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a b s t r a c t

This paper deals with the balanced truncation of discrete-time, linear time-varying, heterogeneous
subsystems interconnected over finite arbitrary directed graphs. The information transfer between
the subsystems is subject to a communication latency of one time-step. The method guarantees the
preservation of the interconnection structure and further allows for its simplification. In addition to
truncating temporal states associated with the subsystems, the method allows for the order reduction
of spatial states associated with the interconnections between the subsystems and even the removal of
whole interconnections. Upper bounds on the ℓ2-induced norm of the resulting error system are derived.
The method is illustrated through an example.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Various biological and engineering systems consist of multiple
interacting agents. Mathematically describing such systems can
lead to models with a very large number of states, especially
in the case of ‘‘large’’ models of the agents and complicated in-
terconnection structures. Thus arises the need for model order
reduction to simplify the control analysis and synthesis problems.
Interconnected systems can be treated as one global system; and
standard model reduction tools, like balanced truncation (BT) and
coprime factors reduction (CFR), can then be applied to these
systems. However, such an approach is not always desirable as it
does not guarantee the preservation of the interconnection struc-
ture of the system. Various works have addressed the problem of
structure-preserving BT and CFR for interconnected systems. See,
for example, Abou Jaoude and Farhood (2015, 2016), Al-Taie and
Werner (2016), Li and Paganini (2005) and Sandberg and Murray
(2009). The methods in these references, like the one in Beck,
Doyle, and Glover (1996), are based on the existence of block-
diagonally structured solutions to linearmatrix inequalities (LMIs).
BT applies to stable systems, guarantees the stability of the reduced
order system, and comes with a guaranteed upper bound on the

✩ This work is supported by the National Science Foundation under Grant CMMI-
1333785. The material in this paper was partially presented at the 54th IEEE
Conference on Decision and Control, December 15-18, 2015, Osaka, Japan. This
paper was recommended for publication in revised form by Associate Editor Dimos
V. Dimarogonas under the direction of Editor Christos G. Cassandras.

E-mail addresses: danyabj@vt.edu (D. Abou Jaoude), farhood@vt.edu
(M. Farhood).

normof the error system. CFR applies to stabilizable and detectable
systems, and guarantees the stabilizability and detectability of the
reduced order system. The bound from CFR is not in terms of the
norm of the error between the full and reduced order systems,
but rather is in terms of the norm of the error between their
corresponding coprime factorizations.

The aforementioned works can be classified based on the
modeling of the interconnections between the subsystems.
Namely, Sandberg and Murray (2009) account for the intercon-
nection structure using a transfer function matrix, whereas, Al-
Taie andWerner (2016) andAbou Jaoude and Farhood (2015, 2016)
model the interconnections between the subsystems as states,
which we refer to as spatial states. The latter methods allow for
the order reduction of the spatial states in addition to the standard
states associated with the subsystems, which we refer to as the
temporal states. That is, in addition to guaranteeing the preserva-
tion of the interconnection structure, these methods further allow
for its simplification. Al-Taie and Werner (2016) deal with homo-
geneous, linear time-invariant (LTI) or linear parameter-varying
(LPV) subsystems, interconnected over a grid. Model reduction is
only applied to one subsystem, and then, all the temporal states, all
the forward spatial states, and all the backward spatial states are
truncated in a uniform way, respectively. Abou Jaoude and Far-
hood (2015, 2016) deal with heterogeneous, linear time-varying
(LTV) subsystems, interconnected over arbitrary directed graphs,
allow for individually truncating each of the temporal and spatial
states, and even permit the removal of a whole interconnection if
it is deemed negligible. Due to the time-varying nature of the sub-
systems, these methods usually involve solving infinite sequences
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Fig. 1. Example of a directed graph.

of LMIs. Also, if truncation is performed at infinitely many time-
steps, the resulting error bound might not be finite. Abou Jaoude
and Farhood (2015) show that in the special case of time-periodic
subsystems, the sequences of LMIs can be restricted to the first
time-period, and the error bound is guaranteed to be finite.

The current work extends the results of Abou Jaoude and
Farhood (2015) from time-periodic subsystems to eventually time-
periodic subsystems, i.e., subsystems which become time-periodic
after some initial finite time-horizon. A tighter expression for
the error bound for general LTV subsystems is derived, which
applies when the truncated entries of the balanced gramians form
monotonic sequences in time. An example which illustrates the
application of the method is also provided.

The paper is organized as follows. In Section 2, we define the
notation and summarize the adopted state-space framework along
with the relevant analysis results. Then, in Section 3, we present
the BT method. We derive the error bounds in Section 4 and
treat the special class of eventually time-periodic subsystems in
Section 5. In Section 6, we apply the method to an example. We
conclude the paper with Section 7.

2. Preliminaries

2.1. Notation

The sets of nonnegative integers, real numbers, and n × n
symmetric matrices are denoted by N0, R, and Sn, respectively.
Let S be an ordered subset of N0. We denote by (vi)i∈S the vector-
valued sequence associated with S and by vec(vi)i∈S the vertical
concatenation of the elements of (vi)i∈S . The elements in (vi)i∈S are
ordered conformably with the elements in S. We denote by (Mi)i∈S
the matrix-valued sequence associated with S and by diag(Mi)i∈S
the block-diagonal augmentation of the elements of (Mi)i∈S . For
example, if S = {1, 2, 4}, then, (vi)i∈S = (v1, v2, v4), vec(vi)i∈S =[
vT
1 vT

2 vT
4

]T , (Mi)i∈S = (M1,M2,M4), and diag(Mi)i∈S =

diag(M1,M2,M4). 0i×j denotes an i × j zero matrix and Ii denotes
an i × i identity matrix.

G(V , E) refers to a directed graph with set of vertices V and
set of directed edges E. We assume throughout that the directed
graph under consideration is finite. That is, both V and E are finite
sets. We denote by N the finite number of vertices, and choose
V = {1, . . . ,N}. The ordered pair (i, j) is in E if there exists a
directed edge from i ∈ V to j ∈ V . For each k ∈ V , we define the
sets E(k)

in = {i ∈ V | (i, k) ∈ E} and E(k)
out = {j ∈ V | (k, j) ∈ E} with

cardinalities m(k) and p(k), respectively. The elements in these
sets are ordered in an increasing fashion. Consider the directed
graph in Fig. 1. For k = 1, we define E(1)

in = {2, 3, 4}, m(1) = 3,
E(1)
out = {2, 3, 5}, p(1) = 3, and so on.
X ≺ 0 (resp. ≻ 0) means that the symmetric matrix X

is negative definite (resp. positive definite). Let n be an integer
sequence such that n : (t, k) ∈ N0 × V → n(k)(t) ∈ N0. We
define ℓ({Rn(k)(t)

}) as the vector space of mappings w : (t, k) ∈

N0 × V → w(k)(t) ∈ Rn(k)(t). The Hilbert space ℓ2({Rn(k)(t)
}) is the

subspace of ℓ({Rn(k)(t)
}) consisting of mappings w with a finite ℓ2-

norm ∥w∥2 =
(∑

(t,k)w
(k)(t)Tw(k)(t)

) 1
2 . We subsequently use the

abbreviated symbols ℓ and ℓ2.

