Theorem 5.3: The RCF (N c
red,δ,Mc

red,δ ) for Gred,δ obtained in
Algorithm 1 is contractive.

Proof: As shown in the proof of Theorem 5.2, the following
inequality holds for all γ > 1:

[
Ac
H Bc

H
Cc
H Dc

H

]∗ [
S∗P−1S 0

0 I

] [
Ac
H Bc

H
Cc
H Dc

H

]
−

[
P−1 0
0 γ 2I

]
≺ 0.

(11)

From Abou Jaoude and Farhood (2018), there exists a parti-
tioned graph-diagonal operator L such that L∗L = I, LL∗ = I,
L∗
L = diag(�, �), L∗SAbalL = diag(S, S)

[ Ared Ā12
Ā21 Ā22

]
, L∗SBbal =

diag(S, S)[B∗
red B̄∗

2 ]∗, CbalL = [Cred C̄2 ], Fc
balL = [Fc

red F̄2 ], and
L∗	L = diag(	red, 	̄2) for all	 ∈ �, where the operators Ā12,

Ā21, Ā22, B̄2, C̄2, F̄2, and 	̄2 are appropriately defined. The
following relations also hold: L∗SAc

H,balL = [ S 0
0 S

][ Ac
H,red Ac

H,rem1
Ac
H,rem2 Ac

H,rem3

]
,

L∗SBc
H,bal = [ S 0

0 S
][ Bc

H,red
Bc
H,rem

]
, and Cc

H,balL = [Cc
H,red C

c
H,rem ], where

the terms with subscript ‘rem’ are defined in the obvious way.
Pre- and post-multiplying (11) by diag((T−1)∗, I) and its adjoint,
respectively, one gets

[
SAc

H,bal SBc
H,bal

Cc
H,bal Dc

H

]∗ [

 0
0 I

] [
SAc

H,bal SBc
H,bal

Cc
H,bal Dc

H

]

−
[


 0
0 γ 2I

]
≺ 0 for all γ > 1.

This inequality is then pre- and post-multiplied by diag(L∗, I)
and diag(L, I), respectively, to obtain

⎡
⎣

[
S 0
0 S

] [
Ac
H,red Ac

H,rem1
Ac
H,rem2 Ac

H,rem3

] [
S 0
0 S

] [
Bc
H,red

Bc
H,rem

]
[
Cc
H,red Cc

H,rem
]

Dc
H

⎤
⎦

∗

×
⎡
⎣

[
� 0
0 �

]
0

0 I

⎤
⎦

×
⎡
⎣

[
S 0
0 S

] [
Ac
H,red Ac

H,rem1
Ac
H,rem2 Ac

H,rem3

] [
S 0
0 S

] [
Bc
H,red

Bc
H,rem

]
[
Cc
H,red Cc

H,rem
]

Dc
H

⎤
⎦

−
⎡
⎣

[
� 0
0 �

]
0

0 γ 2I

⎤
⎦ ≺ 0 for all γ > 1.

Thus, we conclude that

[
Ac
H,red Bc

H,red
Cc
H,red Dc

H

]∗ [
S∗�S 0
0 I

] [
Ac
H,red Bc

H,red
Cc
H,red Dc

H

]
−

[
� 0
0 γ 2I

]
≺ 0

for all γ > 1, i.e. ‖Hc
red,δ‖ ≤ 1 for all 	red ∈ �red and the RCF

(N c
red,δ,Mc

red,δ ) is contractive. �

At this point, we briefly compare Algorithm 1 with its coun-
terpart in Abou Jaoude and Farhood (2018). First, the operator
Fc in Step 2 is always well-defined, which relaxes the assump-
tion therein that [[B]](t, k) has full column rank for all (t, k) ∈
Z ×V . Second, one does not need to separately solve for the
generalised observability gramian Y. Instead, Y is set equal to
P−1 in Step 5, since (Ac

H )∗S∗YSAc
H −Y + (Cc

H )∗Cc
H ≺ 0 corre-

sponds to (8) withY= P−1 and F replaced with Fc. Finally, when
defining the operators of the reduced-order system Gred,δ in Step
8, we must account for the scaling factor in our case, which is
used to ensure contractiveness.
Remark 5.1: To make the derived CCF approach normalisa-
tion, the problems (P3) and (P4) are solved; see Li and Paganini
(2005), Li (2014).

