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a b s t r a c t

This paper deals with the ℓ2-induced norm control of discrete-time, nonstationary linear parameter-
varying (NSLPV) subsystems, represented in a linear fractional transformation (LFT) framework and
interconnected over arbitrary directed graphs. Communication between the subsystems is subjected to a
one-step time-delay. NSLPV models have state-space matrix-valued functions with explicit dependence
on time-varying terms that are known a priori, as well as parameters that are not known a priori but are
available formeasurement at each discrete time-step. The sought controller has the same interconnection
and LFT structures as the plant. Convex analysis and synthesis results are derived using a parameter-
independent Lyapunov function. These conditions are infinite dimensional in general, but become finite
dimensional in the case of eventually time-periodic subsystems interconnected over finite graphs. The
method is applied to an illustrative example.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper is on the distributed control of subsystems inter-
connected over arbitrary directed graphs. Each subsystem has
its own sensing and actuating capabilities, and is modeled using
a discrete-time, nonstationary linear parameter-varying (NSLPV)
model [1,2], formulated in a linear fractional transformation (LFT)
framework. NSLPV models generalize stationary/standard linear
parameter-varying (LPV) models in the sense that the state-space
matrices can have an explicit dependence on time, in addition
to their dependence on the scheduling parameters. We account
for a communication latency of one sampling period between the
subsystems, i.e., a one-step time-delay on the information transfer
between the subsystems. Our aim is to construct a distributed
controller which renders the closed-loop system asymptotically
stable, and further guarantees some ℓ2-gain performance level,
i.e., an upper bound on the ℓ2-induced norm of the closed-loop
input–output map, for all permissible parameter trajectories. The
sought controller inherits the topological structure of the plant.
The controller subsystems have NSLPV models, formulated in an
LFT framework, and scheduled by the same parameters as their
corresponding plant subsystems.

In general, distributed controllers are of interest for the class of
interconnected subsystemsbecause of the advantages theypresent
over centralized controllers in terms of computational complexity
and practicality. Namely, centralized controllers require a heavy
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computational burden in the case of a large number of high
dimensional subsystems, and also require high connectivity to
receivemeasurements from and send commands to all the subsys-
tems [3]. Distributed controllers may also be more desirable than
decentralized controllers in applications with stringent stability
and performance requirements for the global system. Additionally,
distributed controllers apply whenever the interconnection of the
subsystems is stabilizable; whereas, decentralized controllers re-
quire that each subsystem be individually stabilizable.

NSLPV models were introduced and motivated in [1,2]. They
are extensions of LPV models in that the state-space matrices
depend on a priori known time-varying terms, in addition to their
dependence on the parameters, which are not known a priori
but are available for measurement at each time-step. Like LPV
models, NSLPV models allow for capturing the nonlinearities of
the studied system, while being amenable to control using linear
techniques. NSLPV models arise, for example, when controlling
nonlinear systems about prespecified trajectories. They can also be
thought of as linear time-varying (LTV) models with time-varying
uncertainties. In general, when it comes to describing time-varying
nonlinear systemsusing parameter-varyingmodels, NSLPVmodels
are far less conservative than stationary LPV models, and in some
cases, the only stabilizable models attainable are NSLPV [2]. In the
context of interconnected subsystems, a distributed NSLPV system
can be formed of NSLPV subsystems and/or mixes of LTV and LPV
subsystems.

Several works have appeared that address the problem of dis-
tributed control for interconnected LPV subsystems, e.g., [4–8],
and interconnected uncertain subsystems [9]. These works can
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be classified based upon various criteria. To start, in [4–7,9], the
sought controller inherits the interconnection structure of the
plant. The controller subsystems in [9] are assumed to have linear
time-invariant models; whereas, in [4–7], the subsystems of the
controller are parameter-dependent and are described similarly
to the subsystems of the plant. In [7], the controller subsystems
depend on their own local parameters as well as parameters re-
ceived from other subsystems. On the other hand, in [8], the struc-
ture and the order of the controller are design inputs. Secondly,
in [5,7,8], the synthesis results are derived using a parameter-
dependent Lyapunov function; whereas, in [4,6,9], a parameter-
independent Lyapunov function is used. The use of various types of
Lyapunov functions bares consequences on the convexity and the
tractability of the derived synthesis results. Thirdly, classification
can be based upon the complexity of the interconnection structure
and the heterogeneity of the subsystems. Namely, [4,5,8] consider
subsystems having the same model and interconnected over an
infinite lattice. [6] considers heterogeneous groups of subsystems.
Within each group, the subsystems have identical models and the
interconnections between the subsystems are undirected. Among
different groups, however, subsystems can have different models,
and the interconnections can be directed. Heterogeneous sub-
systems and arbitrary graphs are considered in [7,9]. [7] further
allows for directed interconnections, and accounts for commu-
nication latency between the subsystems. A fourth classification
criterion covers the modeling of the interconnections between the
subsystems. Specifically, [4,5,7–9] use spatial states to model the
interconnections between the subsystems, in addition to the states
associatedwith the subsystems; whereas, in [6], the possibly time-
varying interconnection topology is modeled using a feedback
operator in an LFT framework.

To the best of our knowledge, the current work is the first
on distributed control of interconnected NSLPV subsystems. In
this paper, we develop an operator theoretic framework in the
context of robust control tools for working with distributed NSLPV
systems. This framework builds on previous ones developed for
single NSLPV systems [2] and distributed LTV systems [10]. Using
this framework, the state-space equations of the complex system
under consideration can be represented in a compact operator
form that looks formally identical to standard LPV-LFT state-space
models, and derivations and proofs of standard analysis and syn-
thesis results [11–13] can be adapted to NSLPV systems inter-
connected over arbitrary graphs, with many inherently complex
manipulations becoming transparent. However, despite the formal
analogy between operator-based results and standard ones, there
are ensuing intricacies that have to be addressed to make sure that
these transparent manipulations go through, which include ap-
propriately characterizing causal and memoryless operators with
special structures, and imposing desired structures on analysis
solutions with no added conservatism. The standard results also
acquire new interpretations and characteristics when extended to
the distributed systemsetting. For instance, there are three types of
states associated with distributed NSLPV systems: temporal states
which are the standard states of the subsystems, parameter states
which are due to formulating the subsystems in an LFT framework,
and spatial states which are associated with the interconnections
between the subsystems. Additionally, the designed controller in-
herits both the interconnection structure and the LFT structure of
the plant, i.e., the controller is a distributed NSLPV system where
the subsystems are formulated in an LFT framework, are affected
by the same parameters as the plant, and are interconnected over
the same interconnection structure as the plant. In general, the
derived analysis and synthesis conditions are given in terms of
infinite sequences of linear matrix inequalities (LMIs) due to the
explicit dependence on time in the state-space equations of the
subsystems. For eventually time-periodic subsystems, where the

state-space matrix-valued functions become time-periodic after
some initial finite time-horizon, interconnected over finite graphs,
i.e., graphswith finite sets of vertices and edges, the LMI sequences
become finite dimensional.

The paper is organized as follows. Section 2 introduces the
notation and Section 3 gives the operator theoretic framework.
Section 4 derives the analysis results and Section 5 is devoted for
the synthesis results. Section 6 applies themethod to an illustrative
example. Conclusions are given in Section 7.

2. Notation

The sets of nonnegative integers, integers, real numbers, andn×
n symmetric matrices are denoted byN0,Z,R, and Sn, respectively.
0i×j, 0i, and Ii denote an i × j zero matrix, an i × i zero matrix, and
an i× i identitymatrix, respectively. diag (Mi) is the block-diagonal
augmentation of the elements of the sequence of operatorsMi.