2.2. State-space representation

We now give the state-space equations for a distributed sys-
tem G, formed by discrete-time, heterogeneous, LTV subsystems
interconnected over finite arbitrary directed graphs and subjected
to a communication latency. We represent the interconnection
structure of G using a directed graph G(V , E), where each subsys-
tem G(k) corresponds to a vertex k ∈ V , and the interconnections
between the subsystems are described by the directed edges. Each
subsystem G(k) has a discrete-time LTV model, with states x(k)(t),
inputs u(k)(t), and outputs y(k)(t). We refer to the states associated
with the subsystems as temporal states or vertex/node states. The
interconnections between the subsystems are also modeled using
states, which we refer to as spatial states or interconnection/edge
states. Namely, we associate a state x(ij)(t) with each edge (i, j) ∈ E.
Due to the communication latency, the information sent from G(i)

at time t reachesG(j) at t+1. For each subsystemG(k), we define vec-
tors x(k)in (t) = vec(x(ik)(t))i∈E(k)in

and x(k)out(t) = vec(x(kj)(t))j∈E(k)out
, which

are partitioned into m(k) and p(k) vector-valued channels, respec-
tively. These vectors represent the total information received and
sent by G(k) at time t . When all subsystems are considered, and
since the interconnection input to a subsystem is an output to
another subsystem, both x(k)out and x(k)in contain all spatial states x(ij).
We assume zero initial conditions for the temporal and the spatial
states. Then, for all (t, k) ∈ N0×V , we have x(k)(0) = 0, x(k)in (0) = 0,[
x(k)(t + 1)
x(k)out(t + 1)

]
= A(k)(t)

[
x(k)(t)
x(k)in (t)

]
+ B(k)(t) u(k)(t),

y(k)(t) = C (k)(t)
[
x(k)(t)
x(k)in (t)

]
+ D(k)(t) u(k)(t). (1)

The matrix-valued sequences of state-space matrices, e.g., A(k)(t),
are known a priori and assumed to be uniformly bounded. The
dimensions of signals x(k)(t), u(k)(t), y(k)(t), and x(ij)(t) can vary
with t , and k or (i, j), and are denoted by n(k)(t), n(k)

u (t), n(k)
y (t),

and n(ij)(t), respectively, for all (t, k) ∈ N0 × V and (i, j) ∈

E. We denote the realization of system G by the quadruple(
A(k)(t), B(k)(t), C (k)(t),D(k)(t)

)
.

For each (t, k), the state-space matrices are naturally parti-
tioned conformably with the partitioning of [x(k)(t + 1)T x(k)out(t +

1)T ]T and [x(k)(t)T x(k)in (t)T ]T . For example, consider the distributed
system in Fig. 1. The state-space matrices of subsystem G(1) are
partitioned as C (1)(t) =

[
C (1)
0 (t) C (1)

2 (t) C (1)
3 (t) C (1)

4 (t)
]
, where

C (1)
0 (t) is an n(1)

y (t) × n(1)(t) matrix, etc. Similarly,

A(1)(t) =

⎡⎢⎢⎢⎢⎣
A(1)
00 (t) A(1)

02 (t) A(1)
03 (t) A(1)

04 (t)

A(1)
20 (t) A(1)

22 (t) A(1)
23 (t) A(1)

24 (t)

A(1)
30 (t) A(1)

32 (t) A(1)
33 (t) A(1)

34 (t)

A(1)
50 (t) A(1)

52 (t) A(1)
53 (t) A(1)

54 (t)

⎤⎥⎥⎥⎥⎦ ,

B(1)(t) =
[
B(1)
0 (t)T B(1)

2 (t)T B(1)
3 (t)T B(1)

5 (t)T
]T

,

where A(1)
00 (t) is an n(1)(t + 1) × n(1)(t) matrix, B(1)

0 (t) is an n(1)(t +

1) × n(1)
u (t) matrix, etc.

2.3. Analysis results

We now summarize the relevant analysis results of Farhood,
Di, and Dullerud (2015). Consider a system G with realization
(A(k)(t), B(k)(t), C (k)(t),D(k)(t)). Since the state-space equations (1)
have zero initial conditions and the state-space matrices are de-
fined for t ∈ N0, we can equivalently assume that the state-space
matrices are zeros for t < 0. Then, from Dullerud and D’Andrea
(2004), it can be shown that G is well-posed, i.e., given inputs in ℓ,
the state-space equations admit unique solutions in ℓ, and further
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define a linear causal mapping on ℓ. A well-posed system G is said
to be stable if, given inputs in ℓ2, the state-space equations admit
unique solutions in ℓ2, and further define a linear causal mapping
on ℓ2. Next, we give a Lyapunov-based test to check if G is stable.
This result constitutes the basis of the proposed BT scheme.

Lemma1. SystemG is stable if there exist uniformly bounded, positive
definite, matrix-valued functions X (k)(t) ∈ Sn(k)(t) and X (ij)(t) ∈

Sn(ij)(t), for all (t, k) ∈ N0 × V and (i, j) ∈ E, such that, for some
β > 0, X (k)(t) ≻ βI , X (ij)(t) ≻ βI , and

A(k)(t)T diag(X (k)(t + 1), X (k)
out(t + 1)) A(k)(t)

− diag(X (k)(t), X (k)
in (t)) ≺ −βI, (2)

X (k)
in (t) = diag(X (ik)(t))i∈E(k)in

, X (k)
out(t) = diag(X (kj)(t))j∈E(k)out

.

The solutions to (2) can be classified into temporal terms X (k)(t)
and spatial terms X (ij)(t). Due to the time-varying nature of the
subsystems, there is an infinite sequence of LMIs associated with
each subsystem. Moreover, the LMI sequence associated with a
given subsystem is coupled with the LMI sequences of the other
subsystems through the spatial terms. The ‘‘βI ’’ terms in (2) are
small quantities added to ensure that the matrix sequences on the
left-hand side do not converge to singularmatrices as t approaches
infinity. Subsequently, we no longer specify the dimensions of
X (k)(t) and X (ij)(t).

Systems that satisfy the conditions in Lemma 1 are called
strongly stable. Strong stability implies stability, but the converse
is not always true. Specifically, strongly stable systems are stable
systems which have the required structured solutions to (2). The
proposed BT scheme suffers from conservatism as it only applies
to strongly stable systems. However, this imposed structure on the
solutions of (2) allows for the preservation and the simplification
of the interconnection structure during the model reduction pro-
cess. Trnka, Sturk, Sandberg, Havlena, and Rehor (2013) and Sootla
and Anderson (2016) identify classes of systems with guaranteed
structured solutions to LMIs.

