


JSON or encoded binary buffers for Avro or Parquet. Rather than

parsing records and evaluating query predicates exactly, RFs filter

records by evaluating a format-agnostic filtering function over raw

bytes with some false positives, but no false negatives.

To decrease the false positive rate, we can use an optimizer to

compose multiple RFs into an RF cascade that incrementally filters

the data. A full format-specific parser (e.g., Mison) then parses and

verifies any remaining records. Raw filtering is thus complementary

to existing work on fast projection [15, 23, 24, 28, 36]. With a well-

optimized RF cascade, we show that raw filtering can accelerate

even state-of-the-art parsers by up to 22× on selective queries.

Because RFs can produce false positives and still require running

a full parser on the records that pass them, two key challenges arise

in utilizing raw filtering efficiently. First, the RFs themselves have

to be highly efficient, allowing us to run them without impacting

overall parsing time. Second, the RF cascade optimizer must quickly

find efficient cascades, which is challenging because the space of

possible cascades is combinatorial, the passthrough rates of different

RFs are not independent, and the optimizer itself must not add high

overhead. We discuss how we tackle these two challenges in turn.

Challenge 1: Designing Efficient Raw Filters. The first challenge

is ensuring that RFs are hardware-efficient. Since RFs produce false

positives, an inefficient design for these operators could increase

total query execution time by adding the overhead of applying RFs

without discarding many records. To address this challenge, we

propose a set of SIMD-enabled RFs that process multiple bytes of

input data per instruction. For example, the substring search RF

searches for a byte sequence in raw data that indicates whether a

record could pass a predicate. Consider evaluating the predicate name

= "Albert Einstein" over JSON data. The substring RF could

search over the raw data for the substring "Albe", which fits in an

AVX2 SIMD vector lane and allows searching 32 bytes in parallel.

This is a valid RF that only produces false positives, because the

string "Albe" must appear in any JSON record that satisfies the

predicate. Without fully parsing the record, however, the RF may

find cases where the substring comes from a different string (e.g.,

"Albert Camus") or from the wrong field (e.g., friend = "Albert

Einstein"). Likewise, a key-value search RF extends substring

search to look for key-value pairs in the raw data (e.g., a JSON key

and its value). While designing for hardware efficiency imposes

some limitations on the predicates we can convert to RFs, our RFs

can be applied to many queries in diverse workloads, and can stream

through data 100× faster than existing parsers.

Challenge 2: Choosing an RF Cascade. The second challenge is

selecting the RF cascade that produces the highest expected parsing

throughput, i.e., determining which RFs to include, how many to

include, and what order to apply them in. The performance of each

RF cascade depends on its execution cost, its false positive rate, and

the execution cost of running the full parser. Unfortunately, deter-

mining these metrics is difficult beacuse they are data-dependent

and the passthrough rates of individual RFs in the cascade can be

highly correlated with one another. For example, a cascade with

a single substring RF "Albe" may not benefit from an additional

substring RF "Eins": whatever records match "Albe" are likely to

match "Eins" as well. In our evaluation, we show that modeling this

interdependence between RFs is critical for performance, and can

make a 2.5× difference compared to classical methods for predicate

ordering that assume independence [9].

To address this challenge, we propose a fast optimizer that uses

SIMD to efficiently select a cascade while also accounting for RF

interdependence. Our optimizer periodically takes a sample of

the data stream and estimates the individual passthrough rates and

execution costs of the valid RFs for the query on it. It stores the

result of each RF on the sample records in a bitmap that allows us to

rapidly compute the passthrough rate for any cascade of RFs using

SIMD bitwise operators. With this approach, the optimizer can

efficiently search through a large space of cascades and pick the one

with the best expected throughput. We show that choosing the right

cascade can make a 10× difference in performance, and that our

optimizer only adds 1.2% overhead. We also show that updating the

RF cascade periodically while processing the input data can make a

25× difference in execution time due to changing data properties.

Summary of Results. We evaluate raw filtering in a system called

Sparser, which implements the SIMD RFs and optimizer described

above. Sparser takes a user query predicate and a raw bytestream as

input and returns a filtered bytestream to a downstream query engine.