Consider a directed graph with a countable set of vertices V
and a set of directed edges E. An element of E directed from i ∈

V to j ∈ V is denoted by (i, j). The vertex degree v(k), i.e., the
maximum between the indegree and the outdegree of vertex k,
is assumed to be uniformly bounded. Without loss of generality,
the directed graph under consideration is assumed to be d-regular,
i.e., for each k ∈ V , the indegree and the outdegree are equal to
d. This is because an arbitrary directed graph can be turned into a
d-regular directed graph, where d = maxk∈Vv(k), by the addition
of the necessary virtual edges and nodes. With this assumption,
d permutations, ρ1, . . . , ρd, of the set of vertices are defined such
that if (i, j) ∈ E, then one e ∈ {1, . . . , d} satisfies ρe(i) = j and
ρ−1
e (j) = i. Fig. 1 shows an example of a directed graph and the

same graph rendered 2-regular after the addition of virtual edges.
The permutations ρ1 and ρ2 are defined as follows: ρ1(1) = 2,
ρ1(2) = 3, ρ1(3) = 4, ρ1(4) = 1, ρ2(1) = 3, ρ2(3) = 1, ρ2(2) = 4,
and ρ2(4) = 2.

J1 ⊕ J2 denotes the vector space direct sum of the vector spaces
J1 and J2. LetH and F beHilbert spaces. The inner product and norm
associated with H are denoted by ⟨., .⟩H and ∥.∥H , respectively.
The subscript is dropped when H is clear from context. The spaces
of bounded linear operators and bounded linear causal operators
mapping H to F are denoted by L(H, F ) and Lc(H, F ), respectively.
The symbols simplify to L(H) and Lc(H) when H = F . For X ∈

L(H, F ), ∥X∥ refers to the H to F induced norm of X and X∗ denotes
the adjoint of X . A self-adjoint operator X ∈ L(H) is said to be
negative definite, X ≺ 0, if there exists α > 0 such that ⟨x, Xx⟩ <
−α∥x∥2, for all nonzero x ∈ H .

Given the sequence n : (t, k) ∈ Z × V → n(t, k) ∈ N0,
ℓ
(
{Rn(t,k)

}
)
is defined as the vector space of mappings w : (t, k) ∈

Z × V → w(t, k) ∈ Rn(t,k). The Hilbert space ℓ2
(
{Rn(t,k)

}
)

is the subspace of ℓ
(
{Rn(t,k)

}
)
consisting of mappings w with

finite norm ∥w∥ =

√∑
(t,k)w

∗(t, k)w(t, k). ℓ2e
(
{Rn(t,k)

}
)
is the

subspace of ℓ
(
{Rn(t,k)

}
)
composed of mappings w that satisfy∑

kw(t, k)∗w(t, k) < ∞, for each t ∈ Z. The symbols ℓ, ℓ2, and
ℓ2e are used when the dimensions are clear from context. Let n̄ =

(n1, . . . , nf ), where n1, . . . , nf are integer sequences similar to n,
and define ℓn̄ = ⊕

f
i=1ℓ

(
{Rni(t,k)}

)
. Similar definitions apply for ℓn̄2

and ℓn̄2e.
The following summarizes the operator machinery of [10]. An

operator Q on ℓ2 is said to be graph-diagonal if (Qw)(t, k) =

Q (t, k)w(t, k), for all (t, k) ∈ Z × V , and the matrix-valued
sequence Q (t, k) is uniformly bounded. An operator W = [Wij]

is said to be partitioned graph-diagonal if each Wij is a graph-
diagonal operator. The mapping JW K(t, k) = [Wij(t, k)] is a homo-
morphism from the space of partitioned graph-diagonal operators
to the space of graph-diagonal operators. Thismapping is isometric
and preserves products, addition, and ordering. The definition of
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Fig. 1. Directed graph (left) rendered 2-regular (right) via the addition of the necessary virtual edges.

graph-diagonal operators extend to ℓ and ℓ2e. Iq denotes the graph-
diagonal identity operator such that JIqK(t, k) = Iq(t,k), and 0e×h

denotes the graph-diagonal zero operator such that 0e×h(t, k) =

0e(t,k)×h(t,k). We also define the partitioned graph-diagonal oper-
ators I (q1,...,qm)

= diag (Iq1 , . . . , Iqm) and 0(n1,...,nf )×(m1,...,mg ) =

[0(ni×mj)]i=1,...,f ;j=1,...,g . If the dimensions are not pertinent to the
discussion, the identity and zero operators are simply referred to
as I and 0, respectively. The unitary temporal-shift operator S0 and
the unitary spatial-shift operators Si are defined as follows:

S0 : ℓ2 → ℓ2, (S0v)(t, k) = v(t − 1, k),
(S∗

0v)(t, k) = v(t + 1, k),

Si : ℓ2 → ℓ2, (Siv)(t, k) = v(t, ρ−1
i (k)),

(S∗

i v)(t, k) = v(t, ρi(k)), for i = 1, . . . , d.

These definitions extend to ℓ and ℓ2e. Subsequently, no distinction
is made between the shift operators for vector spaces ℓ with
different associated dimensions.

3. Operator theoretic framework

Consider a distributed NSLPV system Gδ formed by hetero-
geneous, discrete-time, NSLPV subsystems G(k) formulated in an
LFT framework and subjected to a communication latency. The
interconnection structure of Gδ is given by a d-regular directed
graph, where each subsystem G(k) corresponds to a vertex k ∈ V ,
and the interconnections between the subsystems are described
by the directed edges. Fig. 2 shows the distributed NSLPV system
corresponding to the graph of Fig. 1. For all (t, k) ∈ Z × V , the
state-space equations of system Gδ are as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

xT (t + 1, k)
x1 (t + 1, ρ1(k))

...

xd (t + 1, ρd(k))
α (t, k)
z (t, k)
y (t, k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
ĀTT (t, k) ĀTS(t, k) ĀTP (t, k) B̄T1(t, k) B̄T2(t, k)
ĀST (t, k) ĀSS(t, k) ĀSP (t, k) B̄S1(t, k) B̄S2(t, k)
ĀPT (t, k) ĀPS(t, k) ĀPP (t, k) B̄P1(t, k) B̄P2(t, k)
C̄1T (t, k) C̄1S(t, k) C̄1P (t, k) D̄11(t, k) D̄12(t, k)
C̄2T (t, k) C̄2S(t, k) C̄2P (t, k) D̄21(t, k) D̄22(t, k)

⎤⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

xT (t, k)
x1 (t, k)

...

xd (t, k)
β (t, k)
w (t, k)
u (t, k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

β (t, k) = diag
(
δ1(t, k)InP1 (t,k), . . . , δr (t, k)InPr (t,k)

)
α (t, k)

= ∆(t, k) α (t, k) .

(1)

xT (t, k) denotes the state associated with subsystem G(k), and has
a possibly time-varying dimension nT (t, k). Such states are re-
ferred to as the temporal states. The interconnections between
the subsystems are also modeled as states, called spatial states.
The spatial state xi(t, k), with dimension nS

i (t, k), is associated
with the edge (ρ−1

i (k), k), and the spatial state xi(t, ρi(k)), with
dimension nS

i (t, ρi(k)), is associated with the edge (k, ρi(k)). Due
to the communication latency, the information sent by a subsys-
tem at time-step t reaches the target subsystem at t + 1. The
spatial states corresponding to the virtual interconnections and
their corresponding blocks in the state-space matrices are of zero
dimensions, i.e., nonexistent. β(t, k) and α(t, k) are the parameter
states due to the LFT formulation, and evolve according to the
feedback channel β(t, k) = ∆(t, k)α(t, k), where δj(t, k) are scalar
functions, for j = 1, . . . , r . The parameters δj(t, k) are not known
a priori, but are assumed to be measurable at each t . The vec-
tors β(t, k) and α(t, k) are partitioned into r vector-valued chan-
nels conformably with the partitioning of ∆(t, k), e.g., α(t, k) =[
α∗

1 (t, k), α∗

2 (t, k), . . . , α∗
r (t, k)

]∗, where the dimension of αj(t, k)
and βj(t, k) is nP

j (t, k). The dependence of the subsystems on the
parameters is local, i.e., different subsystems may depend on dif-
ferent parameters. Even if two subsystems are affected by the
same parameters, the evolution of the parameters is assumed
to be independent in each subsystem. Let rk be the number of
parameters affecting subsystemG(k). Then, r = maxk∈V rk. If rk0 < r ,
for some k0 ∈ V , then δj(t, k0) = 0 and nP

j (t, k0) = 0, for all
t ∈ Z and j = rk0 + 1, . . . , r . w(t, k), z(t, k), u(t, k), and y(t, k) are
the exogenous disturbances, the performance outputs, the control
inputs, and the measurement outputs associated with subsystem
G(k), respectively. Their corresponding dimensions are given by
nw(t, k), nz(t, k), nu(t, k), and ny(t, k). Unless otherwise stated, we
assume hereafter that w ∈ ℓ2.

