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a b s t r a c t 

This paper is on the structure-preserving model reduction of distributed systems formed by heteroge- 

neous, discrete-time, nonstationary linear parameter-varying subsystems interconnected over arbitrary 

directed graphs. The subsystems are formulated in a linear fractional transformation (LFT) framework, 

and a communication latency of one sampling period is considered. The balanced truncation method is 

extended to the class of systems of interest, and upper bounds on the � 2 -induced norm of the resulting 

error system are derived. Balanced truncation suffers from conservatism since it only applies to stable 

systems which possess structured solutions to the generalized Lyapunov inequalities. The coprime factors 

reduction method is then provided as a partial remedy to this conservatism. An illustrative example is 

given to demonstrate the efficacy of the proposed approaches. 

© 2017 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

This work is on the model reduction of distributed sys-

ems formed by heterogeneous, discrete-time, nonstationary linear

arameter-varying (NSLPV) subsystems interconnected over arbi-

rary directed graphs. The subsystems are formulated in a linear

ractional transformation (LFT) framework. It is assumed that the

nformation sent by a subsystem at the current time-step is re-

eived by the target subsystem at the next time-step. We refer to

uch systems as distributed NSLPV systems. 

NSLPV models [10,11] extend standard/stationary linear

arameter-varying (LPV) models in the sense that the state-

pace matrix-valued functions can have an explicit dependence

n a priori known time-varying terms, in addition to their depen-

ence on time-varying scheduling parameters that are not known

 priori, but are available for measurement at each time-step.

he dependence of the state-space matrices on these parameters

s assumed to be rational so as to allow for formulating the

ubsystems in an LFT framework. This assumption, however, is not

enerally restrictive as nonlinear functions that are not rational

an frequently be approximated by rational ones. An NSLPV model

ormulated in an LFT framework is basically an interconnection

f a nominal linear time-varying (LTV) model and a �-operator

hich consists of all the scheduling parameters. As noted in [14] ,
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he analysis results for NSLPV models are effectively tools for

obustness analysis of LTV systems against static time-varying

ncertainties. NSLPV models arise, for example, when controlling

onlinear systems about prespecified trajectories as a means for

apturing the effects of the system nonlinearities while facilitating

ontrol design using linear techniques. In such scenarios, and

enerally whenever a priori known time-varying terms appear in

he system equations, NSLPV models usually constitute far less

onservative representations of the time-varying nonlinear system

ynamics than their stationary LPV counterparts, and in some

ases, the only stabilizable parameter-varying models that can be

btained are NSLPV [11] . 

Distributed NSLPV systems consist of NSLPV subsystems and/or

ombinations of LTV and LPV subsystems. The control synthesis

roblem for distributed NSLPV systems is treated in [1] , where

he systems are compactly described using an operator theoretic

ramework. This framework models the interconnections between

he subsystems as states referred to as spatial states, in addition

o the standard states of the subsystems that are referred to as

emporal states, and the parameter states which result from the

FT formulation. The size of these systems, and consequently,

he sizes of the analysis and synthesis problems, grow with the

umber and dimension of the temporal, spatial, and parame-

er states. This calls for the extension of structure-preserving

odel reduction techniques, namely, balanced truncation (BT)

nd coprime factors reduction (CFR), to the class of distributed

SLPV systems. Specifically, a reduced-order model is sought that
rved. 
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approximates the behavior of the full-order system and preserves

the interconnection structure and the structure of the �-operator. 

BT applies to strongly stable systems, i.e., stable systems

which possess structured solutions to the generalized Lyapunov

inequalities. These solutions, when existent, are called generalized

gramians [6] . BT guarantees the strong stability of the reduced-

order system as well as an upper bound on the � 2 -induced norm

of the error system. The proposed method allows for reducing the

dimension of each temporal, spatial, and parameter state, indi-

vidually. If the dimension of a spatial state is reduced to zero for

all time-steps, then the corresponding interconnection is removed

from the interconnection structure of the reduced-order system.

Similarly, if the dimension of a parameter state is reduced to zero

for all time-steps, then the corresponding channel is removed

from the �-operator. However, there exist stable systems which

do not possess generalized gramians and cannot be reduced via

BT. The reader is referred to [24] and the references therein for

a discussion on the existence of structured solutions to Lyapunov

inequalities. This conservatism is partially remedied by the CFR

method as it applies to systems which, while not necessarily

strongly stable, can be represented using a strongly stable coprime

factorization. A strongly stabilizable and strongly detectable sys-

tem possesses the needed factorization and is reducible via CFR.

The reduced-order model resulting from CFR is guaranteed to be

strongly stabilizable and strongly detectable, and the correspond-

ing error bound can be interpreted in terms of the robust stability

of the closed-loop system. 

Several works have appeared that treat the problem of

structure-preserving BT or CFR for uncertain and LPV sys-

tems [7,16] , NSLPV systems [10] , and interconnected systems

[2,3,5,17,21,26] . This paper can be viewed as a generalization of

the work in [10] to the class of distributed systems or as a gen-

eralization of the works in [2,3] to the case where the subsys-

tems are represented by NSLPV, instead of LTV, models. In partic-

ular, while [2,3] deal with systems with an interconnection struc-

ture and [10] deals with systems with an uncertainty structure, the

present work deals with systems having an interconnection and an

uncertainty structure, both of which are to be preserved/simplified

during model reduction. The adopted operator theoretic framework

gives the equations for distributed NSLPV systems in a compact op-

erator form reminiscent of standard LPV-LFT state-space systems,

which allows for a transparent extension of standard model reduc-

tion results to the class of systems treated here while address-

ing intricacies due to more elaborate operator machinery. Since

the interconnections between the subsystems are modeled as spa-

tial states, the extended results acquire new characteristics and in-

terpretations. For instance, the generalized gramians are classified

into temporal terms, spatial terms, and parameter terms, and the

proposed methods allow for the truncation of the three types of

states. In other words, the methods allow for reducing the order

of the subsystems via truncation of temporal and parameter states,

as well as simplifying the interconnection structure via truncation

of spatial states. We note that the given results also remain novel

when the subsystems have standard LPV models, i.e., when the

nominal part of the subsystems is linear time-invariant. The nov-

elty comes from considering heterogeneous subsystems and arbi-

trary directed graphs and from accounting for communication la-

tency on the information transfer between the subsystems. 

An important contribution of this work is Theorem 3 , which re-

mains novel when restricted to the class of distributed LTV sys-

tems treated in [2,3] . Theorem 3 gives an alternative expression for

the BT error bound which can be less conservative than the stan-

dard “twice the sum of distinct truncated entries in the balanced

generalized gramian” error bound given in Theorem 2 . The impor-

tance of this theorem is articulated in robust stability analysis [20] ,

where the full-order system can be replaced by the reduced-order
ystem and a bounded perturbation operator whose norm is less

han the error bound. Deriving tighter error bounds thus allows

or a better quantification of the said operator and consequently

or less conservative robustness results. Another contribution re-

ides in the extension of the notion of a coprime factorization to

he class of distributed NSLPV systems. This notion is essential for

he development of the CFR method and further is of independent

nterest as it finds applications in robust control theory [27] . Fi-

ally, the paper gives an example which illustrates the application

nd characteristics of the proposed methods. Specifically, the ex-

mple highlights the flexibility of our methods in truncating vari-

us types of states and shows that truncation need not be uniform

n time even if the dimensions of the states in the full-order sys-

em are constants. The example uses the 1-norm heuristic to im-

rove on the computed error bound by maximizing the number

f entries in the balanced generalized gramian which are equal to

ach other and to some truncation cut-off value [2] . Then, when

pplying Theorem 2 , all the corresponding state variables (regard-

ess of type) are truncated and accounted for only once in the error

ound. 

The paper is organized as follows. In Section 2 , we introduce

he notation of the paper. In Section 3 , we present the framework

nd the relevant analysis results of [1] . Section 4 treats the BT

ethod, and Section 5 treats the CFR method. A numerical exam-

le is given in Section 6 . The paper concludes with Section 7 . 

. Notation 

N 0 , Z , and R denote the sets of nonnegative integers, integers,

nd real numbers, respectively. diag( M i ) denotes the block-diagonal

ugmentation of the sequence of operators M i . 0 i × j denotes an i × j

ero matrix, and I i denotes the i × i identity matrix. 

Consider a directed graph with a countable set of vertices V

nd a set of directed edges E . ( i , j ) ∈ E denotes a directed edge

rom i ∈ V to j ∈ V . The graph under consideration is assumed to be

 -regular, for some integer d > 0, i.e., for all k ∈ V , both the inde-

ree and outdegree are equal to d . Note that any arbitrary directed

raph with a uniformly bounded vertex degree can be turned into

 d -regular directed graph, where d is the maximum over all vertex

egrees, via the addition of the necessary virtual edges and/or ver-

ices. This assumption allows for the definition of d permutations,

1 , . . . , ρd , of the set of vertices according to the edges. The per-

utations are chosen such that if ( i , j ) ∈ E , then one e ∈ { 1 , . . . , d}
atisfies ρe (i ) = j and ρ−1 

e ( j ) = i . See [12] for more details. 

Let J 1 and J 2 be vector spaces, and let H and F be Hilbert spaces.

 1 � J 2 denotes the vector space direct sum of J 1 and J 2 . The inner

roduct and the norm associated with H are denoted by 〈 · , · 〉 H 
nd ‖ · ‖ H , respectively. The subscript is dropped when H is clear

rom context. L (H, F ) and L c (H, F ) denote the spaces of bounded

inear operators and bounded linear causal operators mapping H

o F , respectively. These symbols simplify to L (H) and L c (H) when

 = F . Let X ∈ L (H, F ) . ‖ X ‖ denotes the H to F induced norm of X ,

nd X ∗ denotes the adjoint of X . A self-adjoint operator X ∈ L (H)

s said to be negative definite ( X ≺0) if there exists α > 0 such that

 x, Xx 〉 < −α‖ x ‖ 2 for all nonzero x ∈ H . 

Given an integer sequence n : (t, k ) ∈ Z ×V → n (t, k ) ∈ N 0 ,

 ({ R 

n (t,k ) } ) denotes the vector space of mappings w : (t, k ) ∈ Z ×
 → w (t, k ) ∈ R 

n (t,k ) . The Hilbert space � 2 ({ R 

n (t,k ) } ) is the sub-
pace of � ({ R 

n (t,k ) } ) which consists of mappings w that have

 finite norm ‖ w ‖ = 

√ ∑ 

(t,k ) w (t, k ) ∗w (t, k ) . � 2 e ({ R 

n (t,k ) } ) is the

ubspace of � ({ R 

n (t,k ) } ) consisting of mappings w such that
 

k w (t, k ) ∗w (t, k ) < ∞ for each t ∈ Z . The abbreviated symbols � ,

 2 , and � 2 e are frequently used when n ( t , k ) is clear from context. 

We now summarize some of the operator machinery of [12] .

n operator Q : � 2 → � 2 is said to be graph-diagonal if there ex-

sts a uniformly bounded sequence of matrices Q ( t , k ) such that
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(Qv )(t, k ) = Q(t, k ) v (t, k ) for all (t, k ) ∈ Z ×V . An operator W =
 W i j ] is said to be partitioned graph-diagonal if each block W ij is

 graph-diagonal operator. The mapping [[ W ]](t, k ) = [ W i j (t, k )] is a

omomorphism from the space of partitioned graph-diagonal oper-

tors to the space of graph-diagonal operators. This mapping is iso-

etric and preserves products, addition, and ordering, i.e., ‖ W 1 ‖ =
 [[ W 1 ]] ‖ , [[ W 1 W 2 ]] = [[ W 1 ]][[ W 2 ]] , [[ W 1 + W 2 ]] = [[ W 1 ]] + [[ W 2 ]] , where

 1 and W 2 are compatible partitioned graph-diagonal operators. If

 1 is self-adjoint, then W 1 
0 if and only if [[ W 1 ]] 
0 if and only if

[ W 1 ]] ( t , k ) 
βI for all (t, k ) ∈ Z ×V and some scalar β > 0. The uni-

ary temporal-shift operator, S 0 : � 2 → � 2 , and the unitary spatial-

hift operators, S i : � 2 → � 2 for i = 1 , . . . , d, are defined as fol-

ows: (S 0 v )(t, k ) = v (t − 1 , k ) , (S ∗
0 
v )(t, k ) = v (t + 1 , k ) , (S i v )(t, k ) =

 (t, ρ−1 
i 

(k )) , and (S ∗
i 
v )(t, k ) = v (t, ρi (k )) . We do not distinguish

etween the shift operators for different Hilbert spaces � 2 . The def-

nitions of graph-diagonal operators and of the shift operators nat-

rally extend to � and � 2 e . 