Our evaluation shows that Sparser outperforms standalone state-

of-the-art parsers and accelerates real workloads when integrated

in existing query processing engines such as Spark SQL [5]. On

exploratory analytics queries over Twitter data from [36,54], Sparser

improves Mison’s JSON parsing throughput up to 22×. When

integrated into Spark SQL, Sparser accelerates distributed queries

on a cluster by up to 9× end-to-end, including the time to load

data from disk. Perhaps surprisingly, Sparser can even accelerate

queries over binary formats such as Avro and Parquet by 1.3–5×.

Finally, we show that raw filtering accelerates analytics workloads

in other domains as well, such as filtering binary network packets

and analyzing text logs from the Bro [11] intrusion detection system.

To summarize, our contributions are:

1. We introduce raw filtering, an approach that leverages the high

query selectivity of many exploratory workloads to filter data

before parsing it for improved performance. We also present a

set of SIMD-based RFs optimized for modern hardware.

2. We present a fast optimizer that selects an efficient RF cascade

in a data- and query-dependent manner while accounting for the

potential interdependence between RFs.

3. We evaluate RFs in Sparser, and show that it complements

existing parsers and accelerates realistic workloads by up to 9×.

2. PROBLEM STATEMENT AND GOALS
The goal of raw filtering is to maximize the throughput of parsing

and filtering raw, serialized data, by applying query predicates before

parsing data. A serialized record could be newline-separated UTF-

8 JSON objects or a single line from a text log. Raw filtering

primarily accelerates exploratory workloads over unstructured and

semi-structured textual formats, but we show in § 7 that it is also

applicable to queries over binary formats such as Avro and Parquet.

Raw filtering is most impactful for selective queries.

In settings where the same data is accessed repeatedly, users can

load the data into a DBMS, build an index over it [3,35]), or convert

it into an efficient file format such as Parquet. Raw filtering thus only

targets workloads where the data is not yet indexed, perhaps because

it is accessed too infrequently to justify continuously building an

index (e.g., for high-volume machine telemetry), or because the

workloads themselves are performing data ingest. For example,

at Databricks, customers commonly use Spark to convert ingested

JSON and CSV data to Parquet, as shown by the large fraction of

JSON/CSV jobs with selectivity 1 in Figure 1. Despite this, there are

still a large number of selective queries on CSV and JSON directly

(60% of the queries in Figure 1). In Censys, a purely exploratory

workload, most queries are highly selective.

3. OVERVIEW
This section gives an overview of raw filtering and introduces

Sparser, a system that addresses its challenges.







would return a false negative, since the value search term "Athena"

associated with the key "name" would never be found. Concretely,

the problem is that the delimiter ‘,’ can also appear within the

value in this record, and it is impossible to distinguish between these

two cases without a full parse of the entire key-value pair (and by

extension, the full record)1. By only allowing equality predicates,

false negatives cannot occur: if the search finds one of the delimiters

but not the value search term, then either the delimiter appears after

the entire value, or the value search term is not present. Sparser

also disallows RFs where the value search term and the delimiter set

have overlapping bytes for the same reason.

5. SPARSER’S OPTIMIZER
Sparser’s RFs provide an efficient but inexact mechanism for dis-

carding records before parsing: these operators have high throughput

but also produce false positives. To decrease the overall false pos-

itive rate while processing data, Sparser combines individual RFs

into an RF cascade to maximize the overall filtering and parsing

throughput. Finding the best cascade is challenging because a cas-

cade’s performance is both data- and query-dependent. Therefore,

we present an optimizer that employs a cost model to score and

select the best RF cascade. The optimizer takes as inputs a query

predicate, a bytestream from the input file, and a full parser, and

outputs an RF cascade to maximize the expected parsing throughput.

Overall, the optimizer proceeds as follows:

1. Compile a set of possible RFs based on the clauses in the query

predicate (§5.1).

2. Draw a sample of records from the input and measure data-

dependent parameters such as the execution cost of the full

parser, the execution costs of each RF, and the passthrough rates

of each RF on the sample (§5.2).

3. Generate valid cascades to evaluate using the possible RFs (§5.3).

A valid cascade does not produce false negatives.

4. Enumerate possible valid RF cascades and select the best one

using the estimated costs and passthrough rates (§5.4).