For a stable system G mapping u ∈ ℓ2 to y ∈ ℓ2 and starting
from zero initial conditions, the ℓ2-induced norm is defined as
∥G∥ = sup0̸=u∈ℓ2

∥y∥2
∥u∥2

.

Lemma 2. System G is strongly stable and satisfies ∥G∥ < γ , for
some γ > 0, if there exist β > 0 and uniformly bounded, positive
definite, matrix-valued functions X (k)(t) ≻ βI and X (ij)(t) ≻ βI , for
all (t, k) ∈ N0 × V and (i, j) ∈ E, such that

F (k)(t)T diag(X (k)(t + 1), X (k)
out(t + 1), I) F (k)(t)

− diag(X (k)(t), X (k)
in (t), γ 2I) ≺ −βI, (3)

where F (k)(t) =

[
A(k)(t) B(k)(t)
C (k)(t) D(k)(t)

]
.

3. Balanced truncation model reduction

3.1. Balanced realization

We now extend the notions of generalized Lyapunov inequal-
ities and generalized gramians, discussed in Beck et al. (1996)
and Hinrichsen and Pritchard (1990), to the class of distributed
systems. Namely, the controllability and observability generalized
gramians are uniformly bounded, positive definite, matrix-valued
functions, denoted by X (k)(t), X (ij)(t) and Y (k)(t), Y (ij)(t), respec-
tively, which, for some scalar β > 0, satisfy X (k)(t) ≻ βI , X (ij)(t) ≻

βI and Y (k)(t) ≻ βI , Y (ij)(t) ≻ βI , in addition to the following
generalized Lyapunov inequalities:

A(k)(t) diag(X (k)(t), X (k)
in (t)) A(k)(t)T + B(k)(t)B(k)(t)T

− diag(X (k)(t + 1), X (k)
out(t + 1)) ≺ −βI, (4)

A(k)(t)T diag(Y (k)(t + 1), Y (k)
out(t + 1)) A(k)(t)

− diag(Y (k)(t), Y (k)
in (t)) + C (k)(t)TC (k)(t) ≺ −βI, (5)

where Y (k)
in (t) and Y (k)

out(t) are defined similarly to X (k)
in (t) and X (k)

out(t).
The generalized Lyapunov inequalities and the generalized grami-
ans allow for the definition of a balanced realization of a distributed
system as given next.

Definition 1. The realization of system G is said to be balanced
if there exist β > 0 and uniformly bounded, diagonal, positive
definite, matrix-valued functions Σ (k)(t) ≻ βI and Σ (ij)(t) ≻ βI ,
for all (t, k) ∈ N0 × V and (i, j) ∈ E, that simultaneously satisfy (4)
and (5), i.e., Σ (k)(t) = X (k)(t) = Y (k)(t), Σ (ij)(t) = X (ij)(t) = Y (ij)(t),
and Σ (k)(t) and Σ (ij)(t) are diagonal matrices.

We can show (see the proof of Theorem 4) that the existence of
solutions to (2) is equivalent to the existence of solutions to (4) and
(5), respectively. Thus, the generalized gramians are only defined
for strongly stable systems. These gramians can be used to con-
struct a balanced realization and balanced generalized gramians
Σ (k)(t), Σ (ij)(t) for a given system G, as outlined next.

Algorithm 1. We construct a balanced realization for a given
strongly stable system G with generalized gramians X (k)(t), X (ij)(t)
and Y (k)(t), Y (ij)(t) as follows. First, we compute the Cholesky fac-
torizationsX (k)(t) = R(k)(t)TR(k)(t) and Y (k)(t) = H (k)(t)TH (k)(t), and
we perform the singular value decompositions H (k)(t)R(k)(t)T =

U (k)(t)Σ (k)(t)V (k)(t)T . Then, we define the balancing transforma-
tions T (k)(t) = Σ (k)(t)−1/2 U (k)(t)T H (k)(t) and their inverses
T (k)(t)−1

= R(k)(t)T V (k)(t)Σ (k)(t)−1/2. Similar steps are repeated
for the spatial terms. Σ (k)(t), Σ (ij)(t) are the balanced general-
ized gramians. We augment the obtained transformations as in
T (k)
pre(t) = diag(T (k)(t), T (k)

out(t)), T
(k)
post(t) = diag(T (k)(t), T (k)

in (t))−1.

A balanced realization (A(k)
bal(t), B

(k)
bal(t), C

(k)
bal(t),D

(k)(t)) of G is then
given by

A(k)
bal(t) = T (k)

pre(t + 1)A(k)(t)T (k)
post(t),

B(k)
bal(t) = T (k)

pre(t + 1)B(k)(t), and

C (k)
bal(t) = C (k)(t)T (k)

post(t).

An alternative balancing algorithm is also given in Abou Jaoude
and Farhood (2015). Clearly, the balanced realization of a strongly
stable system is not unique as it depends on the followed algorithm
as well as the solutions to (4) and (5) used in the algorithm. To
obtain useful results for model reduction, namely entries in the
balanced generalized gramians that yield reasonable error bounds,
we use a trace heuristic, i.e., we find generalized gramians with
minimum sum of traces, see e.g., Farhood and Beck (2014) and
Farhood and Dullerud (2007).

3.2. Balanced truncation

Let G be a distributed system with a balanced realization(
A(k)(t), B(k)(t), C (k)(t),D(k)(t)

)
. We assume, without loss of gener-

ality, that the diagonal entries of the balanced generalized grami-
ans are ordered in a decreasing fashion. The essence of BT is to
truncate the state variables associated with the negligible entries.
We partition the gramians into two blocks: one corresponding to
the non-truncated states and the other to the truncated states. We
illustrate the partitioning process for the temporal terms. Given
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integers r (k)(t), such that 0 ≤ r (k)(t) ≤ n(k)(t), we partition
Σ (k)(t) as Σ (k)(t) = diag(Γ (k)(t), Ω (k)(t)), where Γ (k)(t) ∈ Sr(k)(t)

are reduced order gramians associated with the non-truncated
states and Ω (k)(t) correspond to the truncated states. By allowing
r (k)(t) to be equal to 0 or n(k)(t) for some (t, k), we allow that
either all or no variables be truncated from the corresponding
temporal state x(k)(t). This results in either Γ (k)(t) orΩ (k)(t) having
a zero dimension, which is a slight abuse of notation. The proposed
method allows for the evaluation of the importance of a particular
interconnection, and accordingly, the reduction of the dimension
of the spatial state vector associated with it and even the com-
plete removal of the interconnection. For example, the case where
r (ij)(t) = 0, for all t ∈ N0, corresponds to the removal of edge (i, j)
altogether from the interconnection structure.

