5254

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 10, OCTOBER 2017

Coprime Factors Model Reduction of Spatially Distributed LTV Systems
Over Arbitrary Graphs

Dany Abou Jaoude and Mazen Farhood

Abstract—This technical note is on the model reduction of dis-
tributed systems formed by discrete-time, linear time-varying, het-
erogeneous subsystems interconnected over arbitrary directed
graphs and subjected to communication latency. We give two pro-
cedures to construct a strongly stable coprime factorization for a
strongly stabilizable and strongly detectable system. One of the
procedures ensures the contractiveness of the resulting factoriza-
tion. Then, we apply the structure-preserving balanced truncation
method for distributed systems. We illustrate the proposed meth-
ods through an example.

Index Terms—Arbitrary graphs, contractive coprime factoriza-
tions, coprime factors reduction, interconnected systems, linear
time-varying systems, structure-preserving model reduction.

|. INTRODUCTION

This technical note is on the coprime factors reduction (CFR)
of distributed systems formed by discrete-time, linear time-varying
(LTV), heterogeneous subsystems interconnected over arbitrary di-
rected graphs and subjected to communication latency. We describe
these systems using the framework of [1].

Various works [2]-[9] have appeared that address the problem of
structure-preserving balanced truncation (BT) and CFR in the context
of linear parameter-varying systems, uncertain systems, and intercon-
nected systems. The methods in these works are based on the existence
of block-diagonal solutions to linear matrix inequalities (LMIs), and
so, suffer from the ensuing conservatism. The work in [5] identifies a
class of interconnected systems with guaranteed structured solutions
to the LMIs that appear in [4]. The reader is referred to [10] and the
references therein for recent works in a similar direction.

In [2], the authors generalize BT to the considered class of distributed
systems. The method is applicable to systems with structured gener-
alized gramians satisfying the generalized Lyapunov inequalities [11],
which we refer to as strongly stable systems. BT guarantees the strong
stability of the reduced order system and provides an upper bound on
the /5-induced norm of the error system. The CFR method proposed
here extends BT to systems that can be represented using a strongly
stable pair of coprime factorizations. Strongly stabilizable and strongly
detectable systems have strongly stable coprime factorizations, and so
can be reduced via the CFR method. That is, CFR extends the range
of applicability of BT to strongly stabilizable and strongly detectable
systems. However, CFR only guarantees the strong stabilizability and
the strong detectability of the reduced order system, and the resulting
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bound captures the error between the factorizations of the full order
and reduced order systems.

The framework of [ 1] explicitly models the interconnections between
the subsystems as spatial states in addition to the states of the subsys-
tems, which we refer to as the temporal states. Like [6], the BT method
of [2] allows for the order reduction of both temporal and spatial states.
However, unlike [6] where truncation is performed uniformly for all
the temporal states and the forward and the backward spatial states,
respectively, [2] allows for individually truncating each temporal state
and each spatial state. A whole interconnection can even be removed
if it is deemed negligible.

We first give a procedure to construct a strongly stable coprime
factorization for strongly stabilizable and strongly detectable systems
based on [7], [8]. Then, we give an alternative procedure based on
[9], which ensures that the obtained factorization is contractive. The
associated computational cost is, however, larger. Note that the formal
analogy between the system function in [1] and the system functions in
[7]-[9] allows for a transparent generalization of the results of [ 7]-[9] to
the systems treated here. In general, both proposed procedures involve
solving infinite sequences of LMIs due to the time-varying nature of
the subsystems. However, in the case of a finite graph, i.e., a graph with
a finite number of vertices and edges, and eventually time-periodic
(ETP) subsystems [12], i.e., subsystems with state-space matrices that
become time-periodic after some finite time-horizon, both procedures
become finite dimensional. Time-invariant, time-periodic, and finite
time-horizon subsystems are special cases of ETP subsystems.

A preliminary version of this work appears in [13]. There, we adopt
a framework reminiscent of [14], which is equivalent to, yet different
from, the framework of [1] adopted here. Sections IV-D, V, and VI are
new in this work.

The outline of the technical note is as follows. Section I summarizes
the needed notation and the framework of [1]. Section III presents the
BT method of [2]. Section IV gives the first procedure for constructing
coprime factorizations, while Section V focuses on contractive coprime
factorizations. Section VI applies the techniques of the technical note to
an illustrative example. The technical note concludes with Section VII.

Il. PRELIMINARIES
A. Notation

The sets of nonnegative integers, integers, real numbers, and n x n
symmetric matrices are denoted by Ny, Z, R, and S", respectively.
diag(M;) refers to the block-diagonal augmentation of the elements
of the sequence of operators M;. Consider a directed graph with set
of vertices V' and set of directed edges F/. We assume a countable
number of vertices. The ordered-pair (4, j) € E represents a directed
edge from 7 to j in V. For each k£ € V, we define the vertex degree
v(k) as the maximum between the indegree and the outdegree. We
assume that v(k) is uniformly bounded. A directed graph is said to
be d-regular if, for each vertex, both the indegree and the outdegree
are equal to d. [1] assumes without loss of generality that the graph
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Fig. 1. Arbitrary directed graph made regular by adding virtual edges.

under consideration is d-regular because any arbitrary directed graph
can be turned into a “maxycy v(k)”-regular graph by adding, when
needed, virtual edges and/or nodes. A d-regular graph permits the defi-
nition of d permutations, py, ..., pg, of the set of vertices according to
the interconnection structure. The permutations p1, . .., pg are chosen
such thatif (i, j) € E, thenoner € {1,...,d} satisfies p, (i) = j and
p; 1 (j) = 4. Fig. | shows a directed graph rendered regular via the ad-
dition of virtual (dashed red) interconnections, along with the defined
permutations p; = (15432), p, = (123)(45), and p; = (134)(25),
where (a; ... a,, ) denotes acycle. Forexample, p, (1) = 2, p»(2) = 3,
p2(3) =1, p2(4) = 5,and p, (5) = 4.