Let X 
0 be a graph-diagonal operator where, for all (t, k ) ∈
 ×V, X ( t , k ) is a diagonal matrix. φ( X ) denotes the sum of

istinct diagonal entries of X , i.e., φ( X ) is the sum of the dis-

inct diagonal entries in diag (X(t, k )) (t,k ) ∈ Z ×V . For example, as-

ume that X(t, k ) = 0 for all ( t , k ) except for some ( t 0 , k 0 ), ( t 0 ,

 1 ), and ( t 1 , k 1 ), where X(t 0 , k 0 ) = diag (w 1 , w 1 , w 2 , w 2 ) , X(t 0 , k 1 ) =
iag (w 1 , w 3 , w 4 ) , and X(t 1 , k 1 ) = diag (w 3 , w 4 ) . Then, φ(X ) = w 1 +
 2 + w 3 + w 4 . Consider a partitioned graph-diagonal operator W =
iag (W i ) 
 0 , where W i are graph-diagonal operators and, for all

(t, k ) ∈ Z ×V, W i ( t , k ) are diagonal matrices. �( W ) denotes the

um of distinct diagonal entries of W , i.e., �(W ) = φ([[ W ]]) . 

. Operator theoretic framework 

Consider a distributed NSLPV system G δ . We represent the in-

erconnection structure of G δ using a d -regular directed graph:

ach subsystem G 

( k ) in G δ corresponds to a vertex k ∈ V , and

he interconnection from G 

( i ) to G 

( j ) corresponds to the di-

ected edge ( i , j ) ∈ E . The dynamics of each G 

( k ) are described

y a discrete-time NSLPV model formulated in an LFT frame-

ork. The standard states of G 

( k ) are denoted by x T ( t , k ), where

 ∈ Z is the discrete time-step. The signals introduced by the

FT formulation are denoted by β( t , k ) and α( t , k ). x T ( t , k )

re referred to as the temporal states, and β( t , k ) and α( t ,

 ) are referred to as the parameter states for ease of refer-

nce. The possibly time-varying dimension of x T ( t , k ) is denoted

y n T ( t , k ). The parameter states satisfy β(t, k ) = �(t , k ) α(t , k ) ,

here �(t, k ) = diag (δ1 (t, k ) I n P 
1 
(t,k ) , . . . , δr (t, k ) I n P r (t,k ) 

) . δj ( t , k ), for

j = 1 , . . . , r, are time-varying scalar parameters that are not

nown a priori, but are assumed to be measurable at each dis-

rete time-step t . The parameter states are partitioned into r

ector-valued channels conformably with the partitioning of �( t ,

 ), i.e., α(t, k ) = [ α∗
1 
(t, k ) α∗

2 
(t, k ) . . . α∗

r (t, k )] 
∗

and β(t, k ) =
 β∗
1 
(t, k ) β∗

2 
(t, k ) . . . β∗

r (t, k )] 
∗
, where αj ( t , k ) and β j ( t , k ) share

he dimension n P 
j 
(t, k ) . The formulation allows for a local de-

endence of the state-space matrices on the parameters: differ-

nt subsystems may depend on different parameters; and if two

ubsystems are affected by the same parameters, the evolution

f the parameters is assumed to be independent in each sub-

ystem. Denote by r k the number of parameters that affect G 

( k ) .

hen, r = max k ∈ V r k . If r k 0 < r for some k 0 ∈ V , then δ j (t, k 0 ) = 0

nd n P 
j 
(t, k 0 ) = 0 for all t ∈ Z and j = r k 0 + 1 , . . . , r. Each subsystem

as its own actuating and sensing capabilities. The control inputs

nd the output measurements of G 

( k ) are denoted by u ( t , k ) and

 ( t , k ), respectively, and their corresponding dimensions are given

y n u ( t , k ) and n y ( t , k ). 

The interconnections between the subsystems are modeled as

patial states. The spatial state x ( t , ρ ( k )) is associated with the
i i 
dge ( k , ρ i ( k )), i.e., the outgoing edge from vertex k along permu-

ation ρ i . The dimension of x i ( t , ρ i ( k )) is denoted by n 
S 
i 
(t, ρi (k )) .

imilarly, the spatial state x i ( t , k ) with dimension n S 
i 
(t, k ) corre-

ponds to the edge (ρ−1 
i 

(k ) , k ) , i.e., the incoming edge to vertex k

long permutation ρ i . The spatial states associated with the virtual

dges are of zero dimensions for all time-steps since the virtual

dges are not present in the actual interconnection structure and

re only added to render the directed graph d -regular. Due to the

ommunication latency, the data sent by a subsystem at the cur-

ent time-step reaches the target subsystem at the next time-step.

hen, for all (t, k ) ∈ Z ×V, the state-space equations of system G δ
re given by 

 

 

 

 

 

 

 

x T ( t + 1 , k ) 
x 1 ( t + 1 , ρ1 (k ) ) 

. . . 
x d ( t + 1 , ρd (k ) ) 

α( t, k ) 
y ( t, k ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

Ā T T (t, k ) Ā T S (t, k ) Ā T P (t, k ) B̄ T (t, k ) 

Ā ST (t, k ) Ā SS (t, k ) Ā SP (t, k ) B̄ S (t, k ) 

Ā PT (t, k ) Ā PS (t, k ) Ā PP (t, k ) B̄ P (t, k ) 

C̄ T (t, k ) C̄ S (t, k ) C̄ P (t, k ) D̄ (t, k ) 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

x T ( t, k ) 
x 1 ( t, k ) 

. . . 
x d ( t, k ) 
β( t, k ) 
u ( t, k ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

(t, k ) = diag 
(
δ1 (t, k ) I n P 

1 
(t,k ) , . . . , δr (t, k ) I n P r (t,k ) 

)
α(t, k ) 

= �(t, k ) α(t, k ) . (1) 

Fig. 1 shows a distributed NSLPV system and the graph defining

ts interconnection structure. The dashed red arrows correspond to

he virtual edges added to render the graph 2-regular. The permu-

ations and the spatial states are specified in the figure. The oper-

tor S 0 marks the communication latency. 

The state-space matrices are known a priori, are assumed to be

niformly bounded, and are partitioned conformably with the per-

utations and the blocks of �( t , k ): 

Ā ST (t, k ) = 

⎡ 

⎣ 

A ST 1 (t, k ) 
. . . 

A ST 
d 

(t, k ) 

⎤ 

⎦ , Ā PT (t, k ) = 

⎡ 

⎣ 

A PT 1 (t, k ) 
. . . 

A PT r (t, k ) 

⎤ 

⎦ , 

B̄ S (t, k ) = 

⎡ 

⎣ 

B S 1 (t, k ) 
. . . 

B S 
d 
(t, k ) 

⎤ 

⎦ , B̄ P (t, k ) = 

⎡ 

⎣ 

B P 1 (t, k ) 
. . . 

B P r (t, k ) 

⎤ 

⎦ , 

C̄ S (t, k ) = 

[
C S 1 (t, k ) · · · C S 

d 
(t, k ) 

]
, 

C̄ P (t, k ) = 

[
C P 1 (t, k ) · · · C P r (t, k ) 

]
, 

Ā T S (t, k ) = 

[
A T S 1 (t, k ) · · · A T S 

d 
(t, k ) 

]
, 

¯
 T P (t, k ) = 

[
A T P 1 (t, k ) · · · A T P r (t, k ) 

]
, 

Ā SS (t, k ) = 

[
A SS ie (t, k ) 

]
i =1 , ... ,d;e =1 , ... ,d 

, 

Ā SP (t, k ) = 

[
A SP i j (t, k ) 

]
i =1 , ... ,d ; j =1 , ... ,r 

, 

Ā PS (t, k ) = 

[
A PS ji (t, k ) 

]
j=1 , ... ,r;i =1 , ... ,d 

, 

Ā PP (t, k ) = 

[
A PP j f (t, k ) 

]
j=1 , ... ,r; f=1 , ... ,r 

. 

he partitions Ā T T (t, k ) , A 
T S 
1 

(t, k ) , and so on define graph-diagonal

perators, e.g., A TT , A 
T S 
1 

, which in turn, when augmented in the ob-

ious way, form partitioned graph-diagonal operators A , B , and C
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Fig. 1. A distributed NSLPV system (right) and the graph defining its interconnection structure (left). 
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such that 

[[ A ]](t, k ) = 

⎡ 

⎣ 

Ā T T (t, k ) Ā T S (t, k ) Ā T P (t, k ) 

Ā ST (t, k ) Ā SS (t, k ) Ā SP (t, k ) 

Ā PT (t, k ) Ā PS (t, k ) Ā PP (t, k ) 

⎤ 

⎦ , 

[[ B ]](t, k ) = 

[ 

B̄ T (t, k ) 

B̄ S (t, k ) 

B̄ P (t, k ) 

] 

, 

[[ C]](t, k ) = 

[
C̄ T (t, k ) C̄ S (t, k ) C̄ P (t, k ) 

]
. 

The matrices D̄ (t, k ) define the graph-diagonal operator D

such that [[ D ]](t, k ) = D̄ (t, k ) . For j = 1 , . . . , r, define the graph-

diagonal operators �j , where � j (t, k ) = δ j (t, k ) I n P 
j 
(t,k ) , and con-

struct �P = diag (�1 , . . . , �r ) such that [[�P ]](t, k ) = �(t, k ) . Let

S = diag (S 0 , S 0 S 1 , . . . , S 0 S d , I 
(n P 

1 
, ... ,n P r ) ) be the composite-shift oper-

ator and define the partitioned graph-diagonal operator � =
diag (I n T , I (n 

S 
1 
, ... ,n S 

d 
) 
, �P ) . The graph-diagonal operator I q satisfies

[[ I q ]](t, k ) = I q (t,k ) , and the partitioned graph-diagonal operator

I (q 1 , ... ,q m ) is defined as I (q 1 , ... ,q m ) = diag (I q 1 , . . . , I q m ) . Eq. (1) are

rewritten in compact operator form as [
x 
β

]
= �SA 

[
x 
β

]
+ �SB u, y = C 

[
x 
β

]
+ Du, 

x = 

[
x ∗T x ∗1 · · · x ∗

d 

]∗
and β = 

[
β∗
1 · · · β∗

r 

]∗
. (2)

� is restricted to � = { � : ‖ �‖ ≤ 1 } . We use the quintuple ( A , B ,

C , D , �) to denote the realization of system G δ described by (2) .

For a fixed �∈ �, the input-output map of system G δ can be writ-

ten as G δ = � 
 

[
SA SB 

C D 

]
= C(I − �SA ) −1 �SB + D, assuming that the

inverse exists. The distributed NSLPV system G δ is then defined as

G δ = { G δ : � ∈ �} . 

Remark 1 [ 1 , Lemma 1] . G δ is well-posed if I − �SA has a

causal inverse on � 2 e ({ R 

n T (t,k ) } ) � (�d 
i =1 

� 2 e ({ R 

n S 
i 
(t,k ) } )) � (�r 

j=1 
� 2 e 

({ R 

n P 
j 
(t,k ) } )) , hereafter simply � 2 e , for all �∈ �. G δ is well-posed

if [[ A ]](t, k ) = 0 for all k ∈ V and t < 0 and if I − �P A PP has a causal

inverse on �r 
j=1 

� 2 e ({ R 

n P 
j 
(t,k ) } ) for all �∈ �, where the partitioned

graph-diagonal operator A PP is partitioned conformably with �P 

and satisfies [[ A PP ]](t, k ) = Ā PP (t, k ) for all (t, k ) ∈ Z ×V . Hereafter,

all the state-space matrices are assumed to be zeros for t < 0. 