The next step is to partition the blocks of the state-space
matrices in accordance with the partitioning of the blocks of
diag(Σ (k)(t + 1), Σ

(k)
out(t + 1)) and diag(Σ (k)(t), Σ

(k)
in (t)). Con-

sider subsystem G(1) in Fig. 1. A(1)
00 (t) is partitioned according

to the partitioning of Σ (1)(t + 1) and Σ (1)(t) as in A(1)
00 (t) =[

Â(1)
00 (t) A(1)

0012
(t)

A(1)
0021

(t) A(1)
0022

(t)

]
, where Â(1)

00 (t) is an r (1)(t + 1) × r (1)(t)

matrix. B(1)
0 (t) is partitioned conformably with the partitioning of

Σ (1)(t + 1) as in B(1)
0 (t) =

[
B̂(1)
0 (t)T B(1)

02
(t)T

]T
, where B̂(1)

0 (t) is an

r (1)(t+1)×n(1)
u (t) matrix. Likewise, C (1)

0 (t) is partitioned according
to the partitioning of Σ (1)(t), namely, C (1)

0 (t) =

[
Ĉ (1)
0 (t) C (1)

02
(t)

]
,

where Ĉ (1)
0 (t) is an n(1)

y (t)× r (1)(t) matrix, and so on. Now, we form
the realization

(
A(k)
r (t), B(k)

r (t), C (k)
r (t),D(k)(t)

)
of the reduced order

system Gr . For A
(k)
r (t), B(k)

r (t), and C (k)
r (t), we keep the blocks that

correspond to the non-truncated states, i.e., the partitions marked
with a hat, e.g., C (1)

r (t) =
[
Ĉ (1)
0 (t) Ĉ (1)

2 (t) Ĉ (1)
3 (t) Ĉ (1)

4 (t)
]
.

It will be useful to permute the original state-space matri-
ces and balanced gramians in order to group together the non-
truncated blocks. For example,

A(k)
b (t) =

[
A(k)
r (t) Ā(k)

12 (t)

Ā(k)
21 (t) Ā(k)

22 (t)

]
, Γ in

k (t) = diag(Γ (k)(t), Γ
(k)
in (t)),

Γ out
k (t) = diag(Γ (k)(t), Γ

(k)
out(t)), for appropriately defined Ā(k)

12 (t),

Ā(k)
21 (t), and Ā(k)

22 (t). We define B(k)
b (t) and C (k)

b (t) similarly to A(k)
b (t),

andΩ in
k (t) andΩout

k (t) similarly to Γ in
k (t) and Γ out

k (t), respectively.

Lemma 3. System Gr is strongly stable and the given realization is
balanced with balanced generalized gramians Γ (k)(t) and Γ (ij)(t), for
all (t, k) ∈ N0 × V and (i, j) ∈ E.

Proof. Since the realization of G is balanced, then there exist
balanced generalized gramians simultaneously solving (4) and (5).
We focus on (4), then treat (5) similarly. We apply appropriate
permutations to get

A(k)
b (t) diag(Γ in

k (t), Ω in
k (t)) A(k)

b (t)T + B(k)
b (t)B(k)

b (t)T

− diag(Γ out
k (t + 1), Ωout

k (t + 1)) ≺ −βI. (6)

From this inequality, we can infer that

A(k)
r (t) diag(Γ (k)(t), Γ

(k)
in (t)) A(k)

r (t)T + B(k)
r (t)B(k)

r (t)T

− diag(Γ (k)(t + 1), Γ
(k)
out(t + 1)) ≺ −βI.

Thus, Gr is strongly stable and the given realization is balanced. ■

4. Error bounds

Next, we develop upper bounds on the ℓ2-induced norm of the
error system (G − Gr ), which generalize their counterparts for
single LTV systems in Sandberg and Rantzer (2004) and single
nonstationary LPV systems in Farhood and Dullerud (2007). For
each t ∈ N0, we define Ω̂(t) = diag(Ω (k)(t))k∈V , and let Ω̃(t) be
the block-diagonal augmentation of Ω (ij)(t), where (i, j) ∈ E. The
specific ordering of the diagonal blocks in Ω̃(t) is inconsequential
for our purposes. Then, we define

Ω̄(t) = diag(Ω̂(t), Ω̃(t)) and Ω = diag(Ω̄(t))t∈N0 . (7)

Depending on the states that are to be truncated, some diagonal
blocks ofΩ mayhave zero dimensions and, hence, are nonexistent.
For instance, suppose for some (t0, k0) ∈ N0 × V and (i0, j0) ∈

E, we have n(k0)(t0) = r (k0)(t0) and n(i0j0)(t0) = r (i0j0)(t0). Then,
the diagonal blocks Ω (k0)(t0) and Ω (i0j0)(t0) have zero dimensions
and do not appear in Ω . Alternatively, if n(k)(t) ̸= r (k)(t) and
n(ij)(t) ̸= r (ij)(t) only for t = t0, k = k0, and (i, j) = (i0, j0), then
Ω = diag(Ω (k0)(t0), Ω (i0j0)(t0)).

Theorem 1. If Ω (k)(t) = I and Ω (ij)(t) = I , for all (t, k) ∈ N0 × V
and (i, j) ∈ E, then ∥(G − Gr )∥ < 2.

Proof. Only a sketch of the proof is given here due to space
considerations. The reader is referred to Abou Jaoude and Farhood
(2017) for further details. The proof entails constructing solutions
to (3) for a realization of the strongly stable error system 1

2 (G−Gr )
andγ = 1. To do so,we apply the Schur complement formula twice
to (6) and invoke its counterpart for (5) to show that

K (k)(t)TR(k)
2 (t + 1)−1K (k)(t) − R(k)

1 (t) ≺ −βI, (8)

with K (k)(t) =

⎡⎣ 0 0 A(k)
b (t)

0 0 C (k)
b (t)

A(k)
b (t) B(k)

b (t) 0

⎤⎦ and

R(k)
1 (t) = diag(Γ in

k (t)−1, Ω in
k (t)−1, In(k)u (t), Γ in

k (t), Ω in
k (t)).

R(k)
2 (t + 1) is constructed similarly to R(k)

1 (t) but using Γ out
k (t + 1),

Ωout
k (t + 1), and In(k)y (t). Appropriate permutations P (k)(t) and L(k)(t)

are applied to (8) to yield(
L(k)(t)K (k)(t)P (k)(t)

)T (
L(k)(t)R(k)

2 (t + 1)−1L(k)(t)T
)

×
(
L(k)(t)K (k)(t)P (k)(t)

)
− P (k)(t)TR(k)

1 (t)P (k)(t) ≺ −βI.

In the above, P (k)(t)TR(k)
1 (t)P (k)(t) =

1
2

diag

⎛⎜⎝[
Γ in
k (t)−1

+ Γ in
k (t) Γ in

k (t)−1
− Γ in

k (t)

Γ in
k (t)−1

− Γ in
k (t) Γ in

k (t)−1
+ Γ in

k (t)

]
,

⎡⎢⎣Ω in
k (t)−1

+ Ω in
k (t) 0 Ω in

k (t)−1
− Ω in

k (t)
0 2In(k)u (t) 0

Ω in
k (t)−1

− Ω in
k (t) 0 Ω in

k (t)−1
+ Ω in

k (t)

⎤⎥⎦
⎞⎟⎠ .