Let H and F’ be two vector spaces. We denote by H ¢ F’ the vector
space direct sum of H and F'. We define the algebra £, (H, F') as the
space of linear causal operators mapping H to F'. We use the simplified
notation £, (H) when H = F. Now, let H and F' be Hilbert spaces.
We denote the norm and inner product associated with H by |||z
and (.,.);. We drop the subscript when H is clear from context. We
use L(H,F) and L.(H, F) to denote the space of bounded linear
operators mapping H to F' and the space of bounded linear causal
operators mapping H to F, respectively. These notations simplify to
L(H)and L.(H) when H = F. Let X be in L(H, F'). We denote by
| X || the H to F induced norm of X . The adjoint of X is denoted by X *.
A self-adjoint operator X in L(H) is negative definite (X < 0) if, for
all nonzero x in H, there exists o > 0 such that (z, Xx) < —a/|z|*.

Given a sequence n : (t,k) € Z x V — n(t, k) € Ny, we denote
by ¢ ({R"(*:¥)}) the vector space of mappings w : (¢,k) € Z x V —
w(t, k) € R*F)  We simply write £ when n(t, k) is clear from con-
text. The Hilbert space /5 is the subspace of ¢ that consists of mappings
w with a finite norm [|w]| = (32, ;) w(t, k) w(t, k))'/?. £, denotes
the subspace of ¢ that satisfies Y, w(t, k) w(t, k) < oo, for each
teZ.

We say that an operator @ : /¢y — {5 is graph-diagonal if
(Quw)(t, k) = Q(t, k)w(t, k), for all (¢, k) € Z x V. Furthermore,
we say that an operator W = [W;;] is partitioned graph-diagonal
if each partition W;; is a graph-diagonal operator. The mapping
[W1(t, k) = [W;;(t, k)] is a homomorphism from the space of par-
titioned graph-diagonal operators to the space of graph-diagonal oper-
ators. This mapping is isometric and preserves products, addition, and
ordering.

We denote the unitary temporal-shift operator by Sy and the unitary
spatial-shift operators by S, fore = 1,. .., d. These shifts operate on
{5 and satisfy

(Sow)(t, k) = w(t —1,k),
(Sew)(t, k) = w(t, p. ' (K)),

(Sg w)(t, k) = w(t +1,k),
(S w)(t, k) = w(t, pe (k).

The definitions of graph-diagonal operators and of the shift operators
extend to £ and /...

B. Operator Theoretic Framework

We now summarize the framework of [1]. A directed graph is used
to describe the interconnection structure of a distributed system. Sub-
system G(*) is associated with vertex k € V and the information sent
from GV to GY) is associated with edge (i,j) € E. We denote the
temporal (standard) state of G*) by (¢, k) with a possibly time-
varying dimension ng (¢, k). As for the spatial states, we denote the
state corresponding to interconnection (i, j) by x. (¢,7) with dimen-
sion n, (t, j), where p. (i) = j. That is, z. (¢, k) represents the infor-
mation received by G*) through permutation p,, while z. (¢, p. (k))
represents the information sent by G'*) along permutation p, . Note that
states of zero dimensions are associated with the virtual edges/nodes.
Each subsystem is modeled as a discrete-time LTV system with its
own inputs u(¢, k) and outputs y(t, k), of dimensions n, (¢, k) and
ny (t, k), respectively. Due to communication latency, the outgoing in-
formation reaches the target subsystem at the next time-step. Then, for
all (t, k) € Z x V, the state-space equations are given by

Xy (t + 1, k') To (tv k)
Ty (t+1ap1(k)) B A(t,k) B(t,k’) 1 (tvk)

‘ : | Ct. k)| D, :
zq (t+ 1, pa(k)) zq (t, k)
y (4, k) u(t, k)

The state-space matrix-valued functions are known a priori, are as-
sumed to be uniformly bounded, and are partitioned as
At k) = [Aij(t,k) ]

i=0,..., d; j=0,...,d’°

Clt,k)=[C(t,k) ],

i=0,..., d’ j=0,..., d’

B(t, k) = [Bi(t,k)]

where Ay (¢, k) is an ng (¢t + 1, k) x n; (¢, k) matrix, By (¢, k) is an
no(t + 1, k) x n, (t, k) matrix, Cy (¢, k) is ann, (¢, k) X ng(t, k) ma-
trix, etc. Note that the blocks that correspond to the virtual states
have zero dimension(s). The blocks of the state-space matrices, e.g.,
A;; (t, k), define graph-diagonal operators, e.g., A, ;, which, when com-
bined, define the partitioned graph-diagonal operators A, B, and C' as

follows:
A=Ay ]

BB, ,0=0)]

[BI(t, k)=B(t, k), [C](tk)=C(t,k).

i1=0,...,d;j=0,..., & i=0,..., &

[[A]](tv k):/_l(tvk)v |

The matrices D(t, k) also define a graph-diagonal operator D such that
[D](t, k) = D(t, k) = D(t, k). Introducing the composite-shift oper-
ator S = diag(Sy, SoS1,...,S50S4), we rewrite the state-space equa-
tions in operator form as

r = SAx + SBu, y=Cx+ Du, (1)

where 2(t, k) = [ (t, k)", 1 (t,k)*,...,z4(t, k)" ]". Then, the
input-output map u +— y can be formally expressed as G = u — y =
C(I—-SA)"'SB+D.