(P3): minimise
∑

(t,k)(traceUT (t, k) + ∑
i traceU

S
i (t, k) +∑

j traceU
P
j (t, k)) subject to P ∈ X , Q ∈ F , U ∈ X , (7), and

[U I
I P ] � 0, i.e. [UT (t, k) I

I PT (t, k) ] � μI, [U
S
i (t, k) I
I PSi (t, k) ] � μI, and

[U
P
j (t, k) I
I PPj (t, k) ] � μI for someμ > 0 and all (t, k) ∈ Z ×V , i=

1, ..., d, and j = 1, ..., r.



INTERNATIONAL JOURNAL OF CONTROL 9

(P4): minimise
∑

(t,k)(traceXT (t, k) + ∑
i traceX

S
i (t, k) +∑

j traceX
P
j (t, k)) subject toX ∈ X and (A+ BFc)X(A+ BFc)∗

− S∗XS + BZ−1B∗ ≺ 0.
The feasibility version of (P3) is defined as follows:
(P5): Find P ∈ X and Q ∈ F subject to (7).
Problem (P3) introduces the largest computational bur-

den in Algorithm 1. In the algorithm of Abou Jaoude and
Farhood (2018), all the problems are of a comparable size to (P4).
For ETP subsystems interconnected over a finite graph, (P3)
and (P4) reduce to finite dimensional semi-definite programs
(SDPs), and exact expressions for the computational complex-
ity measures can be obtained by formulating the correspond-
ing dual problems; see Abou Jaoude and Farhood (2017b). In
Section 7, an example-specific comparison is given for the com-
putational complexity of both methods of this paper and the
method of Abou Jaoude and Farhood (2018). The higher com-
putational cost of (P3)may become prohibitive for some systems
when the SDPs from the other methods are still computation-
ally tractable. The computational cost of (P3) is also significantly
higher than that of its feasibility version (P5). This increase in
computational complexity is partly due to the addition of the
variable U needed to render the optimisation problem convex:
U is introduced since the constraint (7) is in terms of P and the
desired objective function is in terms of P−1.

Remark 5.2: I − 	redSAred has a causal inverse for all
	red ∈ �red if the generalised gramian X found in Step
5 of Algorithm 1 also satisfies APP diag

(
XP
1 , . . . ,XP

r
)
A∗
PP −

diag
(
XP
1 , . . . ,XP

r
) ≺ 0; see Abou Jaoude and Farhood (2018)

for the details.

5.2 Secondmethod
The method presented next builds on the CFR method of Abou
Jaoude and Farhood (2018). Namely, after obtaining the RCF
(Nδ,Mδ ) of system Gδ , we solve for a scaling factor that ensures
contractiveness. A slightly modified version of Algorithm 1
can then be applied to construct the reduced-order system.
The desired scaling factor is shown to always exist. Beck and
Bendotti (1997) discuss the methodology adopted in this sec-
tion for uncertain systems.

Lemma 5.2: If system Gδ with realization (A,B,C,D,�) is
strongly stable, then there exist γ > 0 and X ∈ X such that (4)
holds.
Proof: By Lemma 4.1, since Gδ is strongly stable, there exists
X ∈ X satisfying (6). Then, by the Schur complement formula,
X satisfies (4) for some γ > 0 if and only if X satisfies

B∗S∗XSB + D∗D − (A∗S∗XSB +C∗D)∗

× (A∗S∗XSA +C∗C − X )−1(A∗S∗XSB +C∗D) ≺ γ 2I.
(12)