L(k)(t)R(k)
2 (t + 1)−1L(k)(t)T has a similar structure.

Also, L(k)(t)K (k)(t)P (k)(t) =

[
M (k)(t) N (k)

12 (t)

N (k)
21 (t) Ā(k)

22 (t)

]
, where

M (k)(t) =

⎡⎢⎢⎢⎢⎢⎢⎣
A(k)
r (t) 0

1
√
2
B(k)
r (t)

0 A(k)
b (t)

1
√
2
B(k)
b (t)

−1
√
2
C (k)
r (t)

1
√
2
C (k)
b (t) 0

⎤⎥⎥⎥⎥⎥⎥⎦, and N (k)
12 (t)
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andN (k)
21 (t) are appropriately defined. Thematrices inM (k)(t) can be

used to describe the dynamics of 1
2 (G−Gr ). The resulting equations

are not in the form of (1), but can be equivalently expressed in that
form through the use of appropriate permutations. SinceΩ (k)(t) =

I and Ω (ij)(t) = I , for all (t, k) ∈ N0 × V and (i, j) ∈ E, one can
conclude from the above that

M (k)(t)T
[
V (k)
2 (t + 1) 0

0 I

]
M (k)(t) −

[
V (k)
1 (t) 0
0 I

]
≺ −βI.

V (k)
2 (t + 1) ≻ βI and V (k)

1 (t) ≻ βI correspond to the upper left
corner blocks of L(k)(t)R(k)

2 (t + 1)−1L(k)(t)T and P (k)(t)TR(k)
1 (t)P (k)(t),

respectively. Applying the appropriate permutations and invoking
Lemma 2 with γ = 1, we get ∥

1
2 (G − Gr )∥ < 1. ■

Theorem 2. The error system satisfies ∥(G − Gr )∥ < 2ζ (Ω), where
ζ (X) is the sumof distinct diagonal entries of a square, possibly infinite
dimensional, matrix X.

Proof. As a truncated realization is itself balanced by Lemma 3,
the truncation procedure can be implemented in multiple steps.
For each step i, we find the smallest diagonal entry in Ω , which we
denote by qi, and truncate all the state variableswith a correspond-
ing diagonal entry inΩ equal to qi. We then updateΩ by removing
all the entries equal to qi. The resulting reduced order system is
denoted by Gr,i. Suppose that, in the first step, Ω (k)(t) = q1I for
some (t, k) ∈ N0 × V and/or Ω (ij)(t) = q1I for some (i, j) ∈ E and
(perhaps different) t ∈ N0. We want to show that ∥(G − Gr,1)∥ <

2q1. To do so, we construct a scaled system Gn with realization
(A(k)(t), 1

√
q1
B(k)(t), 1

√
q1
C (k)(t), 1

q1
D(k)(t)). Then, Ω (k)

n (t) = I and/or

Ω
(ij)
n (t) = I . Let Gn,r,1 be the reduced order system obtained

by applying BT to Gn. By Theorem 1, ∥(Gn − Gn,r,1)∥ < 2. But,
∥(Gn − Gn,r,1)∥ =

1
q1

∥(G − Gr,1)∥. And so, ∥(G − Gr,1)∥ < 2q1. The
same procedure is applied in the following step to obtain ∥(Gr,1 −

Gr,2)∥ < 2q2. Then, by the triangle inequality, ∥(G − Gr,2)∥ =

∥(G−Gr,1+Gr,1−Gr,2)∥ ≤ ∥(G−Gr,1)∥+∥(Gr,1−Gr,2)∥ < 2(q1+q2),
and so on. ■

Theorem 2 gives an upper bound on ∥(G − Gr )∥ which may not
always be finite as there may be infinitely many distinct entries in
Ω . Next, we derive a tighter expression for the error bound which
applies when the diagonal entries of Ω (k)(t) and Ω (ij)(t) define
monotonic sequences in time. We define the subsets of time at
which truncation occurs as Fk = {t ∈N0|n(k)(t) ̸= r (k)(t)} and F(ij)
= {t ∈N0|n(ij)(t) ̸= r (ij)(t)}, for all k ∈ V and (i, j) ∈ E. Definition 2
is from Farhood and Dullerud (2007).

Definition 2. Consider a scalar sequence αt which is defined on
some subsetW ofN0, and let tmin = min{t | t ∈ W}. We extend the
domain of definition of αt to all t ∈ N0 by defining the following
rule:

αt =

{
αtmin if 0 ≤ t ≤ tmin,

αd if tmin < t, where d = max{τ ≤ t|τ ∈ W}.

Theorem 3. For all k ∈ V and (i, j) ∈ E, if Ω (k)(t) = w(k)(t)I for
t ∈ Fk and Ω (ij)(t) = w(ij)(t)I for t ∈ F(ij), where the sequences
w(k)(t) and w(ij)(t) are monotonic in time, then

∥(G − Gr )∥ < 2

⎛⎝∑
k

sup
t∈Fk

w(k)(t) +

∑
(i,j)

sup
t∈F(ij)

w(ij)(t)

⎞⎠ .

Proof. We prove the result for the case where only one state
(temporal or spatial) is truncated. The theorem then follows by
repeated application of this result. Namely, we fix k = k0, and

assume that the corresponding temporal state is the only truncated
state. Without loss of generality, we assume that w(k0)(t) ≤ 1 for
all t ∈ Fk0 , as this can be always achieved by scaling. We extend
the domain of w(k0)(t) to all t ∈ N0 using Definition 2, and note
that the extended sequence is still monotonic in time. We first
consider the case where w(k0)(t) is monotone nondecreasing. For
all (t, k) ∈ N0 × V , we define the state-space transformations
T (k)
pre(t) = w(k0)(t)−1/2I and T (k)

post(t) = w(k0)(t)1/2I . Note that T (k)
pre(t)

is bounded since Σ (k0)(t) ≻ βI , for some β > 0 and all t ∈ N0.
Then,we define a new realization (A(k)

n (t), B(k)
n (t), C (k)

n (t),D(k)(t)) for
system G, where

A(k)
n (t) = T (k)

pre(t + 1)A(k)(t)T (k)
post(t),

B(k)
n (t) = T (k)

pre(t + 1)B(k)(t), C (k)
n (t) = C (k)(t)T (k)

post(t).

For simplicity, we refer to system G with the new realization as
Gn. We now show that the realization of Gn is balanced. Recall that
Σ (k)(t) and Σ (ij)(t) satisfy (4) and (5). We pre- and post-multiply
(4) by T (k)

pre(t + 1), insert T (k)
post(t)T

(k)
post(t)−1

= T (k)
post(t)−1T (k)

post(t) = I
as needed, and define Σ

(k)
n (t) = w(k0)(t)−1Σ (k)(t) and Σ

(ij)
n (t) =

w(k0)(t)−1Σ (ij)(t), to get

A(k)
n (t) diag(Σ (k)

n (t), Σ
(k)
n,in(t)) A

(k)
n (t)T + B(k)

n (t)B(k)
n (t)T

− diag(Σ (k)
n (t + 1), Σ

(k)
n,out(t + 1)) ≺ −βI.