The system in (1) is well-posed if G € L, ({s, {2, ), and is stable
if G € L, (y,0). From [15], the system is well-posed if A(t,k) = 0
for ¢ < 0. Hereafter, we assume that all state-space matrices are zeros
for ¢ < 0. Next, we give a sufficient condition for stability, and refer to
systems that satisfy this condition as strongly stable. Let

X ={X: X=diag(Xo,...,Xs), Xo,..., X, graph-diagonal,

X=X"+0,Xand X ' € L (&t ({R""H}))}.
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Lemma 1 [2, Lemma 3]: The distributed system (1) is strongly sta-
ble if and only if there exist X and Y in X" such that

AXA*— §*XS+ BB* <0, )
A*S*YSA—Y +C*C < 0. 3)

(2) and (3) are the generalized Lyapunov inequalities, and X and
Y in & are the generalized gramians. Because of the block-diagonal
structure of X, S* X S is also a partitioned graph-diagonal operator with
ablock-diagonal structure, where (S; XSy ) (¢, k) = Xo (¢t + 1, k) and
(SrSEX.SoSe)(t, k) =X (t+1,p.(k)),fore =1,...,d. Note that
the sequences of LMIs equivalent to (2) and (3) are trivial for¢ < 0 since
the state-space matrices are zeros. In the sequel, we write ¢t € Z to allow
for the use of the operator theoretic framework. However, we focus on
t € Ny. For ¢t < 0, the operators become trivial or inconsequential.
The next result guarantees an upper bound on the ¢;-induced norm of
a strongly stable system G.

Lemma 2 [1, Lemma 9]: System (1) is strongly stable and satisfies
|G| < v if there exists X € X such that

SA SB|'[X 0][SA SB X 0
BT Y e e

I1l. BALANCED TRUNCATION

In this section, we summarize the BT method of [2].

Definition 1: The realization of a strongly stable distributed system
G, denoted by the quadruple (A, B, C, D), is balanced if there exists
an operator ¥ € X’ that simultaneously satisfies (2) and (3), and for all
(t,k) € Z x V,[Z](t, k) is adiagonal matrix. ¥ is called the balanced
generalized gramian.

Given generalized gramians X and Y, the next algorithm shows how
to construct a balanced realization for G.

Algorithm 1:
1) Compute Cholesky Factorizations: X; = R; R, and
Y, =H'H; fori=0,...,d;
2) Perform Singular Value Decompositions: H; R} = U; X, V,*;
3) Define blocks of balancing transformation: 7; = E;l/ 2 U'H;
and T,' = RIV,%; /2,
4) Block-diagonally augment transformation blocks:
T = diag(Ty, ..., Ty) and T~' = diag(T, ", ..., T;");
5) Define balanced realization: Ay} = (S*T'S)AT™*,
Bbal = (S*TS)B, Chal = CTﬁl, and Dbal =D.

We now apply the BT method to system G with balanced real-
ization (A, B,C, D). We partition the blocks of ¥ into truncated
and non-truncated portions. Given integers 7; (¢, k), such that 0 <
ri(t, k) <n;(t k), forall (t,k) € ZxV andi=0,...,d, we par-
tition X, (¢, k) = diag(T; (¢, k), Qi (¢, k)), where T;(t,k) € S™ (%)
are the non-truncated portions and Q, (¢, k) are the truncated por-
tions. T';(¢,k) and €, (t, k) define graph-diagonal operators I'; and
Q;. We define the augmented operators I' = diag(T'y,...,T";) and
Q = diag(Qp,...,Q4). Next, we partition the blocks of the state-
space matrices conformably with the partitioning of the blocks of ¥,
e.g., Ao (t, k), By(t,k), and Cy(t, k) are partitioned conformably
with the partitioning of o (¢ + 1, k) and (¢, k) as in Cy (¢, k) =
[Co(t, k) Cu, (k)]

[ Ago(t, k)
AOO(t:k)* AOUZl(t7k)

wln] men-[2G8)

where Ay (t, k) is an ro(t+1, k) x 7(t, k) matrix, By(t,k) is an
ro(t+1,k) x n, (¢, k) matrix, and Cy (¢, k) is an n, (¢, k) x ro(t, k)

matrix. These partitions define graph-diagonal operators C, Cy, , etc.
Then, it is not difficult to see that

A A
A= { |I ] tj12 :|:| ] ,
Aijy Aijay i=0,...,d; j=0,....d

B;
Bi|: |:[Biz

We form the state-space matrices A, (t,k), B, (t, k), C,(t, k), and
D, (t,k) of the reduced order system G, by keeping the partitions

marked with a hat. Namely, D, (¢, k) = D(¢, k),
Ar=[Ay] »Br=[B]_

1=0,...,d;j=0,..., a

A, (k) = [A](t,k), B, (t,k) = [B,](t,k), C,(t,k)=[C,](t,k).

Then, G, = C, (I — SA,)"'SB, + D,, where D, = D. We do not
distinguish between operators .S with different associated dimensions.
G, is strongly stable, and the realization (4, , B,, C,, D,) is balanced
with balanced generalized gramian I". The bound on the /;-induced
norm of the resulting error system is given by

16 = Gl < 2¢(diag (aing([21ER) ) ). ©)

¢(X) denotes the sum of distinct diagonal entries of the possibly infinite
dimensional matrix X.

The bound in (5) may become infinite if there are infinitely many
distinct entries in €2. However, this bound is guaranteed to be finite in
the case of eventually time-periodic (ETP) subsystems interconnected
over finite graphs. A partitioned graph-diagonal operator W is said to
be (h,q)-ETP, for some integers h > 0 and ¢ > 0, if [W](t + h +
zq,k) = [W](t+ h,k) for all t,z € Ny and k € V. A distributed
system is said to be (h,q)-ETP if all the state-space operators are
(h, q)-ETP. In this case, solutions to (2) and (3) exist if and only if
(h, q)-ETP solutions exist. Then, in (5), we restrict ¢ to the finite time-
horizon and the first time-period truncation, i.e., 0 <t < h+¢q — 1.
If, in addition, the graph is finite, i.e., V and E are finite sets, then the
bound in (5) is guaranteed to be finite.