Clearly, if the LHS of (12) is bounded, then it is possible to
find a sufficiently large γ > 0 such that (12) holds. Given that
the solution X ∈ X and the state-space operators are bounded,
and since the sum and product of bounded operators are
bounded, then it only remains to show that the inverse of Y =
−(A∗S∗XSA +C∗C − X ) is bounded to prove the boundedness
of the LHS. SinceY � 0, the perturbed versionY � εI holds for
a sufficiently small ε > 0. By applying the Schur complement

formula twice, the latter inequality is equivalent to 0 ≺ Y−1

≺ (1/ε) I. �

The following result gives an alternative procedure for con-
structing a CCF for a given system Gδ .

Theorem 5.4: Consider a strongly stabilisable and strongly
detectable system Gδ with realisation (A,B,C,D,�). Suppose
that F ∈ F is a strongly stabilising feedback operator for Gδ . Then,
there exist T̃ ∈ X and Z−1 � 0 such that

⎡
⎣A + BF
C + DF

F

⎤
⎦ T̃

[
(A + BF )∗ (C + DF )∗ F∗ ]

−
⎡
⎣ S∗T̃S 0 0

0 I 0
0 0 I

⎤
⎦ +

⎡
⎣ B
D
I

⎤
⎦Z−1 [

B∗ D∗ I
] ≺ 0.

(13)

Furthermore, the pair of strongly stable systems (N c
δ ,Mc

δ ) with
realisations (A + BF,BZ−1/2,C + DF,DZ−1/2,�) and (A +
BF,BZ−1/2, F,Z−1/2,�), respectively, defines a CCF for Gδ .

Proof: Since F is a strongly stabilising feedback operator for
Gδ , the system defined by the realisation (A + BF,B, [(C +
DF )∗ F∗]∗, [D∗ I]∗,�) is strongly stable. Then, by Lemma 5.2,
there exist X ∈ X and some sufficiently large γ > 0 such that
(4) holds for this realisation. Applying the Schur complement
formula twice to (4), one retrieves (13) with T̃ = X−1 ∈ X and
Z−1 = (1/γ 2) I � 0. Thus, we have shown that there exist T̃ ∈
X and Z−1 � 0 satisfying (13).

The systems N c
δ and Mc

δ , as defined in the theorem state-
ment, are strongly stable. An argument similar to the one
in the proof of Theorem 5.2 can then be used to show that
(N c

δ ,Mc
δ ) is an RCF for system Gδ . We now prove that this

RCF is contractive. Let Hc
δ = [(N c

δ )∗ (Mc
δ )

∗]∗. This system
is strongly stable by construction and has a realisation (A +
BF,BZ− 1

2 ,
[
(C + DF )∗ F∗]∗

,
[
(DZ− 1

2 )∗ Z− 1
2
]∗

,�). Then, the
RCF is contractive if and only if ‖Hc

δ‖ ≤ 1 for all 	 ∈ �. In this
case, it is possible to show that ‖Hc

δ‖ < 1 (strict inequality) for
all 	 ∈ �, and hence the RCF can be shown to be strictly con-
tractive. We will prove this claim by showing that there exists a
solution in X to inequality (4), expressed for the realisation of
Hc

δ , with γ = 1. Applying the Schur complement formula twice
to (13), we observe that T̃−1 ∈ X is one such solution. �

Inequality (13) is linear in Z−1; the inverse sign is retained
for notational consistency. The changes in Algorithm 1 required
to apply the method of this section are now outlined. In Step
1, solve for P ∈ X such that APA∗ − S∗PS − BB∗ ≺ 0, and
define F = −(B∗S∗P−1SB)−1B∗S∗P−1SA; see Abou Jaoude and
Farhood (2018). This feasibility problem involves variables and
constraints of the same size and structure as those of (P4). In
Step 2, solve the problem (P6) defined as follows:

(P6): Find T̃ ∈ X and Z−1 � 0 subject to (13).
In Step 3, construct the CCF according to Theorem 5.4.