We also pre- and post-multiply (5) by T (k)
post(t) and insert T (k)

pre(t +

1)−1T (k)
pre(t + 1) = T (k)

pre(t + 1)T (k)
pre(t + 1)−1

= I to get

w(k0)(t + 1) A(k)
n (t)Tdiag(Σ (k)(t + 1), Σ

(k)
out(t + 1)) A(k)

n (t)

− w(k0)(t) diag(Σ (k)(t), Σ
(k)
in (t)) + C (k)

n (t)TC (k)
n (t) ≺ −βI.

Since 0 < w(k0)(t) ≤ 1, then w(k0)(t)−1
≥ w(k0)(t). Also, since

w(k0)(t) is monotone nondecreasing, then w(k0)(t) ≤ w(k0)(t + 1)
andw(k0)(t)−1

≥ w(k0)(t +1)−1. With this in mind, it is not difficult
to verify that

w(k0)(t + 1)−1A(k)
n (t)Tdiag(Σ (k)(t + 1), Σ

(k)
out(t + 1)) A(k)

n (t)

− w(k0)(t)−1diag(Σ (k)(t), Σ
(k)
in (t)) + C (k)

n (t)TC (k)
n (t) ≺ −βI.

Thus,Σ (k)
n (t) andΣ

(ij)
n (t) satisfy (4) and (5) for the realization of Gn,

i.e., the realization of Gn is balanced and can be reduced by BT. We
denote by Gn,r the reduced order system obtained by truncating
the temporal state of subsystem G(k0)

n . Since Ω (k0)(t) = w(k0)(t)I ,
then Ω

(k0)
n (t) = I for t ∈ Fk0 . By Theorem 1, ∥(Gn − Gn,r )∥ < 2.

But, because of the special structure of T (k)
post(t) and T (k)

pre(t), system
(Gn−Gn,r ) is equivalent to (G−Gr ), and so, ∥(G−Gr )∥ < 2. The proof
is similar for the case of a monotone nonincreasing w(k0)(t), with
the state-space transformations defined as T (k)

pre(t) = w(k0)(t)1/2I
and T (k)

post(t) = w(k0)(t)−1/2I , for all (t, k) ∈ N0 × V . ■

For example, suppose that the only truncated state is x(k0), the
truncation only occurs at three time-steps t1, t2, t3, and Ω (k0)(t1) =

diag(7, 3, 2), Ω (k0)(t2) = diag(4, 2, 2), Ω (k0)(t3) = diag(6, 5, 2).
The bound from Theorem 2 gives 2× (7+6+5+4+3+2) = 54,
whereas the bound from Theorem 3 gives 2 × (2 + 5 + 7) =

28. In the latter case, we consider the truncation sequences as
{2, diag(2, 2), 2}, {3, 4, 5}, and {7, 6}.

5. Eventually time-periodic systems

We now show that for eventually time-periodic (ETP) subsys-
tems, i.e., subsystems with state-space matrices which become
time-periodic after some initial amount of time, the bound in
Theorem 2 reduces to a finite sum. System G is said to be (h, q)-
ETP, for some integers h ≥ 0 and q > 0, if the state-space
matrices of the subsystems are (h, q)-ETP, e.g., A(k)(t + h + zq) =
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A(k)(t + h), for all t, z ∈ N0 and k ∈ V . The class of ETP subsystems
includes as special cases time-periodic subsystems ((0, q)-ETP) and
finite time-horizon subsystems ((h, 1)-ETP with zero state-space
matrices for t ≥ h). The following result is from Abou Jaoude and
Farhood (2015).

Lemma 4. For a strongly stable, q time-periodic system, there exist q
time-periodic solutions to (2).

Theorem 4. For a strongly stable, (h, q)-ETP system G, there exist
(h, q)-ETP solutions X (k)

eper(t), X
(ij)
eper(t) and Y (k)

eper(t), Y
(ij)
eper(t) to (4) and

(5), respectively, for all (t, k) ∈ N0 × V and (i, j) ∈ E.

Proof. Since G is strongly stable, then there exist solutionsW (k)(t)
and W (ij)(t) to (2). From these solutions, we construct (h, q)-ETP
solutions to (2) as shown next. We only need the LMIs that corre-
spond to t ≥ h − 1, and so we assume h = 1. For all k ∈ V , we
have

A(k)(0)Tdiag(W (k)(1),W (k)
out(1)) A

(k)(0)

− diag(W (k)(0),W (k)
in (0)) ≺ −βI,

A(k)(t)Tdiag(W (k)(t + 1),W (k)
out(t + 1)) A(k)(t)

− diag(W (k)(t),W (k)
in (t)) ≺ −βI, (9)

for t ≥ 1. By Lemma 4, there exist q time-periodic solutionsW (k)
per(t)

and W (ij)
per(t) to (9). We choose α > 0 such that αW (k)

per(1) ≺ W (k)(1)
and αW (ij)

per(1) ≺ W (ij)(1).

Then, A(k)(0)Tdiag(αW (k)
per(1), αW

(k)
out,per(1)) A

(k)(0)

− diag(W (k)(0),W (k)
in (0)) ≺ −βI.

We set W (k)
eper(0) = W (k)(0) and W (k)

eper(t) = αW (k)
per(t) for t ≥ 1.

W (ij)
eper(t) are defined similarly. SinceW (k)

eper(t) andW (ij)
eper(t) are (h, q)-

ETP solutions to (2), we can choose µ > 0 such that Y (k)
eper(t) =

µW (k)
eper(t) and Y (ij)

eper(t) = µW (ij)
eper(t) are solutions to (5). Also, by

applying the Schur complement formula twice to (2), we see that
we can choose ξ > 0 such that X (k)

eper(t) = ξW (k)
eper(t)−1 and

X (ij)
eper(t) = ξW (ij)

eper(t)−1 are solutions to (4). ■

Corollary 1. A strongly stable, (h, q)-ETP system G has an (h, q)-ETP
balanced realization and (h, q)-ETP generalized gramians Σ

(k)
eper(t) =

diag(Γ (k)
eper(t), Ω

(k)
eper(t)) and Σ

(ij)
eper(t) = diag(Γ (ij)

eper(t), Ω
(ij)
eper(t)).

Moreover, system Gr , resulting from BT, has an (h, q)-ETP bal-
anced realization and satisfies ∥(G − Gr )∥ < 2ζ (Ωeper), where
Ωeper is the (h, q)-truncation of Ω defined in (7), i.e., Ωeper =

diag(Ω̄eper(t))t∈{0,1,...,h+q−1}.

The bound in Corollary 1 may be further improved by using
Theorem 3 to compute the bound due to the states truncated over
the finite time-horizon, i.e., for 0 ≤ t < h.