IV. COPRIME FACTORS REDUCTION
A. Strong Stabilizability

A system is said to be strongly stabilizable if it can be rendered
strongly stable by some choice of feedback. Next, we give a test to
check for strong stabilizablity, and propose an appropriate feedback
gain. For brevity, we omit a similar discussion on the dual notion of
strong detectability. The results of this section are based on the works
of [8] and [16].

Definition 2: A system is strongly stabilizable if there exists a feed-
back operator F' and an operator P € X such that

(A+ BF)P(A+ BF)" — §*PS < 0. (6)

F={[F,--- F;] is a partitioned graph-diagonal operator, with F;
in L.(6 ({R™(F1) 4y ({R7e(B0)})), for i =0,...,d. We also
define the notation F'(¢, k) = [F](t, k), forall (t,k) € Z x V.

Theorem 1: A system is strongly stabilizable if and only if there
exists P € & such that

APA* - S*PS —BB" <0. @)

Furthermore, assuming the relevant inverse exists, F' can be chosen as
follows: F' = —(B*S*P'SB) 'B*S*P1SA.
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Proof: For all (t,k) € Z x V, we assume that rank B(t, k) =
ny (t, k) < (ng (t+1,k) + 7 n(t+ l,pe(k))) The
where rank of B(t, k) is strictly less than n, (¢, k) can be discarded
because it corresponds to the existence of redundant controls, which
can be easily removed. If B(ty, ko) = 0 for some (to, ko) € Z x V,
then rank B(ty, ko) = 0. In this case, we set n, (ty, ko) =0, i.e.,
all controls are redundant and hence removed, and F'(ty, ko) is
irrelevant. Moreover, the proof for the case of a square, nonsingular
B(t, k) follows immediately. Given this assumption, we can find an
operator B, of the same structure as B that satisfies B} B, = I and
B*B. = 0, and where the inverse of [ B B | exists and is bounded.
Applying the Schur complement formula to (6), we get

case

P GO A L O
b +| |F[I o]+]|.|F [0 B*]=<o0.
a4 —sps| T B|FLL O+ o0 B
b 6 7

By a generalization of [8, Lemma 25] to the class of partitioned
graph-diagonal operators, we see that a solution F’ exists to the previ-
ous inequality if and only if Wy %W, < 0 and W, ¥W, < 0 for any
Wy and W), such that Im Wy = ker 0, W, Wy = I, Im W, = ker 7,
and W W, = I, where Im .J and ker J denote the image and ker-
nel of a linear operator .J, respectively. In particular, we choose
Wy = [0 Ir and W, = diag(I, B, ). The condition W;¥W, < 0
is automatically satisfied as P - 0. As for the condition W UW, < 0,
we expand it and apply the Schur complement formula to obtain
Bi(=S*PS+ APA*)B, <0, which is equivalent by scaling and
an application of Finsler’s Lemma to (7). Now, we prove that the given
choice of F' renders the closed-loop strongly stable. Note that F' is a
well-defined quantity when B*B has a causal bounded inverse. This
can be ensured by removing all redundant controls and properly per-
turbing B, if necessary, so that B*S*P~!SB is invertible. We apply
the Schur complement formula twice to (7). By a generalization of the
matrix inversion lemma, and since X ! = (I + X)~! forany X > 0,
we get

—A*S*P-'SB(B*S*P-'SB)"'B*S*P~'SA
— P+ A*S*P1SA <0,

ie, —P '+ (A+ BF)*S*P'S(A+ BF) <0. We apply the
Schur complement formula twice to retrieve (6). O

By comparing the sign of BB* in (2) and (7), one sees that the
notion of strong stabilizability is less stringent than the notion of strong
stability. However, the conservatism due to the structure imposed on
the solutions of the operator inequalities is still manifest in the notion
of strong stabilizability.

B. Coprime Factorizations

Definition 3: Two operators M and N in L, (¢, ¢5) are right co-
prime if there exist X and Y in L. ({2, ¢>) suchthat Y M + XN = I.
Similarly, M and N in £, (€s, 5) are left coprime if there exist X and
Y in L.(ly, L) such that MY + NX =1.

Definition 4: The pair of stable systems (N, M) is a right coprime
factorization (RCF) for system G if M~! € £.(l.), M and N are
right coprime, and G = N M . The pair of stable systems (N, M) is
a left coprime factorization (LCF) for G if M-'er, (lae), M and N
are left coprime, and G = M ' N.

Lemma 3: A strongly stabilizable and strongly detectable dis-
tributed system G has both a strongly stable RCF and a strongly stable
LCE.

Proof: Consider a strongly stabilizable and strongly detectable sys-
tem G with realization (A, B, C, D). There exist a feedback gain

F, e.g., see Theorem 1, and an observer gain K that make the re-
sulting closed-loop systems strongly stable. We define the notations
Ap = A+ BF and Ay = A+ KC. Let M and N be distributed
systems with realizations (Ap, B, F,I) and (Ar,B,C + DF, D),
respectively. Clearly, M and N are in L. (¢, {5). We start by showing
that M has a causal inverse on /5. . Let R be a distributed system with
realization (A, B, —F,I). Risin L. (¢,) since A(t,k) = 0 for¢ < 0.
By computations similar to the one given next, we show that ? satisfies
MR=1 and RM = I, thus proving that M ~! = R. Then, we prove
that G=NM™' = NR:

NR = ((C+DF)(I-SAp) ' SB+D)(~F(I-SA) "' SB+I)
—C(I-SAp) ' (SBF—(I-SA))(I-SA)"'SB+ D
—DF(I-SAp) ' (SBF+(I-SAp)—(I-SA))(I-SA)'SB
C(I-SA)'SB+D=aG.

