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1. Introduction

This work is on the model reduction of distributed sys-
tems formed by heterogeneous, discrete-time, nonstationary linear
parameter-varying (NSLPV) subsystems interconnected over arbi-
trary directed graphs. The subsystems are formulated in a linear
fractional transformation (LFT) framework. It is assumed that the
information sent by a subsystem at the current time-step is re-
ceived by the target subsystem at the next time-step. We refer to
such systems as distributed NSLPV systems.

NSLPV models [10,11] extend standard/stationary linear
parameter-varying (LPV) models in the sense that the state-
space matrix-valued functions can have an explicit dependence
on a priori known time-varying terms, in addition to their depen-
dence on time-varying scheduling parameters that are not known
a priori, but are available for measurement at each time-step.
The dependence of the state-space matrices on these parameters
is assumed to be rational so as to allow for formulating the
subsystems in an LFT framework. This assumption, however, is not
generally restrictive as nonlinear functions that are not rational
can frequently be approximated by rational ones. An NSLPV model
formulated in an LFT framework is basically an interconnection
of a nominal linear time-varying (LTV) model and a A-operator
which consists of all the scheduling parameters. As noted in [14],
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the analysis results for NSLPV models are effectively tools for
robustness analysis of LTV systems against static time-varying
uncertainties. NSLPV models arise, for example, when controlling
nonlinear systems about prespecified trajectories as a means for
capturing the effects of the system nonlinearities while facilitating
control design using linear techniques. In such scenarios, and
generally whenever a priori known time-varying terms appear in
the system equations, NSLPV models usually constitute far less
conservative representations of the time-varying nonlinear system
dynamics than their stationary LPV counterparts, and in some
cases, the only stabilizable parameter-varying models that can be
obtained are NSLPV [11].

Distributed NSLPV systems consist of NSLPV subsystems and/or
combinations of LTV and LPV subsystems. The control synthesis
problem for distributed NSLPV systems is treated in [1], where
the systems are compactly described using an operator theoretic
framework. This framework models the interconnections between
the subsystems as states referred to as spatial states, in addition
to the standard states of the subsystems that are referred to as
temporal states, and the parameter states which result from the
LFT formulation. The size of these systems, and consequently,
the sizes of the analysis and synthesis problems, grow with the
number and dimension of the temporal, spatial, and parame-
ter states. This calls for the extension of structure-preserving
model reduction techniques, namely, balanced truncation (BT)
and coprime factors reduction (CFR), to the class of distributed
NSLPV systems. Specifically, a reduced-order model is sought that
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approximates the behavior of the full-order system and preserves
the interconnection structure and the structure of the A-operator.

BT applies to strongly stable systems, i.e., stable systems
which possess structured solutions to the generalized Lyapunov
inequalities. These solutions, when existent, are called generalized
gramians [6]. BT guarantees the strong stability of the reduced-
order system as well as an upper bound on the ¢,-induced norm
of the error system. The proposed method allows for reducing the
dimension of each temporal, spatial, and parameter state, indi-
vidually. If the dimension of a spatial state is reduced to zero for
all time-steps, then the corresponding interconnection is removed
from the interconnection structure of the reduced-order system.
Similarly, if the dimension of a parameter state is reduced to zero
for all time-steps, then the corresponding channel is removed
from the A-operator. However, there exist stable systems which
do not possess generalized gramians and cannot be reduced via
BT. The reader is referred to [24]| and the references therein for
a discussion on the existence of structured solutions to Lyapunov
inequalities. This conservatism is partially remedied by the CFR
method as it applies to systems which, while not necessarily
strongly stable, can be represented using a strongly stable coprime
factorization. A strongly stabilizable and strongly detectable sys-
tem possesses the needed factorization and is reducible via CFR.
The reduced-order model resulting from CFR is guaranteed to be
strongly stabilizable and strongly detectable, and the correspond-
ing error bound can be interpreted in terms of the robust stability
of the closed-loop system.

Several works have appeared that treat the problem of
structure-preserving BT or CFR for uncertain and LPV sys-
tems [7,16], NSLPV systems [10], and interconnected systems
[2,3,5,17,21,26]. This paper can be viewed as a generalization of
the work in [10] to the class of distributed systems or as a gen-
eralization of the works in [2,3]| to the case where the subsys-
tems are represented by NSLPV, instead of LTV, models. In partic-
ular, while [2,3] deal with systems with an interconnection struc-
ture and [10] deals with systems with an uncertainty structure, the
present work deals with systems having an interconnection and an
uncertainty structure, both of which are to be preserved/simplified
during model reduction. The adopted operator theoretic framework
gives the equations for distributed NSLPV systems in a compact op-
erator form reminiscent of standard LPV-LFT state-space systems,
which allows for a transparent extension of standard model reduc-
tion results to the class of systems treated here while address-
ing intricacies due to more elaborate operator machinery. Since
the interconnections between the subsystems are modeled as spa-
tial states, the extended results acquire new characteristics and in-
terpretations. For instance, the generalized gramians are classified
into temporal terms, spatial terms, and parameter terms, and the
proposed methods allow for the truncation of the three types of
states. In other words, the methods allow for reducing the order
of the subsystems via truncation of temporal and parameter states,
as well as simplifying the interconnection structure via truncation
of spatial states. We note that the given results also remain novel
when the subsystems have standard LPV models, i.e., when the
nominal part of the subsystems is linear time-invariant. The nov-
elty comes from considering heterogeneous subsystems and arbi-
trary directed graphs and from accounting for communication la-
tency on the information transfer between the subsystems.

An important contribution of this work is Theorem 3, which re-
mains novel when restricted to the class of distributed LTV sys-
tems treated in [2,3]. Theorem 3 gives an alternative expression for
the BT error bound which can be less conservative than the stan-
dard “twice the sum of distinct truncated entries in the balanced
generalized gramian” error bound given in Theorem 2. The impor-
tance of this theorem is articulated in robust stability analysis [20],
where the full-order system can be replaced by the reduced-order

system and a bounded perturbation operator whose norm is less
than the error bound. Deriving tighter error bounds thus allows
for a better quantification of the said operator and consequently
for less conservative robustness results. Another contribution re-
sides in the extension of the notion of a coprime factorization to
the class of distributed NSLPV systems. This notion is essential for
the development of the CFR method and further is of independent
interest as it finds applications in robust control theory [27]. Fi-
nally, the paper gives an example which illustrates the application
and characteristics of the proposed methods. Specifically, the ex-
ample highlights the flexibility of our methods in truncating vari-
ous types of states and shows that truncation need not be uniform
in time even if the dimensions of the states in the full-order sys-
tem are constants. The example uses the 1-norm heuristic to im-
prove on the computed error bound by maximizing the number
of entries in the balanced generalized gramian which are equal to
each other and to some truncation cut-off value [2]. Then, when
applying Theorem 2, all the corresponding state variables (regard-
less of type) are truncated and accounted for only once in the error
bound.

The paper is organized as follows. In Section 2, we introduce
the notation of the paper. In Section 3, we present the framework
and the relevant analysis results of [1]. Section 4 treats the BT
method, and Section 5 treats the CFR method. A numerical exam-
ple is given in Section 6. The paper concludes with Section 7.

2. Notation

Np, Z, and R denote the sets of nonnegative integers, integers,
and real numbers, respectively. diag(M;) denotes the block-diagonal
augmentation of the sequence of operators M;. 0;, ; denotes an i x j
zero matrix, and I; denotes the i x i identity matrix.

Consider a directed graph with a countable set of vertices V
and a set of directed edges E. (i, j)eE denotes a directed edge
from i€V to je V. The graph under consideration is assumed to be
d-regular, for some integer d > 0, i.e., for all keV, both the inde-
gree and outdegree are equal to d. Note that any arbitrary directed
graph with a uniformly bounded vertex degree can be turned into
a d-regular directed graph, where d is the maximum over all vertex
degrees, via the addition of the necessary virtual edges and/or ver-
tices. This assumption allows for the definition of d permutations,
p1,---, pg, of the set of vertices according to the edges. The per-
mutations are chosen such that if (i, j)eE, then one ec {1,...,d}
satisfies pe (i) = j and p, ' (j) =1i. See [12] for more details.

Let J; and J, be vector spaces, and let H and F be Hilbert spaces.
J1 & J, denotes the vector space direct sum of J; and J,. The inner
product and the norm associated with H are denoted by (-, - )y
and || - ||y, respectively. The subscript is dropped when H is clear
from context. £(H,F) and £.(H, F) denote the spaces of bounded
linear operators and bounded linear causal operators mapping H
to F, respectively. These symbols simplify to £(H) and £.(H) when
H=F. Let X € L(H,F). ||X|| denotes the H to F induced norm of X,
and X* denotes the adjoint of X. A self-adjoint operator X € £(H)
is said to be negative definite (X<0) if there exists o >0 such that
{x,Xx) < —a||x||? for all nonzero x e H.

Given an integer sequence n: (t,k) € ZxV — n(t, k) € Ny,
¢({R"®0)Y) denotes the vector space of mappings w: (t, k) € Z x
V - w(t, k) e R*@K) The Hilbert space ¢,({R"®0}) is the sub-
space of ¢({R™®K}) which consists of mappings w that have
a finite norm [[wl| = /3 g W(t, K)*W(t, k). €2 ({R""}) is the
subspace of ¢({R"t0}) consisting of mappings w such that
Sew(t, k)*w(t, k) <oo for each t € Z. The abbreviated symbols ¢,
¢, and ¢,, are frequently used when n(t, k) is clear from context.