The state-space matrices are known a priori, are assumed to
be uniformly bounded, and are partitioned according to the per-
mutations ρ1, . . . , ρd and the channels in ∆(t, k), e.g., ĀTS(t, k) =[
ATS
1 (t, k) ... ATS

d (t, k)
]
; see [14] for more details. These partitions,

e.g., ATS
i (t, k), define graph-diagonal operators, e.g., ATS

i , which
are augmented to form partitioned graph-diagonal operators,
e.g., ATS =

[
ATS
1 ... ATS

d

]
, such that JATSK(t, k) = ĀTS(t, k). The

operators A, B1, B2, B, C1, C2, C , and D are then defined as follows:

A =

[ATT ATS ATP
AST ASS ASP
APT APS APP

]
,

B =
[
B1 B2

]
=

[BT1 BT2
BS1 BS2
BP1 BP2

]
,

C =

[
C1
C2

]
=

[
C1T C1S C1P
C2T C2S C2P

]
,D =

[
D11 D12
D21 D22

]
.
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Fig. 2. Left: Distributed system with interconnection structure defined in Fig. 1 and consisting of NSLPV subsystems formulated in an LFT framework. Right: Close up view
of the LFT formulation of a subsystem G(k) .

These operators satisfy relationships of the type J Bg K(t, k) =[
B̄∗

Tg (t, k) B̄∗

Sg (t, k) B̄∗

Pg (t, k)
]∗

,

J Cg K(t, k) =
[
C̄gT (t, k) C̄gS(t, k) C̄gP (t, k)

]
, for g ∈ {1, 2}.

For j = 1, . . . , r , the graph-diagonal operators ∆j are defined
such that ∆j(t, k) = δj(t, k)InPj (t,k). These operators are block-
diagonally augmented to construct the partitioned graph-diagonal
operator ∆P = diag (∆1, . . . , ∆r), where J∆P K(t, k) = ∆(t, k). Let
n̄S = (nS

1, . . . , n
S
d), n̄P = (nP

1, . . . , n
P
r ), n

+

T = S∗

0nT S0, and n̄+

S =

(S∗

1S
∗

0n
S
1S0S1, . . . , S

∗

d S
∗

0n
S
dS0Sd), where (S∗

0nT S0)(t, k) = nT (t + 1, k)
and (S∗

i S
∗

0n
S
i S0Si)(t, k) = nS

i (t + 1, ρi(k)), for i = 1, . . . , d. Define
the composite-shift operator as S = diag

(
S0, S0S1, . . . , S0Sd, I n̄P

)
and the operator ∆ = diag

(
I (nT ,n̄S ), ∆P

)
. Then, the equations in (1)

can be rewritten in compact operator form as[
x
β

]
= ∆SA

[
x
β

]
+ ∆SB

[
w

u

]
,[

z
y

]
= C

[
x
β

]
+ D

[
w

u

]
, (2)

where x =
[
x∗

T , x
∗

1, . . . , x
∗

d
]∗,β =

[
β∗

1 , . . . , β
∗

r
]∗, and∆ is restricted

to ∆ = {∆ : ∥∆∥ ≤ 1}. For every ∆ ∈ ∆, and assuming that the
relevant inverse exists, the input–output map of system Gδ can be
expressed as Gδ = C(I − ∆SA)−1∆SB + D. The distributed NSLPV
system Gδ is then defined as Gδ = {Gδ : ∆ ∈ ∆}. For an a priori
known and fixed ∆, system Gδ reduces to a distributed LTV system
as in [10]. If only one subsystem is considered, then system Gδ

reduces to a single NSLPV system as described in [1,2].
To simplify the presentation of subsequent results, the follow-

ing operators are defined, which group the temporal and spatial
blocks of A, B, and C:

Â11 =

[
ATT ATS
AST ASS

]
, Â12 =

[
ATP
ASP

]
, Â21 =

[
APT APS

]
,

B̂g =

[
BTg
BSg

]
, Ĉg =

[
CgT CgS

]
, g ∈ {1, 2}.

(3)

4. Analysis results

This section gives the analysis results for a distributed NSLPV
system Gδ . For simplicity, the control inputs u(t, k) and the
measurement outputs y(t, k) are neglected. If we rewrite the sys-
tem equations in (1) so as to eliminate α(t, k) and β(t, k), then it
is obvious that, for the state-space equations to be well-defined,
I − ĀPP (t, k)∆(t, k) must be invertible, for all (t, k) ∈ Z × V .

Definition 1. System Gδ is said to bewell-posed if (i) given an input
w ∈ ℓ2e, the Eqs. (2) admit a unique solution (x, β) ∈ ℓ

(nT ,n̄S ,n̄P )
2e , and

(ii) Gδ defines a linear causal mapping on ℓ2e, for all∆ ∈ ∆. System
Gδ is said to be ℓ2-stable if (i) it is well-posed, (ii) given an input

w ∈ ℓ2, the Eqs. (2) admit a unique solution (x, β) ∈ ℓ
(nT ,n̄S ,n̄P )
2 ,

and (iii) Gδ defines a bounded linear causal mapping on ℓ2, for
all ∆ ∈ ∆, i.e., Gδ ∈ Lc

(
ℓ2

(
{Rnw (t,k)

}
)
, ℓ2

(
{Rnz (t,k)}

))
, for all

permissible parameter trajectories.

Lemma 1. If JAK(t, k) = 0, for t < 0, and I − ∆PAPP has a causal
inverse on ℓ

n̄P
2e , for all ∆ ∈ ∆, then I − ∆SA has a causal inverse on

ℓ
(nT ,n̄S ,n̄P )
2e , for all ∆ ∈ ∆, and system Gδ is well-posed.

Proof. The proof parallels [1,15]. The well-posedness of Gδ is
equivalent to the existence of a causal inverse for I − ∆SA on
ℓ
(nT ,n̄S ,n̄P )
2e , for all ∆ ∈ ∆. Using (3), and for each ∆ ∈ ∆, I − ∆SA

can be factored as

I − ∆SA =

[
I − Ŝ0ŜÂ11 −Ŝ0ŜÂ12

−∆P Â21 I − ∆PAPP

]
=

[
I −Ŝ0ŜÂ12(I − ∆PAPP )−1

0 I

][
I − Ŝ0ŜR 0
−∆P Â21 I − ∆PAPP

]
since I − ∆PAPP has a causal inverse on ℓ

n̄P
2e , where Ŝ0 =

diag(S0, . . . , S0) (d + 1 blocks), Ŝ = diag (InT , S1, . . . , Sd), and
R = Â11 + Â12(I − ∆PAPP )−1∆P Â21. So, if I − Ŝ0ŜR has a causal
inverse on ℓ

(nT ,n̄S )
2e , then I − ∆SA has a causal inverse on ℓ

(nT ,n̄S ,n̄P )
2e .

