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1. Introduction

This paper is on the distributed control of subsystems inter-
connected over arbitrary directed graphs. Each subsystem has
its own sensing and actuating capabilities, and is modeled using
a discrete-time, nonstationary linear parameter-varying (NSLPV)
model [1,2], formulated in a linear fractional transformation (LFT)
framework. NSLPV models generalize stationary/standard linear
parameter-varying (LPV) models in the sense that the state-space
matrices can have an explicit dependence on time, in addition
to their dependence on the scheduling parameters. We account
for a communication latency of one sampling period between the
subsystems, i.e., a one-step time-delay on the information transfer
between the subsystems. Our aim is to construct a distributed
controller which renders the closed-loop system asymptotically
stable, and further guarantees some ¢,-gain performance level,
i.e., an upper bound on the ¢;-induced norm of the closed-loop
input-output map, for all permissible parameter trajectories. The
sought controller inherits the topological structure of the plant.
The controller subsystems have NSLPV models, formulated in an
LFT framework, and scheduled by the same parameters as their
corresponding plant subsystems.

In general, distributed controllers are of interest for the class of
interconnected subsystems because of the advantages they present
over centralized controllers in terms of computational complexity
and practicality. Namely, centralized controllers require a heavy
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computational burden in the case of a large number of high
dimensional subsystems, and also require high connectivity to
receive measurements from and send commands to all the subsys-
tems [3]. Distributed controllers may also be more desirable than
decentralized controllers in applications with stringent stability
and performance requirements for the global system. Additionally,
distributed controllers apply whenever the interconnection of the
subsystems is stabilizable; whereas, decentralized controllers re-
quire that each subsystem be individually stabilizable.

NSLPV models were introduced and motivated in [1,2]. They
are extensions of LPV models in that the state-space matrices
depend on a priori known time-varying terms, in addition to their
dependence on the parameters, which are not known a priori
but are available for measurement at each time-step. Like LPV
models, NSLPV models allow for capturing the nonlinearities of
the studied system, while being amenable to control using linear
techniques. NSLPV models arise, for example, when controlling
nonlinear systems about prespecified trajectories. They can also be
thought of as linear time-varying (LTV) models with time-varying
uncertainties. In general, when it comes to describing time-varying
nonlinear systems using parameter-varying models, NSLPV models
are far less conservative than stationary LPV models, and in some
cases, the only stabilizable models attainable are NSLPV [2]. In the
context of interconnected subsystems, a distributed NSLPV system
can be formed of NSLPV subsystems and/or mixes of LTV and LPV
subsystems.

Several works have appeared that address the problem of dis-
tributed control for interconnected LPV subsystems, e.g., [4-8],
and interconnected uncertain subsystems [9]. These works can
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be classified based upon various criteria. To start, in [4-7,9], the
sought controller inherits the interconnection structure of the
plant. The controller subsystems in [9] are assumed to have linear
time-invariant models; whereas, in [4-7], the subsystems of the
controller are parameter-dependent and are described similarly
to the subsystems of the plant. In [7], the controller subsystems
depend on their own local parameters as well as parameters re-
ceived from other subsystems. On the other hand, in [8], the struc-
ture and the order of the controller are design inputs. Secondly,
in [5,7,8], the synthesis results are derived using a parameter-
dependent Lyapunov function; whereas, in [4,6,9], a parameter-
independent Lyapunov function is used. The use of various types of
Lyapunov functions bares consequences on the convexity and the
tractability of the derived synthesis results. Thirdly, classification
can be based upon the complexity of the interconnection structure
and the heterogeneity of the subsystems. Namely, [4,5,8] consider
subsystems having the same model and interconnected over an
infinite lattice. [6] considers heterogeneous groups of subsystems.
Within each group, the subsystems have identical models and the
interconnections between the subsystems are undirected. Among
different groups, however, subsystems can have different models,
and the interconnections can be directed. Heterogeneous sub-
systems and arbitrary graphs are considered in [7,9]. [7] further
allows for directed interconnections, and accounts for commu-
nication latency between the subsystems. A fourth classification
criterion covers the modeling of the interconnections between the
subsystems. Specifically, [4,5,7-9] use spatial states to model the
interconnections between the subsystems, in addition to the states
associated with the subsystems; whereas, in [6], the possibly time-
varying interconnection topology is modeled using a feedback
operator in an LFT framework.

To the best of our knowledge, the current work is the first
on distributed control of interconnected NSLPV subsystems. In
this paper, we develop an operator theoretic framework in the
context of robust control tools for working with distributed NSLPV
systems. This framework builds on previous ones developed for
single NSLPV systems [2] and distributed LTV systems [10]. Using
this framework, the state-space equations of the complex system
under consideration can be represented in a compact operator
form that looks formally identical to standard LPV-LFT state-space
models, and derivations and proofs of standard analysis and syn-
thesis results [11-13] can be adapted to NSLPV systems inter-
connected over arbitrary graphs, with many inherently complex
manipulations becoming transparent. However, despite the formal
analogy between operator-based results and standard ones, there
are ensuing intricacies that have to be addressed to make sure that
these transparent manipulations go through, which include ap-
propriately characterizing causal and memoryless operators with
special structures, and imposing desired structures on analysis
solutions with no added conservatism. The standard results also
acquire new interpretations and characteristics when extended to
the distributed system setting. For instance, there are three types of
states associated with distributed NSLPV systems: temporal states
which are the standard states of the subsystems, parameter states
which are due to formulating the subsystems in an LFT framework,
and spatial states which are associated with the interconnections
between the subsystems. Additionally, the designed controller in-
herits both the interconnection structure and the LFT structure of
the plant, i.e., the controller is a distributed NSLPV system where
the subsystems are formulated in an LFT framework, are affected
by the same parameters as the plant, and are interconnected over
the same interconnection structure as the plant. In general, the
derived analysis and synthesis conditions are given in terms of
infinite sequences of linear matrix inequalities (LMIs) due to the
explicit dependence on time in the state-space equations of the
subsystems. For eventually time-periodic subsystems, where the

state-space matrix-valued functions become time-periodic after
some initial finite time-horizon, interconnected over finite graphs,
i.e., graphs with finite sets of vertices and edges, the LMI sequences
become finite dimensional.

The paper is organized as follows. Section 2 introduces the
notation and Section 3 gives the operator theoretic framework.
Section 4 derives the analysis results and Section 5 is devoted for
the synthesis results. Section 6 applies the method to an illustrative
example. Conclusions are given in Section 7.