Finally, we show that NV and M are right coprime. For that purpose,
we consider the strongly stable distributed systems Y and X with
realizations (Ax, B+ KD,—F,I) and (A, K, F,0), respectively.
It is not difficult to show that Y M + X N=1. Thus, (N, M) is a
strongly stable RCF for G. Constructing an LCF for G follows a dual
argument. (]

C. Coprime Factors Model Reduction Algorithm

Next, we show how to apply the CFR method to a strongly stabiliz-
able and strongly detectable distributed system G. The given algorithm
is based on the RCF of G.

Algorithm 2:

1) Find RCF (N, M) for G as in Lemma 3.

2) Define strongly stable system H = [N M } .

3) Apply BT to find reduced order model H, = [ Ny My } .
4) Define reduced order system GG, = N, ]\/[771 .

G, is always well-posed since we assume zero state-space matrices
for ¢t < 0, in addition to the communication latency between the sub-
systems. Also, GG, is both strongly stabilizable and strongly detectable.
(N,., M,) is a strongly stable RCF for G,.. Note that (5) gives an upper
bound on the ¢5-induced norm of (H — H, ) (not (G — G,)).

We now detail the steps in Algorithm 2. In Step 1, we find P € X
such that APA* — S*PS — BB* < 0. Then, we choose the feedback
gain [ as in Theorem 1, while ensuring that the choice is well-defined.
In Step 2, we construct system H with realization

(AH7BH7CH7DH): (A+BF7B7 |:C+FDF:| 9 [?]) .

In Step 3, we apply BT to H. We find X in X" such that Ay X A} —
S*XS+ByB;; <0 and Y in X such that A} S*YSAy —Y +
C};;Ch < 0. To obtain useful error bounds, we solve for the gen-
eralized gramians with minimum trace. From Algorithm 1, we find
a balanced realization for H. Based on the absolute and the rela-
tive orders of the entries of X, the resultant error bound (5), and the
upper bound on || H | from Lemma 2, we choose how much to re-
duce each temporal and each spatial state. We denote the resulting
realization of H, by (A ,,Bu.,,Cu,, Dy ). In Step 4, we de-
fine the realization (A, , B,,C,, D, ) of G, from Ay , = A, + B, F,,
By,=B,,Cy,=[(C,+D,F,) F'],and Dy, =[D; I].
Note that Dy, = Dy, D, = D, and F, is a strongly stabilizing feed-
back gain for G,.
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D. Computational Complexity

In summary, we need to solve 4 semi-definite programming (SDP)
problems, which are of comparable sizes, namely, checking for strong
stabilizability and strong detectability of G and finding the minimum
trace generalized gramians for . Assume that the graph is finite and
has N, subsystems, i.e., k = 1,..., N,, and N, interconnections, and
assume that we want to find (h, ¢)-ETP solutions to the following
problem:

h+q—1 Ny d
min Z ZZtrace X;(t,k) subject to:
(=0 k=1i=0

A(t, k) diag(Xo (¢, k), ..., Xa(t, k) A(t, k)"
—diag(Xo(t © 1,k), X, (t ® 1, p1(K)), ..., Xa(t D1, pa(k)))
+ B(t,k)B(t, k)" + u(t, k)I <0,

— Xi(t k) +vi(t, k) =20, i=0,....dt=0,... h+q—1,

where @ denotes the (h, q)-eventually periodic addition, i.e., j &1 =
j+1forj=0,....h+q¢—2,andj &1 = hforj=h+q—1.The
small positive quantities u(t, k) and v; (¢, k) are added because the
sequences of constraints are non-strict inequalities. These sequences
specify the block structure of the problem, which can then be exploited
by the solver to solve the problem at a faster rate. This kind of SDP
problems is typically solved by commercial software using customized
primal-dual interior point methods [17]. Suppose that we are to solve
the given problem using the modeling language Yalmip [18] and the
solver SDPT3 [19]. Yalmip models the problem in dual format and then
passes it to SDPT3. The dual problem corresponding to the preceding
primal problem is given next.

h+q—1 Ng

max Z Z (trace (t, k) o(t, k)B(t, k))

t=0 k=

d

u(t k) trace ¢(t,k) + > v (t, k) trace ¢ (1, k))

i=0

subjectto:  ¢(t, k) = 0, ;(t,k) =0,
I+ A(0,k)*¢(0,k)A(0, k) — diag (e (0, k), ..., (0,k)) =
I+A(h,k)*¢(h k)A(h,k) dlag(wg( k),...,wd(h,k))

— diag(¢oo (h — 1, k), ¢11(h — 1, p7 ' (K)), ...

- diag(%o(h +q—1,k),...,¢aa(h+q—
I+ A(t, k) ¢(t, k)A(t, k) — diag (o (¢, k), . ..
— diag(¢oo (t — 1,k), ...

i (t, k) is in S™ (%) and ¢, (t, k) corresponds to the 4i-th block on
the diagonal of ¢(¢, k), where ¢gq (£, k) is in S*0(*®15) and ¢, (t, k)
are in S™¢ (!®L.pe (k) fore =1, ..., d. Thus, the size of the SDP vari-

able is 7, ;) (Z;jzo ni(t®1,k)+ 0 ni(t, k)),
SDP blocks is (h + q)(2N, + N, ), and the number of constraints is
Do) Zf:o 51 (t, k) (n; (t, k) 4 1). We carried out sample compu-
tations for random problems of various sizes in Matlab 8.3.0.532 (The
MathWorks Inc., Natick, Massachusetts, USA) on a Dell computer
with 4 Intel Cores, 3.07 GHz processors, and 6 GB of RAM running
Windows 7. In the time-invariant case, i.e., h = 0 and ¢ = 1, the largest
problem we are able to solve before running into memory problems has
N, =49, N, = 1164,n9 = 6,n, = 3,n, = 4,n, = 3. The solution
time is 1010 seconds (CPU time 970 seconds).

sbaa(h—1,p,'(k)))
L' (k) =0,
7wd(t7k))

the number of

a¢dd(t - 17p(71(k))) = 0.,f0rt 7é 0,¢ 7é h.