By generalizing the characterizations of causality andmemoryless-
ness to partitioned operators mapping multiple inputs to multiple
outputs, i.e., operators mapping ⊕

N1
i=1ℓ2e to ⊕

N2
i=1ℓ2e, for some N1,

N2, and by extending [15, Lemma 6] to this class of operators, we
show that sinceR is a linearmemoryless operator and JAK(t, k) = 0,
for t < 0, then (I − Ŝ0ŜR)−1 exists and is causal. □

Hereafter, we assume JAK(t, k) = 0, JBK(t, k) = 0, JCK(t, k) =

0, and JDK(t, k) = 0, for all t < 0 and k ∈ V . To check
for the well-posedness of Gδ , it becomes sufficient to check that
I − ∆PAPP is invertible on ℓ

n̄P
2e , for all ∆ ∈ ∆. The inverse, when

existent, is memoryless (and causal) since I − ∆PAPP is mem-
oryless. The following result gives a sufficient condition for the
ℓ2-stability of system Gδ , i.e., the validity of this condition implies
that I−∆SA has a bounded causal inverse, for all∆ ∈ ∆. The proof
of the result parallels its counterpart for single LPV and uncertain
systems found in [16], and so is omitted. Let

X =

{
X : X = diag

(
XT , X S

1 , . . . , X
S
d , X

P
1 , . . . , XP

r

)
= X∗

∈ Lc

(
ℓ
(nT ,n̄S ,n̄P )
2

)
, X ≻ 0, X−1

∈ L
(
ℓ
(nT ,n̄S ,n̄P )
2

)}
,

where XT , X S
i , X

P
j , for i = 1, . . . , d and j = 1, . . . , r , are graph-

diagonal operators. Clearly, X is a commutant of ∆. The symbol
X is used for similarly defined sets regardless of the associated
dimensions.
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Lemma 2. If there exists X ∈ X such that A∗S∗XSA − X ≺ 0, then
system Gδ is ℓ2-stable.

S∗XS is a partitioned graph-diagonal operator with a block-
diagonal structure similar to the structure of X , i.e., S∗XS =

diag(S∗

0XT S0, S∗

1S
∗

0X
S
1 S0S1, . . . , S

∗

d S
∗

0X
S
d S0Sd, X

P
1 , . . . , XP

r ). The condi-
tion X ∈ X and the inequality in Lemma 2 can be expressed in
terms of equivalent sequences of LMIs, i.e., for some scalar β > 0
and all (t, k) ∈ Z× V , i = 1, . . . , d, and j = 1, . . . , r , XT (t, k) ≻ βI ,
X S
i (t, k) ≻ βI , XP

j (t, k) ≻ βI , and

JA∗K(t, k) diag
(
XT (t + 1, k), X S

1 (t + 1, ρ1(k)), . . . ,

X S
d (t + 1, ρd(k)), XP

1 (t, k), . . . , X
P
r (t, k)

)
JAK(t, k)

− diag
(
XT (t, k), X S

1 (t, k), . . . , X
S
d (t, k),

XP
1 (t, k), . . . , X

P
r (t, k)

)
≺ −βI.

One sequence of LMIs is associated with every subsystem G(k).
These sequences are in general infinite dimensional because of
the explicit dependence on time in the state-space equations of
the subsystems. The sequences associated with the various sub-
systems are coupled through the spatial terms X S

i (t, k), but not
through the parameter terms XP

j (t, k). This highlights the local
dependence of the state-space matrices on the parameters. The
spatial terms associated with the virtual interconnections have
zero dimensions and do not appear in the LMIs. Similarly, if rk0 <

r , for some k0 ∈ V , then XP
j (t, k0) has zero dimensions, for

j = rk0 + 1, . . . , r and all t ∈ Z. The βI terms ensure that the
matrix sequences on the left-hand side do not converge to singular
matrices as t approaches infinity. Since the state-space matrices
are zeros for t < 0, the sequences are trivial for t < 0, and so t is
restricted to N0.

Systems that satisfy the previous condition are said to be
strongly stable. Strong stability implies ℓ2-stability, but the con-
verse is not necessarily true: A strongly stable system is an ℓ2-
stable system with a solution X ∈ X to A∗S∗XSA − X ≺ 0; but
there exist ℓ2-stable systems which are not strongly stable.

Lemma 3. Gδ is strongly stable and ∥Gδ∥ < γ , for all ∆ ∈ ∆, if there
exists X ∈ X satisfying[
SA SB
C D

]∗ [
X 0
0 I

][
SA SB
C D

]
−

[
X 0
0 γ 2I

]
≺ 0. (4)

The proof resembles that of a counterpart result for intercon-
nected LTV subsystems in [15], and so is omitted. Lemmas 2 and 3
require X ∈ X . In fact, X only needs to be positive definite and in
the commutant of ∆. We show next, however, that the imposed
structure does not introduce conservatism. A similar result for
single NSLPV systems is given in [2].

Theorem 1. A solution X̄ ≻ 0 to (4) in the commutant of ∆ exists if
and only if a solution X ∈ X exists.

Proof. The ‘if’ direction is trivial because X is a commutant of ∆.
The ‘only if’ direction is proved next.We construct a solutionX ∈ X
from the solution X̄ . Define the operator E(τ ,ζ ) : Rg

→ ℓ2
(
{Rn(t,k)

}
)
,

for some mapping n that satisfies n(τ , ζ ) = g . If E(τ ,ζ )e = v ∈ ℓ2,
then v(t, k) = e if (t, k) = (τ , ζ ) and v(t, k) = 0 otherwise. The
adjoint operator E∗

(τ ,ζ ) : ℓ2
(
{Rn(t,k)

}
)

→ Rn(τ ,ζ ) satisfies E∗

(τ ,ζ )v =

v(τ , ζ ). Any v ∈ ℓ2 can be written as v =
∑

(t,k)E(t,k)v(t, k). Thus,
for any operator Q on ℓ2, Qv =

∑
(t,k)QE(t,k)v(t, k). As X̄ is in

the commutant of ∆, then X̄ = diag
(
X̄T , X̄ S

1 , . . . , X̄
S
d , X̄

P
1 , . . . , X̄P

r

)
.

Since operators∆j are graph-diagonal, then X̄P
j must also be graph-

diagonal as they must satisfy X̄P
j ∆jv = ∆jX̄P

j v, for all v ∈ ℓ2 and

j = 1, . . . , r . To see this, both sides of the previous equation are
evaluated at (τ , ζ ), i.e., pre-multiplied by E∗

(τ ,ζ ). We get∑
(t,k)

δj(t, k) E∗

(τ ,ζ ) X̄
P
j E(t,k)v(t, k)

= δj(τ , ζ )
∑
(t,k)

E∗

(τ ,ζ ) X̄
P
j E(t,k)v(t, k).

For this equality to hold for an arbitrary v ∈ ℓ2, X̄P
j must be graph-

diagonal. That is, E∗

(τ ,ζ )X̄
P
j E(t,k) = X̄P

j (τ , ζ ), for (t, k) = (τ , ζ ),
and E∗

(τ ,ζ )X̄
P
j E(t,k) = 0, otherwise. The same, however, cannot be

concluded about X̄T and X̄ S
i , for i = 1, . . . , d. Since X̄ satisfies (4),

then, for some β > 0, the following holds:[
A B
C D

]∗ [
S∗X̄S 0
0 I

][
A B
C D

]
−

[
X̄ 0
0 γ 2I

]
≺ −βI.

Define the operator Ê(τ ,ζ ) = diag(E(τ ,ζ ), E(τ ,ζ ), . . . , E(τ ,ζ )) (1+ d+ r
blocks), which satisfies[
A B
C D

][
Ê(τ ,ζ ) 0
0 E(τ ,ζ )

]
=

[
Ê(τ ,ζ ) 0
0 E(τ ,ζ )

] s
A B
C D

{
(τ , ζ ).