2. Notation

The sets of nonnegative integers, integers, real numbers, and n x
n symmetric matrices are denoted by Ny, Z, R, and S", respectively.
0ixj, 0, and I; denote an i x j zero matrix, an i x i zero matrix, and
an i x i identity matrix, respectively. diag (M;) is the block-diagonal
augmentation of the elements of the sequence of operators M;.

Consider a directed graph with a countable set of vertices V
and a set of directed edges E. An element of E directed from i €
V toj € V is denoted by (i, j). The vertex degree v(k), i.e., the
maximum between the indegree and the outdegree of vertex k,
is assumed to be uniformly bounded. Without loss of generality,
the directed graph under consideration is assumed to be d-regular,
i.e,, for each k € V, the indegree and the outdegree are equal to
d. This is because an arbitrary directed graph can be turned into a
d-regular directed graph, where d = maxcyv(k), by the addition
of the necessary virtual edges and nodes. With this assumption,
d permutations, p, ..., pg, of the set of vertices are defined such
that if (i,j) € E, thenonee € {1,...,d} satisfies p.(i) = j and
pe‘l(i) = i. Fig. 1 shows an example of a directed graph and the
same graph rendered 2-regular after the addition of virtual edges.
The permutations p; and p, are defined as follows: pi(1) = 2,
p1(2)=3,013) =4, ,(4) = 1, 02(1) = 3, 02(3) = 1, p2(2) = 4,
and py(4) = 2.

J1 @], denotes the vector space direct sum of the vector spaces
J1andJ,. Let H and F be Hilbert spaces. The inner product and norm
associated with H are denoted by (., .)y and |.||y, respectively.
The subscript is dropped when H is clear from context. The spaces
of bounded linear operators and bounded linear causal operators
mapping H to F are denoted by £(H, F) and L.(H, F), respectively.
The symbols simplify to £(H) and £.(H) when H = F. For X €
L(H, F), || X|| refers to the H to F induced norm of X and X* denotes
the adjoint of X. A self-adjoint operator X € L£(H) is said to be
negative definite, X < 0, if there exists « > 0 such that (x, Xx) <
—a||x||?, for all nonzero x € H.

Given the sequence n : (t,k) € Z x V — n(t, k) € Ny,
€ ({R™®1}) is defined as the vector space of mappings w : (t, k) €
Z x V. — w(t,k) € RN, The Hilbert space ¢, ({R™"M})
is the subspace of ¢ ({R""¥)}) consisting of mappings w with
= \/Z(r W, KJw(t, k). Lo ((R"©1)}) is the
subspace of ¢ ({R"*Y}) composed of mappings w that satisfy

Yow(t, k)*w(t, k) < oo, for each t € Z. The symbols ¢, £5, and
£y are used when the dimensions are clear from context. Let n =

finite norm ||w||

(ny, ..., nf), where nq, ..., ny are integer sequences similar to n,
and d_efme 0 =al_e ({R”l(t ¥}). Similar definitions apply for €5
and £7,.

The following summarizes the operator machinery of [10]. An
operator Q on £, is said to be graph-diagonal if (Qw)(t, k) =
Q(t, Hw(t, k), for all (t,k) € Z x V, and the matrix-valued
sequence Q(t, k) is uniformly bounded. An operator W = [Wj]
is said to be partitioned graph-diagonal if each Wj; is a graph-
diagonal operator. The mapping [W](t, k) = [Wj(t, k)] is a homo-
morphism from the space of partitioned graph-diagonal operators
to the space of graph-diagonal operators. This mapping is isometric
and preserves products, addition, and ordering. The definition of
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Fig. 1. Directed graph (left) rendered 2-regular (right) via the addition of the necessary virtual edges.

graph-diagonal operators extend to £ and £,.. 9 denotes the graph-
diagonal identity operator such that [I9](t, k) = Iy.x), and 0°*"
denotes the graph-diagonal zero operator such that 0*(t, k) =
Oc(t,k)xn(t,k)- We also define the partitioned graph-diagonal oper-
ators [@--4m) = diag (I, ..., [9m) and QU"1--)X0mmg) - —
[0™>*M)];i_y _f.j=1.. - If the dimensions are not pertinent to the
discussion, the identity and zero operators are simply referred to
as I and 0, respectively. The unitary temporal-shift operator So and
the unitary spatial-shift operators S; are defined as follows:

So ity — Ly, (Sou)(t. k)= v(t —1,k),
(Sgv)t, k) = v(t + 1,k),

Siiby— b, (SNt k)= u(t, o (K)),
(SfoXt, k) =o(t, pi(k),  fori=1,....d.

These definitions extend to £ and ¢5.. Subsequently, no distinction
is made between the shift operators for vector spaces ¢ with
different associated dimensions.

3. Operator theoretic framework

Consider a distributed NSLPV system Gs formed by hetero-
geneous, discrete-time, NSLPV subsystems G*) formulated in an
LFT framework and subjected to a communication latency. The
interconnection structure of Gs is given by a d-regular directed
graph, where each subsystem G corresponds to a vertex k € V,
and the interconnections between the subsystems are described
by the directed edges. Fig. 2 shows the distributed NSLPV system
corresponding to the graph of Fig. 1. For all (t,k) € Z x V, the
state-space equations of system Gs are as follows:

xr (t+1,k)
x1 (t+ 1, pi(k))

Xa (t + 1, pa(k))
a(t, k)
z (t, k)
y(t, k)
Arr(t, k)
Asr(l’, k)
= | Ap(t.k)

Ars(t, k) | Am(t, k
Ass(t, k) | Asp(t, k
Aps(t, k) | App(t, k
)
)

Cir(t, k) | Cis(t, k) | Cip(t, k
Gor(t, k) | Cos(t, k t, k

XT (t, k) 7
X1 (t, k)

~|~ |~
N NG NOJS NS N
oo !
il
-

Gop

< | xt k) |
B (¢, k)
w (t, k)
u(t, k) |

B(t,k) = diag (81(t, ST X (2 1<)1n¢(t,k)) a(t, k)
At k) o (t, k).