6. Illustrative example

In this section,we apply BT to a distributed systemGwithN = 5
agents interconnected as in Fig. 1. The temporal and spatial states
are of constant dimensions nT = 6 and nS = 3, respectively.
There are two sets of building blocks for the state-space matrices:
one for odd-numbered subsystems and one for even-numbered
subsystems. The blocks of the state-space matrices are constants,
except for the A(k)

00 (t) terms which are (h = 0, q = 28)-ETP,
i.e., satisfy A(k)

00 (t + 28 z) = A(k)
00 (t), for all t, z ∈ N0 and k ∈ V .

A(k)
00 (t) = ATT for t = 0, ..., 6, A(k)

00 (t) = MATTMT for t =

7, ..., 13, A(k)
00 (t) = M2ATT (MT )2 for t = 14, ..., 20, and A(k)

00 (t) =

M3ATT (MT )3 for t = 21, ..., 27, where ATT and M are building
blocks. For odd-numbered subsystems,

AST = 0.1
[
diag(1, −2, 0.1) diag(0.5, 0.4, 0.2)

]
, ASS = 03×3,

BS = 0.1
[
I2 02×1

]T
, CT =

[
I2 02×4

]
, CS = 02×3,

ATT = 0.1

⎡⎢⎢⎣
[
−9 −7
−5 −5

] [
0.1 0.3 −0.1 0.2
0.3 0.2 0.1 −0.2

]
[
diag(1, −2)

−I2

]
0.01diag(−5, 1, −3, 2)

⎤⎥⎥⎦ ,

ATS = 0.1

⎡⎣[
−0.5 0.5 0.01
0.5 −0.5 −0.02

]
04×3

⎤⎦ , BT = 0.2
[

I2
04×2

]
.

Subscripts T and S refer to temporal and spatial terms, respectively.
E.g., for k = 1 and all t ∈ N0, A

(1)
02 (t) = A(1)

03 (t) = A(1)
04 (t) = ATS ,

B(1)
0 (t) = BT , C

(1)
0 (t) = CT , B

(1)
2 (t) = B(1)

3 (t) = B(1)
5 (t) = BS ,

C (1)
2 (t) = C (1)

3 (t) = C (1)
4 (t) = CS , A

(1)
20 (t) = A(1)

30 (t) = A(1)
50 (t) =

AST , etc. The permutation matrix M = [e5 e3 e1 e6 e4 e2]T , where
{ed|d = 1, . . . , 6} is the standard basis for the six-dimensional
Euclidean space. For even-numbered subsystems,

ATS = 0.1
[
diag(−0.5, 0.1, −0.1)
diag(−0.5, −0.2, 0.3)

]
, CT =

[
eT2
eT4

]
,

AST =
[
0.2I3 −0.03I3

]
, BT = 0.1

[
e1 e3

]
, CS =

[
−I2 02×1

]
,

ATT = 0.1

⎡⎢⎢⎣
[ 1 −4 −0.3 0.1 0.5 0.3

3 −5 0.2 0.1 −0.2 0.3
0.1 −0.3 −0.5 0.2 0.1 0.1

]
[
diag(−0.2, 0.1, 0.3) diag(−0.1, 0.15, −0.1)

]
⎤⎥⎥⎦,

ASS = 03×3, BS = 03×2,M = [e4 − e5 e2 − e1 e6 e3]T .

For all (t, k) ∈ N0 × V , D(k)(t) = 02×2. Using Lemma 2, we show
that system G is strongly stable and find an upper bound γ on ∥G∥.
Namely, we find (0, 28)-ETP solutions to (3) while minimizing γ .
We denote the resulting semi-definite programming (SDP) prob-
lemby P1. The result, γ = 3.47, helps in assessing the upper bound
on ∥(G − Gr )∥ and in choosing how many temporal and spatial
state variables to truncate. Then, we find (0, 28)-ETP solutions
to (4) which minimize

∑27
t=0(

∑
ktrace X

(k)(t) +
∑

(i,j)trace X
(ij)(t)),

and (0, 28)-ETP solutions Y (k)(t), Y (ij)(t) to (5) which minimize a
similar objective function. We denote the resulting SDP problems
by P2 and P3. We determine the computational complexity of
these problems by formulating the corresponding dual problems.
Let NI = 12 be the number of interconnections, and nu = 2 be
the number of inputs to each subsystem. For P1, the dimension of
the SDP variable is (h + q)(N(2nT + nu) + 2NInS) = 3976, the
dimension of the linear variable is 1, the number of SDP blocks
is (h + q)(2N + NI ) = 616, and the number of constraints is
1
2 (h + q)(NnT (nT + 1) + NInS(nS + 1)) + 1 = 4957. As for P2
and P3, these numbers are, respectively, 2(h + q)(NnT + NInS) =

3696, 0, (h + q)(2N + NI ) = 616, and 1
2 (h + q)(NnT (nT + 1) +

NInS(nS + 1)) = 4956. We use Yalmip to model these problems
and SDPT3 to solve them; see Lofberg (2004) and Toh, Todd,
and Tutuncu (1999). We carry out the computations in Matlab
7.10.0.499 (The MathWorks Inc., Natick, Massachusetts, USA) on
a Hewlett-Packard laptop with 2 Intel Cores, 2.30 GHz processors,
and 4 GB of RAM running Windows 7. The most time consuming
problem is P1. The corresponding elapsed time is about 30 s (CPU
time 24 s).

We use Algorithm 1 to construct a (0, 28)-ETP balanced re-
alization for G. To obtain useful error bounds for BT, we re-
solve the Lyapunov inequalities for the balanced realization of
G. Namely, we find (0, 28)-ETP diagonal solutions Σ (k)(t) ⪰
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Fig. 2. First and second diagonal entries (DE) of Σ (21)(t).

ϵI and Σ (ij)(t) ⪰ ϵI that satisfy (4) and (5), and minimize∑
t

(∑
k

vect (Σ (k)(t) − ϵI
)

1 +
∑

(i,j)

vect (Σ (ij)(t) − ϵI
)

1

)
+

a1 × ϵ, where vect(M) is the vector formed by the diagonal entries
of the matrix M and ∥v∥1 is the 1-norm of vector v. a1 = 750 is
the weight given to ϵ in the cost function. This value of a1 gives
the best trade-off between the two following objectives. The first
objective is to minimize the first term in the cost function, where
the 1-norm is used as a heuristic for finding diagonal gramians
with many entries equal to ϵ. All the temporal and spatial state
variables whose corresponding entries in the gramians are equal
to ϵ are then truncated. The second objective is to minimize ϵ

since, by Corollary 1, ∥(G − Gr )∥ < 2ϵ. We get ϵ = 0.034,
i.e., ∥(G − Gr )∥ < 2%γ . Fig. 2 shows the first and second diagonal
entries ofΣ (21)(t), for 0 ≤ t < 28. The red dashed line corresponds
to ϵ. The dimension of x(21) varies between 0 and 1 in Gr in contrast
to 3 in G, i.e., in Gr , the interconnection (2, 1) disappears at certain
time-steps from the interconnection structure. In total, between 14
and 18 temporal variables and between 20 and 25 spatial variables
are truncated at each time-step. Simulations of systems G and Gr
are carried out using the same sets of applied inputs. As expected
from the error bound, the responses are very close. A typical run is
shown in Abou Jaoude and Farhood (2017).