We now summarize some of the operator machinery of [12].
An operator Q: ¢, — ¢, is said to be graph-diagonal if there ex-
ists a uniformly bounded sequence of matrices Q(t, k) such that
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Qu)(t, k) =Q(t, k)v(t, k) for all (t,k) e Z xV. An operator W =
[W;;] is said to be partitioned graph-diagonal if each block Wj; is
a graph-diagonal operator. The mapping [W](t, k) = [W;;(t, k)] is a
homomorphism from the space of partitioned graph-diagonal oper-
ators to the space of graph-diagonal operators. This mapping is iso-
metric and preserves products, addition, and ordering, i.e., |W;|| =
1WA Tl IWiW2 ] = W1 TITIW, 1L [Wh + Wa ]l = Wi ]l + [W2]l, where
W, and W, are compatible partitioned graph-diagonal operators. If
W; is self-adjoint, then W70 if and only if [W;]>-0 if and only if
[W1I(t, k)~pBI for all (t, k) € Z x V and some scalar 8 > 0. The uni-
tary temporal-shift operator, Sg: ¢; — ¢, and the unitary spatial-
shift operators, S;: ¢, — ¢, for i=1,...,d, are defined as fol-
lows: (Sov)(t, k) =v(t —1,k), (S§v)(t. k) =v(t +1,k), (Sv)(t, k) =
v(t, ,olfl (k)), and (Sfv)(t, k) =v(t, p;(k)). We do not distinguish
between the shift operators for different Hilbert spaces ¢,. The def-
initions of graph-diagonal operators and of the shift operators nat-
urally extend to ¢ and ¢5,.

Let X~0 be a graph-diagonal operator where, for all (t,k) e
Z xV, X(t, k) is a diagonal matrix. ¢(X) denotes the sum of
distinct diagonal entries of X, ie., ¢(X) is the sum of the dis-
tinct diagonal entries in diag(X(t,k)) k)ezxv- For example, as-
sume that X(t,k) =0 for all (t, k) except for some (to, ko), (to,
kq), and (tq, k1), where X(tg, ko) = diag(wq, wq, wo, wy), X(tg, k1) =
diag(wq, w3, wy), and X(tq, k1) = diag(ws, wy). Then, ¢ (X) = wy +
Wy + W3 + wy. Consider a partitioned graph-diagonal operator W =
diag(W;) = 0, where W; are graph-diagonal operators and, for all
(t,k) e ZxV, Wi, k) are diagonal matrices. ®(W) denotes the
sum of distinct diagonal entries of W, i.e.,, ®(W) = ¢ ([W]).

3. Operator theoretic framework

Consider a distributed NSLPV system Gs. We represent the in-
terconnection structure of Gs using a d-regular directed graph:
each subsystem G) in G; corresponds to a vertex keV, and
the interconnection from G® to GU) corresponds to the di-
rected edge (i, j)eE. The dynamics of each G) are described
by a discrete-time NSLPV model formulated in an LFT frame-
work. The standard states of G} are denoted by x(t, k), where
t € Z is the discrete time-step. The signals introduced by the
LFT formulation are denoted by pB(t, k) and «(t, k). x¢(t, k)
are referred to as the temporal states, and B(t, k) and o(t,
k) are referred to as the parameter states for ease of refer-
ence. The possibly time-varying dimension of xp(t, k) is denoted
by nr(t, k). The parameter states satisfy B(t,k) = A(t, k)a(t, k),
where A(t, k) = diag(d (¢, ")Inll’(t,k) ..... S (t, k)ln’r’(tk))‘ 8;(t, k), for
j=1,...,r, are time-varying scalar parameters that are not
known a priori, but are assumed to be measurable at each dis-
crete time-step t. The parameter states are partitioned into r
vector-valued channels conformably with the partitioning of A(t,
k), ie., a(t, k) =[oj(t k) o5t k) ax(t, k)" and B(t k) =
[Bi(t. k) Bst. k) ... Bi(t.k)]", where aj(t, k) and Bj(t, k) share
the dimension n?(t, k). The formulation allows for a local de-
pendence of the state-space matrices on the parameters: differ-
ent subsystems may depend on different parameters; and if two
subsystems are affected by the same parameters, the evolution
of the parameters is assumed to be independent in each sub-
system. Denote by r, the number of parameters that affect G,
Then, r = maxey . If 1, <1 for some koeV, then §;(t, ko) =0
and n‘;(t, ko) =0forallteZand j= I +1..... 1. Each subsystem
has its own actuating and sensing capabilities. The control inputs
and the output measurements of G are denoted by u(t, k) and
y(t, k), respectively, and their corresponding dimensions are given
by ny(t, k) and ny(t, k).

The interconnections between the subsystems are modeled as
spatial states. The spatial state x;(t, p;(k)) is associated with the

edge (k, pi(k)), i.e,, the outgoing edge from vertex k along permu-
tation p;. The dimension of x;(t, p;(k)) is denoted by nl.S(t,pi(k)).
Similarly, the spatial state x;(t, k) with dimension nis(t, k) corre-
sponds to the edge (,01.‘1 (k), k), i.e., the incoming edge to vertex k
along permutation p;. The spatial states associated with the virtual
edges are of zero dimensions for all time-steps since the virtual
edges are not present in the actual interconnection structure and
are only added to render the directed graph d-regular. Due to the
communication latency, the data sent by a subsystem at the cur-
rent time-step reaches the target subsystem at the next time-step.
Then, for all (t,k) € Z x V, the state-space equations of system Gy
are given by

XT(t +1, k)
x1(t+1, p1(k))

xa(t+ 1. pg (k)

o (t, k)
y(t. k)
X7 (t, k)
Arr(t.k)  Ars(t.k)  App(tk)  Br(t.k] [X1(EK)
Asr(t. k) Ass(t.k)  Asp(t.k)  Bs(t, k) :
T At k) At k) Ap(t k) Be(t k) || x k) |
Cr(t,k)  GCs(t,k)  Cp(t,k)  D(t, k) B(t, k)
u(t, k)
B(t. k) = diag(8:(t, e ety -+ Br (L, 1) Lap 1oy ) (8, )
= A(t, k) a(t, k). (M

Fig. 1 shows a distributed NSLPV system and the graph defining
its interconnection structure. The dashed red arrows correspond to
the virtual edges added to render the graph 2-regular. The permu-
tations and the spatial states are specified in the figure. The oper-
ator Sy marks the communication latency.

The state-space matrices are known a priori, are assumed to be
uniformly bounded, and are partitioned conformably with the per-
mutations and the blocks of A(t, k):

FAST (¢, k) AT (t, k)
Asr(t. k) = . Apr(t.k) = ;

LAY (£, k) AFT (¢, k)
B3 (t. k) B (t. k)

Es(t, k) = s B-p(f, k) = s
| BS(t. k) BP(t, k)

Cs(t. k) = [G5(t. k) (. k).

Gp(t. k) = [CP(t. k) e o],

Ars(t, k) = [ATS(t, k)
Arp(t. k) = [AIP(t. k)
Ass(t. k) = [AS(t. 1]
Asp(t. k) = [AST(t. 1) ]
Aps(t. k) = [A%(t. k)]
App(t, k) = [AP2(t, k)]

A, 1],
AP (t. k)],

i=1, e
i=1,

j=1

adie=1,...d°
adij=1,..1"
PO o3 d’
TS '

i
j=1 f=1,...r
The partitions A7t (t, k), A{S (t, k), and so on define graph-diagonal
operators, e.g., Arr, A{S, which in turn, when augmented in the ob-
vious way, form partitioned graph-diagonal operators A, B, and C
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Fig. 1. A distributed NSLPV system (right) and the graph defining its interconnection structure (left).

such that
[Arr(t.k)  Ars(t.k)  Arp(t.k)
(ANt k) = | Asr(t. k) Ass(t. k) Asp(t. k) |.
| Apr (£, k) Aps(t. k) App(t. k)
[Br(t. k)
[BII(t. k) = | Bs(t, ’<):|,
L Bp(t. k)
[[C]](f,k):[c-r(f,k) Cs(t. k) C_P(f,k)]

The matrices D(t,k)_deﬁne the graph-diagonal operator D

such that [[D]|(t,k) =D(t, k). For j=1,...,r, define the graph-

diagonal operators Aj, where Aj(t, k) =8j(t,k)1ng(t K and con-
e

struct Ap =diag(Aq,..., Ar) such that [Ap](t, k) = A(t, k). Let

[190(t, k) = Iy k). and the partitioned graph-diagonal operator
[@1.-am) s defined as [@1-m) = diag(I%1,...,[9m). Eq. (1) are
rewritten in compact operator form as

[g} - ASA[E] + ASBu, y= c[/’é] +Du,
x;]" and B =B; Bl @

A is restricted to A = {A : ||A]| < 1}. We use the quintuple (A, B,
C, D, A) to denote the realization of system Gz described by (2).
For a fixed A € A, the input-output map of system Gs can be writ-

ten as Gy = A * I:SFA\S—; = C(I— ASA)~1ASB + D, assuming that the

_ * *
x=[x x

inverse exists. The distributed NSLPV system G is then defined as
g5={G5:AEA}.