V. CONTRACTIVE COPRIME FACTORIZATIONS

In this section, we seek to construct a contractive coprime factor-
ization (CCF) for a given strongly stabilizable and strongly detectable
system G with realization (A, B, C, D). We focus on the right CCF
of system (. Our results generalize their counterparts for uncertain
systems in [9].

Definition 5: The pair of stable systems (N, M) is a CCF (resp.,
an «-expansive coprime factorization) for system G if (N¢, M¢)
is an RCF for G and satisfies (N¢)*N¢ 4 (M¢)*M¢ < I (resp.,
(N€)*N¢ + (M¢)*M¢ = oI, a > 0).

CCFs are motivated in [3], [7], [9] and the references therein.
We summarize the main points next. The bound from CFR is on
[(H — H,)||. As we discuss in Section VII, this bound can be in-
terpreted in terms of the robust stability of the closed-loop system. In
the case of single linear time-invariant (LTI) systems, normalized co-
prime factorizations (NCFs) become of particular interest as they lead
to the least conservative robustness conditions when the error bound
is interpreted in the gap metric. However, for systems with an uncer-
tainty structure or a spatial structure, the construction of NCFs becomes
more difficult, and so CCFs are pursued instead. CCFs are desirable
because they can be constructed from solutions to LMIs. Also, even in
the case of single discrete-time LTI systems, applying BT to an NCF of
the full order system results in a CCF for the reduced order system, and
so one may start with a CCF for the full order system. Alternatively,
one can look at o = 1-expansive factorizations as they allow for the
generalization of the robustness results of NCFs. Such an approach,
however, results in a non-convex optimization problem when imposing
the strong stability condition for the employed factorizations. Next, we
restrict our discussion to CCFs. We show that the obtained coprime
factorization of the reduced order system is also contractive. In order
to establish the connection between the resulting error bound and the
gap metric, we need to additionally impose a-expansiveness on the
employed factorizations, for some @ < 1, which is a difficult task. In-
stead, we use the heuristic (P;) to make the factorizations approach
normalized ones.

The following theorem gives an equivalent characterization for
strong stabilizability.

Theorem 2: System G is strongly stabilizable if and only if there
exist P € X and an operator () of the same form as F, as given in
Definition 2, satisfying

-pr (AP+BQ)* Q* (CP+DQ)*
(AP+BQ) -S'PS 0 0

0 0 o 0 <0. (8
(CP+DQ) 0 0 -1

Proof: By definition, a system is strongly stabilizable if and only
if there exist Y € X and F° satisfying (6). By scalability and homo-
geneity with respect to Y, there exist solutions Y and £ if and only if
there exist solutions X € & and F“ to

(A+ BF°)'SXS(A+BF)— X + {C}DF } {C+£F}< 0.
We pre- and post- multiply the previous inequality by X !, and then

apply the Schur complement formula to obtain (8), where P = X!
and Q = F°X~'. Conversely, let P € X and Q be solutions to (8).
Using the Schur complement formula, and pre- and post- multiplying
the resulting inequality by P!, one can verify that Y = P! and
F¢ = QP! satisfy (6). O

Thus, for any P and @ satisfying (8), F° = QP! strongly stabilizes
G. F* relaxes the full rank assumption on 5 (¢, k) in Theorem 1. For
all (t,k) € Z x V,let Fe(t, k) = [F°](t, k).
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Theorem 3: Let P € X and Q satisfy (8), and define
Z=1+DD+B'S'P'SB,F¢ = —Z ' (B*S*P"'SA + D*C).

Then, the pair of strongly stable distributed systems N and M with
realizations (A+ BF°, BZ~% ,C+ DF¢,DZ %) and (A+ BF*,
BZ*%7 Fe, Z°r ), respectively, forms a CCF of system G.

To prove this theorem, we need the following result.

Lemma4: If Pe€ X and @ satisfy (8), and Z is defined
as in Theorem 3, then P and Q° satisfy (8), where Q° =
—Z Y(B*S*P'SAP + D*CP).

Proof: We apply the Schur complement formula to (8), then add
and subtract the following quantity:

(PC*D+ PA*S*P'SB)Z ' (D*CP+B*S*P ' SAP).
Grouping terms together, we rewrite (8) equivalently as
[Q"+ (PC*D + PA*S*P'SB)Z '] Z
x [Q+Z ' (D'CP+ B"S*P ' SAP)]
—(PC*D + PA*S*P'SB)Z *(D*CP + B*S*P 'SAP)

— P+ PC*CP+ PA*S*P'SAP < 0. )
That is, P and @ satisfy (8) if and only if they satisfy (9). The given Q¢
cancels out the first term in (9), and P satisfies the resulting inequality
since it satisfies (8). Then, P and Q¢ satisfy (9), and by equivalence,
P and Q° satisfy (8). O

Proof of Theorem 3: By Lemma 4, P and Q° satisfy (8). Then, N¢
and M¢ are strongly stable, since F* = Q°P~'. Noting the scaling
by Z %, we verify that (N¢,M¢) is an RCF of G as in Lemma 3.
Finally, we show that this RCF is contractive, i.e., the system H¢ =
[(N) (]V[“)*r satisfies |H¢|| < 1. This is true since P~! € X
satisfies (4) for the realization of H¢ and all v > 1. Namely, we expand

(4) and denote the result by [ A | i~ 1.2:j—1,o- From Theorem 2, N =

(A+BF* 'SP 'S(A+BF°) —P*%{CJFDF} {C+DF}< 0.