Definition 1. System G δ is said to be � 2 -stable if I − �SA has a

bounded causal inverse for all �∈ �. 
Next, we give a sufficient condition for the � 2 -stability of sys-

em G δ . Let 

 = 

{
X : X = diag 

(
X T , X 

S 
1 , . . . , X 

S 
d , X 

P 
1 , . . . , X 

P 
r 

)
, 

here X T , X 
S 
i , X 

P 
j are bounded graph-diagonal operators 

or i = 1 , . . . , d and j = 1 , . . . , r, 

 

−1 ∈ L 

(
� 2 ({ R 

n T (t,k ) } ) �(�i � 2 ({ R 

n S 
i 
(t,k ) } ) )�

(
� j � 2 ({ R 

n P 
j 
(t,k ) } ) ))},

nd let X = { X : X = X ∗ ∈ T , X 
 0 } . The se ts T and X are com-

utants of �. 

emma 1 [ 1 , Lemma 2 and Theorem 1] . G δ is � 2 -stable if there ex-

sts X ∈ X , or equivalently X 
0 in the commutant of �, such that 

 

∗S ∗X SA − X ≺ 0 . (3)

Let X be in X . (3) can be written in terms of the following

quivalent sequences of linear matrix inequalities (LMIs). For all

(t, k ) ∈ Z ×V, i = 1 , . . . , d, and j = 1 , . . . , r, and some scalar β > 0: 

 T (t, k ) 
 βI, X S i (t, k ) 
 βI, X P j (t, k ) 
 βI, 

[ A ∗]](t, k )[[ S ∗X S]](t, k )[[ A ]](t, k ) − [[ X ]](t, k ) ≺ −βI , 

[ X ]](t, k ) = diag (X T (t, k ) , X 
S 
1 (t, k ) , . . . , X 

S 
d (t, k ) , 

X P 1 (t, k ) , . . . , X 
P 
r (t, k )) , 

[ S ∗X S]](t, k ) = diag (X T (t + 1 , k ) , X S 1 (t + 1 , ρ1 (k )) , . . . , 

X S d (t + 1 , ρd (k )) , X 
P 
1 (t, k ) , . . . , X 

P 
r (t, k )) . 

he βI terms ensure that the sequences on the left-hand side of

he inequalities do not converge to singular matrices as t → ∞ . Due

o the explicit dependence on time in the state-space equations

f the subsystems, there is an infinite sequence of LMIs associ-

ted with each G 

( k ) . The sequences corresponding to various sub-

ystems are coupled through the spatial terms X S 
i 
. The parameter

erms X P 
j 
(t, k 0 ) only appear in the LMI sequence associated with

 

(k 0 ) due to the local dependence of the state-space matrices on

he parameters. Since the state-space matrices are assumed to be

eros for negative time-steps, then the sequences of LMIs are triv-

al for t < 0, and t can be restricted to N 0 . Moreover, if the sub-

ystems are ( h , q )-eventually time-periodic for some integers h ≥0

nd q > 0, i.e., for all t, z ∈ N 0 and k ∈ V , the state-space matrices

atisfy [[ Z]](t + h + zq, k ) = [[ Z]](t + h, k ) , Z ∈ { A , B , C , D }, then us-

ng the averaging techniques of [8,13] , we can show that a solu-

ion X ∈ X to (3) exists if and only if an ( h , q )-eventually time-

eriodic solution X eper exists. Thus, in the case of ( h , q )-eventually

ime-periodic subsystems, we restrict t to the finite time-horizon

 and the first time-period, i.e., 0 ≤ t ≤ h + q − 1 , when evaluating

he sequences of LMIs equivalent to (3) . 

Since (3) is only a sufficient condition for � 2 -stability, there ex-

st � -stable systems for which a solution in X to (3) does not ex-
2 
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A

st. Systems which possess structured solutions to (3) are said to

e strongly stable. 

emma 2 [ 1 , Lemma 3 and Theorem 1] . System G δ is strongly

table and satisfies ‖ G δ‖ < γ for all �∈ � if there exists X ∈ X , or

quivalently, X 
0 in the commutant of �, such that 

 

 

 

 

−
[
X 0 

0 γ 2 I 

] [
SA SB 
C D 

]∗

[
SA SB 
C D 

]
−
[
X −1 0 
0 I 

]
⎤ 

⎥ ⎥ ⎦ 

≺ 0 . (4) 

Clearly, the size of G δ and the size of the analysis problems in-

rease with the number of subsystems, interconnections, and pa-

ameters, as well as the dimensions of the corresponding tempo-

al, spatial, and parameter states. This makes model reduction very

seful, sometimes even necessary, for reducing the computational

omplexity of the problems at hand. Specifically, a reduced-order

ystem G red ,δ is sought which approximates the behavior of G δ and

reserves the interconnection and uncertainty structures of G δ, i.e.,
 red ,δ is a distributed NSLPV system whose interconnection struc-

ure is described using the same graph as G δ and where the LFT

ormulation of the subsystems retains the same partitioning of the

-operator. 

. Balanced truncation 

This section treats the BT method. The notion of a balanced re-

lization for a distributed NSLPV system is defined, and strongly

table systems are shown to admit a balanced realization. The

educed-order system resulting from BT is proved to be strongly

table with a balanced realization, and upper bounds on the � 2 -

nduced norm of the error system are derived. The results of this

ection generalize their counterparts for single NSLPV systems in

 10 , Lemmas 9 and 10 and Theorems 12, 13, and 17] and for dis-

ributed LTV systems in [ 2 , Algorithm 1, Lemma 3, and Theorems 1

nd 2]. If only one subsystem is considered, the results of [10] are

ecovered; and if the operator � is fixed and known a priori, the

istributed NSLPV system reduces to a distributed LTV system and

he results of [2] are recovered. Theorem 3 does not have a coun-

erpart in [2] and remains novel when specialized to the class of

ystems therein; [ 2 , Theorem 3] only applies when the truncation

equences are monotonic in time, whereas Theorem 3 applies for

eneral truncation sequences. 

.1. Balanced realization 

efinition 2. A realization ( A , B , C , D , �) of G δ is said to be bal-

nced with balanced generalized gramian � if there exists � =
 = Y ∈ X that satisfies 

X A ∗ − S ∗X S + BB ∗ ≺ 0 , (5) 

 

∗S ∗Y SA − Y + C ∗C ≺ 0 , (6) 

nd for each (t, k ) ∈ Z ×V, [[�]] ( t , k ) is a diagonal matrix. 

(5) and (6) are called the generalized Lyapunov inequalities and 

an be solved separately in order to obtain generalized gramians X

nd Y in X . [[ X]] ( t , k ) and [[ Y ]] ( t , k ) need not be diagonal matrices. 

emma 3. A strongly stable system G δ admits a balanced realization

 A bal , B bal , C bal , D , �) . 

roof. For a strongly stable system, there exists a solution P ∈ X 

o (3) , and equivalently, due to the homogeneity and scalability

f (3) , there exist solutions X ∈ X and Y ∈ X to (5) and (6) , re-

pectively. X and Y are used to construct a balanced realization
or G δ and a balanced generalized gramian � as follows. First, we

erform the Cholesky factorizations X = R ∗R and Y = H 

∗H. Then,

e perform the singular value decomposition HR ∗ = U�V ∗, where

 and V are in T . We define the balancing transformation T =
−1 / 2 U 

∗H ∈ T and its inverse T −1 = R ∗V �−1 / 2 ∈ T . � can then be

xpressed as � = T XT ∗ = (T ∗) −1 Y T −1 . � simultaneously satisfies

5) and (6) for the realization ( A bal , B bal , C bal , D , �) of G δ, where

 bal = (S ∗T S) AT −1 , B bal = (S ∗T S) B, and C bal = CT −1 . Because of the

tructure imposed on T and X , the previous computations are per-

ormed block-wise, e.g., X T = (R T ) 
∗R T , Y T = (H T ) 

∗H T , and so on. �

�, A bal , B bal , and C bal in the previous proof depend on

he generalized gramians X and Y used in the balancing

rocedure. For model reduction purposes, generalized grami-

ns with minimum traces are sought, e.g., the solution X ∈
 to (5) which minimizes 

∑ 

(t,k ) ( tr X T (t, k ) + 

∑ d 
i =1 tr X 

S 
i 
(t, k ) +

 r 
j=1 tr X 

P 
j 
(t, k )) . See Section 6 for more details. 

.2. Balanced truncation 

Consider a strongly stable system G δ with a balanced real-

zation ( A , B , C , D , �) and a balanced generalized gramian � =
iag (�T , �

S 
1 
, . . . , �S 

d 
, �P 

1 
, . . . , �P 

r ) , which is to be reduced via BT.

o determine which state variables to truncate, one looks at the

ntries of � and their relative order, the value of γ in Lemma 2 ,

nd the error bounds from Theorems 2 and 3 . Since � has a block-

iagonal structure and contains temporal terms �T ( t , k ), spatial

erms �S 
i 
(t, k ) , and parameter terms �P 

j 
(t, k ) , then the BT method

llows for the truncation of each temporal, spatial, and parameter

tate individually. Truncation need not be uniform in time, i.e., one

ay truncate different numbers of variables from a particular state

t different time-steps. 

We focus on �T and repeat similar steps for �S 
i 

and �P 
j 
for

 = 1 , . . . , d and j = 1 , . . . , r. For each (t, k ) ∈ Z ×V, �T ( t , k ) is an

 T ( t , k ) ×n T ( t , k ) positive definite, diagonal matrix. Without loss

f generality, we assume that the entries of �T ( t , k ) are sorted

n a decreasing order with the largest value in the first entry.

enote the dimensions of the reduced temporal states by m T ( t ,

 ), where 0 ≤m T ( t , k ) ≤n T ( t , k ). We partition �T ( t , k ) into two

locks as in �T (t, k ) = diag ( 
T (t, k ) , �T (t, k ) ) , where 
T ( t , k ) is

n m T ( t , k ) ×m T ( t , k ) matrix. If m T (t 0 , k 0 ) = 0 for some (t 0 , k 0 ) ∈
 ×V, then 
T ( t 0 , k 0 ) is nonexistent. Similarly, if n T (t 0 , k 0 ) −
 T (t 0 , k 0 ) = 0 , then �T ( t 0 , k 0 ) is nonexistent. 
T ( t , k ) and �T ( t ,

 ) define graph-diagonal operators denoted by 
T and �T . The

ethod also allows for the reduction of the dimensions of the

patial and the parameter states. The dimensions of the spa-

ial and the parameter states in the reduced-order system are

iven by m 

S 
i 
(t, k ) and m 

P 
j 
(t, k ) , respectively, where 0 ≤ m 

S 
i 
(t, k ) ≤

 

S 
i 
(t, k ) and 0 ≤ m 

P 
j 
(t, k ) ≤ n P 

j 
(t , k ) . The case, m 

S 
i 0 
(t , k 0 ) = 0 for all

ime-steps t ∈ Z , corresponds to the removal of the interconnec-

ion (ρ−1 
i 0 

(k 0 ) , k 0 ) altogether from the graph of G red ,δ . Similarly,

he case, m 

P 
j 0 
(t, k 0 ) = 0 for all time-steps, corresponds to the re-

oval of the channel � j 0 
(t, k 0 ) from �( t , k 0 ) in G red ,δ . We de-

ne the operators 
 = diag 
(

T , 


S 
1 
, . . . , 
S 

d 
, 
P 

1 
, . . . , 
P 

r 

)
and � =

iag 
(
�T , �

S 
1 
, . . . , �S 

d 
, �P 

1 
, . . . , �P 

r 

)
. 
 and � are associated with 

he non-truncated and truncated blocks of �, respectively. We

ow partition the state-space matrices into non-truncated por-

ions, which we mark with a hat, and truncated portions, con-

ormably with the partitioning of �T = [[ diag (
T , �T )]] , �S 
i 

=
[ diag (
S 

i 
, �S 

i 
)]] , and �P 

j 
= [[ diag (
P 

j 
, �P 

j 
)]] . For instance, 

¯
 T S (t, k ) = 

[
A T S 1 (t, k ) · · · A T S 

d 
(t, k ) 

]
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L  
= 

[ [ 

ˆ A T S 1 (t, k ) A T S 1 , 12 (t, k ) 

A T S 1 , 21 (t, k ) A T S 1 , 22 (t, k ) 

] 

· · ·
[ 

ˆ A T S 
d 

(t, k ) A T S 
d, 12 

(t, k ) 

A T S 
d, 21 

(t, k ) A T S 
d, 22 

(t, k ) 

] ] 

,

Ā SS (t, k ) = 

[
A SS ie (t, k ) 

]
i =1 , ... ,d;e =1 , ... ,d 

= 

[ [ 

ˆ A SS 
ie 

(t, k ) A SS 
ie, 12 

(t, k ) 

A SS 
ie, 21 

(t, k ) A SS 
ie, 22 

(t, k ) 

] ] 

i =1 , ... ,d;e =1 , ... ,d 

, 

Ā T P (t, k ) = 

[
A T P 1 (t, k ) · · · A T P r (t, k ) 

]
= 

[ [ 

ˆ A T P 1 (t, k ) A T P 1 , 12 (t, k ) 

A T P 1 , 21 (t, k ) A T P 1 , 22 (t, k ) 

] 

· · ·
[ 

ˆ A T P r (t, k ) A T P r, 12 (t, k ) 

A T P r, 21 (t, k ) A T P r, 22 (t, k ) 

] ] 

, 

Ā PP (t, k ) = 

[
A PP j f (t, k ) 

]
j=1 , ... ,r; f=1 , ... ,r 

= 

[ [ 

ˆ A PP 
j f 

(t, k ) A PP 
j f, 12 

(t, k ) 

A PP 
j f, 21 

(t, k ) A PP 
j f, 22 

(t, k ) 

] ] 

j=1 , ... ,r; f=1 , ... ,r 

, 

where ˆ A T S 
i 

(t, k ) is an m T (t + 1 , k ) × m 

S 
i 
(t , k ) matrix, ˆ A SS 

ie 
(t , k ) is

an m 

S 
i 
(t + 1 , ρi (k )) × m 

S 
e (t, k ) matrix, ˆ A T P 

j 
(t, k ) is an m T (t + 1 , k ) ×

m 

P 
j 
(t, k ) matrix, and ˆ A PP 

j f 
(t, k ) is an m 

P 
j 
(t, k ) × m 

P 
f 
(t, k ) matrix. The

partitioning of the state-space matrices is performed at the level of

the most elemental blocks, e.g., we do not partition Ā T S (t, k ) , but

rather, we partition A T S 
i 

(t, k ) into a non-truncated block ˆ A T S 
i 

(t, k )

and other truncated blocks. 