The previous inequality is pre- and post-multiplied by diag(Ê(τ ,ζ ),

E(τ ,ζ ))∗ and its adjoint, which results in
s
A B
C D

{∗

(τ , ζ )
[
Ê∗

(τ ,ζ )S
∗X̄SÊ(τ ,ζ ) 0
0 I

]
×

s
A B
C D

{
(τ , ζ ) −

[
Ê∗

(τ ,ζ )X̄ Ê(τ ,ζ ) 0
0 γ 2I

]
≺ −βI,

with E∗

(τ ,ζ )S
∗

0 X̄T S0E(τ ,ζ ) = E∗

(τ+1,ζ )X̄TE(τ+1,ζ ) and

E∗

(τ ,ζ )S
∗

i S
∗

0 X̄
S
i S0SiE(τ ,ζ ) = E∗

(τ+1,ρi(ζ ))X̄
S
i E(τ+1,ρi(ζ )),

for i = 1, . . . , d. In the above inequality, note that E∗

(τ ,ζ )E(τ ,ζ ) = I .
We define graph-diagonal operators XT and X S

i such that XT (t, k) =

E∗

(t,k)X̄TE(t,k) and X S
i (t, k) = E∗

(t,k)X̄
S
i E(t,k). The previous inequality

holds for all (τ , ζ ) ∈ Z × V , and so one can verify that X =

diag
(
XT , X S

1 , . . . , X
S
d , X̄

P
1 , . . . , X̄P

r

)
∈ X satisfies the sequences of

LMIs which are equivalent to (4). Thus, we have found X ∈ X that
satisfies (4). □

5. Synthesis results

This section addresses the control synthesis problem. The plant
Gδ is assumed to be well-posed, and the state-space matrices are
taken as zeros, for t < 0. We assume that D22(t, k) = 0, for all
(t, k) ∈ Z × V . The sought controller Kδ is a distributed system
with the same interconnection and LFT structures as the plant.
That is, the controller consists of NSLPV subsystems, formulated
in an LFT framework, and interconnected over the same intercon-
nection structure as the plant. The information transfer between
the controller subsystems is subjected to a one-step time-delay.
For all k ∈ V , the controller subsystem K (k) is affected by the
same parameters as the plant subsystem G(k). Thus, the controller
equations are in the form of (1), with inputs y and outputs u. The
controller operators are denoted using the same symbols as the
plant operators with the additional superscript K . The controller
dimensions are denoted by mT (t, k), mS

i (t, k), m
P
j (t, k), for i =

1, . . . , d and j = 1, . . . , r . These dimensions are obtained from the
synthesis solutions, as will be seen later. m̄S is defined similarly
to n̄S , and so on. Fig. 3 shows the closed-loop system formed by
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Fig. 3. Controller inheriting the interconnection and LFT structures of the plant. The
information exchange between a controller subsystem and its corresponding plant
subsystem is depicted using black arrows.

the plant of Fig. 2 and the corresponding controller. Using (3), the
controller equations are written as[xK

αK
u

]
=

⎡⎣Ŝ0ŜÂK
11 Ŝ0ŜÂK

12 Ŝ0ŜB̂K

ÂK
21 AK

PP BK
P

ĈK CK
P DK

⎤⎦[xK
βK
y

]
,

[
xK
βK

]
=

[
I (mT ,m̄S ) 0

0 ∆K
P

][
xK
αK

]
= ∆K

[
xK
αK

]
, (5)

where ∆K
P = diag

(
∆K

1 , . . . , ∆K
r

)
. For j = 1, . . . , r , the graph-

diagonal operators ∆K
j satisfy ∆K

j (t, k) = δj(t, k) ImP
j (t,k)

. The
parameters δj(t, k) are the same as those of the plant. The con-
troller state-space matrices are zeros, for t < 0. Then, by
Lemma 1, the controller is well-posed if I − ∆K

P A
K
PP has a causal

inverse on ℓ
m̄P
2e , for all ∆K

∈ ∆K . The closed-loop equations
are obtained by combining the plant equations and (5). Let S̃ =

diag(S, S) = diag
(
Ŝ0Ŝ, I n̄P , Ŝ0Ŝ, Im̄P

)
, ∆̃ = diag(∆, ∆K ) =

diag(I (nT ,n̄S ), ∆P , I (mT ,m̄S ), ∆K
P ), and xcl =

[
x∗ β∗ x∗

K β∗

K
]∗.

Then, the closed-loop equations are xcl = ∆̃S̃Aclxcl + ∆̃S̃Bclw and
z = Cclxcl + Dclw, where the partitioned graph-diagonal operators
Acl, Bcl, Ccl, and Dcl satisfy Acl = Ā + B JC , Bcl = B̄ + B JD21,
Ccl = C̄ + D12 JC , and Dcl = D11 + D12 JD21, with

Ā =

[
A 0
0 0(m+

T ,m̄+

S ,m̄P )×(mT ,m̄S ,m̄P )

]
,

B̄ =

[
B1

0(m+

T ,m̄+

S ,m̄P )×nw

]
, B =

[
0 B2

I (m
+

T ,m̄+

S ,m̄P ) 0

]
,

C =

[
0 I (mT ,mS ,m̄P )

C2 0

]
,

J =

⎡⎣ÂK
11 ÂK

12 B̂K

ÂK
21 AK

PP BK
P

ĈK CK
P DK

⎤⎦, C̄ =
[
C1 0nz×(mT ,m̄S ,m̄P )

]
,

D12 =

[
0nz×(m+

T ,m̄+

S ,m̄P ) D12

]
,

D21 =

[
0(mT ,m̄S ,m̄P )×nw

D21

]
.

The given parametrization of the closed-loop operators allows us
to develop an affine condition in the controller realization J to
check whether a given controller Kδ ensures the ℓ2-stability of the
closed-loop system and further guarantees an upper bound γ on
the ℓ2-induced norm of the resulting mapping from w to z.

The above equations describe the closed-loop system but are
not in the form of (2). Define the partitioned graph-diagonal op-
erator ∆L

P = diag
(
∆L

1, . . . , ∆L
r

)
, where, for all (t, k) ∈ Z × V

and j = 1, . . . , r , ∆L
j (t, k) = δj(t, k)InPj (t,k)+mP

j (t,k)
. Let P be an

appropriately defined operator such that P∗P = I , PP∗
= I , and

P∗∆̃P = diag
(
InT+mT , I n̄S+m̄S , ∆L

P

)
= ∆L; and define AL, BL, C L,

and DL according to SAL
= P∗S̃AclP , SBL

= P∗S̃Bcl, C L
= CclP , and

DL
= Dcl. The above equations can then be rewritten in the form of

(2):[
xL

βL

]
= ∆LSAL

[
xL

βL

]
+ ∆LSBLw, z = C L

[
xL

βL

]
+ DLw,

∆L
∈ ∆L

= {∆L
: ∥∆L

∥ ≤ 1},

where xL =
[
(xLT )

∗, (xL1)
∗, . . . , (xLd)

∗
]∗, βL

=
[
(βL

1)
∗, . . . , (βL

r )
∗
]∗,

xLT (t, k) ∈ RnT (t,k)+mT (t,k), xLi (t, k) ∈ RnSi (t,k)+mS
i (t,k), and βL

j (t, k) ∈

RnPj (t,k)+mP
j (t,k), for i = 1, . . . , d and j = 1, . . . , r .

Definition 2. A controllerKδ is said to be a γ -admissible synthesis
for plant Gδ if the resulting closed-loop system is ℓ2-stable, and
∥w → z∥ = ∥C L(I − ∆LSAL)−1∆LSBL

+ DL
∥ < γ , for all ∆L

∈ ∆L.

Without loss of generality, we restrict the discussion to the
case γ = 1 because a γ -admissible synthesis for a plant Gδ is
1-admissible for the scaled system Gscaled,δ in which γ is absorbed
into the system operators, namely, Cscaled,1 =

1
γ
C1, Dscaled,11 =

1
γ
D11, andDscaled,12 =

1
γ
D12. More details are provided in Section 6.

Theorem 2. If there exists X L
∈ X that satisfies H +Q ∗J∗R+R∗JQ ≺

0, then the given controller Kδ with realization J is a 1-admissible
synthesis for plant Gδ . In the preceding condition,

R =
[
B∗ 0 0 D∗

12
]
, Q =

[
0 C D21 0

]
,

X L
P = PX LP∗, and H =

⎡⎢⎢⎣
−S̃∗

(
X L
P

)−1
S̃ Ā B̄ 0

Ā∗
−X L

P 0 C̄∗

B̄∗ 0 −I D∗

11
0 C̄ D11 −I

⎤⎥⎥⎦.

Proof. By Lemma 3, if there exists X L
∈ X that satisfies (4)

for γ = 1 and the closed-loop realization given by AL, BL, C L,
and DL, then Kδ is a 1-admissible synthesis for Gδ . (4) is pre-
and post-multiplied by diag (P, I) and its adjoint, respectively, and
‘diag (P∗, I) diag (P, I) = diag(I, I)’ is inserted as needed, to get[
Acl Bcl
Ccl Dcl

]∗ [
S̃∗X L

P S̃ 0
0 I

][
Acl Bcl
Ccl Dcl

]
−

[
X L
P 0
0 I

]
≺ 0.