Fe Fe

Also, Noy = Z 5 (B*S*P'SB+D*D+1)Z°% —~2] =
(1—~*)I <0, for al ~>1. Finally, Nj=Ns =
((A+BF)*S"PLSB+ (C+DF*)*' D+ (F*)*) Z ¢ =0. [

Now, we apply Algorithm 2 to the strongly stable CCF (N¢, M*¢)
of system G. In Step 3, we find X and Y € X such that

(A+ BF°)X(A+ BF°) — S*XS+ BZ'B* <0, (10)

(A+ BF°)*S'YS(A+ BF) —Y + { ot

FC

From the proof of Theorem 2,Y = P~!; thus, we only solve for X € X
that satisfies (10). We use Algorithm 1 to construct the transformation
T and the operators Ay,.1, Bpal, Chal, and Dy, = D as in Step 5. We
also let F¢,, = F°T~'. Then, the realization

is a balanced realization for H* = [ (N¢)* (M¢)*]". We apply BT
to system [ and obtain the reduced order system I . There exists an
operator L such that L*X L = diag(T", ), where I" and © are defined
in Section III; see [8, Lemma 10]. The following also hold: F, L =

[Ff F2]»Cba1L:[Cf 02],

7%

al + DFE
(Abal + Bua Iy, By Z 7, {Cb(‘l * bdl} P

c
Fb al

C+DF} {C+DF} ~0

Ay . [S 0][Be
I

)

is a balanced realization for HS = [ (Nf)* (M¢)" ] " with balanced
generalized gramian I'. Moreover, (A¢, B¢, C¢, D) is a realization for
the reduced order system G¢ = N¢(M¢)~t. (N¢, M¢) constitutes a
strongly stable RCF for G¢.

Theorem 4: The RCF (N{, M) of G¢ is contractive.

Proof: From the proof of Theorem 3, P~! satisfies (4) for the
initial/unbalanced realization of system /¢ and all v > 1. Noting that
Y can be expressed as TXT* and as (T%) 1 P~1T~!, we verify that &
satisfies (4) for the balanced realization of system 4 “ and all v > 1. We
pre- and post- multiply the resulting inequality by diag(L*, I) and its
adjoint, and insert diag(L, I)diag(L*, I) = diag(I, I) where needed,
to retrieve the terms A¢, B¢, C¢, and F. We see that I" satisfies (4)
for the realization of H¢ and all v > 1. That is, |H || < 1. O

We conclude this section by giving one heuristic to make the CCF
(N¢, M¢) approach normalization [9, Remark 18].

. IS 07T A
LS Ayl = {0 sHAm

Then, the realization

7%

1 C,C +DF,?
) Z,%

AL+ B F,B.Z 7,
< r+ r T T 2/ FTC

d
(P;): min Z Z trace U; (¢, k), P € X and Q satisfy (8)
(t,k) i=0

U, 1

and U; satisfy[ I P

] =0, fori =0,...,d;
d
(Py): minZZtrace X;(t, k), X € X satisfies (10).
(t,k)i=0

Solving (P;) induces a larger computational burden than solving
the problems of Section IV-D. Let the graph be finite, and assume
that we seek (h, ¢)-ETP solutions for (P; ). Then, the size of the SDP
variable, the number of SDP blocks, and the number of constraints are,
respectively,

d d
> (3 D onit k) + > ni(t ® 1 k) +n (k) + 0y (¢, k)) ,
0

(t,k) \ i=0 i=

d

(h+ q)2N, + N,),and» "> " ni(t, k) (ni (8, k) + 1+ ny (£, k).
(t,k) i=0

For the same system parameters as in Section IV-D, the largest
(Py) which can be solved before running into memory problems has
Ny =31and N, = 451.

VI. ILLUSTRATIVE EXAMPLE

Consider a distributed system G with 5 agents interconnected as
shown in Fig. 1, and having the dynamics

r(t+ 1,k)=r(t, k) + w(t, k), wt+ 1,k)=w(t, k) +v(t, k)T,

where £ is the subsystem index, ¢ > 0 the discrete time-step, 7 =
0.05 s the sampling time, and scalar-valued r, w, and v the position,
velocity, and applied input. If (7, j) € E, then agent ¢ sends its position
and velocity to agent j. Because of the communication delay, the
information is received at the next time-step. The input v(¢, k) includes
both the consensus control protocol [20] and the disturbance d acting
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on the agent:

o(t,k) = d(t, k) +pre 3 e (rlt = 1o (8)) — (2, B)

e=1

— powo(t, k) +pas Y e (wlt = 1,00 (B) = w(t, k).

e=1

The gains po i, pik. D2, are set as follows: py; =15,
Po,2 =P0,3 =Po,4a =Po,5 =2, P1,3=15, Pi15=p23=p25=0.1,
with the rest equal to unity. a. , > 0 is the weight associated with
edge (p.'(k), k). Weights a1 2,a1 3,a1 5,as 3 are equal to 0.0001,
and the rest are equal to 1. We reformulate the problem in our frame-
work by defining the temporal state x((t, %) and the outgoing spa-
tial states z. (¢, p.(k)), e = 1,2,3, as (r(¢, k), w(t, k)). The output
y(t, k) = xo(t, k). The input u(t, k) reduces to d(t, k) because the
other terms in v(t, k) are associated with the spatial states. Since the
subsystems are LTI ((0, 1)-ETP), we drop the time parameter from the
state-space matrices. For all k € V, we have D(k) = 0. The resultant
system is strongly stabilizable and strongly detectable.