Remark 1 [1, Lemma 1]. G5 is well-posed if I— ASA has a

causal inverse on £, ({R'T¢0}) @ (69?=1Z28({Rnis(t'k)})) ® (@_ 62
P
(RrR" (t‘k)})), hereafter simply ¢, for all Ae A. Gs is well-posed
if [A]l(t,k) =0 for all keV and t<0 and if I — ApApp has a causal
P
inverse on ®§=1£2€({R"1‘ (t’k)}) for all A€ A, where the partitioned
graph-diagonal operator App is partitioned conformably with Ap
and satisfies [[App]|(t, k) = App(t, k) for all (t, k) € Z x V. Hereafter,
all the state-space matrices are assumed to be zeros for t <0.

Definition 1. System Gg is said to be ¢,-stable if I — ASA has a
bounded causal inverse for all A € A.

Next, we give a sufficient condition for the ¢,-stability of sys-
tem Gs. Let

T ={X:X =diag(Xr. X;..... X;. X[, ... XF),

where XT,X,.S,X]’? are bounded graph-diagonal operators
fori=1,...,dand j=1,...,1,

X' e £((R" D ( @ (RTOD) 0 (@) 6(RDEOD))]

and let ¥ ={X:X=X*e T, X>0}. The sets 7 and X are com-
mutants of A.

Lemma 1 [1, Lemma 2 and Theorem 1]. Gy is ¢,-stable if there ex-
ists X € &, or equivalently X~0 in the commutant of A, such that

A*S*XSA — X < 0. 3)

Let X be in X. (3) can be written in terms of the following
equivalent sequences of linear matrix inequalities (LMlIs). For all
(t,kyezZxV,i=1,...,d, and j=1,...,r, and some scalar 8 > 0:

Xr(t.k) - B XP(t. k) = BI. X[ (t. k) > BI,
[A*DICe, RIS XST(E, k)TAT(E, k) — [XT(E, k) < =B,
X1t k) = diag(Xr (¢, k), X7 (£, k), ..., X5 (¢, k),
XP(t, k), ..., X (t, k),
[S*XSII(t, k) = diag(Xr (¢t + 1, k),Xls(t +1,01(k)), ...,
Xg(t +1, pg(k)), XP (£, k), ..., X (t, k).

The BI terms ensure that the sequences on the left-hand side of
the inequalities do not converge to singular matrices as t — oo. Due
to the explicit dependence on time in the state-space equations
of the subsystems, there is an infinite sequence of LMIs associ-
ated with each G¥). The sequences corresponding to various sub-
systems are coupled through the spatial terms X,.S. The parameter
terms Xj‘.’ (t, ko) only appear in the LMI sequence associated with

G®ko) due to the local dependence of the state-space matrices on
the parameters. Since the state-space matrices are assumed to be
zeros for negative time-steps, then the sequences of LMIs are triv-
ial for t <0, and t can be restricted to Ny. Moreover, if the sub-
systems are (h, q)-eventually time-periodic for some integers h>0
and q>0, i.e, for all t,ze Ny and keV, the state-space matrices
satisfy [Z]|(t +h+zq, k) = [Z]|(t + h, k), Ze{A, B, C, D}, then us-
ing the averaging techniques of [8,13], we can show that a solu-
tion X € X to (3) exists if and only if an (h, gq)-eventually time-
periodic solution Xeper exists. Thus, in the case of (h, q)-eventually
time-periodic subsystems, we restrict t to the finite time-horizon
h and the first time-period, i.e., 0 <t < h+q— 1, when evaluating
the sequences of LMIs equivalent to (3).

Since (3) is only a sufficient condition for ¢,-stability, there ex-
ist ¢,-stable systems for which a solution in X to (3) does not ex-
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ist. Systems which possess structured solutions to (3) are said to
be strongly stable.

Lemma 2 [1, Lemma 3 and Theorem 1]. System Gs is strongly
stable and satisfies ||Gg|| <y for all Ae A if there exists X € X, or
equivalently, X~0 in the commutant of A, such that

[ 0 } [SA SB:|*
- 2] cC D
v <0. (4)

3 o

Clearly, the size of G5 and the size of the analysis problems in-
crease with the number of subsystems, interconnections, and pa-
rameters, as well as the dimensions of the corresponding tempo-
ral, spatial, and parameter states. This makes model reduction very
useful, sometimes even necessary, for reducing the computational
complexity of the problems at hand. Specifically, a reduced-order
system G4 5 is sought which approximates the behavior of Gs and
preserves the interconnection and uncertainty structures of gj, i.e.,
Gred,s is a distributed NSLPV system whose interconnection struc-
ture is described using the same graph as G5 and where the LFT
formulation of the subsystems retains the same partitioning of the
A-operator.

o >

4. Balanced truncation

This section treats the BT method. The notion of a balanced re-
alization for a distributed NSLPV system is defined, and strongly
stable systems are shown to admit a balanced realization. The
reduced-order system resulting from BT is proved to be strongly
stable with a balanced realization, and upper bounds on the ¢;-
induced norm of the error system are derived. The results of this
section generalize their counterparts for single NSLPV systems in
[10, Lemmas 9 and 10 and Theorems 12, 13, and 17] and for dis-
tributed LTV systems in [2, Algorithm 1, Lemma 3, and Theorems 1
and 2]. If only one subsystem is considered, the results of [10] are
recovered; and if the operator A is fixed and known a priori, the
distributed NSLPV system reduces to a distributed LTV system and
the results of [2] are recovered. Theorem 3 does not have a coun-
terpart in [2] and remains novel when specialized to the class of
systems therein; [2, Theorem 3] only applies when the truncation
sequences are monotonic in time, whereas Theorem 3 applies for
general truncation sequences.

4.1. Balanced realization

Definition 2. A realization (A, B, C, D, A) of G; is said to be bal-
anced with balanced generalized gramian X if there exists ¥ =
X =Y e X that satisfies

AXA* — S*XS + BB* < 0, (5)

A*'S'YSA-Y +CC <0, (6)
and for each (t,k) € Z x V, [[Z]|(¢t, k) is a diagonal matrix.

(5) and (6) are called the generalized Lyapunov inequalities and
can be solved separately in order to obtain generalized gramians X
and Y in &. [X]|(t, k) and [[Y]I(t, k) need not be diagonal matrices.

Lemma 3. A strongly stable system Gg admits a balanced realization
(Abal» Byal, Coal» D, A).

Proof. For a strongly stable system, there exists a solution P € X
to (3), and equivalently, due to the homogeneity and scalability
of (3), there exist solutions X ¢ X and Y € X to (5) and (6), re-
spectively. X and Y are used to construct a balanced realization

for G5 and a balanced generalized gramian X as follows. First, we
perform the Cholesky factorizations X = R*R and Y = H*H. Then,
we perform the singular value decomposition HR* = UXV*, where
U and V are in 7. We define the balancing transformation T =
»-12U*H e T and its inverse T-! = R*VX~1/2 ¢ T. ¥ can then be
expressed as ¥ = TXT* = (T*)~1YT-1. ¥ simultaneously satisfies
(5) and (6) for the realization (Apy;, Bpa, Cpary D, A) of G5, where
Apal = (S*TS)AT-1, By, = (S*TS)B, and Gy, = CT~1. Because of the
structure imposed on 7 and X, the previous computations are per-
formed block-wise, e.g., Xr = (Rp)*Ry, Yr = (Hy)*Hr, and so on. O

Y, Apa, Bpa, and Gy in the previous proof depend on
the generalized gramians X and Y used in the balancing
procedure. For model reduction purposes, generalized grami-
ans with minimum traces are sought, e.g., the solution X ¢
X to (5) which minimizes Z(Lk)(trXT(t,k)—i-z,-d:1 trX>(t k) +
i ter’.’(t, k)). See Section 6 for more details.

4.2. Balanced truncation

Consider a strongly stable system Gs with a balanced real-
ization (A, B, C, D, A) and a balanced generalized gramian ¥ =
diag(Zr, X5...., X5, £F, ..., &F), which is to be reduced via BT.
To determine which state variables to truncate, one looks at the
entries of ¥ and their relative order, the value of y in Lemma 2,
and the error bounds from Theorems 2 and 3. Since ¥ has a block-
diagonal structure and contains temporal terms X(t, k), spatial
terms X3(t, k), and parameter terms Ef(t, k), then the BT method
allows for the truncation of each temporal, spatial, and parameter
state individually. Truncation need not be uniform in time, i.e., one
may truncate different numbers of variables from a particular state
at different time-steps.