The non-truncated blocks, e.g., ˆ A T T (t , k ) , ˆ A 
T S 
i 

(t , k ) , define graph-

diagonal operators, e.g., ˆ A T T , ˆ A 
T S 
i 

, which, when augmented in the

obvious way, form the reduced-order system operators A red , B red ,

and C red . D red is set equal to D . We also define 

�red = diag 
(
I m T , I (m 

S 
1 , ... ,m 

S 
d 
) , ˆ �P 

)
, where ˆ �P = diag 

(
ˆ �1 , . . . , ˆ �r 

)
, 

(7)

and ˆ � j are graph-diagonal operators that satisfy ˆ � j (t, k ) =
δ j (t, k ) I m 

P 
j 
(t,k ) for j = 1 , . . . , r. The realization of the reduced-order

system G red ,δ is thus given by ( A red , B red , C red , D , �red ), where

�red = { �red = P �P 

∗ : � ∈ �} and P is an appropriately defined

operator that results in (7) . BT is said to be structure-preserving

since the interconnection structure of G red ,δ is the same as the

interconnection structure of G δ, with the spatial states having

smaller or equal dimensions, and the structure of the �red -

operator in G red ,δ is the same as the structure of the �-operator

in G δ, with the parameter states having smaller or equal dimen-

sions. The method is also structure-simplifying because the spatial

states and the parameter states in G red ,δ are allowed to have zero

dimensions. 

Lemma 4. The reduced-order system G red ,δ is strongly stable, and its

given realization is balanced. 

Proof. There exists a unique partitioned graph-diagonal operator

Q such that Q 

∗�Q = diag (
, �) , Q Q 

∗ = I, and Q 

∗Q = I. The reader

is referred to Appendix A for the detailed structure of the op-

erator Q . It is also not difficult to see that Q satisfies Q 

∗�Q =
diag (�red , �̄2 ) = 

¯̄�, 

Q 

∗SAQ = 

[
S 0 
0 S 

][
A red Ā 12 
Ā 21 Ā 22 

]
= 

˜ S ̄̄A, 

Q 

∗SB = 

[
S 0 
0 S 

][
B red 
B̄ 2 

]
= 

˜ S ̄̄B, CQ = 

[
C red C̄ 2 

]
= 

¯̄C, 

where Ā 12 , Ā 21 , Ā 22 , B̄ 2 , C̄ 2 , and �̄2 are appropriately defined par-

titioned graph-diagonal operators. 

With � satisfying (5) and (6) , pre- and post-multiplying (5) by
˜ S ∗Q 

∗S and S ∗Q ̃

 S , respectively, and (6) by Q 

∗ and Q , respectively, we
et 

¯̄
 diag (
, �) ̄̄A ∗ − ˜ S ∗diag (
, �) ̃  S + 

¯̄B ̄̄B ∗ ≺ 0 , (8)

¯̄
 

∗ ˜ S ∗diag (
, �) ̃  S ̄̄A − diag (
, �) + 

¯̄C ∗ ¯̄C ≺ 0 . (9)

rom (8) and (9) , A red 
A ∗
red 

− S ∗
S + B red B 
∗
red 

≺ 0 and A ∗
red 

S ∗
SA red

 + C ∗

red 
C red ≺ 0 . Thus, G red ,δ is strongly stable, and its given re-

lization is balanced with a balanced generalized gramian 
. �

4.3. Error bounds 

Consider a strongly stable system G δ with a balanced realiza-

ion ( A , B , C , D , �) and a balanced generalized gramian �, and

enote the reduced-order model obtained from BT by G red ,δ with

alanced realization ( A red , B red , C red , D , �red ) and balanced gener-

lized gramian 
. We now derive expressions for the upper bound

n the � 2 -induced norm of the resulting error system. 

heorem 1. If � = I, i.e., for all i = 1 , . . . , d, j = 1 , . . . , r, and (t, k ) ∈
 ×V, �T (t, k ) = I, �S 

i 
(t, k ) = I, and �P 

j 
(t, k ) = I, then ‖ (G δ −

G red ,δ ) ‖ < 2 for all �∈ �. 

roof. Since G δ and G red ,δ are strongly stable systems, then so is

he error system E δ = { 1 2 (G δ − G red ,δ ) : � ∈ �} . Recalling the deno-
ations ˜ S , ¯̄A, ¯̄B, ¯̄C, and ¯̄� defined in Lemma 4 , one can see that 

1 

2 

(
G δ − G red ,δ

)
= 

[
�red 0 

0 ¯̄�

]

 

⎡ 

⎢ ⎢ ⎣ 

SA red 0 1 √ 

2 
SB red 

0 ˜ S ̄̄A 1 √ 

2 
˜ S ̄̄B 

− 1 √ 

2 
C red 

1 √ 

2 

¯̄C 0 

⎤ 

⎥ ⎥ ⎦ 

. 

s per Lemma 2 , we show that ‖ 1 2 (G δ − G red ,δ ) ‖ < 1 for all

∈ � by constructing an operator V 
 0 that commutes with

iag (�red , 
¯̄�) for all �∈ � and satisfies (4) for the given real-

zation of system E δ . By direct application of the Schur comple-

ent formula twice to (8) and (9) , we verify that 

[
−R 1 K ∗

K −S ∗a R 2 S a 

]
≺

0 , where S a = diag ( ̃  S , I, ̃  S ) , R i = diag (
−1 , �−1 , I q i , 
, �) , q 1 = n u ,

 2 = n y , and K = 

[ 
0 0 ¯̄A 

0 0 ¯̄C 

¯̄A ¯̄B 0 

] 
. Let 

 = 

1 √ 

2 

⎡ 

⎢ ⎢ ⎣ 

−I 0 0 I 0 
I 0 0 I 0 
0 I 0 0 I 

0 0 
√ 

2 I n y 0 0 
0 −I 0 0 I 

⎤ 

⎥ ⎥ ⎦ 

nd 

 = 

1 √ 

2 

⎡ 

⎢ ⎢ ⎣ 

I I 0 0 0 
0 0 I 0 I 

0 0 0 
√ 

2 I n u 0 
−I I 0 0 0 
0 0 I 0 −I 

⎤ 

⎥ ⎥ ⎦ 

. 

e pre- and post-multiply the previous inequality by diag( P ∗,

 ) and diag( P , L ∗), respectively, to obtain 
[

−P ∗R 1 P P ∗K ∗L ∗

LKP −LS ∗a R 2 S a L ∗

]
≺ 0 ,

here 

KP = 

[
M N 12 

N 21 N 22 

]
= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

A red 0 0 1 √ 

2 
B red Ā 12 

0 A red Ā 12 
1 √ 

2 
B red 0 

0 Ā 21 Ā 22 
1 √ 

2 
B̄ 2 0 

−1 √ 

2 
C red 

1 √ 

2 
C red 

1 √ 

2 
C̄ 2 0 −1 √ 

2 
C̄ 2 

Ā 21 0 0 1 √ 

2 
B̄ 2 Ā 22 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

.
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G  
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α
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(  

g

[

f  

e  
ince � = I and S ∗S = I, then 

 

∗R 1 P = diag 

(
1 

2 

[

−1 + 
 
−1 − 


−1 − 
 
−1 + 


]
, diag ( I , I n u , I ) 

)
nd 

S ∗a R 2 S a L 
∗ = diag 

(
1 

2 

[
S ∗(
−1 + 
) S S ∗(
 − 
−1 ) S 
S ∗(
 − 
−1 ) S S ∗(
−1 + 
) S 

]
, diag (I , I n y , I ) 

)
.

et 

 = 

1 

2 
diag 

([

−1 + 
 
−1 − 


−1 − 
 
−1 + 


]
, 2 I 

)
. 

satisfies 
 

 

 

 

 

 

−
[
V 0 
0 I n u 

]
M 

∗

M −

⎡ 

⎣ 

[
S 0 

0 ˜ S 

]∗
V −1 

[
S 0 

0 ˜ S 

]
0 

0 I n y 

⎤ 

⎦ 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

≺ 0 

nd V 
 0 and commutes with all diag (�red , 
¯̄�) . By Lemma 2 ,

 

1 
2 (G δ − G red ,δ ) ‖ < 1 for all �∈ �. �

The error bound for the case of a general � is given

ext. The theorem follows by scaling and repeated application

f Theorem 1 as detailed in [ 2 , Proof of Theorem 2]; and

emma 4 ensures that BT is applicable to the resulting interme-

iate reduced-order systems. 

heorem 2. The reduced-order system G red ,δ satisfies ‖ (G δ −
 red ,δ ) ‖ < 2�(�) for all �∈ �. 

The bound in Theorem 2 can become infinitely large as the

umber of distinct entries in � increases. If the system is strongly

table and the subsystems are ( h , q )-eventually time-periodic, then

here exists an ( h , q )-eventually time-periodic balanced realiza-

ion for the system and an ( h , q )-eventually time-periodic balanced

eneralized gramian �eper . The realization of the reduced-order

ystem obtained from BT is also ( h , q )-eventually time-periodic.

n this case, when evaluating �( �eper ), t is restricted to the finite

ime-horizon h and the first time-period, i.e., 0 ≤ t ≤ h + q − 1 . If,

n addition, the graph is finite, i.e., V and E are finite sets, then

( �eper ) is guaranteed to be finite. As demonstrated in the ex-

mple, heuristics can be used in order to increase the number

f small and equal entries in �eper , thereby increasing the effec-

iveness of Theorem 2 . Next, we derive an alternative expression

or the error bound which can be less conservative than the ex-

ression in Theorem 2 for general NSLPV subsystems. The coun-

erparts of the following result for single LTV systems and single

SLPV systems are found in [ 22 , Theorem 2] and [ 10 , Theorem 17],

espectively. For all k ∈ V , i = 1 , . . . , d, and j = 1 , . . . , r, we define

he sets F T (k ) = { t ∈ N 0 : m T (t, k ) � = n T (t, k ) } , F 

S 
i 
(k ) = { t ∈ N 0 :

 

S 
i 
(t, k ) � = n S 

i 
(t, k ) } , and F 

P 
j 
(k ) = { t ∈ N 0 : m 

P 
j 
(t, k ) � = n P 

j 
(t, k ) } . 

efinition 3 [ 10 , Definition 14] . Consider a scalar sequence αt de-

ned on a subset W of N 0 , and let t min = min { t : t ∈ W} . We define

he following rule which extends the domain of definition of αt to

ll t ∈ Z : 

t = 

{
αt min 

if t ≤ t min , 

αe if t > t min , where e = max { τ ≤ t : τ ∈ W } . 
efinition 4 [ 22 , Definition 1] . Consider a scalar sequence v =

(v 1 , v 2 , . . . , v s ) for some integer s ≥1, where v 1 cannot be consid-
red as a local maximum and v s cannot be considered as a local
inimum. Then, the sequence v has l local maxima and l local

inima for some l ∈ N . If l ≥1, we denote the local maxima and
0 
α  
ocal minima by v max ,e and v min ,e for e = 1 , . . . , l. The min-max ra-

io S v of the sequence v is defined as follows: 

 v = 

{ 

v 1 if l = 0 , 

v 1 
∏ l 

e =1 

(
v max ,e 

v min ,e 

)
if l > 0 . 

heorem 3. If �T (t, k ) = w T (t, k ) I for t ∈ F T (k ) , �S 
i 
(t, k ) =

 