The condition in the theorem is retrieved by applying the Schur
complement formula to this inequality and appropriately rear-
ranging the terms in the resulting inequality. □

Recall that X L
= diag

(
XT , X S

1 , . . . , X
S
d , X

P
1 , . . . , XP

r

)
∈ X . For

all (t, k) ∈ Z × V , we partition XT (t, k) =
[
XT ,ij(t, k)

]
i=1,2;j=1,2,

where XT ,11(t, k) ∈ SnT (t,k), XT ,22(t, k) ∈ SmT (t,k), and XT ,21(t, k) =

X∗

T ,12(t, k). These partitions define the graph-diagonal operators
XT ,11, XT ,12, and XT ,22. We repeat the partitioning process for all
X S
i (t, k) and XP

j (t, k), and construct X̂11 = diag
(
XT ,11, X S

1,11, . . . ,

X S
d,11, X

P
1,11, . . . , X

P
r,11

)
∈ X . X̂22 ∈ X and X̂12 are constructed in a

similar way. Then, one can see that X L
P = PX LP∗ has the structure

shown below. Also, since
(
X L

)−1
∈ X , then

(
X L
P

)−1
= P

(
X L

)−1P∗

has a similar structure to X L
P . Namely,

X L
P =

[
X̂11 X̂12

X̂∗

12 X̂22

]
,

(
X L
P

)−1
=

[
Ŷ11 Ŷ12

Ŷ ∗

12 Ŷ22

]
, (6)

where Ŷ11 is defined similarly to X̂11, and so on. Given some X̂11 and
Ŷ11 in X , the next result gives necessary and sufficient conditions
for the existence of X L

P and its inverse with the structure defined in
(6).
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Lemma 4. Given X̂11 and Ŷ11 in X , there exist X L
P ≻ 0 with the

structure defined in (6) if and only if, for all (t, k) ∈ Z × V , i =

1, . . . , d, and j = 1, . . . , r, the following conditions hold:[
X̂11 I
I Ŷ11

]
⪰ 0,

rank
[
XT ,11(t, k) I

I YT ,11(t, k)

]
≤ nT (t, k) + mT (t, k),

rank
[
X S
i,11(t, k) I

I Y S
i,11(t, k)

]
≤ nS

i (t, k) + mS
i (t, k),

rank
[
XP
j,11(t, k) I

I Y P
j,11(t, k)

]
≤ nP

j (t, k) + mP
j (t, k).

The proof of this result, which includes a procedure for the
construction of the required X L

P and (X L
P )

−1, is omitted as it is an
immediate generalization of the proof of [12, Lemma 6.2].

The first condition can alternatively be expressed in terms of its
equivalent sequences of LMIs as follows:[
XT ,11(t, k) I

I YT ,11(t, k)

]
⪰ 0,[

X S
i,11(t, k) I

I Y S
i,11(t, k)

]
⪰ 0,[

XP
j,11(t, k) I

I Y P
j,11(t, k)

]
⪰ 0.

Theorem 2 allows for checking if a given controller Kδ with
realization J is a 1-admissible synthesis for plant Gδ . The next
result gives sufficient convex conditions for the existence of a 1-
admissible synthesis.

Theorem 3. There exists a 1-admissible synthesis Kδ for plant Gδ ,
with dimensions mT (t, k) ≤ nT (t, k), mS

i (t, k) ≤ nS
i (t, k), and

mP
j (t, k) ≤ nP

j (t, k), for all (t, k) ∈ Z × V , i = 1, . . . , d, and
j = 1, . . . , r, if there exist X̂11 ∈ X and Ŷ11 ∈ X such that[
V ∗

1 V ∗

2
] ([

A B1
C1 D11

][
Ŷ11 0
0 I

][
A B1
C1 D11

]∗

−

[
S∗Ŷ11S 0

0 I

])[
V1
V2

]
≺ 0, (7)

[
U∗

1 U∗

2
]([

A B1
C1 D11

]∗ [
S∗X̂11S 0

0 I

][
A B1
C1 D11

]
−

[
X̂11 0
0 I

])[
U1
U2

]
≺ 0, (8)[

X̂11 I
I Ŷ11

]
⪰ 0. (9)

The partitioned graph-diagonal operators U1, V1, and the graph-
diagonal operators U2, V2 are defined such that Im

[
V ∗

1 V ∗

2
]∗

=

ker
[
B∗

2 D∗

12
]
, V ∗

1 V1 + V ∗

2 V2 = I , Im
[
U∗

1 U∗

2
]∗

= ker
[
C2 D21

]
,

and U∗

1U1 + U∗

2U2 = I , where Im T and ker T denote the image and
the kernel of a linear operator T . Namely,

U1 =
[
(UT )∗

(
US
1

)∗
...

(
US
d

)∗ (
UP
1

)∗
...

(
UP
r

)∗]∗

,

V1 =
[
(VT )∗

(
V S
1

)∗
...

(
V S
d

)∗ (
V P
1

)∗
...

(
V P
r

)∗]∗

,

with UT (t, k) ∈ RnT (t,k)×?, US
i (t, k) ∈ RnSi (t,k)×?, UP

j (t, k) ∈ RnPj (t,k)×?,
VT (t, k) ∈ RnT (t+1,k)×?, V S

i (t, k) ∈ RnSi (t+1,ρi(k))×?, V P
j (t, k) ∈

RnPj (t,k)×?, U2(t, k) ∈ Rnw (t,k)×?, and V2(t, k) ∈ Rnz (t,k)×?.

Proof. By Lemma 4, and for some integers mT (t, k), mS
i (t, k), and

mP
j (t, k) such that mT (t, k) ≤ nT (t, k), mS

i (t, k) ≤ nS
i (t, k), and

mP
j (t, k) ≤ nP

j (t, k), there exist X L
P and (X L

P )
−1 with the structure

defined in (6) since X̂11 and Ŷ11 satisfy (9). Thus, the operator H in
Theorem 2 is well-defined; and so, if there exists a solution J to
H + Q ∗J∗R + R∗JQ ≺ 0, then the controller Kδ with realization
J is a 1-admissible synthesis for plant Gδ . By a generalization of
[11, Lemma 3.1] and [13, Lemmas 16, 17] to the class of partitioned
graph-diagonal operators, there exists a solution J to the preceding
condition if and only if W ∗

RHWR ≺ 0 and W ∗

QHWQ ≺ 0, where WR
and WQ satisfy ImWR = ker R, W ∗

RWR = I , ImWQ = kerQ , and
W ∗

QWQ = I .WR andWQ can be chosen as follows:

1 = 1.2WR =

⎡⎢⎢⎢⎢⎣
V1 0 0
0 0 0
0 I (nT ,n̄S ,n̄P ,mT ,m̄S ,m̄P ) 0
0 0 Inw

V2 0 0

⎤⎥⎥⎥⎥⎦ ,

WQ =

⎡⎢⎢⎢⎢⎣
0 I (n

+

T ,n̄+

S ,n̄P ,m+

T ,m̄+

S ,m̄p) 0
U1 0 0
0 0 0
U2 0 0
0 0 Inz

⎤⎥⎥⎥⎥⎦ .

Expand W ∗

R HWR ≺ 0 and W ∗

Q HWQ ≺ 0, and apply the Schur
complement formula to each inequality to get(
V ∗

1 A + V ∗

2 C1
)
Ŷ11

(
A∗V1 + C∗

1V2
)

+
(
V ∗

1 B1 + V ∗

2 D11
) (

B∗

1V1 + D∗

11V2
)
− V ∗

1 S
∗Ŷ11SV1 − V ∗

2 V2 ≺ 0,(
U∗

1A
∗
+ U∗

2B
∗

1

)
S∗X̂11S (AU1 + B1U2)

+
(
U∗

1C
∗

1 + U∗

2D
∗

11

)
(C1U1 + D11U2) − U∗

1 X̂11U1 − U∗

2U2 ≺ 0,

which are (7) and (8), respectively. □

Algorithm 1 shows how to use the synthesis solutions X̂11 and
Ŷ11 to construct the desired controller.