We focus on X7 and repeat similar steps for Eis and Ef for
i=1,....d and j=1,...,r. For each (t,k) e ZxV, Z1(t, k) is an
nr(t, k) x ny(t, k) positive definite, diagonal matrix. Without loss
of generality, we assume that the entries of X1(t, k) are sorted
in a decreasing order with the largest value in the first entry.
Denote the dimensions of the reduced temporal states by mz(t,
k), where 0<mg(t, k)<ng(t, k). We partition X(t, k) into two
blocks as in X7 (t, k) = diag(I'r (t, k), Q7 (t, k)), where T'f(t, k) is
an my(t, k) x my(t, k) matrix. If my(ty, kg) =0 for some (tg, ko) €
Z xV, then TI'f(ty, ko) is nonexistent. Similarly, if nr(ty, ko) —
my(to, ko) = 0, then Q(ty, ko) is nonexistent. I'f(t, k) and Qq(t,
k) define graph-diagonal operators denoted by 't and Q1. The
method also allows for the reduction of the dimensions of the
spatial and the parameter states. The dimensions of the spa-
tial and the parameter states in the reduced-order system are
given by mf(t, k) and m?(t, k), respectively, where 0 < mis(t, k) <
n¥(t.k) and 0 < m?(t, k) < n?(t, k). The case, mfo (t, ko) =0 for all
time-steps t € Z, corresponds to the removal of the interconnec-
tion (,ol.;1 (ko). ko) altogether from the graph of G4 . Similarly,

the case, mﬂ.’o (t, ko) =0 for all time-steps, corresponds to the re-
moval of the channel A; (t, ko) from A(t, ko) in Greqs. We de-
fine the operators I' =diag(T'r,T5,...,T5.Tf,....,TF) and Q=
diag(QT,Qﬁ,...,Qz,Q’;,...,Q’T’). I' and @ are associated with
the non-truncated and truncated blocks of X, respectively. We
now partition the state-space matrices into non-truncated por-
tions, which we mark with a hat, and truncated portions, con-
formably with the partitioning of X = [[diag(I'r, Q7)]l, Ef:
[diag(I'?, 5)]. and Ef = [[diag(l“f, SZ?)]]. For instance,

Ars(t, k) = [ATS(t, k) AIS(, K)]
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[ ATs(t, k)

i _A?z] (t, k)

Ayl ] [ AR
ATS, (t. k) AIS, (¢, k)

ATS, (¢, k)
A0 ||

_ AS(t k) Aises,u (t. k)
__Aiss,zl(t’k) AR (8 k) i=1,...

e.

e d:e=1,....d

Arp(t, k) = [ATP(t, k) AP (t, k)]
[T ATk A]Tf’u(t,k)j| |:AZ”(t,k) A{qz(t,k)ﬂ

(AR (k) AT, (e k) A © ) AL ()

>
)
~~
—

k) =[A% (e, k)]j:]“,.,r;f:1 r

T Aep pp
- Ajf (t.k) Ajf,u (t. k)
L _Ag‘)?ﬂ (t’ k) A?F,ZZ (f, k) i1

where AIS(t,k) is an mr(t +1,k) x m(t, k) matrix, A(¢.k) is
an m? (t + 1, p;(k)) x mS(t, k) matrix, A]T,P(t, k) is an myp(t +1,k) x
mf(t, k) matrix, and A?F(t, k) is an m?(t, k) x m?(t, k) matrix. The
partitioning of the state-space matrices is performed at the level of
the most elemental blocks, e.g., we do not partition Ars(t, k), but
rather, we partition AiTs(t,k) into a non-truncated block Airs (t, k)
and other truncated blocks.

The non-truncated blocks, e.g., Arr(t, k), /\iTs(t, k), define graph-
diagonal operators, e.g., Arr, AiTS, which, when augmented in the
obvious way, form the reduced-order system operators Aeq, Bred,
and Cieq. Dyeq is set equal to D. We also define

(7
and A; are graph-diagonal operators that satisfy Aj(t k)=
d;(t, k)Im,_»(t 0 for j=1,...,r. The realization of the reduced-order

HE

system Geq s is thus given by (Areg, Breds Credr D, Areq), Where
Aeg={Ag=PAP*: A c A} and P is an appropriately defined
operator that results in (7). BT is said to be structure-preserving
since the interconnection structure of G.q4s is the same as the
interconnection structure of Gs, with the spatial states having
smaller or equal dimensions, and the structure of the A .-
operator in Gpq s is the same as the structure of the A-operator
in Gs, with the parameter states having smaller or equal dimen-
sions. The method is also structure-simplifying because the spatial
states and the parameter states in G,.q s are allowed to have zero
dimensions.

Lemma 4. The reduced-order system Gi.q s is strongly stable, and its
given realization is balanced.

Proof. There exists a unique partitioned graph-diagonal operator
Q such that Q*XQ = diag(I", 2), QQ* =1, and Q*Q = I. The reader
is referred to Appendix A for the detailed structure of the op-
erator Q. It is also not difficult to see that Q satisfies Q*AQ =
diag(Aped, A2) = A,

* _ S 0 A_red 1‘__‘12 _ &a

Q'5AQ = [O 5:| |:A21 An| SA,
B S O0]|B ~Z - =
Q*SB = [o s} [ éﬂ =8B, (Q=[Cea G]=C

where Aqy, Ay, Ayz, By, G5, and A, are appropriately defined par-
titioned graph-diagonal operators.

With X satisfying (5) and (6), pre- and post-multiplying (5) by
$*Q*S and $*QS, respectively, and (6) by Q* and Q, respectively, we

get
Adiag(T, Q)A* — $*diag(T, 2)$ + BB* < 0, (8)
A*$+diag(T, 2)SA — diag(T", Q) + C*C < 0. (9)

From (8) and (9), Areq'A%,; = S*I'S + BregBl,4 < 0 and A, ;S*T'SAeq
=T+ Ced < 0. Thus, Gyeq 5 is strongly stable, and its given re-

alization is balanced with a balanced generalized gramian I'. O

4.3. Error bounds

Consider a strongly stable system Gz with a balanced realiza-
tion (A, B, C, D, A) and a balanced generalized gramian X, and
denote the reduced-order model obtained from BT by G4 s with
balanced realization (Aeq, Bred» Cred» D, Areq) and balanced gener-
alized gramian I". We now derive expressions for the upper bound
on the ¢;-induced norm of the resulting error system.

Theorem 1. If Q =1, ie, foralli=1,...,d, j=1,...,r, and (t,k) €
ZxV, Qr(t.k) =1 @tk =1 and QF(t.k)=1I then ||(G5—
Greas) |l <2 forall A A.

Proof. Since Gs and Gq s are strongly stable systems, then so is
the error system & = {1 (G5 — Greq.s) : A € A}. Recalling the deno-
tations §, A, B, C, and A defined in Lemma 4, one can see that

SAred 0 %SBred
1 Areg 0 & 1 &R
5(68 - Gred.a) = [ (;e £i| * 0 S -5
1 164
- ﬁCred ﬁC ‘ 0

As per Lemma 2, we show that ||%(G5—Gre¢5)|| <1 for all

AeA by constructing an operator V >0 that commutes with

diag(Aeq. A) for all Ac A and satisfies (4) for the given real-

ization of system &s. By direct application of the Schur comple-

ment formula twice to (8) and (9), we verify that [_Rl « ] <
K —SiRySa

0, where S, =diag(S,1,5), Ry =diag(I'1, Q1. 1% T,Q), q =ny.

00A
G2 =ny, and K= oo |. Let

ABO

—I 0 0 I 0
Lo 0 I 0
L=—1|0 I 0 0 I
V2o o vam 0 o0
Lo -I 0 0 I

and
-1 I 0 0 0
;10 o1 0 I
P=—|0 0 0 V2™ 0
VZIZp 1 0 o0 o
L0 0 I 0 -1

We pre- and post-multiply the previous inequality by diag(P*,

; X . .| -PRP PrFLE
L) and diag(P, L*), respectively, to obtain |: LKk —LS;RZSaL*] <0,
where _
Ared 0 _0 %Bred A12
0 A_red 412 %Bzed 0
kp— | M N | _ 0 Ax Ax %Bz 0
Nl ] |26y LG G 0 |=LC
2 red 2 red 2 2 22
/'_\21 0 0 1 B-Z AZZ
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Since Q2 =1 and $*S =1, then
" e 1({C-'4+r r-1-r . Ty
P*RyP = dlag(2|:r,_l r oty ri|,d1ag(1,1 )

and

e o (1[SH(TT4+T)S SH(I-T-HS| ..
LS;RySqL* = d1ag<2 |:S*EF _ F*;S S*EF* + 1_;5:|,d1ag(1, I, I)).

Let
V= ;diag<[;: o 11::1 N 11:]21)
V satisfies
16 m M
o[BIk

Iy

and V >0 and commutes with all diag(Ared,ﬁ). By Lemma 2,
[11(Gs — Greas)ll <1 forall AcA. O

The error bound for the case of a general 2 is given
next. The theorem follows by scaling and repeated application
of Theorem 1 as detailed in [2, Proof of Theorem 2]; and
Lemma 4 ensures that BT is applicable to the resulting interme-
diate reduced-order systems.

Theorem 2. The reduced-order system G.qs satisfies
Gred,s)” <20(2) for all AcA.

1(Gs -

The bound in Theorem 2 can become infinitely large as the
number of distinct entries in €2 increases. If the system is strongly
stable and the subsystems are (h, q)-eventually time-periodic, then
there exists an (h, q)-eventually time-periodic balanced realiza-
tion for the system and an (h, q)-eventually time-periodic balanced
generalized gramian Xeper. The realization of the reduced-order
system obtained from BT is also (h, q)-eventually time-periodic.
In this case, when evaluating ®(Qeper), t is restricted to the finite
time-horizon h and the first time-period, i.e.,, 0 <t <h+q— 1. If,
in addition, the graph is finite, i.e.,, V and E are finite sets, then
®(Qeper) is guaranteed to be finite. As demonstrated in the ex-
ample, heuristics can be used in order to increase the number
of small and equal entries in Qeper, thereby increasing the effec-
tiveness of Theorem 2. Next, we derive an alternative expression
for the error bound which can be less conservative than the ex-
pression in Theorem 2 for general NSLPV subsystems. The coun-
terparts of the following result for single LTV systems and single
NSLPV systems are found in [22, Theorem 2] and [10, Theorem 17],
respectively. For all keV, i=1,..., d, and j=1,...,r, we define
the sets Fr(k) ={t e No: mr(t.k) # nr(t.k)}, FS(k) ={t eNp:
m$(t, k) # n$(t.k)}, and }']‘.J(k) ={teNgy: m?(t, k) # n?(t, k)}.