S 
i 
(t, k ) I for t ∈ F 

S 
i 
(k ) , �P 

j 
(t, k ) = w 

P 
j 
(t, k ) I for t ∈ F 

P 
j 
(k ) , and

 T (k ) , F 

S 
i 
(k ) , F 

P 
j 
(k ) are finite sets for all k ∈ V , i = 1 , . . . , d, and

j = 1 , . . . , r, then 

 (G δ − G red ,δ ) ‖ < 2 
∑ 

k ∈ V 

( 

S w T (t,k ) + 

d ∑ 

i =1 

S w S 
i 
(t,k ) + 

r ∑ 

j=1 

S w P 
j 
(t,k ) 

) 

or all � ∈ �. (10) 

roof. The result is proved for the special case where only one

tate is truncated, e.g., the temporal state x T ( t , k 0 ). The general

ase then follows by repeated application of this special result.

ithout loss of generality, assume that w T (t, k 0 ) ≤ 1 for all t ∈
 T (k 0 ) . This assumption can be ensured by scaling system G δ . Sup-
ose that the sequence, w T (t, k 0 ) ≤ 1 for all t ∈ F T (k 0 ) , has l lo-

al maxima and l local minima for some l ∈ N 0 , where the first

lement in the sequence cannot be considered as a local maxi-

um and the last element cannot be considered as a local mini-

um, as stipulated in Definition 4 . If l ≥1, then the set F T (k 0 ) is of

he form { t 1 , . . . , t min , 1 , . . . , t max , 1 , . . . , t max ,l , . . . , t s } . For e = 1 , . . . , l,

 min , e and t max , e denote the time-steps at which w T (t, k 0 ) reaches

ts local minima and local maxima, respectively. The domain of

 T (t, k 0 ) is extended to all t ∈ Z using Definition 3 . Note that

 T (t, k 0 ) = w T (t 1 , k 0 ) for t ≤ t 1 and w T (t, k 0 ) = w T (t s , k 0 ) for t ≥ t s .

or all (t, k ) ∈ Z ×V, we define the state transformation T = T ∗ ∈ T 
s 

[ T ]](t, k ) 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

w 

1 / 2 
T 

(t, k 0 ) I for t ≤ t min , 1 , 
w T (t min , 1 , k 0 ) 

×w 

−1 / 2 
T 

(t, k 0 ) I for t min , 1 + 1 ≤ t ≤ t max , 1 , 
w T (t min , 1 , k 0 ) 

×w 

−1 
T 

(t max , 1 , k 0 ) w 

1 / 2 
T 

(t, k 0 ) I for t max , 1 + 1 ≤ t ≤ t min , 2 , 
. . . 

. . . 

ρ w 

1 / 2 
T 

(t, k 0 ) I for t ≥ t max ,l + 1 , 

here ρ = 

∏ l 
e =1 

(
w T (t min ,e , k 0 ) w 

−1 
T 

(t max ,e , k 0 ) 
)
. Since �T ( t , k 0 ) 
βI

or some β > 0 and all t ∈ Z , then T and T −1 are bounded.

e define a new realization ( A new 

, B new 

, C new 

, D , �) for

 δ, where A new 

= (S ∗T S) AT −1 , B new 

= (S ∗T S) B, and C new 

= CT −1 ,

nd refer to system G δ with this new realization as sys-

em G new ,δ . We define operators P , Q , and W in T such

hat [[ P ]](t, k ) = w 

1 / 2 
T 

(t, k 0 ) I, [[ Q]](t, k ) = [[ T ]](t, k )[[ P ]](t, k ) −1 , and

[ W ]](t, k ) = [[ T ]](t, k )[[ P ]](t, k ) . For each k ∈ V , the sequences α1 ( t ,

 ), α2 ( t , k ), and α3 ( t , k ), where [[ T ]](t, k ) = α1 (t, k ) I, [[ Q]](t, k ) =
2 (t, k ) I, and [[ W ]](t, k ) = α3 (t, k ) I, are nonincreasing in t . 

The realization of G δ is balanced with the balanced generalized

ramian � satisfying both (5) and (6) . Pre- and post-multiplying

5) by S ∗TS and making use of the fact that T T −1 = T −1 T = I, we

et A new 

T � T A ∗new 

− (S ∗T S) (S ∗�S) (S ∗T S) + B new 

B ∗new 

≺ 0 , i.e., 

[ A new 

]] (t, k )[[ T ]](t, k )[[�]](t, k )[[ T ]](t, k )[[ A ∗new 

]](t, k ) 

− [[ S ∗T S]](t, k )[[ S ∗�S]](t, k )[[ S ∗T S]](t, k ) 

+ [[ B new 

]](t, k )[[ B ∗new 

]](t, k ) ≺ −βI 

or all (t, k ) ∈ Z ×V and some β > 0. Pre- and post-multiplying

ach inequality by [[ S ∗W S]](t, k ) −1 = α−1 
3 

(t + 1 , k ) I, where

3 (t, k ) = α1 (t, k ) w 

1 / 2 
T 

(t, k 0 ) , or equivalently, w 

−1 / 2 
T 

(t, k 0 ) =
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i  
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i  

f  
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t  
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T  

9

 

i  

a

 

t

 

u  

s  

I

α−1 
3 

(t, k ) α1 (t, k ) , we get 

[[ A new 

]] (t, k ) α1 (t, k ) α
−1 
3 (t + 1 , k ) [[�]](t, k ) 

×α1 (t, k ) α
−1 
3 (t + 1 , k ) [[ A ∗new 

]](t, k ) 

−w 

−1 
T (t + 1 , k 0 )[[ S 

∗�S]](t, k ) + α−1 
3 (t + 1 , k ) [[ B new 

]](t, k ) 

× [[ B ∗new 

]] (t, k ) α−1 
3 (t + 1 , k ) ≺ −βI. 

Since, for each k ∈ V , the sequence α3 ( t , k ) is nonincreasing in

t , i.e., 0 < α3 (t + 1 , k ) ≤ α3 (t, k ) ≤ w T (t 1 , k 0 ) and α−1 
3 

(t + 1 , k ) ≥
α−1 
3 

(t, k ) ≥ w 

−1 
T 

(t 1 , k 0 ) , one can verify that the following holds: 

[[ A new 

]] (t, k ) w 

−1 
T (t, k 0 ) [[�]](t, k ) [[ A ∗new 

]](t, k ) 

−w 

−1 
T (t + 1 , k 0 ) [[ S 

∗�S]](t, k ) 

+ w 

−1 
T (t 1 , k 0 ) [[ B new 

]](t, k )[[ B ∗new 

]](t, k ) w 

−1 
T (t 1 , k 0 ) ≺ −βI. (11)

Similarly, we pre- and post-multiply (6) by T −1 and insert

(S ∗T −1 S) ( S ∗T S ) = ( S ∗T S ) 
(
S ∗T −1 S 

)
= I as needed to get 

A ∗new 

(S ∗T −1 S)(S ∗�S)(S ∗T −1 S) A new 

− T −1 �T −1 + C ∗new 

C new 

≺ 0 , 

i.e., 

[[ A ∗new 

]] (t, k )[[ S ∗T −1 S]](t, k )[[ S ∗�S]](t, k )[[ S ∗T −1 S]](t, k ) 

× [[ A new 

]](t, k ) − [[ T ]](t, k ) −1 [[�]](t, k )[[ T ]](t, k ) −1 

+ [[ C ∗new 

]](t, k )[[ C new 

]](t, k ) ≺ −βI 

for all (t, k ) ∈ Z ×V and some β > 0. Pre- and post-multiplying

each inequality by [[ Q]](t, k ) = α2 (t, k ) I, and using the fact that

α2 (t, k ) = α1 (t, k ) w 

−1 / 2 
T 

(t, k 0 ) , i.e., α2 (t, k ) α
−1 
1 

(t, k ) = w 

−1 / 2 
T 

(t, k 0 ) ,

we get 

[[ A ∗new 

]] (t, k ) α2 (t, k ) α
−1 
1 (t + 1 , k ) 

× [[ S ∗�S]](t, k ) α−1 
1 (t + 1 , k ) α2 (t, k ) [[ A new 

]](t, k ) 

−w 

−1 
T (t, k 0 ) [[�]](t, k ) + α2 (t, k ) 

× [[ C ∗new 

]](t, k )[[ C new 

]](t, k ) α2 (t, k ) ≺ −βI. 

Since, for each k ∈ V , the sequence α2 ( t , k ) is nonincreasing in t , i.e.,

ρ ≤ α2 (t + 1 , k ) ≤ α2 (t, k ) , we obtain 

[[ A ∗new 

]] (t, k ) w 

−1 
T (t + 1 , k 0 )[[ S 

∗�S]](t, k )[[ A new 

]](t, k ) 

−w 

−1 
T (t, k 0 )[[�]](t, k ) + ρ[[ C ∗new 

]](t, k ) 

× [[ C new 

]](t, k ) ρ ≺ −βI. (12)

From (11) and (12) , one sees that the scaled realization

(A new 

, w 

−1 
T 

(t 1 , k 0 ) B new 

, ρC new 

, w 

−1 
T 

(t 1 , k 0 ) ρD, �) of G new ,δ is

balanced with balanced generalized gramian �new 

, where

[[�new 

]](t, k ) = w 

−1 
T 

(t, k 0 )[[�]](t , k ) . In particular, �new ,T (t , k 0 )

= w 

−1 
T 

(t, k 0 )�T (t, k 0 ) = I for all t ∈ F T (k 0 ) . We reduce system

G new ,δ via BT by only truncating the temporal state of subsys-

tem G 

(k 0 ) 
new 

at time-steps t ∈ F T (k 0 ) and denote the resulting

reduced-order system by G new , red ,δ . From Theorem 1 , we have

w 

−1 
T 

(t 1 , k 0 ) × ρ × ‖ (G new ,δ − G new , red ,δ ) ‖ < 2 , i.e., ‖ (G new ,δ −
G new , red ,δ ) ‖ < 2 S w T (t,k 0 ) for all �∈ �. Finally, because of the spe-

cial structure of T , ‖ (G δ − G red ,δ ) ‖ = ‖ (G new ,δ − G new , red ,δ ) ‖ for all
�∈ �. 

We now give the proof for the case l = 0 , i.e., when the se-

quence w T (t, k 0 ) is monotone nonincreasing in t ; see also [ 2 ,

Proof of Theorem 3]. The balancing transformation T is defined as

[[ T ]](t, k ) = w 

1 / 2 
T 

(t, k 0 ) I for all (t, k ) ∈ Z ×V . The realization ( A new 

,

B new 

, C new 

, D , �) of G new ,δ satisfies 

[[ A new 

]] (t, k ) w T (t, k 0 )[[�]](t, k )[[ A ∗new 

]](t, k ) 

−w T (t + 1 , k 0 )[[ S 
∗�S]](t, k ) + [[ B new 

]](t, k )[[ B ∗new 

]](t, k ) ≺ −βI, 

[[ A ∗new 

]] (t, k ) w 

−1 
T (t + 1 , k 0 )[[ S 

∗�S]](t, k )[[ A new 

]](t, k ) 

−w 

−1 (t, k 0 )[[�]](t, k ) + [[ C ∗new 

]](t, k )[[ C new 

]](t, k ) ≺ −βI. 
T 
ince w T (t, k 0 ) is nonincreasing in t , then 0 < w T (t + 1 , k 0 ) ≤
 T (t, k 0 ) and w 

−1 
T 

(t, k 0 ) ≤ w 

−1 
T 

(t + 1 , k 0 ) ; and since w T (t, k 0 ) ≤ 1

or all t ∈ Z , then w T (t, k 0 ) ≤ w 

−1 
T 

(t, k 0 ) . Thus, one can verify that 

[ A new 

]] (t, k ) w 

−1 
T (t, k 0 )[[�]](t, k )[[ A ∗new 

]](t, k ) − w 

−1 
T (t + 1 , k 0 ) 

× [[ S ∗�S]](t, k ) + [[ B new 

]](t, k )[[ B ∗new 

]](t, k ) ≺ −βI. 

hat is, the realization ( A new 

, B new 

, C new 

, D , �) of G new ,δ is

alanced with balanced generalized gramian �new 

such that

[�new 

]](t, k ) = w 

−1 
T 

(t, k 0 )[[�]](t , k ) . In particular, �new ,T (t , k 0 ) =
 

−1 
T 

(t, k 0 )�T (t, k 0 ) = I for all t ∈ F T (k 0 ) . We reduce the temporal

tate corresponding to subsystem G 

(k 0 ) 
new 

. Then, from Theorem 1 and

ue to the special structure of T , we have ‖ (G δ − G red ,δ ) ‖ =
 (G new ,δ − G new , red ,δ ) ‖ < 2 = 2 w T (t 1 , k 0 ) for all �∈ �. The final

quality follows from the fact that w T (t 1 , k 0 ) = 1 ; this is true since

he system is scaled to ensure that the monotone nonincreasing

equence w T (t, k 0 ) satisfies w T (t, k 0 ) ≤ 1 for all t ∈ F T (k 0 ) . �

We now illustrate the application of Theorems 2 and 3 .