(1)

xr(t, k) denotes the state associated with subsystem G*), and has
a possibly time-varying dimension nr(t, k). Such states are re-
ferred to as the temporal states. The interconnections between
the subsystems are also modeled as states, called spatial states.
The spatial state x;(t, k), with dimension nf(t, k), is associated
with the edge (pi_l(k), k), and the spatial state x;(t, pi(k)), with
dimension nf(t, pi(k)), is associated with the edge (k, pi(k)). Due
to the communication latency, the information sent by a subsys-
tem at time-step t reaches the target subsystem at t + 1. The
spatial states corresponding to the virtual interconnections and
their corresponding blocks in the state-space matrices are of zero
dimensions, i.e., nonexistent. 3(t, k) and «(t, k) are the parameter
states due to the LFT formulation, and evolve according to the
feedback channel S(t, k) = A(t, k)a(t, k), where §(t, k) are scalar
functions, for j = 1, ..., r. The parameters §;(t, k) are not known
a priori, but are assumed to be measurable at each t. The vec-
tors B(t, k) and «(t, k) are partitioned into r vector-valued chan-
nels conformably with the partitioning of A(t, k), e.g., a(t, k) =
[ei(t, k), a(t, k), ..., ai(t, k)]", where the dimension of a(t, k)
and g;(t, k) is nj’.’(t, k). The dependence of the subsystems on the
parameters is local, i.e., different subsystems may depend on dif-
ferent parameters. Even if two subsystems are affected by the
same parameters, the evolution of the parameters is assumed
to be independent in each subsystem. Let r, be the number of
parameters affecting subsystem GX). Then, r = maxeyry.Ifr, <,
for some ko e V, then §;(t, ko) = 0 and nP(t, ko) = O, for all
teZandj=rn,+1,...,r.w(t, k), z(t, k), u(t, k), and y(t, k) are
the exogenous disturbances, the performance outputs, the control
inputs, and the measurement outputs associated with subsystem
G, respectively. Their corresponding dimensions are given by
nw(t, k), ny(t, k), ny(t, k), and ny(t, k). Unless otherwise stated, we
assume hereafter that w € ¢,.

The state-space matrices are known a priori, are assumed to
be uniformly bounded, and are partitioned according to the per-
mutations pq, ..., pg and the channels in A(t, k), e.g., Ars(t, k) =
[AF(t, k) ... A?(t, k)]; see [ 14] for more details. These partitions,
eg., AiTS(t, k), define graph-diagonal operators, e.g., AZS, which
are augmented to form partitioned graph-diagonal operators,
eg, Ars = [AP ... AF]. such that [Ar](t, k) = Ag(t, k). The
operators A, By, By, B, C1, G5, C, and D are then defined as follows:

A Ars Ap
A= |Ast Ass Asp|,

Apr Aps App
Br1 Bra
B:[B1 32]2 Bs1 Bsa |,
Bp1  Bpa

C= Gl_|Gr Gs Gy D= D11 Dn2
G Gr Gs Gpf’ Dyy Dy |”
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Lo

x(t+1,4)

Fig. 2. Left: Distributed system with interconnection structure defined in Fig. 1 and consisting of NSLPV subsystems formulated in an LFT framework. Right: Close up view

of the LFT formulation of a subsystem G,

These operators satisfy relationships of the type [Bg ](t,k) =
[Bis(t. 1) Byt k) Bt

[CI(t. k) = [Cor(t.k) Ces(t,k) Cep(t, k)], for g € {1,2}.
Forj = 1,...,r, the graph-diagonal operators A; are defined
such that Aj(t,k) = §lt, k)p( 4. These operators are block-
diagonally augmented to constrljlct the partitioned graph-diagonal
operator Ap = diag (A4, ..., A;), where [Ap](t, k) = A(t, k). Let
s = (n§,....n5), ap = (nf,...,nP), nf = SinrSo, and iy =
(S1SEnySoSt, - . ., SiSam3S0Sa), where (SinrSo)(t, k) = nr(t + 1,k)
and (S7SgniSoSi)(t, k) = ni(t + 1, pi(k)), fori = 1,..., d. Define
the composite-shift operator as S = diag (So, SoS1. - . . , SoSa, I"?)
and the operator A = diag ("™, Ap). Then, the equations in (1)
can be rewritten in compact operator form as

)= [3) o]
b= Bl el) @

wherex =[x}, x},....x;]".p = [B}..... B;]",and Aisrestricted
to A = {A: ||A|| < 1}.Forevery A € A, and assuming that the
relevant inverse exists, the input-output map of system Gs can be
expressed as G; = C(I — ASA)"' ASB + D. The distributed NSLPV
system Gs is then defined as G5 = {Gs : A € A}. For an a priori
known and fixed A, system G; reduces to a distributed LTV system
as in [10]. If only one subsystem is considered, then system G;
reduces to a single NSLPV system as described in [1,2].

To simplify the presentation of subsequent results, the follow-
ing operators are defined, which group the temporal and spatial
blocks of A, B, and C:

- A Ars| Amp | »

A1 = VA = LAy = A Aps |,
11 |:AST Ass] 12 |:Asp:| 21 = [Arr Aps]
B, = [Bsﬂ’ G =[Cr Cs]. ge{1,2).

4. Analysis results

This section gives the analysis results for a distributed NSLPV
system Gs. For simplicity, the control inputs u(t, k) and the
measurement outputs y(t, k) are neglected. If we rewrite the sys-
tem equations in (1) so as to eliminate «(t, k) and j(t, k), then it
is obvious that, for the state-space equations to be well-defined,
I — App(t, k)A(t, k) must be invertible, for all (t, k) € Z x V.

Definition 1. System G; is said to be well-posed if (i) given an input
w € o, the Eqs. (2) admit a unique solution (x, 8) € Z(Z'Z,T’"S’”"),and
(ii) G5 defines a linear causal mapping on £y, forall A € A. System
G5 is said to be ¢,-stable if (i) it is well-posed, (ii) given an input

w € £y, the Eqs. (2) admit a unique solution (x, 8) € £§'7""™,
and (iii) Gs defines a bounded linear causal mapping on ¢,, for
all A € A ie, G € L (& ({R™EN)) £, ({R™=N})), for all
permissible parameter trajectories.

Lemma 1. If [A](t,k) = O, for t < 0, and I — ApApp has a causal

inverse on Eg’;,for all A € A, thenl — ASA has a causal inverse on
s forall A € A, and system G is well-posed.