7. Conclusion

This work applies BT for the model reduction of distributed
LTV systems. Themethod provides a priori error bounds, preserves
the interconnection structure, and allows for its simplification.
While BT is only applicable to strongly stable systems, CFR ex-
tends the applicability of BT to strongly stabilizable and strongly
detectable systems.

References

Abou Jaoude, D., & Farhood, M. (2015) Balanced truncation of linear systems inter-
connected over arbitrary graphs with communication latency. In: Proceedings
of the 54th IEEE conference on decision and control (pp. 5346–5351).

Abou Jaoude, D., & Farhood, M. (2016). Coprime factors model reduction of spatially
distributed ltv systems over arbitrary graphs. IEEE Transactions on Automatic
Control. http://dx.doi.org/10.1109/TAC.2016.2638039.

Abou Jaoude, D., & Farhood, M. (2017) Balanced truncation model reduction of
nonstationary systems interconnected over arbitrary graphs. arXiv:1708.03828
[math.OC].

Al-Taie, F., & Werner, H. (2016). Structure-preserving model reduction for spatially
interconnected systems with experimental validation on an actuated beam.
International Journal of Control, 89, 1248–1268.

Beck, C. L., Doyle, J., & Glover, K. (1996). Model reduction of multidimensional and
uncertain systems. IEEE Transactions on Automatic Control, 41, 1466–1477.

Dullerud, G. E., & D’Andrea, R. (2004). Distributed control of heterogeneous systems.
IEEE Transactions on Automatic Control, 49, 2113–2128.

Farhood, M., & Beck, C. L. (2014). On the balanced truncation and coprime factors
reduction of Markovian jump linear systems. Systems & Control Letters, 64, 96–
106.

Farhood, M., Di, Z., & Dullerud, G. E. (2015). Distributed control of linear time-
varying systems interconnected over arbitrary graphs. International Journal of
Robust and Nonlinear Control, 25, 179–206.

Farhood,M., &Dullerud, G. E. (2007).Model reduction of nonstationary LPV systems.
IEEE Transactions on Automatic Control, 52, 181–196.

Hinrichsen, D., & Pritchard, A. J. (1990). An improved error estimate for reduced-
order models of discrete-time systems. IEEE Transactions on Automatic Control,
35, 317–320.

Li, L., & Paganini, F. (2005). Structured coprime factor model reduction based on
LMIs. Automatica, 41, 145–151.

Lofberg, J. (2004) YALMIP: A toolbox for modeling and optimization in MATLAB. In:
Proceedings of the CACSD conference (pp. 284–289).

Sandberg, H., & Murray, R. M. (2009). Model reduction of interconnected linear
systems. Optimal Control Applications & Methods, 30, 225–245.

Sandberg, H., & Rantzer, A. (2004). Balanced truncation of linear time-varying
systems. IEEE Transactions on Automatic Control, 49, 217–229.

Sootla, A., & Anderson, J. (2016) On existence of solutions to structured Lyapunov
inequalities. In: Proceedings of the American control conference (pp. 7013–7018).

Toh, K. C., Todd, M. J., & Tutuncu, R. H. (1999). SDPT3 — a Matlab software package
for semidefinite programming. Optimization Methods & Software, 11, 545–581.

Trnka, P., Sturk, C., Sandberg, H., Havlena, V., & Rehor, J. (2013). Structured model
order reduction of parallel models in feedback. IEEE Transactions on Control
Systems Technology, 21, 739–752.

Dany Abou Jaoude received his bachelors degree in Me-
chanical Engineering from the American University of
Beirut, Lebanon, in 2014. He is currently working toward
his Ph.D. degree in Aerospace and Ocean Engineering at
Virginia Tech. His research interests include model reduc-
tion and distributed control of linear time-varying and
linear parameter-varying interconnected systems.

Mazen Farhood is an Associate Professor in the Kevin T.
Crofton Department of Aerospace and Ocean Engineering
at Virginia Tech. His previous positions, before joining
Virginia Tech in 2008, include scientific researcher at the
Delft Center for Systems and Control, Delft University of
Technology, The Netherlands, and postdoctoral fellow at
Georgia Tech’s School of Aerospace Engineering. He re-
ceived the M.S. degree in 2001, and the Ph.D. degree in
2005, both in Mechanical Engineering from the University
of Illinois at Urbana–Champaign. His areas of current re-
search interest include distributed control, motion plan-

ning and tracking along trajectories, model complexity reduction, and reliability
analysis of UAS flight control systems. He received the National Science Foundation
CAREER Award in 2014, and is a member of AIAA, IEEE, and ASME.

http://dx.doi.org/10.1109/TAC.2016.2638039
http://arxiv.org/abs/1708.03828
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb4
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb4
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb4
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb4
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb4
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb4
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb4
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb4
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb4
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb4
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb4
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb4
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb4
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb4
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb4
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb4
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb5
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb5
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb5
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb5
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb5
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb5
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb5
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb5
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb5
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb5
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb5
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb5
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb6
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb6
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb6
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb6
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb6
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb6
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb6
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb6
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb6
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb6
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb6
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb6
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb7
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb7
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb7
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb7
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb7
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb7
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb7
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb7
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb7
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb7
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb7
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb7
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb7
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb7
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb7
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb7
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb8
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb8
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb8
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb8
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb8
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb8
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb8
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb8
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb8
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb8
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb8
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb8
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb8
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb8
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb8
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb8
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb9
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb9
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb9
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb9
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb9
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb9
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb9
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb9
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb9
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb9
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb9
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb9
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb10
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb10
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb10
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb10
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb10
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb10
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb10
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb10
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb10
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb10
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb10
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb10
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb10
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb10
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb10
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb10
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb11
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb11
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb11
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb11
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb11
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb11
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb11
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb11
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb11
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb11
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb11
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb11
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb13
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb13
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb13
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb13
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb13
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb13
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb13
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb13
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb13
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb13
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb13
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb13
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb14
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb14
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb14
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb14
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb14
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb14
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb14
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb14
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb14
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb14
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb14
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb14
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb16
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb16
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb16
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb16
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb16
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb16
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb16
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb16
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb16
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb16
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb16
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb16
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb17
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb17
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb17
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb17
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb17
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb17
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb17
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb17
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb17
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb17
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb17
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb17
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb17
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb17
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb17
http://refhub.elsevier.com/S0005-1098(17)30376-X/sb17

	Balanced truncation model reduction of nonstationary systems interconnected over arbitrary graphs
	Introduction
	Preliminaries
	Notation
	State-space representation
	Analysis results

	Balanced truncation model reduction
	Balanced realization
	Balanced truncation

	Error bounds
	Eventually time-periodic systems
	Illustrative example
	Conclusion
	References