In Step 5, solve for the generalised observability gramian, i.e.
findY ∈ X with the minimum trace such that (Ac

H )∗S∗YSAc
H −

Y + (Cc
H )∗Cc

H ≺ 0, and correspondingly in Step 6, define 
 =
TXT∗ = (T−1)∗YT−1.
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Figure . Standard feedback configuration with the reduced-order system represented using its RCF.

Remark 5.3: To make the CCF approach normalisation, one
should seek F, T̃ , and Z−1 such that the LHS of (13) is as close to
zero as possible.However, as discussed before, one typical choice
of F is given by F = −(B∗S∗P−1SB)−1B∗S∗P−1SA, and so find-
ing the optimal solutions requires solving non-convex coupled
inequalities. To circumvent this difficulty, suboptimal solutions
are sought instead. Beck and Bendotti (1997) propose to iterate
over the solutions until some pre-specified distance from zero is
achieved. Two problems are solved per iteration, and at the end
of each iteration, the system operators are updated by applying
a transformation that is constructed from T̃ ∈ X . Such an algo-
rithm needs to be further studied and thoroughly tested; how-
ever, this issue is not pursued here.

6. Robustness analysis
In this section, we derive a bound on the CFR error such that a
controller that stabilises the full-order system also stabilises the
reduced-order system obtained via CFR. Similar discussions for
uncertain systems are found in Beck (2006), Li (2014). Suppose
the CFR method is applied to system Gδ , which has a strongly
stable coprime factorisation (Nδ,Mδ ), and a reduced-order
system Gred,δ is obtained, which has a strongly stable coprime
factorisation (Nred,δ,Mred,δ ). Let ε be the error bound obtained
from CFR, i.e.

∥∥∥∥
[
Nδ

Mδ

]
−

[
Nred,δ
Mred,δ

]∥∥∥∥ =
∥∥∥∥
[
N̄δ

M̄δ

]∥∥∥∥ < ε for all 	 ∈ �,

(14)

where N̄δ = Nδ − Nred,δ and M̄δ = Mδ − Mred,δ for all 	 ∈ �.
We seek a boundon ε such that if a distributedNSLPVcontroller
Kδ stabilisesGδ , it also stabilises the reduced-order systemGred,δ .

Let Kδ be a distributed NSLPV controller with realisation
(AK,BK,CK,DK,�K ) that stabilises system Gδ and inherits the
interconnection and uncertainty structures of Gδ . Such a con-
troller can be designed using the method in Abou Jaoude and
Farhood (2017c).

Figure 3 shows the standard feedback interconnection
formed by the reduced-order system Gred,δ , represented using its
coprime factorisation, and the controller Kδ . The derivation of
the robust stability margin relies on showing that this intercon-
nection is equivalent to the interconnection shown in Figure 4
and then applying the small gain theorem. It is assumed that

Figure . Equivalent interconnection to the interconnection in Figure .

the interconnection is well-defined.We define din = (d1, d2) and
p = (p1, p2), where d1, d2 are the exogenous signals and p1, p2
are internal signals as shown in Figure 3. The output of Nδ is
denoted by yN, the input toM−1

δ is denoted by uM, and the input
and output to Kδ are denoted by uK and yK, respectively. We
define the signal ν as shown in Figure 3. p = [ p1

p2

] = [ −N̄δ

M̄δ

]
ν,

and since yN = Nδ ν and ν = M−1
δ uM , i.e. uM = Mδν, then, for

all 	 ∈ �,

ϕ = 	ξ, ξ = SANϕ + SBNν,

yN = CNϕ + DNν, uM = CMϕ + DMν. (15)

The subscripts in these equations are used to indicate the sys-
tems with which the operators or signals are associated. In (15),
ϕN = ϕM = ϕ and ξN = ξM = ξ since AN = AM and BN = BM
for the coprime factorisations used in the paper. Similarly, the
controller equations are given by