Proof. The proof parallels [1,15]. The well-posedness of Gs is
equivalent to the existence of a causal inverse for I — ASA on
Z(ZZT’"S’"P), for all A € A.Using (3), and for each A € A, — ASA
can be factored as

I — ASA = [’ - 503'2‘“ ~S08Ar }
—ApAyr I — ApApp
_ |1 —SoSAn(l — ApAp) M| [1 - §Q§R 0
0 I —ApAyy I — ApApp

since I — ApApp has a causal inverse on egg where §0 =
diag(Sg; - - -, So) (d + 1 blocks), S = diag(I"7, Sy, ...,5q), and
R = A]] + A]z_(] — ApApp)_lApA21. So, if I — S()SR has a c_au_sal
inverse on £7"", then I — ASA has a causal inverse on €575,
By generalizing the characterizations of causality and memoryless-
ness to partitioned operators mapping multiple inputs to multiple
outputs, i.e., operators mapping @?21629 to @21626, for some Ny,
N3, and by extending [ 15, Lemma 6] to this class of operators, we
show that since Ris a linear memoryless operator and [A](t, k) = 0,
fort < 0, then (I — §O§R)‘l exists and is causal. O

Hereafter, we assume [A](t, k) = O, [B](t, k) = O, [C](t, k) =
0, and [D](t,k) = O, forallt < 0 and k € V. To check
for the well-posedness of G, it becomes sufficient to check that
I — ApApp is invertible on Zgg for all A € A. The inverse, when
existent, is memoryless (and causal) since I — ApApp iS mem-
oryless. The following result gives a sufficient condition for the
£,-stability of system G, i.e., the validity of this condition implies
that I — ASA has a bounded causal inverse, for all A € A. The proof
of the result parallels its counterpart for single LPV and uncertain
systems found in [16], and so is omitted. Let

X = {x:x :diag(xr,xf,...,x;,xf,...,xf)
=X*er, (Z(ZHT’ﬁS’ﬁP)>, X >0, X~ 1e E(g(zﬂrvﬁs’ﬁlv))}’

whereXT,Xf,Xj”, fori = 1,...,dandj = 1,...,r, are graph-
diagonal operators. Clearly, X is a commutant of A. The symbol
X is used for similarly defined sets regardless of the associated
dimensions.
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Lemma 2. If there exists X € X such that A*S*XSA — X < O, then
system G is £,-stable.

S$*XS is a partitioned graph-diagonal operator with a block-
diagonal structure similar to the structure of X, ie., $*XS =
diag(S;XrSo, S;S;X3SoS1. - - - S;S5X3S0S4, X, . .., XP). The condi-
tion X € X and the inequality in Lemma 2 can be expressed in
terms of equivalent sequences of LMIs, i.e., for some scalar 8§ > 0
andall (t,k)eZxV,i=1,...,d,andj=1,...,r Xr(t, k) > BI,
X3(t, k) > ﬂl,xj”(t, k) > BI,and

[A*](t, k) diag (Xr(t + 1, k), X3 (¢ + 1, p1(K)), ... .,
X3t + 1, pa(k)), X7 (t, k), ..., XF(t, k) JA](t, k)
— diag (Xr(t, k), X3 (t, k), ..., X3(t, k),

X{(t, k), ..., X (t, k) < —BI.

One sequence of LMIs is associated with every subsystem G
These sequences are in general infinite dimensional because of
the explicit dependence on time in the state-space equations of
the subsystems. The sequences associated with the various sub-
systems are coupled through the spatial terms Xl.s(t, k), but not
through the parameter terms Xj” (t, k). This highlights the local
dependence of the state-space matrices on the parameters. The
spatial terms associated with the virtual interconnections have
zero dimensions and do not appear in the LMIs. Similarly, if r, <
r, for some ko, € V, then Xf’(t, ko) has zero dimensions, for
j=mny+1,...,randallt € Z. The Bl terms ensure that the
matrix sequences on the left-hand side do not converge to singular
matrices as t approaches infinity. Since the state-space matrices
are zeros for t < 0, the sequences are trivial for t < 0, and so t is
restricted to No.

Systems that satisfy the previous condition are said to be
strongly stable. Strong stability implies £,-stability, but the con-
verse is not necessarily true: A strongly stable system is an £,-
stable system with a solution X € X to A*S*XSA — X < O0; but
there exist £,-stable systems which are not strongly stable.

Lemma 3. G;s is strongly stable and ||Gs|| < y, forall A € A, if there
exists X € X satisfying

SA SB|"[x o][sA sB] [Xx O
[c Dj| [0 IHC D]_[o y21]<0' )
The proof resembles that of a counterpart result for intercon-
nected LTV subsystems in [15], and so is omitted. Lemmas 2 and 3
require X € X. In fact, X only needs to be positive definite and in
the commutant of A. We show next, however, that the imposed

structure does not introduce conservatism. A similar result for
single NSLPV systems is given in [2].

Theorem 1. A solution X > 0 to (4) in the commutant of A exists if
and only if a solution X € X exists.

Proof. The ‘if direction is trivial because X is a commutant of A.
The ‘only if direction is proved next. We construct a solutionX € X
from the solution X. Define the operator E(; ;) : RE — £, ({R"¢1)}),
for some mapping n that satisfies n(t, ) = g. If Ex sje = v € £y,
then v(t, k) = eif (t, k) = (7, ¢) and v(t, k) = O otherwise. The
adjoint operator Ef; ) : £, ({R""Y}) — R""¢) satisfies E;, v =

v(t,¢). Any v € ¢, can be writtenas v = Z(t k. u(t, k) Thus,
for any operator Q on ¢, Qv = Z(t 0 QE(t wyu(t, k). As X is in
the commutant of A, then X = diag (XT,XS L XELXP X”)
Since operators A; are graph-diagonal, then XP must also be graph—
diagonal as they must satisfy X Ajp = Aj)_(jpv, forall v € £, and

j = 1,...,r.To see this, both sides of the previous equation are
evaluated at (7, ¢), i.e., pre-multiplied by E* ,,. We get

D 8t K Efy o) X E vt k)
(t,k)

= 5(v. £) D Efr oy X Bttt ).

(£.K)

(r.0)

For this equality to hold for an arbitrary v € Ez,)_(j” must be graph—
diagonal. That is, Ef, . X'Eciy = X/(z,¢), for (t,k) = (7,¢),
and E(T {)X E¢ry = 0 0therw1se The same, however, cannot be

concluded about Xy and X fori = 1,...,d.Since X satisfies (4),
then, for some 8 > 0, the followmg holds

A B|'[s*xs o][a B] [X o0 ]
c || o r1||lc p|7|o yu|=7P"

Define the operator E(,,g) = diag(Er ¢y, Er.¢)s -+ Er,)) (1 4+d 41

blocks), which satisfies

A Bl[Ewy O

C Dj| 0 Eqp

_|Eeey 0 |[A B]‘

—[ 0 E.pllc D (t,8).