uppose that we are only to truncate the temporal state x T ( t ,

 0 ) and that �T (t, k 0 ) = 

1 
t I, where t ∈ F T (k 0 ) = { 1 , 2 , 3 , 4 , 5 } . Us-

ng Theorem 2 , ‖ (G δ − G red ,δ ) ‖ < 2 × (1 + 

1 
2 + 

1 
3 + 

1 
4 + 

1 
5 ) ≈ 4 . 57

or all �∈ �. But, since w T (t, k 0 ) is a monotone decreas-

ng sequence, then from Theorem 3 , ‖ (G δ − G red ,δ ) ‖ < 2 × 1 = 2

or all �∈ �. This bound represents a 56% improvement over

he bound of Theorem 2 . For the same set F T (k 0 ) , assume

hat �T (1 , k 0 ) = diag (2 , 1) , �T (2 , k 0 ) = diag (17 , 0 . 5) , �T (3 , k 0 ) =
iag (4 , 2) , �T (4 , k 0 ) = diag (6 , 1) , �T (5 , k 0 ) = diag (16 , 4) . From

heorem 2 , ‖ (G δ − G red ,δ ) ‖ < 2 × (17 + 16 + 6 + 4 + 2 + 1 + 0 . 5) =
3 for all �∈ �, whereas from Theorem 3 , ‖ (G δ − G red ,δ ) ‖ < 2 ×

(2 × 17 
2 × 16 

4 + 1 × 2 
0 . 5 × 4 

1 ) = 168 . As illustrated below, this bound

s obtained by first truncating the boxed sequence (1, 0.5, 2, 1, 4)

nd then truncating the circled sequence (2, 17, 4, 6, 16). 

However, we can split the truncation sequences into more than

wo sequences as illustrated below: 

These sequences are truncated in the following order: the

nderlined sequence (1), the boxed sequence (0.5, 2, 4), the circled

equence (1, 17, 16), and the sequence (2, 4, 6) inside the triangles.

n this case, the bound from Theorem 3 becomes 2 × (1 + 0 . 5 ×
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4 
0 . 5 + 1 × 17 

1 + 2 × 6 
2 ) = 56 , which represents a 40% improvement

ver the bound from Theorem 2 . The same bound can be retrieved

y considering the truncation sequences (0.5, 1), (1, 2, 6, 4), (2, 4),

nd (17, 16), respectively. This raises the question of how to best

pply Theorem 3 to obtain the least conservative error bound. An-

wering this question is indeed a nontrivial task, and future work

ill focus on developing a fast computational algorithm which ef-

ectively applies Theorem 3 to compute a useful bound for a given

runcation sequence. One possible approach consists of modeling

he truncation sequence as a directed graph, where the vertices

orrespond to the truncated values and the directed edges are

btained from the allowable truncation sequences. The problem

hen becomes one of finding the graph partition which minimizes

he upper bound expression from Theorem 3 . The precise details

f this modeling approach are still not fully developed, and other

ossibilities still need to be explored. Solutions to the formulated

roblem can then be computed using heuristics and approxima-

ion algorithms [15] . Adopting ideas from Dijkstra’s shortest path

lgorithm [4] and set packing [23] , among others, may prove

seful in this direction. Finally, Theorem 3 can also be used to

mprove on the error bound due to truncation over the finite

ime-horizon in the case of eventually time-periodic subsystems. 

. Coprime factors reduction 

Section 4 applies the BT method to strongly stable systems.

owever, there exist � 2 -stable systems with no solutions in X to

3) , i.e., � 2 -stable systems that are not strongly stable, which intro-

uces conservatism into BT. [9] points out the difficulty in quanti-

atively and sharply assessing this type of conservatism. [24] gives

ufficient conditions for the existence of structured solutions to the

MI therein, and [26] identifies a class of systems with guaran-

eed structured solutions to the generalized Lyapunov inequalities.

his section presents the CFR method as a means of extending the

ange of applicability of BT. CFR consists of finding a strongly sta-

le coprime factorization for system G δ which is not necessarily

trongly stable. This factorization forms an augmented system H δ

hich is reducible via BT. The reduced-order system H red ,δ results

n a strongly stable coprime factorization for the reduced-order

ystem G red ,δ . The results in this section extend their counterparts
n [ 10 , Propositions 26 and 31 and Theorem 27], [ 3 , Theorem 1,

emma 3, and Algorithm 2], and [ 19 , Section III] to the class of

istributed NSLPV systems. 

.1. Strong stabilizability 

Let F be the set of partitioned graph-diagonal operators

 = [ F T F S 
1 

· · · F S 
d 

F P 1 · · · F P r ] , where for i = 1 , . . . , d and j =
 , . . . , r, F T ∈ L c (� 2 ({ R 

n T (t,k ) } ) , � 2 ({ R 

n u (t,k ) } )) , F S 
i 

∈ L c (� 2 ({ R 

n S 
i 
(t,k ) } ) ,

 2 ({ R 

n u (t,k ) } )) , and F P 
j 

∈ L c (� 2 ({ R 

n P 
j 
(t,k ) } ) , � 2 ({ R 

n u (t,k ) } )) . 
efinition 5. A well-posed distributed NSLPV system G δ is said to

e strongly stabilizable if there exists a feedback operator F ∈ F
uch that the resulting closed-loop system is strongly stable, i.e., if

nd only if there exists F ∈ F and P ∈ X such that 

(A + BF ) P (A + BF ) ∗ − S ∗P S ≺ 0 . (13)

he notion of strong detectability is defined as the dual notion of

trong stabilizability. 

heorem 4. There exist F ∈ F and P ∈ X that satisfy (13) if and only

f there exists Q ∈ X that satisfies AQ A ∗ − S ∗Q S − BB ∗ ≺ 0 . Further-

ore, when the relevant inverse exists, a strongly stabilizing choice

f F is given by F = −(B ∗S ∗Q 

−1 SB ) −1 B ∗S ∗Q 

−1 SA . 

The proof of this theorem is similar to that of [ 3 , Theorem 1]

nd so is omitted. 
.2. Right coprime factorization 

We now define the notion of a right coprime factorization (RCF)

or a distributed NSLPV system G δ with realization ( A , B , C , D ,

). We show that if G δ is a strongly stabilizable and strongly de-

ectable system, then it admits a strongly stable RCF. 

efinition 6. Two operators N δ and M δ in L c (� 2 , � 2 ) are said to be

ight coprime if there exist two operators U δ and V δ in L c (� 2 , � 2 )

uch that U δN δ + V δM δ = I. Two � 2 -stable distributed NSLPV sys-

ems N δ and M δ are said to be right coprime if their input-output

aps N δ and M δ are right coprime for all �∈ �. 

efinition 7. The pair (N δ, M δ ) of � 2 -stable distributed NSLPV

ystems is said to be an RCF for G δ if N δ and M δ are right coprime

nd, for all �∈ �, M δ has a causal inverse on � 2 e and G δ = N δM 

−1 
δ

.

heorem 5. A strongly stabilizable and strongly detectable system

 δ admits a strongly stable RCF (N δ, M δ ) , where the realizations

f N δ and M δ are given by (A + BF , B, C + DF , D, �) and (A +
F , B, F , I, �) , respectively, and F is any strongly stabilizing feedback

perator. 

roof. N δ and M δ are strongly stable systems since F is a strongly

tabilizing feedback operator. We verify that the pair (N δ, M δ )

atisfies the conditions in Definition 7 . First, we show that M δ

as a causal inverse on � 2 e for all �∈ �. Let R δ = � 
 

[
SA SB 

−F I 

]
.

 δ is well-defined and causal on � 2 e for all �∈ � since sys-

em G δ is well-posed, i.e., by Remark 1 , I − �SA has a causal in-

erse on � 2 e for all �∈ �. We verify that M δR δ = R δM δ = I for all

∈ �. For compactness, we introduce the symbol ζ = [ x ∗ β∗] ∗.
or a fixed �∈ �, ζM 

= �S(A + BF ) ζM 

+ �SBu M 

, y M 

= F ζM 

+ u M 

,

R = �SAζR + �SBu R , and y R = −F ζR + u R . If y M 

= u R , then (I −
SA ) ( ζM 

− ζR ) = 0 . But, since I − �SA has a causal inverse on � 2 e ,

hen ζM 

− ζR = 0 and y R = u M 

, i.e., R δM δ = I. We conclude simi-

arly that M δR δ = I. Thus, R δ is the inverse of M δ for all �∈ �. The

econd step is to show that G δ = N δM 

−1 
δ

= N δR δ for all �∈ �. We

ave 

 δR δ = 

[
� 0 
0 �

]

 

[ 

S(A + BF ) −SBF SB 
0 SA SB 

C + DF −DF D 

] 

= �̄ 
 

[
Ā B̄ 

C̄ D̄ 

]
. 

et Q = 

[ 
I I 
0 I 

] 
, where I has a compatible structure with �. Then, 

 δR δ = 

(
Q 

−1 �̄Q 

)

 

[
Q 

−1 Ā Q Q 

−1 B̄ 

C̄ Q D̄ 

]
= 

[
� 0 
0 �

]

 

 

S(A + BF ) 0 0 
0 SA SB 

C + DF C D 

] 

= C(I − �SA ) −1 �SB + D. 

hat is, N δR δ = G δ . Finally, we show that N δ and M δ are right co-

rime. Since G δ is strongly detectable, there exists a bounded, par-

itioned graph-diagonal operator K , with a structure similar to F ∗

nd appropriate dimensions, that renders the resulting closed-loop

ystem strongly stable. For each �∈�, consider the operators U δ

nd V δ in L c (� 2 , � 2 ) defined as 

 δ = � 
 

[
S(A + KC) SK 

F 0 

]
and 

V δ = � 
 

[
S(A + KC) S(B + KD ) 

−F I 

]
. 

o prove that U δN δ + V δM δ = I, we let u N = u M 

, u U = y N , and u V =
 M 

and show that y U + y V = u M 

. We write the equations for U δ ,

 δ , and V δ similarly to the equations of M δ and R δ . Then, us-

ng the above relations, we get (I − �S(A + KC)) ( ζ − ζ + ζ ) =
U V M 



36 D. Abou Jaoude, M. Farhood / European Journal of Control 40 (2018) 27–39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

i  

s  

c  

s  

I  

�  

t  

fi  

�  

o

d  

s  

i  

d  

s

h  

c  

c

R  

n  

s  

o  

t  

G  

r  

i  

c  

‖  

r  

N  

o  

t

b

a

s  

o  

t  

v  

f  

r

R  

p  

g  

T  

r  

q  

i  

s  

d  

t  

h  

m  

t  

s  

o  

a  
�SK(C + DF ) ( ζN − ζM 

) , y U + y V = F ( ζU − ζV + ζM 

) + u M 

, and (I −
�S(A + BF )) ( ζN − ζM 

) = 0 . Since (I − �S(A + BF )) and (I − �S(A +
KC)) have bounded causal inverses, then ζN − ζM 

= 0 , ζU − ζV +
ζM 

= 0 , and y U + y V = u M 

. �

5.3. Coprime factors reduction method 

Algorithm 1. Given a strongly stabilizable and strongly detectable

distributed NSLPV system G δ with realization ( A , B , C , D , �), we ob-

tain a reduced-order system G red ,δ via the CFR method as follows: 

1. Find P ∈ X such that APA ∗ − S ∗P S − BB ∗ ≺ 0 . 

2. Define F = −(B ∗S ∗P −1 SB ) −1 B ∗S ∗P −1 SA . Ensure that F is well-

defined by removing any control redundancies so that [[ B ]] ( t ,

k ) has full column rank for all (t, k ) ∈ Z ×V ; see [ 3 , Theo-

rem 1]. 

3. Construct a strongly stable RCF (N δ, M δ ) for system G δ as in

the proof of Theorem 5 . 

- N δ and M δ have realizations (A + BF , B, C + DF , D, �) and

(A + BF , B, F , I, �) , respectively. 

4. Form an augmented strongly stable system H δ =
[ N 

∗
δ

M 

∗
δ
] 
∗
with realization (A H , B H , C H , D H , �) = (A + BF , B,

[(C + DF ) ∗ F ∗] ∗, [ D 

∗ I] ∗, �) . 