Definition 3 [10, Definition 14]. Consider a scalar sequence «; de-
fined on a subset W of Ny, and let t.,;, = min{t : t ¢ W}. We define
the following rule which extends the domain of definition of «; to
all t € Z:

o = atmin lft < tminy
"7 ) ae if t > tin, Where e=max{t <t: 7t e W}.

Definition 4 [22, Definition 1]. Consider a scalar sequence v =
(V1, V9, ...,vs) for some integer s> 1, where v; cannot be consid-
ered as a local maximum and vs cannot be considered as a local
minimum. Then, the sequence v has | local maxima and [ local
minima for some [ € Ny. If [>1, we denote the local maxima and

local minima by Vmax.e and v, for e=1,..., 1. The min-max ra-
tio Sy of the sequence v is defined as follows:

14 if =0,
SV = I VUmax.e H

141 1_[9=1 Vonin e if [ > 0.

Theorem 3. If Qp(t,k) =wyr(t, k) for te Fr(k), Qis(t, k) =
wi(t. k)l for te F(k). Q?(t, k) = W?(t, k)I for te }'}’(k), and
Fr(k), }‘is(k), ]-‘;.’(k) are finite sets for all keV, i=1,...,d, and
j=1,....r, then

d r
1(Gs — Grea,s)Il <2 Z (Swr(t,k) + stf(t,k) + st‘j’(t,k))

keV i=1 j=1
for all A € A. (10)

Proof. The result is proved for the special case where only one
state is truncated, e.g., the temporal state x(t, ko). The general
case then follows by repeated application of this special result.
Without loss of generality, assume that wy(t,kg) <1 for all t e
Fr (ko). This assumption can be ensured by scaling system Gg. Sup-
pose that the sequence, wr(t, ko) <1 for all t € Fr(kg), has [ lo-
cal maxima and [ local minima for some [ € Ny, where the first
element in the sequence cannot be considered as a local maxi-
mum and the last element cannot be considered as a local mini-
mum, as stipulated in Definition 4. If [ > 1, then the set Fr(kg) is of
the form {t1,...,tmin1.-- -+ tmax.1> - - -» tmax.p» - -» &s). Fore=1,....1,
tmin, e and tmax, e denote the time-steps at which wr (¢, ko) reaches
its local minima and local maxima, respectively. The domain of
wr(t, ko) is extended to all t € Z using Definition 3. Note that
wr(t, ko) = wr(ty, ko) for t<t; and wr(t, kg) = wr(ts, ko) for t>ts.
For all (t, k) € Z x V, we define the state transformation T =T* € T
as

[T, k)
w2 (t, ko) I
Wr (Emin,1, ko)
xwy ' (t, ko) I
— Jwr(tmina, ko)
x Wy (tmax 1, ko) wi/? (¢, ko) I

for t < tmin1,
fOl' tmin,l + 1 =< t < tmax,lv

fOl‘ tmax,] + 1 =< t < tmin,2,

o wi/*(t, ko) I for t > tay + 1,

where p = [Tb_; (Wr (tmin.e- ko) Wy ! (tmax.e. ko))- Since T(t, ko)=BI
for some B>0 and all teZ, then T and T~! are bounded.
We define a new realization (Apew, Bnew, Cnew, D, A) for
Gs, where Apew = (S*TS)AT~!, Bhew = (S*TS)B, and Cpew =CT~1,
and refer to system Gs with this new realization as sys-
tem Gpew s We define operators P, Q and W in 7 such
that [P, k) = wy/> (6. ko)l QNG k) = [N PN k)", and
[WI(t, k) = [T, k)P, k). For each keV, the sequences oq(t,
k), ay(t, k), and as(t, k), where [T](t, k) = o1 (t, k), [Q](t, k) =
oy (t, k)1, and [W](t, k) = a3(t, k)I, are nonincreasing in t.

The realization of Gg is balanced with the balanced generalized
gramian X satisfying both (5) and (6). Pre- and post-multiplying
(5) by S*TS and making use of the fact that TT-' =T~ 1T =1, we
get Anew T X T Afiew — (S*TS) (S*XS) (S*TS) + BnewBjiew < 0, i.e.,

[AnewICE, IONT It TZNCE, ITICE, k) [Afew I(E. k)

=[S TSI, kOIS ZST(E, IS TSI, k)

+ [Brew I (t. [ Brew (£, k) < —BI
for all (t,k) eZ xV and some B >0. Pre- and post-multiplying
each inequality by [S*WS](t,k)~1 = a§1 (t+1,k)I, where
as(t.k) = a; (t, kyw/?(t, ko), or equivalently, w;'/?(t, ko) =
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az 1 (t k)aq (¢, k), we get

[Anew ] (t, k) o1 (t, k)oz;l t+1,k) [Z](, k)
xaq(t, kK)ag ' (t+1,k) [AnewII(t. k)
—wrl(t+ 1, ko) [S*ZSN(E, k) + 3 (t + 1, k) [BrewI(t, k)
x [Bew It K)ozt (¢ +1,k) < —BL
Since, for each keV, the sequence «os(t, k) is nonincreasing in

t, ie, 0 <a3(t+1 k) < as(t.k) <wr(ty. ko) and a3'(t+1,k) >
1(t k) = wy 1(t1, ko), one can verify that the following holds:

[Anewll(t. K) Wi (£, ko) [ETI(E, k) [Afen 1(E, k)
—wl(t+ 1, ko) [S*ES](E. k)
+wr' (t1. ko) [Buew [l (t. k) [Bhey N1(t. K)WS " (t1. ko) < =B (11)

Similarly, we pre- and post-multiply (6) by T-! and insert
(S*T=1S)(S*TS) = (S*TS)(S*T~1S) =1 as needed to get

Al (ST
ie.,
[Arew It RIS T'ST(E, K)ISTZST(E, k)[S*T'ST(E, k)

x [Anewll(t, k) — [TTCE k)T TS ICE ITICE k)

+[Gew It ) [CrewI(E, k) < —BI
for all (t,k) eZ xV and some B >0. Pre- and post-multiplying
each inequality by [[Q](t, k) = a»(t, k)], and using the fact that
aa(t, k) = aq (6, kw2 (t ko), i, ap(t K)oyt (8 k) = wy /2 (t ko),
we get
(AL (. k) a2 (t, k) a7t (8 + 1, k)

x [S* ST, k) a7t (t + 1, k) oa (¢, k) [Anew ]I (L, k)

—w;l(t, ko) [Z1(t, k) + aa(t, k)

X [Crew I, ) [Crewll (£, k) 2 (¢, k) < —BI.

Since, for each k e V, the sequence «(t, k) is nonincreasing in t, i.e.,
p <ay(t+1,k) <ay(t, k), we obtain

[Aew 1t W (t + 1, ko) [S*ZST(E, k) [Anew ]I (¢ k)

—wrl(t. k) [ZN(t. k) + p[Crey I (L. k)
x [Coew I (t, k)P < _,BL (12)

From (11) and (12), one sees that the scaled realization
(Anew:W;](tlyko)Bnew:PcnewaWT_-](tl»kO)pDv A) of Gnew.s is
balanced with balanced generalized gramian Xpew, Where
[Znewll(t, k) :w;l (t, ko)[ZN(t, k). In particular, Qpew 1 (t, ko)
:w;l(t, ko)Q2r(t, ko) =1 for all t e Fr(kyg). We reduce system
Gnews Via BT by only truncating the temporal state of subsys-

tem G;’;‘\’,& at time-steps t e Fr(kg) and denote the resulting
reduced-order system by Gpew reds. From Theorem 1, we have
W? (t1. ko) x p x | (Grew,5 — Gnew.red.s) Il <2 ie, | (Grew.s —
Grew.red,s) | < 28w, (tky) for all AeA. Finally, because of the spe-
cial structure of T, ||(Gs — Greq )|l = l(Gpew.s — Gnew.red,s) |l for all
AcA.

We now give the proof for the case | =0, i.e., when the se-
quence wr(t,kp) is monotone nonincreasing in t; see also [2,
Proof of Theorem 3]. The balancing transformation T is defined as
(TNt k) = wy/?(t, ko) I for all (t, k) € Z x V. The realization (Anew,
Bnew, Cnew, D, A) of Gy s satisfies

[Anew ]l (t. k)OwWr (€. ko) [ZN(¢. k) [Afew 11 (E. k)
—wr(t+1,ko)[S*EST(t. k) + [Brew I (t. K)[Brew I1 (£, k) < —AL,
[Asew (. )W (€ + 1, ko) [S*EST(E. k) [Anew I (¢, k)
—wrt (€ ko) [ZT(E k) + [Crew 1t T Crewll (£, k) < —BL.