The previous inequality is pre- and post-multiplied by diag(i’(r.;),
E(r ¢))* and its adjoint, which results in

A B]* E* S*XSE 0
(r.¢) (z.0)
le o] (r,;)[ no ) ,]

P oo [Foetie

0
—BlI,
0 )/2I:|< p

with E S XTS()E(-[ ) = Ef XTE('[+1,§) and

(r.¢)
7S S
E(*r,;)si SOXi SOS,-E(,,;) = E(r+1,pi({))xi E(T+1vpi(§)>’

(t+1,0)

fori = 1,...,d. In the above inequality, note that E(*LUE(,,;) =1
We define graph—diagonal operators Xr and X,.s such that Xr(t, k) =
E(t k))_(TE(, K and X (t, k) = E(t k))_( E(¢ 1. The previous inequality
holds for all (7, ;) € Z x V, and so one can verify that X =
diag (Xr, X7, ..., X3, G XP) € X satisfies the sequences of
LMIs wh1ch are equ1valent to (4). Thus, we have found X € X that
satisfies (4). O

5. Synthesis results

This section addresses the control synthesis problem. The plant

Gs is assumed to be well-posed, and the state-space matrices are
taken as zeros, for t < 0. We assume that D,,(t, k) = 0, for all
(t, k) € Z x V. The sought controller Ks is a distributed system
with the same interconnection and LFT structures as the plant.
That is, the controller consists of NSLPV subsystems, formulated
in an LFT framework, and interconnected over the same intercon-
nection structure as the plant. The information transfer between
the controller subsystems is subjected to a one-step time-delay.
For all k € V, the controller subsystem K® is affected by the
same parameters as the plant subsystem G¥). Thus, the controller
equations are in the form of (1), with inputs y and outputs u. The
controller operators are denoted using the same symbols as the
plant operators with the additional superscript K. The controller
dimensions are denoted by mr(t, k), mi(t, k), m}’(t, k), for i =
.,dandj =1, ..., r.These dimensions are obtained from the
synthesis solutions, as will be seen later. mg is defined similarly
to ns, and so on. Fig. 3 shows the closed-loop system formed by
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o

Fig. 3. Controller inheriting the interconnection and LFT structures of the plant. The
information exchange between a controller subsystem and its corresponding plant
subsystem is depicted using black arrows.

the plant of Fig. 2 and the corresponding controller. Using (3), the
K AL, App B;

controller equations are written as
XK
B |,
~K K K
u C Ch D y

xe | [mr.ms) x| k[ x
A= S (n) 2

where Af = diag(AX,..., A). Forj = 1,...,r, the graph-
diagonal operators AJ’-‘ satisfy AJ’-((t,k) = &t k) Lp( sy The
parameters §(t, k) are the same as those of the plant.jThe con-
troller state-space matrices are zeros, for t < 0. Then, by
Lemma 1, the controller is well-posed if I — AﬁAﬁP has a causal
inverse on ¢,7, for all AX € AK. The closed-loop equations
are obtained by combining the plant equations and (5). Let S =
diag(S,S) = diag (§0§, 1§58, Iﬁ“’), A = diag(a, AK) =
diag(Ir ), Ap, Imrms) AK) and xg = [¥* B* xi Bi]"
Then, the closed-loop equations are x, = A§Adxd + A§Bc1w and
Z = CaXa + Daw, where the partitioned graph-diagonal operators
AClv Bcl_- Ccl- and Dcl SatiSfy Acl = A+ ngv Bcl = B+ BJQz].
Ca =C+Dy,JC and Dy = D11 + Dy, JD,y, with

|:XK] SogAll(] §0§All<2 §0§§K

A 0
A= o gt ad imp)<(my.ins. ) |

1K 2K pK

Al Ay BK B
KK B’1)< ce=la
& ¢k p

D, = [Onzx(m;,fn;,mp) D12]7

D o(mr s, mp)xnw
=1 Dy ’

The given parametrization of the closed-loop operators allows us
to develop an affine condition in the controller realization J to
check whether a given controller K5 ensures the £,-stability of the
closed-loop system and further guarantees an upper bound y on
the ¢,-induced norm of the resulting mapping from w to z.

The above equations describe the closed-loop system but are
not in the form of (2). Define the partitioned graph-diagonal op-
erator Ap = diag (AL, ..., AL), where, for all (t,k) € Z x V

ng x(mg,mg,m,
Qnzx(mr s P)]7

andj = 1,...,r, AjL(t, k) = g, k)Injz_:(t’ka}:(t’k). Let P be an
appropriately defined operator such that P*P = I, PP* = I, and
P*AP = diag (I"*™, ["s+Ms AL) = Al; and define A', B, Ct,
and D' according to SA' = P*SA4P, SB = P*SB, Ct = CyP, and
D' = Dg. The above equations can then be rewritten in the form of
(2):

L L L

X Legl | X Lepl L|X L

= A"SA + A*SBw, z:C|: :|+Dw,

] = s 3] ﬂL
At e Al = (At |at < 13,
where Xt = [(xb)%, (), ..., (x5, = S[(,sg)*, U0
X, k) € RMERmIER) ke k) ¢ REOTMED and (e, k) €

P P
RY O ER fori=1,...,dandj=1,...,1.

Definition 2. A controller K; is said to be a y-admissible synthesis
for plant G;s if the resulting closed-loop system is ¢,-stable, and
lw — z|| = |ICXHI — A'SAY)"TALSBL 4+ DY|| < y, forall Al € Al

Without loss of generality, we restrict the discussion to the
case y = 1 because a y-admissible synthesis for a plant Gs is
1-admissible for the scaled system Gcaled,s in Which y is absorbed
into the system operators, namely, Cscaled,1 = %Cl, Dscaled, 11 =

%Dn, and Dscled. 12 = %Du. More details are provided in Section 6.