Algorithm 1. Given X̂11 and Ŷ11 in X that satisfy (7), (8), and (9),
the realization J of a 1-admissible synthesis Kδ is constructed as
follows. For all (t, k) ∈ Z × V , i = 1, . . . , d, and j = 1, . . . , r:

1. Define the controller dimensions as follows: mT (t, k) =

rank
(
YT ,11(t, k) − XT ,11(t, k)−1

)
,

mS
i (t, k) = rank

(
Y S
i,11(t, k) − X S

i,11(t, k)
−1

)
, and mP

j (t, k) =

rank
(
Y P
j,11(t, k) − XP

j,11(t, k)
−1

)
.

2. Use Lemma 4 to construct X L
P and its inverse (X L

P )
−1 with the

structure in (6).
3. ConstructH as in Theorem 2, and solveH+Q ∗J∗R+R∗JQ ≺ 0

for J .

This section concludes with a discussion on eventually time-
periodic (ETP) subsystems interconnected over finite graphs, for
which the analysis and synthesis problems are finite dimensional.

Definition 3. A subsystem G(k) with zero state-space matrices, for
t < 0, is said to be (h, q)-ETP, for some integers h ≥ 0 and q > 0, if
the corresponding state-spacematrices, are (h, q)-ETP, that is, they
become time-periodicwith period q after some finite time-horizon
h, namely, for all t, z ∈ N0, JW K(t + h+ zq, k) = JW K(t + h, k) and
W ∈ {A, B, C,D}.

The class of ETP subsystems includes as special cases the classes
of finite time-horizon subsystems and time-periodic subsystems.
Standard LPV subsystems are (0, 1)-ETP NSLPV subsystems.

Lemma5. If all the subsystems are (h, q)-ETP, then the following hold:
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Fig. 4. Left: Depiction of a two-thruster hovercraft. Right: Depiction of the non-holonomic vehicle corresponding to G(2) .

1. There exists a solution X ∈ X to (4) (respectively, the inequality
in Lemma 2) if and only if there exists an (M, q)-ETP (respec-
tively, an (h, q)-ETP) solution Xeper, for some integer M ≥ h.

2. There exist solutions X̂11 and Ŷ11 in X to (7)–(9) if and only if
there exist (M, q)-ETP solutions X̂11,eper and Ŷ11,eper, for some
integer M ≥ h.

3. In the above propositions, if h = 0, then M can also be taken
equal to 0.

The proof is omitted as it parallels the proof of [10, Proposition
21] and the references therein.

Thus, for (h, q)-ETP subsystems, we restrict t to some finite
time-horizon M and one time-period truncation, i.e., 0 ≤ t ≤

M+q−1, when solving the analysis and the synthesis problems. If,
in addition, the interconnection graph is finite, i.e., the sets V and
E are finite, then the problems become finite dimensional.

6. Illustrative example

6.1. Problem formulation

Consider a plant Gδ formed by four subsystems interconnected
as in Fig. 2. The leader G(1) is a two-thruster hovercraft described
in [2], and the followers G(2), G(3), and G(4) are non-holonomic vehi-
cles defined in [17]. The leader and subsystem G(2) are depicted in
Fig. 4. The leader is to track the eventually time-periodic reference
trajectory defined in [2], and the followers are to track the leader.
For simplicity, the four vehicles are assumed to be initially on
top of each other; any desired formation can be implemented by
applying appropriate translations when the controller is executed.
Let (p(1)1 , p(1)2 ) be the position of the center of mass (CM) of the
hovercraft, θ1 be its orientation with respect to the p(1)1 -axis, and F1
and F2 be the force control inputs applied at a distance Ll = 0.15m
from the CM. The forces take values between 0 and 2.5N. Let ν =

(p(1)1 , p(1)2 , θ1, ṗ
(1)
1 , ṗ(1)2 , θ̇1) and F = (F1, F2), then the equations of

motion are ν̇ = f (ν, F ), with f (ν, F ) given in [2]. The equations are
linearized about the reference trajectory (νr , Fr ) to obtain

˙̄ν = Ac(tc)ν̄ + B2c(tc)F̄ , ν̄ = ν − νr ,

F̄ = F − Fr , Ac(tc) =
∂ f
∂ν

⏐⏐⏐⏐
(νr ,Fr )

, B2c(tc) =
∂ f
∂F

⏐⏐⏐⏐
(νr ,Fr )

,

where tc is the continuous-time. Then, the effect of the exogenous
disturbances w̃(tc), which consist of torques and forces in both
the p(1)1 and p(1)2 directions, is added as in ˙̄ν(tc) = Ac(tc)ν̄(tc) +

B1cw̃(tc) + B2c(tc)F̄ (tc), where B1c =
[
03 I3

]∗. The inputs and
disturbances are applied in discrete-time at a sampling frequency
of 20Hz. A bilinear transformation [18] is used to obtain a discrete-
time trapezoidal approximation for the previous equations. Let

t ∈ N0 be the discrete-time and τ = 0.05 s be the sampling period,
then

xT (t + 1, 1) = ATT (t, 1)xT (t, 1) + BT1(t, 1)w(t, 1)
+ BT2(t, 1)u(t, 1),

xT (t, 1) = ν̄(tτ ), w(t, 1) = w̃(tτ ), u(t, 1) = F̄ (tτ ).

The reference trajectory is (45, 120)-ETP, and so are ATT (t, 1),
BT1(t, 1), and BT2(t, 1). The position and the orientation of the
hovercraft are measurable at each time-step. For all t ∈ N0, we
set

C1T (t, 1) =

[
α1

[
I3 03

]
02×6

]
, D11(t, 1) = 05×3,

D12(t, 1) =

[
03×2
α2I2

]
, C2T (t, 1) =

[
I3 03

]
, D21(t, 1) = 03,

D22(t, 1) = 03×2,

α1 = 0.3, α2 = 0.2. There are no incoming edges to vertex 1
and there are no parameters affecting G(1), and so, for all t ∈ N0,
ATS(t, 1), ASS(t, 1), APS(t, 1), C1S(t, 1), C2S(t, 1), ATP (t, 1), ASP (t, 1),
APP (t, 1), C1P (t, 1), C2P (t, 1), APT (t, 1), BP1(t, 1), and BP2(t, 1) are
non-existent. The leader sends (p(1)1 , p(1)2 ) = (p̄(1)1 + p(1)1,r , p̄

(1)
2 +

p(1)2,r ) to the followers, i.e., x1(t + 1, 2) = x2(t + 1, 3) =

(p(1)1 ((t + 1)τ ), p(1)2 ((t + 1)τ )). w(t, 1) is augmented by (10 p(1)1,r ((t +

1)τ ), 10 p(1)2,r ((t + 1)τ )). Let W =
[
I2 02×4

]
, and define

AST (t, 1) =

[
W
W

]
ATT (t, 1),

BS1(t, 1) =

[[
W
W

]
BT1(t, 1)

[
0.1I2
0.1I2

]]
,

BS2(t, 1) =

[
W
W

]
BT2(t, 1).

Moreover, BT1(t, 1), D11(t, 1), and D21(t, 1) are augmented by two
zero columns.

For the followers, we focus on modeling G(2) since G(3) and G(4)

are treated similarly. As in [17,19], a point (p(2)f ,1, p
(2)
f ,2) at a fixed

distance Lf = 0.02m ahead of the center of mass (p(2)1 , p(2)2 ) of
the vehicle is considered. Let θ2 be the orientation of G(2) with
respect to the p(2)1 -axis, vf ,2 = vc,2 + vd,2 be the forward velocity,
and ωf ,2 = ωc,2 + ωd,2 be the angular velocity, where vc,2 and
ωc,2 are the control inputs and vd,2 and ωd,2 are the disturbances.
In the (r2, q2)-reference frame, the equations of motion are ṙ2 =

vf ,2 + ωf ,2q2, q̇2 = ωf ,2Lf − ωf ,2r2, and θ̇2 = ωf ,2. As in [17],
the third equation is disregarded during control design. Assume
ωf ,2 ∈ [−5, 5] rad/sec, and define η2 =

1
5ωf ,2. Then, the previous
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equations can be expressed as[
ṙ2
q̇2

]
=

[
0 5η2

−5η2 0

][
r2
q2

]
+

[
1 0
0 Lf

][
vd,2
ωd,2

]
+

[
1 0
0 Lf

][
vc,2
ωc,2

]
.