15)(S*2S) (S* T 1S)Anew — T 1T + CioyyCrew < 0,

Since wr(t, kp) is nonincreasing in t, then 0 <wy(t+1,ky) <
wr(t. ko) and wy'(t. ko) <wy'(t+1,k); and since wr(t, ko) <1
for all t € Z, then wr(t, ko) < w*1 (t, ko). Thus, one can verify that

[Anew I (t, K)W; ! (£, k) [ZT(E, k) [Aqew [(E, k) — Wi (£ + 1, ko)
x [[S*ZST(t, k) + [ Brew I (£, K)[[B;; ew]](t k) < _,81

That is, the realization (Anew, Bnew, Cnew» D, A) of Gpews is
balanced with balanced generalized gramian Xpew such that
[Znewll(t, I<)=w;1(t,k0)[[2]](t,k). In particular, Qpew1(t, ko) =
w;1(t, ko)27(t, ko) =1 for all t € Fr(ky). We reduce the temporal

state corresponding to subsystem G;’;Q,\), Then, from Theorem 1 and

due to the special structure of T, we have [(Gs— Grqs)ll =
I (Grew.s — Gnew.red.s) ll <2 =2wr(t;, ko) for all AeA. The final
equality follows from the fact that wy(tq, kg) = 1; this is true since
the system is scaled to ensure that the monotone nonincreasing
sequence wr(t, ko) satisfies wr(t,kg) <1 for all t € Fr(kg). O

We now illustrate the application of Theorems 2 and 3.
Suppose that we are only to truncate the temporal state x(t,
ko) and that Qr(t, ko) = LI, where t € Fr(ko) = {1,2,3,4,5}. Us-
ing Theorem 2, [[(Gs—Greas)ll <2x (1+3+3+%5+1)~457
for all AcA. But, since wr(t,kg) is a monotone decreas-
ing sequence, then from Theorem 3, [[(Gs — Gregs)ll <2x1=2
for all AeA. This bound represents a 56% improvement over
the bound of Theorem 2. For the same set Fr(kp), assume
that Q7(1, ko) = diag(2,1), Q7(2, ko) = diag(17,0.5), Q7 (3,k) =
diag(4,2), Qr(4,ky) =diag(6,1), Q7 (5,kg) = diag(16,4). From
Theorem 2, |[(Gs — Gregs)ll <2x (174+16+6+4+2+1+0.5) =
93 for all Ae A, whereas from Theorem 3, [[(G5 — Greq s)ll < 2 x
2x Y x % +1x & x$)=168. As illustrated below, this bound
is obtained by first truncating the boxed sequence (1, 0.5, 2, 1, 4)
and then truncating the circled sequence (2, 17, 4, 6, 16).

0 0
Qr(1, ko) = @ . Qr(2,k) = @ ;
0 [1]] 0 [05
[ 0 ] 0
Q7 (3, ko) = @ ;o Q4 ko) = @
0 [2]] 0
5.y — |09 0
T\9, 0O — O

However, we can split the truncation sequences into more than
two sequences as illustrated below:

[ 0
Qr (1, ko) = A ’ . Qr(2,ko) = @ ;
0 © K
| 0 | 0
Qr(3,ko) = % - . Qr(d ko) = % 1] )
Qr(5, ko) = 19 o
0 _

These sequences are truncated in the following order: the
underlined sequence (1), the boxed sequence (0.5, 2, 4), the circled
sequence (1, 17, 16), and the sequence (2, 4, 6) inside the triangles.
In this case, the bound from Theorem 3 becomes 2 x (1+ 0.5 x
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o= +1x ¥ +2x %) =56, which represents a 40% improvement
over the bound from Theorem 2. The same bound can be retrieved
by considering the truncation sequences (0.5, 1), (1, 2, 6, 4), (2, 4),
and (17, 16), respectively. This raises the question of how to best
apply Theorem 3 to obtain the least conservative error bound. An-
swering this question is indeed a nontrivial task, and future work
will focus on developing a fast computational algorithm which ef-
fectively applies Theorem 3 to compute a useful bound for a given
truncation sequence. One possible approach consists of modeling
the truncation sequence as a directed graph, where the vertices
correspond to the truncated values and the directed edges are
obtained from the allowable truncation sequences. The problem
then becomes one of finding the graph partition which minimizes
the upper bound expression from Theorem 3. The precise details
of this modeling approach are still not fully developed, and other
possibilities still need to be explored. Solutions to the formulated
problem can then be computed using heuristics and approxima-
tion algorithms [15]. Adopting ideas from Dijkstra’s shortest path
algorithm [4] and set packing [23], among others, may prove
useful in this direction. Finally, Theorem 3 can also be used to
improve on the error bound due to truncation over the finite
time-horizon in the case of eventually time-periodic subsystems.

5. Coprime factors reduction

Section 4 applies the BT method to strongly stable systems.
However, there exist ¢,-stable systems with no solutions in X to
(3), i.e., £5-stable systems that are not strongly stable, which intro-
duces conservatism into BT. [9] points out the difficulty in quanti-
tatively and sharply assessing this type of conservatism. [24] gives
sufficient conditions for the existence of structured solutions to the
LMI therein, and [26] identifies a class of systems with guaran-
teed structured solutions to the generalized Lyapunov inequalities.
This section presents the CFR method as a means of extending the
range of applicability of BT. CFR consists of finding a strongly sta-
ble coprime factorization for system Gs which is not necessarily
strongly stable. This factorization forms an augmented system %
which is reducible via BT. The reduced-order system #.q s results
in a strongly stable coprime factorization for the reduced-order
system G4 5. The results in this section extend their counterparts
in [10, Propositions 26 and 31 and Theorem 27], [3, Theorem 1,
Lemma 3, and Algorithm 2], and [19, Section III] to the class of
distributed NSLPV systems.

5.1. Strong stabilizability

Let ¥ be the set of partitioned graph-diagonal operators
F=[F F° Ey EP EP], where for i=1,...,d and j=

L. r Fr e Le(({RTED)), 6 (RMED])), ES € Lo(6 (BT E0Y),
(RMWE0)), and FP e £e(6 (R ), 6 (RE0))),

Definition 5. A well-posed distributed NSLPV system Gg is said to
be strongly stabilizable if there exists a feedback operator F € F
such that the resulting closed-loop system is strongly stable, i.e., if
and only if there exists F € 7 and P € X such that

(A+ BF)P(A+BF)* —S*PS < 0. (13)

The notion of strong detectability is defined as the dual notion of
strong stabilizability.

Theorem 4. There exist F € F and P € X that satisfy (13) if and only
if there exists Q € X that satisfies AQA* — S*QS — BB* < 0. Further-
more, when the relevant inverse exists, a strongly stabilizing choice
of F is given by F = —(B*S*Q~1SB)~1B*S*Q~15A.

The proof of this theorem is similar to that of [3, Theorem 1]
and so is omitted.

5.2. Right coprime factorization

We now define the notion of a right coprime factorization (RCF)
for a distributed NSLPV system Gs with realization (A, B, C, D,
A). We show that if Gs is a strongly stabilizable and strongly de-
tectable system, then it admits a strongly stable RCF.

Definition 6. Two operators Ng and Mj in Lc(¢;, ¢;) are said to be
right coprime if there exist two operators Us and Vy in £:(¢, ¢5)
such that UsNs + VsMs = 1. Two ¢,-stable distributed NSLPV sys-
tems N and Mg are said to be right coprime if their input-output
maps Ns and M; are right coprime for all A € A.

Definition 7. The pair (N, Mg) of ¢,-stable distributed NSLPV
systems is said to be an RCF for Gs if A5 and Mg are right coprime
and, for all A €A, M; has a causal inverse on ¢, and G = N‘;Mg].

Theorem 5. A strongly stabilizable and strongly detectable system
Gs admits a strongly stable RCF (N, Mg), where the realizations
of N5y and Mg are given by (A+BF,B,C+DF,D,A) and (A+
BF,B,F,I, A), respectively, and F is any strongly stabilizing feedback
operator.

Proof. N5 and M are strongly stable systems since F is a strongly
stabilizing feedback operator. We verify that the pair (NVs, Mg)
satisfies the conditions in Definition 7. First, we show that M;

has a causal inverse on ¢y, for all AeA. Let Rs = A« SAF SIB].

Rs is well-defined and causal on ¢;, for all AeA since sys-
tem Gs is well-posed, i.e., by Remark 1, ] — ASA has a causal in-
verse on £, for all A e A. We verify that MgRs = RsMg = I for all
A e A. For compactness, we introduce the symbol ¢ = [x* B*]".
For a fixed Ae A, {y = AS(A+ BF){y + ASBuyy, yy = Féy + upy,
Cr = ASAlR + ASBug, and yg = —Flg+ug. If yyy =ug, then (I—
ASA)(¢m — ¢r) = 0. But, since I — ASA has a causal inverse on £y,
then ¢y —¢gr =0 and yg = uy, ie, RsMs =1. We conclude simi-
larly that MgRs = I. Thus, Ry is the inverse of M; for all A € A. The
second step is to show that G5 = N(;MB‘1 = NsR;s for all AeA. We
have

S(A+BF) —SBF | SB1 _ il s
NsRs = [% gi| * 0 SA SB| =Ax [/} lf}
C+DF _—DF | D c|D

Let Q = [é j] where I has a compatible structure with A. Then,

_ 14 15 r
o -0 [0 59) 3 2]

S(AA+BF) 0| 0
0 SA | SB| =C(I— ASA)"'ASB +D.
C+DF C|D

That is, NsRs = Gs. Finally, we show that Ny and Mg are right co-
prime. Since Gy is strongly detectable, there exists a bounded, par-
titioned graph-diagonal operator K, with a structure similar to F*
and appropriate dimensions, that renders the resulting closed-loop
system strongly stable. For each A € A, consider the operators Uy
and Vg in Lc(¢5, ¢5) defined as

Us=Ax [S—(A + KCO) ﬂ] and

F 0

—F I

V= A [S(A—H(C) S(B+I<D)}

To prove that UsNs + VsMs = I, we let uy = upy, uy =yy, and uy =
ym and show that yy +yy = uy. We write the equations for Us,
Ns, and Vs similarly to the equations of Mg and Rs. Then, us-
ing the above relations, we get (I — AS(A+KC))({y — &y +¢m) =
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ASK(C+DF)(¢n —&m)s Yu+Yyv =F(u —fv +8m) +uy, and (I -
AS(A+BF))(¢n — ¢m) = 0. Since (I — AS(A+ BF)) and (I — AS(A+
KC)) have bounded causal inverses, then ¢y — ¢y =0, {y — &y +
tv=0,and yy +yy =uy. O

5.3. Coprime factors reduction method

Algorithm 1. Given a strongly stabilizable and strongly detectable
distributed NSLPV system Gg with realization (A, B, C, D, A), we ob-
tain a reduced-order system G4 5 via the CFR method as follows:

1. Find P € X such that APA* — S*PS — BB* < 0.

2. Define F = —(B*S*P~1SB)~1B*S*P~1SA. Ensure that F is well-
defined by removing any control redundancies so that [B]|(t,
k) has full column rank for all (t,k) € Z xV; see [3, Theo-
rem 1].