5. Find generalized gramians X and Y for system H δ . 

- Find X ∈ X with minimum trace such that A H XA 
∗
H 

−
S ∗XS + B H B 

∗
H 

≺ 0 . 

- Find Y ∈ X with minimum trace such that A ∗
H 
S ∗Y SA H −

Y + C ∗
H 
C H ≺ 0 . 

6. Construct a balanced realization ( A H , bal , B H , bal , C H , bal , D H , �)

for H δ as in the proof of Lemma 3 . 

- Find a balancing transformation T and express the bal-

anced generalized gramian as � = T XT ∗. 
- Define A bal = (S ∗T S) AT −1 , B bal = (S ∗T S) B, C bal = CT −1 ,

and F bal = F T −1 . 

- Define A H, bal = A bal + B bal F bal , B H, bal = B bal , and C H, bal =
[(C bal + DF bal ) 

∗ F ∗
bal 

] 
∗
. 

7. Apply the BT method to this balanced realization and obtain

a reduced-order system H red ,δ = [ N 

∗
red ,δ

M 

∗
red ,δ

] 
∗
. 

- Determine the dimensions of the reduced-order system

based on the following: 

(a) The upper bound on ‖ (H δ − H red ,δ ) ‖ , for all �∈ �,

obtained by judiciously applying Theorems 2 and 3 . 

(b) The upper bound γ on ‖ H δ‖ , for all �∈ �, obtained

by applying Lemma 2 . 

(c) The absolute and relative orders of the diagonal en-

tries in �. 

- Denote the realization of H red ,δ by ( A H , red , B H , red , C H , red ,

D H , �red ). 

- Denote the reduced-order balanced generalized gramian

by 
 = diag (
T , 

S 
1 
, . . . , 
S 

d 
, 
P 

1 
, . . . , 
P 

r ) . 

8. Define the operators A red , B red , C red , and F red as fol-

lows: B red = B H, red , [(C red + DF red ) 
∗ F ∗

red 
] 
∗ = C H, red , and

A red = A H, red − B red F red . 

- With Q defined as in the proof of Lemma 4 ,

notice that the previous operators also satisfy

Q 

∗SA bal Q = 

[
S 0 

0 S 

][
A red Ā 12 

Ā 21 Ā 22 

]
, 

[ 
C bal 
F bal 

] 
Q = 

[
C red C̄ 2 

F red F̄ 2 

]
, and

Q 

∗SB bal = 

[
S 0 

0 S 

][
B red 

B̄ 2 

]
. 

9. Systems N red ,δ and M red ,δ with realizations (A red 
+ B red F red , B red , C red + DF red , D, �red ) and (A red + B red F red ,

B red , F red , I, �red ) are strongly stable and right coprime. 

10. If I − �red SA red has a causal inverse on � 2 e (see Remark 2 )

for all � ∈ � , then 
red red 
(a) ( A red , B red , C red , D , �red ) is a realization for the reduced-

order system G red ,δ; 
(b) (N red ,δ , M red ,δ ) is an RCF for system G red ,δ , i.e., G red ,δ =

N red ,δM 

−1 
red ,δ

for all �red ∈ �red ; 

(c) F red strongly stabilizes G red ,δ . 

emark 2. Let A red, PP and A bal, PP be defined similarly to A PP 
n Remark 1 but with the blocks of A red and A bal used in-

tead of A , respectively. To ensure that I − �red SA red has a

ausal inverse on � 2 e for all �red ∈ �red , and since the state-

pace matrices are zeros for t < 0, we only need to ensure that

 − ˆ �P A red ,PP has a causal inverse on �
r 
j=1 

� 2 e ({ R 

m 

P 
j 
(t,k ) } ) for all

red ∈ �red , where ˆ �P is defined in (7) . This is guaranteed if

he generalized gramian X in Algorithm 1 additionally satis-

es A PP diag (X 
P 
1 
, . . . , X P r ) A 

∗
PP 

− diag (X P 
1 
, . . . , X P r ) ≺ 0 . Namely, since

= T XT ∗ and � and T have block-diagonal structures, the previ-

us inequality is equivalent to A bal ,PP diag (�
P 
1 , . . . , �

P 
r ) A 

∗
bal ,PP 

−
iag (�P 

1 
, . . . , �P 

r ) ≺ 0 . Then, similarly to Lemma 4 , we can

how that A red ,PP diag (

P 
1 
, . . . , 
P 

r ) A 
∗
red ,PP 

− diag (
P 
1 
, . . . , 
P 

r ) ≺ 0 ,

.e., ‖ diag (
P 
1 
, . . . , 
P 

r ) 
− 1 

2 A red ,PP diag (

P 
1 
, . . . , 
P 

r ) 
1 
2 ‖ < 1 . But,

iag (
P 
1 , . . . , 


P 
r ) commutes with every permissible ˆ �P , and

o, using the sub-multiplicative property, we see that ˆ �P A red ,PP 

as a spectral radius less than 1 and I − ˆ �P A red ,PP has a bounded

ausal inverse for all �red ∈ �red . An alternative similar condition

an be derived based on the fact that � = (T ∗) −1 Y T −1 . 

emark 3. The bound from BT explicitly relates to the � 2 -induced

orm of the error system and can be used in robustness analy-

is [20] , wherein the full-order system is replaced by the reduced-

rder system and a perturbation operator whose norm is less than

he bound. Namely, for all �∈ �, G δ can be expressed as G δ =
 red ,δ + (G δ − G red ,δ ) , where ‖ (G δ − G red ,δ ) ‖ is less than the BT er-
or bound. Thus, the possibly tighter bound from Theorem 3 helps

n better quantifying the perturbation operator and yielding less

onservative robustness results. Similarly, the bound from CFR on

 (H δ − H red ,δ ) ‖ , for all �∈ �, can be interpreted in terms of the

obust stability of the closed-loop system as in [ 3 , Theorem 5].

amely, the CFR bound can be related to the maximum number

f state variables that one can truncate from G δ while ensuring

hat a controller K δ which stabilizes G δ also stabilizes G red ,δ . Let K δ

e a distributed NSLPV controller that inherits the structures of G δ
nd renders the closed-loop system strongly stable [1] . That is, K δ

trongly stabilizes G δ, or equivalently, G δ strongly stabilizes K δ . In

ther words, the controller is strongly stabilizable and strongly de-

ectable, has right and left coprime factorizations, and is reducible

ia CFR. If CFR is applied to K δ, then the CFR bound indicates how

ar one can proceed with the truncation while ensuring that the

educed-order controller still stabilizes G δ . 

emark 4. Various distributed control techniques, e.g., [1,9,12] , ap-

ly to strongly stabilizable and strongly detectable systems and

uarantee that the resulting closed-loop system is strongly stable.

hus, the systems to which these synthesis techniques apply are

educible via CFR. Since the synthesis problems involve solving se-

uences of LMIs of a larger size than the generalized Lyapunov

nequalities, model reduction can be used to render the control

ynthesis problems computationally feasible. Moreover, since the

istributed control techniques usually yield distributed NSLPV con-

rollers that are of a comparable size to the plant and that in-

erit both the interconnection and the uncertainty structures, then

odel reduction can also be used to construct reduced-order con-

rollers. Namely, applying model reduction prior to control synthe-

is ensures that the least controllable and least observable modes

f the plant are not reflected in the designed controller. Thus, in

ddition to simplifying the computational complexity of the analy-
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is and synthesis problems, model reduction is also beneficial from

n implementation point of view in scenarios where resources are

imited. Specifically, since the proposed BT and CFR methods allow

or the evaluation of the importance of a particular interconnec-

ion and the possible truncation of the corresponding spatial state,

hen the methods can be used to simplify the communication net-

ork in a rigorous manner by removing inconsequential commu-

ication links. 

. Numerical example 

We now apply CFR to a distributed NSLPV system G δ formed

y 4 subsystems interconnected as in Fig. 1 . The leader G 

(1) has

iscrete-time LTV dynamics and the followers have discrete-time

PV dynamics. There is only one parameter affecting each of the

ollowers, i.e., r = 1 , and so the parameter subscript is dropped.

he example illustrates the characteristics of the proposed meth-

ds. For instance, the example demonstrates the truncation of the

arious types of states and further shows that the truncation need

ot be uniform in time, even if the dimensions of the states in

he full-order system are constants. As per Remark 2 , the exam-

le shows that, when applying Algorithm 1 , one needs to im-

ose/verify the well-posedness of the resulting reduced-order sys-

em. The example also illustrates the use of the trace minimization

euristic discussed after Lemma 3 and the 1-norm heuristic [2] for

mproving on the computed error bound. 

For the leader, all the state-space matrices are constants,

xcept for Ā T T (t, 1) which is (h = 0 , q = 28) -eventually time-

eriodic, i.e., Ā T T (t + q, 1) = Ā T T (t, 1) for all t ∈ N 0 . Specifically,
¯
 T T (t, 1) = A for t = 0 , . . . , 6 ; Ā T T (t, 1) = Q A Q 

∗ for t = 7 , . . . , 13 ;
¯
 T T (t, 1) = Q 

2 A (Q 

∗) 2 for t = 14 , . . . , 20 ; Ā T T (t, 1) = Q 

3 A (Q 

∗) 3 for
 = 21 , . . . , 27 , where 

 = 0 . 15 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

9 5 1 0 . 3 −0 . 2 0 . 2 
−2 7 1 0 . 1 0 . 1 −0 . 3 
1 −1 −1 0 . 2 0 . 3 0 . 1 
0 . 1 −0 . 2 −0 . 3 0 0 0 

−0 . 3 0 . 1 −0 . 1 0 0 0 
−0 . 2 0 . 3 0 . 2 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

Q = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 1 0 
0 0 1 0 0 0 
1 0 0 0 0 0 
0 0 0 0 0 1 
0 0 0 1 0 0 
0 1 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. 

ince there are no incoming edges to vertex k = 1 and G 

(1) is

ot affected by any parameter, the state-space matrices A T S e (t, 1) ,
¯
 T P (t, 1) , A SS 

ie 
(t, 1) , A SP 

i 
(t, 1) , Ā PT (t, 1) , A PS e (t, 1) , Ā PP (t, 1) , B̄ P (t, 1) ,

 

S 
e (t, 1) , and C̄ P (t, 1) , for i , e ∈ {1, 2}, have at least one dimension

qual to zero, i.e., are non-existent. The remaining state-space ma-

rices are defined as follows for all t ∈ N 0 : C̄ T (t, 1) = [ I 2 0 2 ×4 ] , 

 

ST 
i (t, 1) = 0 . 1 

[ 

2 2 −1 0 0 0 
−2 2 1 0 0 0 
0 . 1 −0 . 1 0 . 2 0 0 0 

] 

, 

B̄ T (t, 1) = 0 . 1 

[
I 2 

0 4 ×2 

]
, B S i (t, 1) = 0 . 1 

[ 

1 0 
0 1 
0 0 

] 

. 
a  
he state-space matrices of the followers are constants for all t ∈
 0 , i , e ∈ {1, 2}, and k = 2 , 3 , 4 ; these matrices are given by 

¯
 T T (t, k ) = 0 . 15 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

7 4 1 0 . 2 −0 . 1 0 . 2 
−3 5 1 0 . 2 −0 . 2 −0 . 1 
1 −3 −2 0 . 1 0 . 1 0 . 2 

−0 . 1 0 . 3 0 . 1 0 0 0 
0 . 2 0 . 1 −0 . 2 0 0 0 
0 . 1 −0 . 2 0 . 1 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

Ā T P (t, k ) = 0 . 01 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 3 2 0 . 1 
2 1 1 0 . 1 

−3 4 −3 −0 . 3 
0 0 0 0 
0 0 0 0 
0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

Ā PT (t, k ) = 

⎡ 

⎢ ⎢ ⎣ 

[
0 . 5 0 
0 −0 . 5 

]
0 2 ×4 [

−0 . 1 0 
0 0 . 1 

]
0 2 ×4 

⎤ 

⎥ ⎥ ⎦ 

, 

A PS e (t, k ) = 

⎡ 

⎢ ⎣ 

0 . 1 0 . 2 0 
−0 . 2 0 . 1 0 
0 0 0 
0 0 0 

⎤ 

⎥ ⎦ 

, 

A T S e (t, k ) = 0 . 05 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−3 2 0 . 1 
4 4 0 . 2 
2 −3 −0 . 2 

−0 . 2 −0 . 1 0 
0 . 1 0 . 3 0 
0 . 3 −0 . 2 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