Theorem 2. If there exists X' € X that satisfies H +Q*J*R+R*JQ <
0, then the given controller KCs with realization | is a 1-admissible
synthesis for plant Gs. In the preceding condition,

R :[B* 0 0 QTZ]’ Q :[0 g 221 0]5

—S*xH7'S A B 0
0

Nk L ~%
Xt = PX'P*, and H = A —Xp ¢

B 0o I D}

0 ¢ Dn I

Proof. By Lemma 3, if there exists X' e X that satisfies (4)
for y = 1 and the closed-loop realization given by A, B', CI,
and D, then K; is a 1-admissible synthesis for Gs. (4) is pre-
and post-multiplied by diag (P, I') and its adjoint, respectively, and
‘diag (P*, I) diag (P, I) = diag(I, I)' is inserted as needed, to get

Aa  Bq ’ §*Xl§§ O(|Aa Ba| _ XIE 0 -0
Ca Dq 0 I|]|Cqa Dg 0 I ’
The condition in the theorem is retrieved by applying the Schur

complement formula to this inequality and appropriately rear-
ranging the terms in the resulting inequality. O

Recall that X" = diag (X7, X3, ....X].X],....X]) € x.For
all (t,k) € Z x V, we partition Xr(t, k) = [Xrlt, k)]i:1,2;j:1,2'
where Xr 11(t, k) € STER, Xp (¢, k) € STTER and Xp 5q(t, k) =
X7 15(t, k). These partitions define the graph-diagonal operators
Xr.11, X1,12, and Xr 2. We repeat the partitioning process for all
X3(t, k) and Xj"(t, k), and construct X;; = diag (Xr.11, Xf’“, e
X311 X qge - X0 ) € X X € X and X;, are constructed in a
similar way. Then, one can see that X; = PX"P* has the structure
shown below. Also, since (X*) ™' € , then (X£) ™' = P(X")™'P*
has a similar structure to X}. Namely,

Xt = |:)f11 )f12i| ’ (Xﬁ)_l _ |:¥1*1 ¥12:| ’ (6)
X X» Yo Yo
Where 911 is defined similarly to )211, and so on. Given some )211 and

Y11 in &, the next result gives necessary and sufficient conditions
for the existence of XIE and its inverse with the structure defined in

(6).
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Lemma 4. Given )A(n and f/ll in X, there exist XIE > 0 with the
structure defined in (6) if and only if, for all (t, k) € Z x V,i =

,...,d,andj =1, ..., r, the following conditions hold:
X1 1.,
I Y| 7
[ X7 11(t, k) I

rank ] < nr(t, k) + mz(t, k),

| Yr 11(t, k)
[ X2 (t, k) I s s
rank I I Ys.”(t, k) =< 1 (t7 k) + mi(tv k)7
[P (¢, k) I
J, 118"
rank ) “(t l)] (t l<)+m (t, k).

The proof of this result, which includes a procedure for the
construction of the required Xlﬁ and (X,E)*1, is omitted as it is an
immediate generalization of the proof of [ 12, Lemma 6.2].

The first condition can alternatively be expressed in terms of its
equivalent sequences of LMIs as follows:

_XT,H(t, k) I
I Yr11(t, k) z 0.
[ X2 (t. k) I -0
| Yo k)] =
_Xf“(t, k) 1 ] 0
I jll(t k)

Theorem 2 allows for checking if a given controller K; with
realization J is a 1-admissible synthesis for plant Gs. The next
result gives sufficient convex conditions for the existence of a 1-
admissible synthesis.

Theorem 3. There exists a 1-admissible synthesis Ks for plant Gs,
with dimensions mr(t, k) < nr(t, k), mi(t,k) < ni(t,k), and
m(t, k) < nf(t,k), forall (t,k) € Z xV,i = 1,...,d, and

j=1,...,r, if there existXll € X and f/n € X such that
o y([A B[V o][A BT
[V1 Vz] <|:C1 Dll] |: 0 I||C Dng
_[s*vs o]\ [v
o D[] "
* A~
[UT U;] A B] S*XHS 0 A B]
Ci Dy 0 I||C Du
_ )211 0 U]
[ 1)) 1] <o ®
[X“ N ]:0. 9)

I Y

The partitioned graph-diagonal operators Uy, V;, and the graph—
diagonal operators U, V, are defined such that Im[V; V5]" =
ker[B; D},] ViVi + ViV, = I Im[U; Us]" = ker[C; Dai),
and UyU; + UjU, = I, where ImT and ker T denote the image and
the kernel of a linear operator T. Namely,

U =[ur* (U5 ... (U5)" )" ... ()T,
Vi=[vryr (V) (V)T (VD) (v

with Ur(t, k) € RTER>? US(e, k) e R™ 7 (kX2 LUP(t k) € R
vilt. by € RITEHLOXT S(e k) e RICH. 0 VPt k) €
R 0 ? Uy(t, k) € Rm(t0x? and vy(t, k) € Rk,

tk)><7

Proof. By Lemma 4, and for some integers my(t, k), m3(t, k), and
mf(t, k) such that my(t, k) < ng(t, k), mis(t k) < §( t, k), and

mj’.’(t, k) < nf(t, k), there exist X} and (X5)~! with the structure
defined in (6) since )A(n and ?n satisfy (9). Thus, the operator H in
Theorem 2 is well-defined; and so, if there exists a solution J to
H + Q**R + R*JQ < 0, then the controller KCs with realization
J is a 1-admissible synthesis for plant Gs. By a generalization of
[11,Lemma 3.1] and [ 13, Lemmas 16, 17] to the class of partitioned
graph-diagonal operators, there exists a solution J to the preceding
condition if and only if WyHWy < 0 and WSHWQ < 0, where Wy
and W, satisfy InWy = kerR, WyW; = I, ImW, = kerQ, and
W3Wq = I. W and Wq can be chosen as follows:

Vi 0 0
0 0 0
1=12Wg = | 0 | [(rAsipmrismp) | g |

0 0 [

Va 0 0

o | jof i dpmf mdmp) | g

Ui 0 0
Wo=1] 0 0 0

Uy 0 0

0 0 I

Expand WyHWz < 0 and WyHW, < 0, and apply the Schur
complement formula to each inequality to get

(VIA+V5C) Yy (A*V1 + CV2)

+ (ViBy + V3D11) (B{Vy + D§ V) — ViS*V1iSVy — V5V, < 0,
(UTA* + U;B}) S™X11S (AU; + B1U»)
+ (UC; 4 U3D%,) (GiUy + D11Us) — UiXi1Up — U3 U, < O,

which are (7) and (8), respectively. O

_ Algorithm 1 shows how to use the synthesis solutions )211 and
Y1 to construct the desired controller.

Algorithm 1. Given )A(n and f/n in X that satisfy (7), (8), and (9),
the realization J of a 1-admissible synthesis K is constructed as
follows.Forall(t,k)e Zx V,i=1,...,d,andj=1,...,r1

1. Define the controller dimensions as follows: mr(t, k) =

rank (Yr,11(t, k) — Xr11(t, k)7,
m3(t, k) = rank (Y?;(t, k) —

rank(Y]PH(t k) — Xt k).

2. Use Lemma 4 to construct X} and its inverse (X})~
structure in (6).

3. Construct H as in Theorem 2, and solve H4+Q*/*R+R*JQ < 0
for]J.

XP1,(t, k)1), and m(t, k) =

T with the

This section concludes with a discussion on eventually time-
periodic (ETP) subsystems interconnected over finite graphs, for
which the analysis and synthesis problems are finite dimensional.