These equations are written in an LFT form by taking η2 as the
parameter. Since τ is sufficiently small, the bilinear transformation
in [18] is used to obtain a discrete-time trapezoidal approximation
of the equations, assuming the parameters and the parameter
states to be constants over each time-interval [tτ , (t + 1)τ), for all
t ∈ N0, with the parameter states treated as exogenous inputs.
We define xT (t, 2) = (r2(tτ ), q2(tτ )),w(t, 2) = (vd,2(tτ ), ωd,2(tτ )),
u(t, 2) = (vc,2(tτ ), ωc,2(tτ )), and δ1(t, 2) = η2(tτ ). G(2) receives
the spatial state x1(t, 2) = (p(1)1 (tτ ), p(1)2 (tτ )). The output measure-
ments of subsystem G(2) are then defined as

y(t, 2) =
(
r2(tτ ) − Lf − (p(1)1 (tτ ) cos θ2(tτ ) + p(1)2 (tτ ) sin θ2(tτ )),

q2(tτ ) − (−p(1)1 (tτ ) sin θ2(tτ ) + p(1)2 (tτ ) cos θ2(tτ ))
)
.

The performance outputs are taken as z(t, 2) = (α3y(t, 2), α4

u(t, 2)), where α3 = 0.3 and α4 = 0.5. The equations for y(t, 2)
and z(t, 2) are written in an LFT framework by defining δ2(t, 2) =

cos(θ2(tτ )) and δ3(t, 2) = sin(θ2(tτ )). Choosing cosine and sine
functions as scheduling parameters may be conservative, but it re-
duces the computational complexity significantly. Then, ∆(t, 2) =

diag(δ1(t, 2)I2, δ2(t, 2)I2, δ3(t, 2)I2). We augment w(t, 2) by 10Lf .
G(2) sends (r2, q2) to G(4), and so x2(t +1, 4) = (r2((t +1)τ ), q2((t +
1)τ )). Thus, the time-invariant (0, 1)-ETP state-space matrices of
G(2) are formed as follows. For all t ∈ N0, C2P (t, 2) =

[
02 I2 I2

]
,

C2T (t, 2) = I2, APP (t, 2) = 06, ATS(t, 2) = 02, D22(t, 2) = 02,

ATT (t, 2) = AST (t, 2) =

[
1 0
0 1

]
,

ATP (t, 2) = ASP (t, 2) =

[[
5τ 0
0 5τ

]
02×4

]
,

D21(t, 2) =

[
02

[
−0.1
0

]]
,

BT1(t, 2) = BS1(t, 2) =

[
τ 0 0
0 τLf 0

]
,

BT2(t, 2) = BS2(t, 2) =

[
τ 0
0 τLf

]
,

BP1(t, 2) = 06×3, BP2(t, 2) = 06×2,

C1T (t, 2) =

[
α3I2
02

]
, C1S(t, 2) = 04×2,

C2S(t, 2) = 02,

C1P (t, 2) = α3

[[
02 I2 I2

]
02×6

]
, D12(t, 2) =

[
02

α4I2

]
,

APT (t, 2) =

⎡⎣[
0 1

−1 0

]
04×2

⎤⎦, ASS(t, 2) = 02,

APS(t, 2) =

⎡⎢⎢⎣
02

−

⎡⎣ I2[
0 1

−1 0

]⎤⎦
⎤⎥⎥⎦,

D11(t, 2) =

[
04×2

[
−0.1α3
03×1

]]
.

For G(4), ∆(t, 4) = diag(δ1(t, 4)I2, δ2(t, 4)I2, δ3(t, 4)I2, δ4(t, 4)
I2, δ5(t, 4)I2), z(t, 4) = (0.1y(t, 4), α4u(t, 4)),

y(t, 4) =

⎡⎢⎣ r4(tτ ) − (r3(tτ )δ2(t, 4) + q3(tτ )δ3(t, 4))
q4(tτ ) − (−r3(tτ )δ3(t, 4) + q3(tτ )δ2(t, 4))
r4(tτ ) − (r2(tτ )δ4(t, 4) + q2(tτ )δ5(t, 4))

q4(tτ ) − (−r2(tτ )δ5(t, 4) + q2(tτ )δ4(t, 4))

⎤⎥⎦ ,

and

⎡⎢⎢⎢⎣
δ1(t, 4)
δ2(t, 4)
δ3(t, 4)
δ4(t, 4)
δ5(t, 4)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
η4(tτ )

cos(θ4(tτ ) − θ3(tτ ))
sin(θ4(tτ ) − θ3(tτ ))
cos(θ4(tτ ) − θ2(tτ ))
sin(θ4(tτ ) − θ2(tτ ))

⎤⎥⎥⎥⎦ .

6.2. Synthesis conditions

We now construct a γ -admissible synthesis Kδ for plant Gδ . In
Section 5, we assume γ = 1 without loss of generality because
a γ -admissible synthesis for Gδ is 1-admissible for the scaled
plant Gscaled,δ in which γ is absorbed into the system operators,
i.e., Cscaled,1 =

1
γ
C1, Dscaled,11 =

1
γ
D11, and Dscaled,12 =

1
γ
D12.

Using these operators, we incorporate γ into the conditions of
Theorem 3; and using the Schur complement formula, we refor-
mulate the resulting conditions so that they are linear in γ 2; see
[20, Remark 10]. Denote by γmin theminimum value of γ for which
there exist (45, 120)-ETP solutions to the semi-definite program-
ming (SDP) problem formed by the sequences of LMIs equivalent
to the synthesis conditions; see for instance [10, Section 8.2]. In
the present SDP, there are additional parameter blocksXP

j (t, k). The
SDP problem is modeled using Yalmip [21] and solved using SDPT-
3 [22]. The total number of constraints is 24751, the dimension of
the SDP variable is 33000, the dimension of the linear variable is
1, and the number of SDP blocks is 4455. The computations are
carried out inMatlab R2016a on a Dell computerwith 4 Intel Cores,
3.07 GHz processors, and 6 GB of RAM running Windows 10. The
wall-clock time is 378 s (CPU time 67 s). We obtain γmin ≊ 64.86.
This value is relaxed to 66, and the problem is re-solved as a
feasibility problem.

6.3. Simulation

From the synthesis solutions, the controller realization J is
constructed as in Algorithm 1. The Matlab function ‘basiclmi’ is
used in Step 3. The controller is applied to the nonlinear plant and
the resulting closed-loop system is simulated. In the simulation,
the parameters ηi, for i = 2, 3, 4, are set equal to ωc,i because the
disturbances ωd,i are not measurable. The subsystems start with
their CM at (0, 0.825). The leader is subjected to random force
and torque disturbances in [−0.5, +0.5]N and [−0.05, 0.05] N.m,
respectively. The followers are subjected to random disturbances
which lie within ±15% of the nominal inputs. The position of the
CM of the four agents is shown in Fig. 5. Observe that even in
the presence of disturbances, the leader and the followers track
the desired trajectory fairly well. Fig. 6 shows plots of various
performance outputs.

7. Conclusion

This paper provides an operator theoretic framework for work-
ing with distributed NSLPV systems, along with convex analysis
and synthesis conditions. The conditions are in general infinite
dimensional because of the explicit time dependence in the system
equations, but become finite dimensional for eventually time-
periodic subsystems interconnected over finite graphs. The sizes
of the analysis and synthesis problems scale with the numbers and
dimensions of the temporal, spatial, and parameter states, which
calls for structure-preserving model reduction techniques, such as
balanced truncation and coprime factors reduction.



32 D. Abou Jaoude, M. Farhood / Systems & Control Letters 108 (2017) 23–32

Fig. 5. Closed-loop system response.

Fig. 6. Plots of various performance outputs.
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