3. Construct a strongly stable RCF (Ng, Mg) for system Gs as in
the proof of Theorem 5.

- Ns and Mg have realizations (A + BF, B,C + DF, D, A) and
(A+BF,B,F,I, A), respectively.

4. Form an augmented strongly stable system Hs=
Vg M;]" with realization (Ay, By, Cy, Dy, A) = (A + BF, B,
[(C+DF)* F*]*,[D* I]*, A).

5. Find generalized gramians X and Y for system #g.

- Find X e ¥ with minimum trace such that ApXAj —
S*XS +ByBj; < 0.

- Find Y € X with minimum trace such that AjS*YSAy —
Y +CiCy < 0.

6. Construct a balanced realization (Ay, pa), By, pal» CH, pal» DHy A)
for #; as in the proof of Lemma 3.

- Find a balancing transformation T and express the bal-
anced generalized gramian as X = TXT*.

- Define Abal = (S*TS)ATﬁl, Bbal = (S*TS)B, Cbal = CT71,
and K, = FT-1,

- Define Ay by = Apal + BhaiFbal: Bpbal = Bpai. and Gy pa =
[(Goar + DRya)* Fﬁ;,]*~

7. Apply the BT method to this balanced realization and obtain
a reduced-order system Heq 5 = [NV 5 M?ecl.&]*'

- Determine the dimensions of the reduced-order system
based on the following:
(a) The upper bound on |(Hs — Heqs)ll, for all AeA,
obtained by judiciously applying Theorems 2 and 3.
(b) The upper bound y on ||Hs]|, for all A €A, obtained
by applying Lemma 2.
(c) The absolute and relative orders of the diagonal en-
tries in X.
- Denote the realization of # g5 by (Ay, reds BH, red» CH, reds
DH- Ared)-
- Denote the reduced-order balanced generalized gramian
by I' = diag(T'r. I§.....T5. TP, ... TD).

8. Define the operators Areq, Bred» Creq» and Frq as fol-
lows:  Bpeg = By ted: [(Creq + DFieq)* Fr:d]* = CH,redv and
Ared = Ap red — BredFred-

- With Q defined as in the proof of Lemma 4,
notice that the previous operators also satisfy

SO|[Aeq A G Cred C
*SA — »red »12 , [ bal] — red _2 , d
CApal [0 5] |:A21 Azz] il e

s of|B
*SBpal = red ],
Q*SBpal |:0 s|| &
9. Systems  MNqs and Mg with realizations (Apq

+ BredFreds Bred> Cred + DFed, D, Areq)  and  (Areq + BredFreds
Bieds Freds I, Aeq) are strongly stable and right coprime.

10. If I — AeqSAeq has a causal inverse on ¢,, (see Remark 2)
for all Aeq € Afeq, then

(a) (Areqs Bredr Cred» D, Aeq) is a realization for the reduced-
order system Geq s;

(b) (Med,B»Mred.B) is an RCF for system gred,,;, ie, Gred,tS =
Nred,tSM;e}j’g for all Ared € Ared;

(€) Freq strongly stabilizes Gieq 5.

Remark 2. Let A4 pp and Ay, pp be defined similarly to App
in Remark 1 but with the blocks of Aq and Ap,; used in-
stead of A, respectively. To ensure that I— A,4SAeq has a
causal inverse on ¢y, for all A,4e A4 and since the state-
space matrices are zeros for t <0, we only need to ensure that
I— ApAreq pp has a causal inverse on ea;zlezE({Rm?(t’k)}) for all
Aed € Areg, Where Ap is defined in (7). This is guaranteed if
the generalized gramian X in Algorithm 1 additionally satis-
fies Appdiag(X?,...,XP)As, —diag(XP,...,X) <0. Namely, since
Y =TXT* and ¥ and T have block-diagonal structures, the previ-
ous inequality is equivalent to Ay, ppdiag(Z?,..., ZP)A

bal,PP —
diag(®ZF,...,2P) <0. Then, similarly to Lemma 4, we can
show that Apqppdiag(T'}..... DAz, p —diag(Tf.....TF) <0,
ie, [diag(TP.....TP)"2A.qppdiag(TP.....TP)2| <1.  But,
diag(I'F,...,T'?) commutes with every permissible Ap, and

so, using the sub-multiplicative property, we see that ApAred_Pp
has a spectral radius less than 1 and I — ApAred_pp has a bounded
causal inverse for all A.q€ A,4. An alternative similar condition

can be derived based on the fact that ¥ = (T*)~1YT-1.

Remark 3. The bound from BT explicitly relates to the ¢,-induced
norm of the error system and can be used in robustness analy-
sis [20], wherein the full-order system is replaced by the reduced-
order system and a perturbation operator whose norm is less than
the bound. Namely, for all A€ A, Gs can be expressed as Gg =
Gred,s + (Gs — Greq 5). where || (Gs — Greq )1l is less than the BT er-
ror bound. Thus, the possibly tighter bound from Theorem 3 helps
in better quantifying the perturbation operator and yielding less
conservative robustness results. Similarly, the bound from CFR on
|(Hs — Hieq s) I, for all Ac A, can be interpreted in terms of the
robust stability of the closed-loop system as in [3, Theorem 5].
Namely, the CFR bound can be related to the maximum number
of state variables that one can truncate from Gs while ensuring
that a controller K5 which stabilizes Gs also stabilizes G4 5. Let K
be a distributed NSLPV controller that inherits the structures of G
and renders the closed-loop system strongly stable [1]. That is, K
strongly stabilizes Gy, or equivalently, G5 strongly stabilizes Ks. In
other words, the controller is strongly stabilizable and strongly de-
tectable, has right and left coprime factorizations, and is reducible
via CFR. If CFR is applied to Ks, then the CFR bound indicates how
far one can proceed with the truncation while ensuring that the
reduced-order controller still stabilizes Gg.

Remark 4. Various distributed control techniques, e.g., [1,9,12], ap-
ply to strongly stabilizable and strongly detectable systems and
guarantee that the resulting closed-loop system is strongly stable.
Thus, the systems to which these synthesis techniques apply are
reducible via CFR. Since the synthesis problems involve solving se-
quences of LMIs of a larger size than the generalized Lyapunov
inequalities, model reduction can be used to render the control
synthesis problems computationally feasible. Moreover, since the
distributed control techniques usually yield distributed NSLPV con-
trollers that are of a comparable size to the plant and that in-
herit both the interconnection and the uncertainty structures, then
model reduction can also be used to construct reduced-order con-
trollers. Namely, applying model reduction prior to control synthe-
sis ensures that the least controllable and least observable modes
of the plant are not reflected in the designed controller. Thus, in
addition to simplifying the computational complexity of the analy-
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sis and synthesis problems, model reduction is also beneficial from
an implementation point of view in scenarios where resources are
limited. Specifically, since the proposed BT and CFR methods allow
for the evaluation of the importance of a particular interconnec-
tion and the possible truncation of the corresponding spatial state,
then the methods can be used to simplify the communication net-
work in a rigorous manner by removing inconsequential commu-
nication links.

6. Numerical example

We now apply CFR to a distributed NSLPV system Gs formed
by 4 subsystems interconnected as in Fig. 1. The leader G has
discrete-time LTV dynamics and the followers have discrete-time
LPV dynamics. There is only one parameter affecting each of the
followers, ie., r=1, and so the parameter subscript is dropped.
The example illustrates the characteristics of the proposed meth-
ods. For instance, the example demonstrates the truncation of the
various types of states and further shows that the truncation need
not be uniform in time, even if the dimensions of the states in
the full-order system are constants. As per Remark 2, the exam-
ple shows that, when applying Algorithm 1, one needs to im-
pose/verify the well-posedness of the resulting reduced-order sys-
tem. The example also illustrates the use of the trace minimization
heuristic discussed after Lemma 3 and the 1-norm heuristic [2] for
improving on the computed error bound.

For the leader, all the state-space matrices are constants,
except for Arp(t,1) which is (h=0,q = 28)-eventually time-
periodic, ie., Arr(t+q,1) =Arp(t,1) for all t e Ny. Specifically,
Arr(t,1) = A for t=0,...,6; Arp(t,1) = QAQ* for t=7,...,13;
Arr(t, 1) =Q2A(Q*)2 for t =14, ..., 20; Arp(t, 1) = Q3.A4(Q*)3 for
t=21,...,27, where

9 5 1 03 -02 02

27 1 01 01 -03

1 -1 -1 02 03 01

A=015067 02 03 0 0 R

03 01 -01 0 0 0

02 03 02 0 0 0
00 00 1 0
0010 0 0
/1 000 0 o0
Q=10 0 0 0 0 1
000 1 0 0
0100 0 0

Since there are no incoming edges to vertex k=1 and G is
not affected by any parameter, the state-space matrices AIS(t, 1),
Arp(t, 1), AS(t, 1), ASP(t, 1), Apr(t, 1), ALS(t, 1), App(t, 1), Bp(t, 1),
C3(t, 1), and Cp(t, 1), for i, ec{1, 2}, have at least one dimension
equal to zero, i.e., are non-existent. The remaining state-space ma-
trices are defined as follows for all t € No: Cr(t, 1) = [I; 05,4].