Definition 3. A subsystem G¥) with zero state-space matrices, for
t < 0, is said to be (h, q)-ETP, for some integers h > 0 and q > O, if
the corresponding state-space matrices, are (h, q)-ETP, that is, they
become time-periodic with period q after some finite time-horizon
h, namely, for all t, z € Ng, [W](t + h + zq, k) = [W](t + h, k) and
W € {A, B, C, D}.

The class of ETP subsystems includes as special cases the classes
of finite time-horizon subsystems and time-periodic subsystems.
Standard LPV subsystems are (0, 1)-ETP NSLPV subsystems.

Lemma 5. Ifall the subsystems are (h, q)-ETP, then the following hold:
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Fig. 4. Left: Depiction of a two-thruster hovercraft. Right: Depiction of the non-holonomic vehicle corresponding to G,

1. There exists a solution X € X to (4) (respectively, the inequality
in Lemma 2) if and only if there exists an (M, q)-ETP (respec-
tively, an (h, q)-ETP) solution Xeper,forsome integer M > h.

2. There exist solutions Xn and Yn in X to (7)-(9) if and only if
there exist (M, q)-ETP solutions Xn,eper and Yn.eper, for some
integer M > h.

3. In the above propositions, if h = 0, then M can also be taken
equal to 0.

The proof is omitted as it parallels the proof of [ 10, Proposition
21] and the references therein.

Thus, for (h, q)-ETP subsystems, we restrict t to some finite
time-horizon M and one time-period truncation, i.e.,, 0 < t <
M +q— 1, when solving the analysis and the synthesis problems. If,
in addition, the interconnection graph is finite, i.e., the sets V and
E are finite, then the problems become finite dimensional.

6. Illustrative example
6.1. Problem formulation

Consider a plant G5 formed by four subsystems interconnected
as in Fig. 2. The leader GV is a two-thruster hovercraft described
in [2], and the followers G, G®), and G are non-holonomic vehi-
cles defined in [17]. The leader and subsystem G are depicted in
Fig. 4. The leader is to track the eventually time-periodic reference
trajectory defined in [2], and the followers are to track the leader.
For simplicity, the four vehicles are assumed to be initially on
top of each other; any desired formation can be implemented by
applymg a%)%)roprlate translations when the controller is executed.
Let ( p] ,p2 ) be the position of the center of mass (CM) of the
hovercraft, 6, be its orientation with respect to the P] -ax1s and F,
and F, be the force control inputs applied at a distance L; = 0.15m
from the CM. The forces take values between 0 and 2.5N. Let v =
(p1 ,pz ,Ol,p(1l),172 ,61)and F = (Fy, F»), then the equations of
motion are v = f(v, F), with f(v, F) given in [2]. The equations are

linearized about the reference trajectory (vr, F;) to obtain
‘_) = Ac(t:)v +BZC(tC)F7 V=v—1,
= of of
F=F—-F, Ac(tc)= 37 s BZc(tc) 9F

v (vr.Fr) (vr, Fr

where t, is the continuous-time. Then, the effect of the exogenous
disturbances w(t.), which consist of torques and forces in both
the p(ll) and p(zl) directions, is added as in v(t.) = Ac(t:)v(t:) +
Bict(tc) + Bac(te)F(tc), where By = [05 I5]". The inputs and
disturbances are applied in discrete-time at a sampling frequency
of 20Hz. A bilinear transformation [ 18] is used to obtain a discrete-
time trapezoidal approximation for the previous equations. Let

t € Ny be the discrete-time and t = 0.05 s be the sampling period,
then

XT(t + 1, 1) =AT1'(I', I)XT(t, 1) +BT1(f, 1)11)([', 1)
+ Bry(t, Du(t, 1),

xr(t, 1) = v(tr), w(t,1)=w(tr), u(t,1)=F(tr).

The reference trajectory is (45, 120)-ETP, and so are Arr(t, 1),
Bri(t, 1), and Bry(t, 1). The position and the orientation of the
hovercraft are measurable at each time-step. For all t € Ny, we
set

o1 [13 03]
2x6

Clr(f,1)=|: :|, Dy;(t, 1) = 053,

0
Dyp(t, 1) = |:a3;12:| Cor(t, 1) =[Is 03], D(t, 1) =03,
D(t, 1) = O3x2,

a1 = 0.3, oy = 0.2. There are no incoming edges to vertex 1
and there are no parameters affecting G(*), and so, for all t € N,
Ars(t, 1), Ass(t, 1), Aps(t, 1), Cis(t, 1), Cos(t, 1), Arp(t, 1), Asp(t, 1),
App(f, 1), Clp(f, ]), Czp(t, 1), APT(f, 1), Bp](t, 1), and sz(t, ]? are
non -existent. The leader sends (p(f),p(;)) = ([7(]]) + p(]]‘i,ﬁ;) +
p2 r) to the followers, ie., x1(t + 1,2) = x(t + 1,3) =
(e + 1)7), pL((E + 1)7)). w(t, 1) is augmented by(mp“)(( t+
1), 10p(1)((t + 1)7)).Let W = [, 0244, and define

Asr(t, 1) = x]f\rr(tﬂ),
Bai(t, 1) = [m Br(t. 1) [g}gﬂ ,
Bia(t, 1) = X]Bn(r,l).

Moreover, Brq(t, 1), D11(t, 1), and Dy¢(t, 1) are augmented by two
zero columns.

For the followers, we focus on modeling G since G**) and G*¥
are treated similarly. As in [17,19], a point (pﬁ, pfzz) ata ﬁxed
distance Ly = 0.02m ahead of the center of mass (p(f), p2 ) of
the vehicle is considered. Let 6, be the orientation of G?) with
respect to the p(1 ) -axis, vr 2 = v¢2 + vq,2 be the forward velocity,
and wf; = wc + wq be the angular velocity, where v.; and
@, are the control inputs and vg ; and wy , are the disturbances.
In the (r, g2)-reference frame, the equations of motion are f =
vr2 + wr2q>, Q@ = wr 2l — wr a1, and 6, = wf 2. As in [17],
the third equation is disregarded during control design. Assume
ws» € [—=5, 5] rad/sec, and define n, = %wf,z. Then, the previous
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equations can be expressed as
f’z _ 0 57}2 ») + 1 0 Ud,2
Q2| |=5m 0 || 0 Li||wa2
1 0 Uc,2
o 2]

These equations are written in an LFT form by taking 7, as the
parameter. Since  is sufficiently small, the bilinear transformation
in [18] is used to obtain a discrete-time trapezoidal approximation
of the equations, assuming the parameters and the parameter
states to be constants over each time-interval [tt, (t + 1)7), for all
t € Ny, with the parameter states treated as exogenous inputs.
We define xr(t, 2) = (ra(t7), q2(t7)), w(t, 2) = (v4,2(t7), wa 2(t 7)),
u(t,2) = (vea(tt), we(tT)), and 81(t,2) = ny(tt). G receives
the spatial state x4(t, 2) = (p(]])(tr), p(zl)(tr)). The output measure-
ments of subsystem G are then defined as

¥(t, 2) = (ra(tt) — Ly — (p\"(t7) cos by(tT) + pS(tT) sin 6 (t 1)),
qa(t) — (—p{(t) sin O(tT) + pi(tT) cos By(t7))).