We start by applying the CFR method of Section IV. We find
a (0,1)-ETP solution P to (7), and compute I according to
Theorem 1. Then, we apply BT to the strongly stable sys-
tem [ whose state-space matrices are defined as Ay (k) =
A(k) + B(k)F(k), By (k)= B(k), Cu(k)=[C(k)" F(k)],
and Dy (k) = [0 I ]*. We solve for (0, 1)-ETP generalized grami-
ans X and Y that minimize trace(});_, >’ , X.(k)) and
trace(3,_, 3%, V. (k)), respectively, because we are only inter-
ested in simplifying the interconnection structure. Then, we find the
£y-induced norm ||H || of system H. We find an upper bound ~ using
Lemma 2. Then, we treat system H as a global LTI system with 5
inputs and 15 outputs and find its H,-norm, which is a lower bound
on || H|| because the spatial structure is relaxed. The upper and lower
bounds are almost equal, and so, | H|| = 1.9985.

By looking at the diagonal entries of ¥ and comparing their rela-
tive orders, and from the predicted error upper bound in (5) as com-
pared to || H||, we decide to eliminate edges (1, 5), (4, 3), (2, 3), (3,2)
and to reduce the dimension of the remaining balanced spatial
states from 2 to 1 each. For example, 3 (5) = 10~3diag(0.15, 0.02),
¥3(5) = diag(0.01,0.0001),and ¥ (1) = diag(0.19,0.0001). From
), ||(H —H,)|| <0.0094 = 0.4712 %||H||. We form the reduced
order system G, from the state-space matrices of H, by partition-
ing Cy . (k) as [C, (k)" F, (k) ]*, setting B, (k) = By, (k), and
defining A, (k) = Ay, (k) — B, (k)F, (k).

By looking at the first entry of ¥3(5), one may choose to addition-
ally remove the first variable of x3(¢,5), i.e., remove interconnection
(2,5) altogether, especially because the bound in (5) only adds up to
1.5435 %||H ||. However, there will no more be interconnections feed-
ing into agent 5, and so, the resulting reduced order system G, ; will
have a significantly different behavior from G. If, however, one groups
the entries of X according to their orders of magnitude, one sees that
0.01 does not belong to the group of the previously truncated entries.
In fact, it is one order of magnitude larger. Also, the new error bound,
while still small, is 3 times larger than the previous bound, i.e., trun-
cating one additional variable beyond what was truncated previously
results in a jump in the error upper bound. Weighing in these new ob-
servations, one concludes that the first variable of x5 (¢, 5) should not
be truncated.

We now apply the method of Section V. We start by finding
(0,1)-ETP solutions to (P;) that minimize the sum of traces of
the spatial terms U, (k) only. We define F'° and Z as in Theo-
rem 3, and construct the state-space matrices of H¢ as follows:

90, —_—
—Full Order System G

80 » Reduced Order System G

- « Reduced Order System G*
E
- 60 —G |
E B3 14 —Gré
§so i e
0. 831 |
g w1
30 B3.08
& saoal 1

20 £3.02 1

L - A L
1

50 Time (sec) 100 150

Fig. 2. Comparison of the reduced order systems with the full order
system.
u; +_  eg A Y6
Yr o e = Up
+
Fig. 8. Feedback Interconnection.

Ay (k) = A(k) + B(k)EF* (k). By (k) = B(k)Z(k) *. Cy (k) =
(Gl Fe(k) ] and Djy (k) = [0 Z(k)~F | ||| wrns out
to be approximately equal to 1. We find X € X that satisfies (10)
and minimizes trace(3,_, 3°°_, X, (k)). We construct a balanced
realization for H°, and form the reduced order system H; by
truncating the same variables as before. (5) gives ||(H¢ — Hf)| <
12.5351 %||H*||. The same observations as before regarding the rel-
ative order of the truncated singular values and the bound hike still
hold, but the CCF error bound is much larger in this particular
example (12.5351%]||H¢| vs 0.4712 %|| H||). Finally, we form the
reduced order system G¢ from the state-space matrices of HS as
follows: Cf; (k) = [Ce(k)* Fe(k)*]", Bo(k) = By, (k) Z(k)?,
and A% (k) = A5y (k) — B (k) EE ().

We subject G, GG, and G¢ to the same mix of sinusoidal and ex-
ponential disturbances for 20 sec, and then let the systems evolve on
their own. Fig. 2 shows that the three systems exhibit a similar behav-
ior. However, by zooming in, one sees that the error in the position
between the agents of GG, and GG slowly increases as time elapses be-
cause the agents of GG, do not reach consensus in position. They only
reach a nonzero consensus in velocity, with a consensus value of the
order 1073 So, while G is stable (but not strongly stable) in the sense
that the zero-input response converges to a common state, ¢, is not.
This remark does not contradict CFR theory, which only guarantees
the strong stabilizability and detectability of the reduced order model.
A similar observation holds for system G¢.

VIl. CONCLUSION

We gave two methods for structure-preserving/simplifying CFR of
strongly stabilizable and strongly detectable distributed systems. The
second method guarantees the contractiveness of the factorizations, but
is computationally more expensive. We now conclude the technical
note by giving an interpretation of the bound on ||(H — H, )|| in terms
of robust feedback stability. We say that the closed-loop system in Fig. 3
is stable (resp., well-posed) if the map from (ug,ur) to (eq,erp) is
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inL.(ly @ Ly) (resp., L (lre @ lae)). We assume that the plant G has
a strongly stable RCF (N, M ). We also assume that the controller F’
has an LCF (]\7 7, ]\YF). In fact, many synthesis techniques [1], [15]
construct a distributed controller, with the same structure as the plant,
which guarantees the strong stability of the closed-loop system. This
means that F strongly stabilizes Gz, but also that GG strongly stabilizes
F, and so, I has an LCF.

Theorem 5: Assume that F stabilizes G and  that
H [NF Mp ] H < % If G, is obtained from applying CFR to
G, and satisfies ||[(H — H, )| < ¢, then F stabilizes G, .

This theorem is proved by extending results from [21], [22] to the
class of distributed systems. Given the assumption that " has an LCF,
such an extension is conceivably transparent because of the similarity
between the system function in the adopted framework and in standard
state-space systems.
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