ϕK = 	KξK, ξK = SAKϕK + SBKuK,

yK = CKϕK + DKuK for all 	K ∈ �K . (16)
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Combining (15), (16), uK = d1 + yN + p1, and uM = p2 + d2 +
yK yields

[
ξ

ξK

]
=

([
SAN 0

SBKCN SAK

]
+

[
SBN

SBKDN

]

× (DM − DKDN )−1 [
DKCN −CM CK

] ) [
ϕ

ϕK

]

+
( [

0 0
SBK 0

]
+

[
SBN

SBKDN

]
(DM − DKDN )−1

× [
DK I

] ) [
p1 + d1
p2 + d2

]
,

ν = (DM − DKDN )−1 [
DKCN −CM CK

] [
ϕ

ϕK

]

+ (DM − DKDN )−1 [
DK I

]
(p+ din),

i.e.
[

ξ

ξK

] = S̃AW
[

ϕ

ϕK

] + S̃BW (p+ din) and ν = CW
[

ϕ

ϕK

] +
DW (p+ din), where S̃ = diag(S, S), and AW, BW, CW, and DW

are defined in the obvious way. Moreover,
[

ϕ

ϕK

] = [
	 0
0 	K

][
ξ

ξK

]
.

Denote the distributed NSLPV system thus constructed that
maps (p + din) to ν by Wδ , with input–output map Wδ for all
	 ∈ � and 	K ∈ �K . The preceding discussion establishes
that the interconnections in Figures 3 and 4 are equivalent.

The given equations of Wδ are not in the standard form of
(2) and need to be rearranged to become in this form. This rear-
rangement is made to group together the temporal, spatial, and
parameter states of the plant with their controller counterparts,
since the uncertainty structures 	K and 	 are not independent
from each other and neither are the interconnection structures.
Define γmin as the square root of the optimal value of the fol-
lowing optimisation problem:

minimise γ 2 subject to X ∈ X and inequality (4) expressed
for the realisation ofWδ (standard form equations).

(17)

The existence of γmin ensures that systemWδ is strongly stable
and ‖Wδ‖ < γmin for all permissible parameter trajectories. We
are now ready to state the robustness theorem.

Theorem 6.1: Consider a distributed NSLPV system Gδ , which
has a strongly stable coprime factorisation (Nδ,Mδ ). Suppose
that this system is reduced via CFR, and denote the reduced-order
system by Gred,δ and its strongly stable coprime factorisation by
(Nred,δ,Mred,δ ). Let ε be the error bound obtained fromCFR and
defined as in (14). In addition, suppose that Kδ is a distributed
NSLPV controller that renders the closed-loop systemWδ defined
in Figure 4 strongly stable, and define γmin as the square root of
the optimal value of the optimisation problem in (17). Then, Kδ

stabilises system Gred,δ if ε ≤ 1
γmin

.

This result follows by application of the small gain theorem to
the interconnected systems in Figure 4; see for instanceDullerud
and Paganini (2000).

7. Numerical example
Various features of the proposedmodel reductionmethods have
been illustrated in the examples of Abou Jaoude and Farhood
(2017a, 2017b, 2018), e.g. the simplification of the interconnec-
tion structure through the removal of whole interconnections
in the reduced-order system (and similarly for the uncertainty
structure), the truncation of different numbers of state variables
at different time instants, the truncation of different types of state
variables, and for distributed NSLPV systems, the need to sep-
arately impose/verify the well-posedness of the reduced-order
system obtained fromCFR as per Remark 5.2. Such features will
thus not be stressed here. The focus is placed instead on compu-
tational complexity issues; and areas that need further investi-
gation and testing before making final/decisive conclusions are
pointed out.