0 0 O
0 0 O0f,
0 0 O

i | 1 0
Br(t,1) =01|.2%2 |, B(t,1)=0.1|0 1].
O4><2 ! 0 0

2 2 -1
AST(t.1)=01| -2 2 1
01 -01 02

The state-space matrices of the followers are constants for all t €
Np, 1, e€{1, 2}, and k = 2, 3, 4; these matrices are given by

-7 4 1 02 -01 02
35 1 02 -02 -01
_ 1 3 -2 01 01 02
Arrtk) =015\ 47 03 01 0 0 0o |
02 01 -02 0 0 0
01 —02 01 o0 0 0
"1 3 2 01
2 1 1 01
_ 3 4 -3 _03
ATp(t, k) = 0.01 0 0 O 0 s
0 0 0 0
0 0 0 0

0.5 0
) [ 0 —0.5] 024
Apr(t. k) = '
-01 0 0
0 0.1 2x4
0.1 02 O
ps | -02 01 O
AP (t k) = 0 0o o
Lo 0 o
-3 2 0.1
4 4 0.2
s B 2 -3 -0.2
AS(LR) =005 o5 g1 o |
0.1 0.3 0
0.3 -0.2 0

App(t, k) = 0.1, Br(t, k) = 0.1 [0’2 ] Bp(t, k) = 04,9, Cr(t. k) = [
4x2

O2x4l.  C3(t.k) =0g,3.  Gp(t.k) =0gp4.  AST(t,k) = WAL (L. k),
AS(t, k) =WAIS(t. k), AF(t. k) =WArp(t. k), Bi(t.k) = WBr(t, k).
where W =0.25[I; 03]. Finally, D(t.k)=0 for all (t.k)e
NO X {1, 2, 3, 4}

System G is not strongly stable and cannot be reduced via BT.
However, Gg is strongly stabilizable and strongly detectable and
is reducible via CFR. Since the subsystems are (0, 28)-eventually
time-periodic, the sought solutions to the subsequent semi-
definite programming (SDP) problems are all (0, 28)-eventually
time-periodic. These problems are modeled using Yalmip [18] and
are solved using SDPT3 [25]. The computations are carried out
in Matlab 7.10.0.499 (The MathWorks Inc., Natick, Massachusetts,
USA) on a Hewlett-Packard laptop with 2 Intel Cores, 2.30 GHz pro-
cessors, and 4 GB of RAM running Windows 7. First, we find P € X
such that APA* — S*PS — BB* < 0 and define the strongly stabilizing
feedback operator F = —(B*S*P~1SB)~1B*S*P~1SA. Then, we form
the strongly stable augmented system Hg with realization (Ap,
By, Cy, Dy, A), where Ay =A+ BF, By =B, Cy =[(C + DF)* F*]*,
and Dy =[D* I]*. Using Lemma 2, we find an upper bound
y =2.23 on ||Hg|l for all AeA. This SDP is the most compu-
tationally expensive: the total number of constraints is 4033,
the dimension of the SDP variable is 3080, the number of SDP
blocks is 448, and the dimension of the linear variable is 1. The
corresponding wall-clock time is about 29.6 s (CPU time 25.8 s).
Then, we find generalized gramians for system Hs. We solve
for X e X that satisfies AyXAj; — S*XS 4 ByBj; < 0 and minimizes
Y20 (Ciey (tr X (k) + X5 tr X5 (6. k) + Yp_p tr Xp(t k). We
also solve for Y e &' that satisfies Aj;S*YSAy —Y +C;Cy <0 and
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Fig. 2. Responses of G5 and G4 s for the same set of applied inputs.

minimizes a similar objective function. We construct a balanced
realization for #; as in Step 6 of Algorithm 1.

To obtain a useful error bound, we re-solve the generalized Lya-
punov inequalities for the obtained balanced realization. We now
seek a balanced generalized gramian X>¢l and a scalar € >0 that
simultaneously satisfy both generalized Lyapunov inequalities and
minimize the following objective function:

27 4 2
arxe+y (S (lIvec(Er(t, k) — el +_||vec(Ei(t, ky—eD),

t=0 \k=1 i=1

4
+) " |vec(Zp(t. k) —eD]l; ]
k=2

where vec(Q) denotes the vector formed by the diagonal entries of
a square matrix Q and ||v||; is the 1-norm of vector v. The sought
[XZ1(¢, k) are diagonal matrices, which are guaranteed to exist be-
cause a balanced realization of #; is used. The objective function is
chosen to be the sum of two cost functions. The first, a;€, ensures
that the optimal value of € is small. In the second cost function,
the 1-norm is used as a heuristic for finding a solution ¥ with
many entries equal to €. Thus, € can be regarded as the truncation
cut-off value, i.e., all the state variables corresponding to an entry
equal to € in X are truncated. Clearly, we want € to be as small as
possible because the error bound obtained from Theorem 2 is 2e,
i.e, ||(Hs — Hpeqs)ll < 2€ for all AeA. We would also like many
entries in ¥ to be equal to € in order to truncate many state vari-
ables, regardless of their type. The weight given to € is a; = 850.
This value gives the best trade-off between the competing objec-
tives of a small error bound and a large number of truncated state
variables. The result is € =0.0233, ie., |[(Hs —Heqs)ll <2.11%y.
Thus, BT is applied to Hg and each state variable with a corre-
sponding entry in ¥ equal to € is truncated. The reduced-order
system is denoted by H,.q s and its balanced realization is given by
(A, red» By, red» CH, red» DH, Areq)- At each time-step, the total num-
bers of truncated temporal, spatial, and parameter state variables
range from 9 to 13, 3 to 5, and 5 to 6, respectively.

The realization (Ajed, Bred» Cred» D, Ared) Of system Gioqs is
formed from the realization of 745 as follows: define B4 =
By red, deduce Creq and Freq from [(Creq + DFeq)* Figl* = Cired, and
compute Areq = Ag red — BredFied- The condition in Remark 2 is sat-
isfied, which guarantees that G.q s is well-posed. As an example,
systems Gs and G4 are subjected to the same set of sinusoidal
inputs of various amplitudes and frequencies for the first 100 time-
steps and are left to evolve on their own afterwards. The parame-
ter values §(t, k), for k = 2, 3, 4, are varied randomly from —1 to 1.

As expected from the small error bound, the responses of the full-
order and the reduced-order systems, which are plotted in Fig. 2,
are very close.

7. Conclusion

BT and CFR are extended to the class of distributed NSLPV sys-
tems. BT applies to strongly stable systems, and CFR applies to
strongly stabilizable and strongly detectable systems. The meth-
ods are structure-preserving since the interpretation of the tem-
poral, spatial, and parameter states is retained in the reduced-
order system. The methods are also structure-simplifying because
whole interconnections and whole channels from the A-operator
can be removed during model reduction. In general, the methods
involve solving infinite sequences of LMIs. However, for the class
of eventually time-periodic subsystems interconnected over finite
graphs, the required computations become finite dimensional with
no added conservatism.
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Appendix A

This appendix details the structure of the operator Q needed
in the proof of Lemma 4. To simplify the presentation, we as-
sume that the balanced generalized gramian ¥ is partitioned
into two blocks as in ¥ =diag(X, ¥y). The given structure of
Q immediately generalizes to arbitrary partitions of X. Note
that the particular type of ¥; and X,, ie., whether they
correspond to the temporal, spatial, or parameter blocks of
¥, does not affect the discussion. For this reason, we sim-
ply use the subscript i=1,2. From Section 4.2, recall that
¥; = [diag(T;, 2;)], where both sides of the equality correspond
to graph-diagonal operators. The problem is to find a partitioned
graph-diagonal operator Q such that Q*XQ = diag(I", 2), QQ* =1,
and Q*Q =1, where I =diag(I'y,I';) and Q = diag(2¢, 2y).

To this end, we define the graph-diagonal operators Qr, = [[(’)]]
and QQi:[[(I)]], ie., er_(t,k):[(’)] and Qgi(t,k):[?] for all

(t.k) € Z x V. In particular, Z;Qr, = [y 3 Illo]] = [[%5 o][o]]] =
[']] and %iQq =[] The operator Qr, further satisfies
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Q- [[61] = [[r o)[['6]) = T- Similarly, Qf: [[¢]]=0. 5[4 =0
Q5 [ 1] = . Q- Qr, =1 Qf, Qq, = 0. Q4 Qr, =0, and Q;; Qo =1.

Qr,Qf, +Q0,Q5, = [[0]] (ol + [7TMe ) = Mo 7

Then, the operator Q can be defined as Q = [QF1 0 Qg 0 ]
0 Qr, o' Qq,
and the relations Q*XQ = Q*diag(X, X,)Q = diag(I", Q) =

diag(T'1, 'y, 21, 23), QQ* =1, and Q*Q = I can be readily verified.
Namely,

Finally,

a [0
Q2
i % -_Fl_- % T 0 Tl ]
er 0 0 er Ql 0
. [[T2] o]
o oy o o,
= ) -_Fl-- R ) - 0 - 1
QQI 0 0 QQ1 Q1 0
. T2 o
0 %1l g 0 [ o,
T, 0 0 0
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