¯
 PP (t, k ) = 0 . 1 I 4 , B̄ T (t, k ) = 0 . 1 

[
I 2 

0 4 ×2 

]
, B̄ P (t, k ) = 0 4 ×2 , C̄ T (t, k ) = [ I 2

 2 ×4 ] , C S e (t, k ) = 0 2 ×3 , C̄ P (t, k ) = 0 2 ×4 , A ST 
i 

(t, k ) = W Ā T T (t, k ) ,

 

SS 
ie 

(t, k ) = WA T S e (t , k ) , A SP 
i 

(t , k ) = W Ā T P (t , k ) , B 
S 
i 
(t , k ) = W B̄ T (t, k ) ,

here W = 0 . 25[ I 3 0 3 ] . Finally, D̄ (t, k ) = 0 for all (t, k ) ∈
 0 × { 1 , 2 , 3 , 4 } . 
System G δ is not strongly stable and cannot be reduced via BT.

owever, G δ is strongly stabilizable and strongly detectable and

s reducible via CFR. Since the subsystems are (0, 28)-eventually

ime-periodic, the sought solutions to the subsequent semi-

efinite programming (SDP) problems are all (0, 28)-eventually

ime-periodic. These problems are modeled using Yalmip [18] and

re solved using SDPT3 [25] . The computations are carried out

n Matlab 7.10.0.499 (The MathWorks Inc., Natick, Massachusetts,

SA) on a Hewlett-Packard laptop with 2 Intel Cores, 2.30 GHz pro-

essors, and 4 GB of RAM running Windows 7. First, we find P ∈ X 

uch that APA ∗ − S ∗P S − BB ∗ ≺ 0 and define the strongly stabilizing

eedback operator F = −(B ∗S ∗P −1 SB ) −1 B ∗S ∗P −1 SA . Then, we form

he strongly stable augmented system H δ with realization ( A H ,

 H , C H , D H , �), where A H = A + BF , B H = B, C H = [(C + DF ) ∗ F ∗] ∗,
nd D H = [ D 

∗ I] ∗. Using Lemma 2 , we find an upper bound

= 2 . 23 on ‖ H δ‖ for all �∈ �. This SDP is the most compu-

ationally expensive: the total number of constraints is 4033,

he dimension of the SDP variable is 3080, the number of SDP

locks is 448, and the dimension of the linear variable is 1. The

orresponding wall-clock time is about 29.6 s (CPU time 25.8 s).

hen, we find generalized gramians for system H δ . We solve

or X ∈ X that satisfies A H X A 
∗
H 

− S ∗X S + B H B 
∗
H 

≺ 0 and minimizes
 27 
t=0 

(∑ 4 
k =1 

(
tr X T (t, k ) + 

∑ 2 
i =1 tr X 

S 
i 
(t, k ) 

)
+ 

∑ 4 
k =2 tr X P (t, k ) 

)
. We 

lso solve for Y ∈ X that satisfies A ∗ S ∗Y SA H − Y + C ∗C H ≺ 0 and

H H 
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Fig. 2. Responses of G δ and G red ,δ for the same set of applied inputs. 
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minimizes a similar objective function. We construct a balanced

realization for H δ as in Step 6 of Algorithm 1 . 

To obtain a useful error bound, we re-solve the generalized Lya-

punov inequalities for the obtained balanced realization. We now

seek a balanced generalized gramian �
εI and a scalar ε > 0 that

simultaneously satisfy both generalized Lyapunov inequalities and

minimize the following objective function: 

a 1 ×ε+ 

27 ∑ 

t=0 

( 

4 ∑ 

k =1 

( 

‖ 

vec (�T (t, k ) − εI) ‖ 1 + 

2 ∑ 

i =1 

∥∥vec (�S 
i (t, k ) −εI) 

∥∥
1 

)

+ 

4 ∑ 

k =2 

‖ 

vec (�P (t, k ) − εI) ‖ 1 

) 

, 

where vec (Q ) denotes the vector formed by the diagonal entries of

a square matrix Q and ‖ v ‖ 1 is the 1-norm of vector v . The sought
[[�]] ( t , k ) are diagonal matrices, which are guaranteed to exist be-

cause a balanced realization of H δ is used. The objective function is

chosen to be the sum of two cost functions. The first, a 1 ε, ensures
that the optimal value of ε is small. In the second cost function,

the 1-norm is used as a heuristic for finding a solution � with

many entries equal to ε. Thus, ε can be regarded as the truncation

cut-off value, i.e., all the state variables corresponding to an entry

equal to ε in � are truncated. Clearly, we want ε to be as small as

possible because the error bound obtained from Theorem 2 is 2 ε,
i.e., ‖ (H δ − H red ,δ ) ‖ < 2 ε for all �∈ �. We would also like many

entries in � to be equal to ε in order to truncate many state vari-

ables, regardless of their type. The weight given to ε is a 1 = 850 .

This value gives the best trade-off between the competing objec-

tives of a small error bound and a large number of truncated state

variables. The result is ε = 0 . 0233 , i.e., ‖ (H δ − H red ,δ ) ‖ < 2 . 11% γ .

Thus, BT is applied to H δ and each state variable with a corre-

sponding entry in � equal to ε is truncated. The reduced-order

system is denoted by H red ,δ and its balanced realization is given by

( A H , red , B H , red , C H , red , D H , �red ). At each time-step, the total num-

bers of truncated temporal, spatial, and parameter state variables

range from 9 to 13, 3 to 5, and 5 to 6, respectively. 

The realization ( A red , B red , C red , D , �red ) of system G red ,δ is

formed from the realization of H red ,δ as follows: define B red =
B H, red , deduce C red and F red from [(C red + DF red ) 

∗ F ∗
red 

] ∗ = C H, red , and

compute A red = A H, red − B red F red . The condition in Remark 2 is sat-

isfied, which guarantees that G red ,δ is well-posed. As an example,

systems G δ and G red ,δ are subjected to the same set of sinusoidal

inputs of various amplitudes and frequencies for the first 100 time-

steps and are left to evolve on their own afterwards. The parame-

ter values δ( t , k ), for k = 2 , 3 , 4 , are varied randomly from −1 to 1.
s expected from the small error bound, the responses of the full-

rder and the reduced-order systems, which are plotted in Fig. 2 ,

re very close. 

. Conclusion 

BT and CFR are extended to the class of distributed NSLPV sys-

ems. BT applies to strongly stable systems, and CFR applies to

trongly stabilizable and strongly detectable systems. The meth-

ds are structure-preserving since the interpretation of the tem-

oral, spatial, and parameter states is retained in the reduced-

rder system. The methods are also structure-simplifying because

hole interconnections and whole channels from the �-operator

an be removed during model reduction. In general, the methods

nvolve solving infinite sequences of LMIs. However, for the class

f eventually time-periodic subsystems interconnected over finite

raphs, the required computations become finite dimensional with

o added conservatism. 
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ppendix A 

This appendix details the structure of the operator Q needed

n the proof of Lemma 4 . To simplify the presentation, we as-

ume that the balanced generalized gramian � is partitioned

nto two blocks as in � = diag (�1 , �2 ) . The given structure of

 immediately generalizes to arbitrary partitions of �. Note

hat the particular type of �1 and �2 , i.e., whether they

orrespond to the temporal, spatial, or parameter blocks of

, does not affect the discussion. For this reason, we sim-

ly use the subscript i = 1 , 2 . From Section 4.2 , recall that

i = [[ diag (
i , �i )]] , where both sides of the equality correspond

o graph-diagonal operators. The problem is to find a partitioned

raph-diagonal operator Q such that Q 

∗�Q = diag (
, �) , Q Q 

∗ = I,

nd Q 

∗Q = I, where 
 = diag (
1 , 
2 ) and � = diag (�1 , �2 ) .

o this end, we define the graph-diagonal operators Q 
i 
= 

[[
I 
0 

]]
nd Q �i 

= 

[[
0 
I 

]]
, i.e., Q 
i 

(t, k ) = 

[
I 
0 

]
and Q �i 

(t, k ) = 

[
0 
I 

]
for all

(t, k ) ∈ Z ×V . In particular, �i Q 
i 
= 

[[

i 0 
0 �i 

]][[
I 
0 

]]
= 

[[[

i 0 
0 �i 

][
I 
0 

]]]
=[


i 
0 

]]
and �i Q �i 

= 

[[
0 
�i 

]]
. The operator Q 
i 

further satisfies

https://doi.org/10.13039/100000001
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Q  

Q  

F  

T  

a  

d  

N

Q

Q

Q

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

[
[  

 

[  

 

[  

 

[  
 

∗

i 

[[

i 
0 

]]
= 

[[
I 0 
]][[


i 
0 

]]
= 
i . Similarly, Q 

∗

i 

[[
0 
�i 

]]
= 0 , Q 

∗
�i 

[[

i 
0 

]]
= 0 ,

 

∗
�i 

[[
0 
�i 

]]
= �i , Q 

∗

i 
Q 
i 

= I, Q 

∗

i 
Q �i 

= 0 , Q 

∗
�i 
Q 
i 

= 0 , and Q 

∗
�i 
Q �i 

= I.

inally, Q 
i 
Q 

∗

i 

+ Q �i 
Q 

∗
�i 

= 

[[
I 
0 

]][[
I 0 
]]

+ 

[[
0 
I 

]][[
0 I 
]]

= 

[[
I 0 
0 I 

]]
= I.

hen, the operator Q can be defined as Q = 

[ 
Q 
1 

0 Q �1 
0 

0 Q 
2 
0 Q �2 

] 
;

nd the relations Q 

∗�Q = Q 

∗diag (�1 , �2 ) Q = diag (
, �) =
iag ( 
1 , 
2 , �1 , �2 ) , Q Q 

∗ = I, and Q 

∗Q = I can be readily verified.

amely, 

 

∗�Q = 

⎡ 

⎢ ⎢ ⎣ 

Q 

∗

1 

0 

0 Q 

∗

2 

Q 

∗
�1 

0 

0 Q 

∗
�2 

⎤ 

⎥ ⎥ ⎦ 

[
�1 Q 
1 

0 �1 Q �1 
0 

0 �2 Q 
2 
0 �2 Q �2 

]

= 

⎡ 

⎢ ⎢ ⎣ 

Q 

∗

1 

0 

0 Q 

∗

2 

Q 

∗
�1 

0 

0 Q 

∗
�2 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

[[

1 

0 

]]
0 

[[
0 

�1 

]]
0 

0 

[[

2 

0 

]]
0 

[[
0 

�2 

]]
⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

Q 

∗

1 

[[

1 

0 

]]
0 Q 

∗

1 

[[
0 

�1 

]]
0 

0 Q 

∗

2 

[[

2 

0 

]]
0 Q 

∗

2 

[[
0 

�2 

]]

Q 

∗
�1 

[[

1 

0 

]]
0 Q 

∗
�1 

[[
0 

�1 

]]
0 

0 Q 

∗
�2 

[[

2 

0 

]]
0 Q 

∗
�2 

[[
0 

�2 

]]

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 


1 0 0 0 
0 
2 0 0 
0 0 �1 0 
0 0 0 �2 

⎤ 

⎥ ⎦ 

, 

 

∗Q = 

⎡ 

⎢ ⎢ ⎣ 

Q 

∗

1 

0 

0 Q 

∗

2 

Q 

∗
�1 

0 

0 Q 

∗
�2 

⎤ 

⎥ ⎥ ⎦ 

[
Q 
1 

0 Q �1 
0 

0 Q 
2 
0 Q �2 

]

= 

⎡ 

⎢ ⎢ ⎣ 

Q 

∗

1 
Q 
1 

0 Q 

∗

1 
Q �1 

0 

0 Q 

∗

2 
Q 
2 

0 Q 

∗

2 
Q �2 

Q 

∗
�1 

Q 
1 
0 Q 

∗
�1 

Q �1 
0 

0 Q 

∗
�2 

Q 
2 
0 Q 

∗
�2 

Q �2 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

I 0 0 0 
0 I 0 0 
0 0 I 0 
0 0 0 I 

⎤ 

⎥ ⎦ 

, 

 Q 

∗ = 

[
Q 
1 

0 Q �1 
0 

0 Q 
2 
0 Q �2 

]⎡ 

⎢ ⎢ ⎣ 

Q 

∗

1 

0 

0 Q 

∗

2 

Q 

∗
�1 

0 

0 Q 

∗
�2 

⎤ 

⎥ ⎥ ⎦ 

= 

[
Q 
1 

Q 

∗

1 

+ Q �1 
Q 

∗
�1 

0 

0 Q 
2 
Q 

∗

2 

+ Q �2 
Q 

∗
�2 

]
= 

[
I 0 
0 I 

]
. 
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