Consider a distributed NSLPV system Gδ formed by four
subsystems interconnected as in Figure 1, where G(1) is an
(h = 0, q = 28)-ETP, discrete-time LTV subsystem, and G(2),
G(3), and G(4) are discrete-time LPV subsystems with rk =
r = 1 for k = 2, 3, 4. The dimensions of the states are
constant for all t = 0, ..., h + q − 1 and are given by
nT(t, k) = 6, nSi (t, k) = 3 for k = 1, ..., 4 and i = 1, 2,
and nPj (t, k) = 4 for k = 2, 3, 4 and j = 1. The detailed
construction of the state-space matrices is given in Abou
Jaoude and Farhood (2018) and is omitted here for space con-
siderations.

System Gδ is not strongly stable and is not reducible via BT,
but it is strongly stabilisable and strongly detectable and so is
reducible via CFR.We apply bothMethods 1 and 2 of this paper
and the method of Abou Jaoude and Farhood (2018) for com-
parison. In all methods, after solving for the balanced realisa-
tion of the augmented system Hδ (Hc

δ ), we re-solve the gener-
alised Lyapunov inequalities for a balanced generalised gramian

 as per problem (P2). We also solve (P1) to find the mini-
mum upper bound γmin on ‖Hδ‖ (‖Hc

δ‖) for all 	 ∈ �. This
bound helps, although not solely conclusive, in deciding on how
many state variables to truncate. In general, guidelines need to
be developed for determining what constitutes a good reduced-
order model. Specifically, for open-loop systems, e.g. ones that
cannot be reduced via BT, and since the CFR error bound has
closed-loop robust stability interpretations, looking at the CFR
error bound alone is not sufficient for determining the quality
of the reduced-order model. This observation applies to vari-
ous classes of systems and not only to distributed NSLPV sys-
tems. In a similar direction, it is observed that, for compara-
ble reduction and reduced-order system behaviour, the error
bounds obtained by applying Method 1 are generally more con-
servative than those obtained fromusing the othermethods. For
instance, we obtain γmin = 0.99 and a truncation cut-off value
ε = 0.019 (setting a1 = 740 in the objective function of (P2))
using Method 1, i.e. the CFR error bound is 3.78%γmin. For a
comparable open-loop behaviour of the reduced-order system
and a similar total number of truncated state variables, Method
2 gives ε = 0.006, i.e. an error bound equal to 2.3424%γmin with
γmin = 0.5317. Further testing is needed to substantiate and
interpret these observations.

Since the state-space matrices are (h, q)-ETP, then (h, q)-
ETP solutions are sought for all the SDPs solved in this
example. The SDPs in question are modelled using Yalmip
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Table  Computational complexity measures and solution times for the various SDPs considered in the example.

Problem Dimension of Dimension of Number of Number of CPU Wall clock
number SDP variable linear variable constraints SDP blocks time (s) time (s)

(P1)      
(P2)     . 
(P3)   ,   
(P4)      
(P5)      
(P6)     . 

and are solved using SDPT3; see Lofberg (2004), Tutuncu,
Toh, and Todd (2003). The computations are carried out in
Matlab (R2017b) 9.3.0.713579 (The MathWorks Inc., Natick,
Massachusetts, U.S.A.) on a Dell desktop with i7 − 7700 Intel
Quad Core, 3.60 GHz processors, and 16 GB of RAM running
Windows 10 Pro. The measures of computational complexity
and the time needed to solve the SDPs are given in Table 1. (P5)
is also solved for comparison with (P3). Note that the method
of Abou Jaoude and Farhood (2018) only involves solving prob-
lems of comparable sizes to (P4).

8. Conclusion
This paper gives two CFR methods for distributed NSLPV sys-
tems based on CCFs. A robustness theorem is provided, which
indicates how far one can proceed with truncation using CFR
while ensuring that a stabilizing controller for the full-order sys-
tem is also stabilizing for the reduced-order system. The paper
reveals various issues that provide directions for future research,
e.g. the connections of the robust stability margin to the gap
and graph metrics, the properties of the iterative algorithm for
approximate normalisation usingMethod 2, the conservatism of
the error bound obtained by applying Method 1, and the need
for general CFR truncation guidelines.
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