The performance outputs are taken as z(t,2) = (asy(t,2), a4
u(t, 2)), where a3 = 0.3 and a4 = 0.5. The equations for y(t, 2)
and z(t, 2) are written in an LFT framework by defining §,(t, 2) =
cos(B,(tt)) and 83(t, 2) = sin(6,(tt)). Choosing cosine and sine
functions as scheduling parameters may be conservative, but it re-
duces the computational complexity significantly. Then, A(t, 2) =
diag(81(t, 2)Iz, 8(t, 2)I,, 83(t, 2)I;). We augment w(t, 2) by 10L;.
G® sends (2, q2) to G®, and so x,(t + 1, 4) = (ra((t + 1)1), qo2((t +
1)7)). Thus, the time-invariant (0, 1)-ETP state-space matrices of
G are formed as follows. For all t € Ny, Cop(t, 2) = [02 I 12],
Cor(t, 2) = I, App(t, 2) = 0, Ars(t, 2) = 03, Do(t, 2) = 0g,

Arr(t,2) = Asi(t,2) = [5 (1’]

App(t, 2) = Asp(t, 2) = [[SOT SOT] 02x4],

Dy(t, 2) = |:02 [_8'1]],

T 0 O
Bn(t,Z):Bs](t,Z)z[O ol Oj|,

Tt 0
Bra(t, 2) = Bsy(t, 2) = |:0 rLf]’
Bpi(t, 2) = Osx3, Bpa(t, 2) = Ogx2,

I
Cir(t,2) = [a822i| » Cis(t, 2) = O4xa2,

Cos(t,2) =0y,

Cip(t,2) =03 |:[02 2

L] 0;
, Dip(t,2) = ,
02x6 ] 12(t,2) |:0l412:|

0 1
Apr(t,2) = |:—1 0:| , Ass(t,2) = 0y,
042
0,
I
APS(LZ): _ 0 2 1 P
Enl

—-0.1
Dy;(t, 2) = |:04><2 |: 03><§¥3i|:|.

For G, A(t,4) = diag(8:(t, 4), 82(t, A), 85(t, 4L, 84(t, 4)
L, 85(t, 4)b), z(t, 4) = (0.1y(t, 4), asu(t, 4)),

ra(tt) — (r3(tT)8(t, 4) + q3(tT)d3(t, 4))
qa(tT) — (=r3(t7)83(t, 4) + q3(tT)d2(t, 4))

YA =1 e7) — (ra(tT)8ult, 4) + ga(tT)6s(8, 4)) |
qa(tt) — (=r2(t7)d5(t, 4) + qa(tT)d4(t, 4))
84(t, 4) na(tt)
52(1’, 4) COS(04(I'T) - 93([’1’))
and | 83(t,4) | = | sin(f4(tt) — O5(t7))
Sa(t. 4) cos(0a(t7) — Oy(t7))
8s(t, 4) sin(04(t1) — O,(t1))

6.2. Synthesis conditions

We now construct a y-admissible synthesis s for plant G;. In
Section 5, we assume y = 1 without loss of generality because
a y-admissible synthesis for Gs is 1-admissible for the scaled
plant Gscaled,s in which y is absorbed into the system operators,
i'e-v Cscaled,] = %Clu Dscaled,ll = %D‘l]v and Dscaled,lZ = %Du-
Using these operators, we incorporate y into the conditions of
Theorem 3; and using the Schur complement formula, we refor-
mulate the resulting conditions so that they are linear in y?; see
[20, Remark 10]. Denote by i, the minimum value of y for which
there exist (45, 120)-ETP solutions to the semi-definite program-
ming (SDP) problem formed by the sequences of LMIs equivalent
to the synthesis conditions; see for instance [10, Section 8.2]. In
the present SDP, there are additional parameter blocks X”(t, k). The
SDP problem is modeled using Yalmip [21] and solved using SDPT-
3[22]. The total number of constraints is 24751, the dimension of
the SDP variable is 33000, the dimension of the linear variable is
1, and the number of SDP blocks is 4455. The computations are
carried out in Matlab R2016a on a Dell computer with 4 Intel Cores,
3.07 GHz processors, and 6 GB of RAM running Windows 10. The
wall-clock time is 378 s (CPU time 67 s). We obtain ypmi, = 64.86.
This value is relaxed to 66, and the problem is re-solved as a
feasibility problem.

6.3. Simulation

From the synthesis solutions, the controller realization J is
constructed as in Algorithm 1. The Matlab function ‘basiclmi’ is
used in Step 3. The controller is applied to the nonlinear plant and
the resulting closed-loop system is simulated. In the simulation,
the parameters »;, fori = 2, 3, 4, are set equal to . ; because the
disturbances wq ; are not measurable. The subsystems start with
their CM at (0, 0.825). The leader is subjected to random force
and torque disturbances in [—0.5, +0.5]N and [—0.05, 0.05] N.m,
respectively. The followers are subjected to random disturbances
which lie within +15% of the nominal inputs. The position of the
CM of the four agents is shown in Fig. 5. Observe that even in
the presence of disturbances, the leader and the followers track
the desired trajectory fairly well. Fig. 6 shows plots of various
performance outputs.

7. Conclusion

This paper provides an operator theoretic framework for work-
ing with distributed NSLPV systems, along with convex analysis
and synthesis conditions. The conditions are in general infinite
dimensional because of the explicit time dependence in the system
equations, but become finite dimensional for eventually time-
periodic subsystems interconnected over finite graphs. The sizes
of the analysis and synthesis problems scale with the numbers and
dimensions of the temporal, spatial, and parameter states, which
calls for structure-preserving model reduction techniques, such as
balanced truncation and coprime factors reduction.
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