5.1 Compiling Predicates into Possible RFs
The first task in the optimizer is to convert the user-specified

query predicate into a set of possible RFs. The query predicate is a

boolean expression evaluated on each record: if a record causes the

expression to evaluate to true, the record passes, and if the expression

evaluates to false, the record may be discarded. By definition, the

RFs generated by the optimizer for a given query must produce

only false positives with respect to this boolean expression, but

no false negatives (i.e., an RF may occasionally return true when

the predicate evaluates to false, but never vice versa). The query

predicate may also contain conjunctions and disjunctions that the

optimizer must consider when generating RFs. Sparser thus takes

following steps to produce a set of possible RFs:

1. Convert the boolean query predicate to disjunctive normal form

(i.e., of the form (a ∧ b . . .) ∨ (c ∧ . . .) ∨ . . .). DNF allows

Sparser’s optimizer to systematically generate RF cascades that

never produce false negatives. We refer to an expression with

only conjunctions (e.g., a ∧ b ∧ . . .) as a conjunctive clause.

2. Convert each simple predicate (i.e., predicates without conjunc-

tions or disjunctions, such as equality or LIKE predicates) in the

conjunctive clauses into one or more RFs. We elaborate on this

procedure below using Listing 2 as an example.

1Extending the set of delimiters to include ‘"’ would also yield false
negatives for scenarios in which an escaped double-quote occurs
within the entire value string

(name = "Athena" AND text = "Greetings")

OR name = "Jupiter"

Listing 2: An example predicate in DNF with two conjunctive

clauses and three simple predicates.

Since each RF represents a search for a raw byte sequence,

the conversion from a simple predicate to a set of RFs is format-

dependent. For example, when parsing JSON, a predicate such

as name = "Athena" in Listing 2 will produce both substring and

key-value search RFs. However, for binary formats such as Avro

and Parquet, field names (e.g., text) are typically not present in the

data explicitly, which means that key-value search RFs would not be

effective. Therefore, the optimizer only produces substring search

RFs for these binary formats. For the sake of brevity, this section

discusses only the JSON format (and assumes queries are over raw

textual JSON data), which supports all RFs available in Sparser.

For each simple predicate, Sparser produces a substring search

RF for each 4- and 8-byte substring of each token in the predicate

expression. A token is a single contiguous value in the underlying

bytestream. Sparser generates 2-byte substring search RFs only

if a token is less than 4-bytes long. As an example, the simple

predicate name = "Athena" in Listing 2 contains two tokens: "name"

and "Athena". For this predicate, the optimizer would generate the

following substring RFs: "name", "Athe", "then", and "hena". The

optimizer additionally produces an RF that searches for each token

in its entirety: "name" and "Athena" in this instance. Lastly, because

name = "Athena" is an equality predicate, the optimizer generates

key-value search RFs with the key "name" and the value set to each

of the 4-byte substrings of "Athena".

Each simple predicate is now associated with a set of RFs where

each RF only produces false positives. If any RF in the set fails, the

simple predicate also fails. By extension, each conjunctive clause

is also associated with a set of RFs with the same property: for

a conjunctive clause with n simple predicates, this set is
⋃n

i=1
ri,

where ri is the RF set of the ith simple predicate in the clause. This

follows from the fact that RFs cannot produce false negatives: if

any one RF in a conjunctive clause fails, some simple predicate

failed, and so the full conjunctive clause must fail. To safely discard

a record when processing a query with disjunctions, the optimizer

must follow one rule when generating RF cascades: an RF from each

conjunctive clause must fail to prevent false negatives. Returning to

the example in Listing 2, the optimizer must ensure that an RF from

both conjunctive clauses fails before discarding a record.

5.2 Estimating Parameters by Sampling
The next step in Sparser’s optimizer is to estimate data-dependent

parameters by drawing a sample of records from the input and

executing the possible RFs from §5.1 and the full parser on the

sample. Specifically, the optimizer requires the passthrough rates

of the individual RFs, the runtime costs of executing the individual

RFs, and the runtime cost of the full parser. This sampling technique

is necessary because these parameters can vary significantly based

on the format and dataset. For example, parsing a binary format

such as Parquet requires fewer cycles than parsing a textual format

such as JSON. Thus, for Parquet data, Sparser should choose a

computationally inexpensive cascade to minimize runtime overhead,

and the optimizer should capture that tradeoff.

To store the passthrough rates of the individual RFs, the optimizer

uses a compact bit-matrix representation. This matrix stores a 1

at position i, j if the ith RF passes the jth record in the sample,

and a 0 otherwise. Rather than storing the passthrough rate as a

single numerical value per RF, each row in the bit-matrix compactly

represents precisely which records in the sample passed for each



Algorithm 1 Estimating Data-Dependent Parameters by Sampling

1: procedure ESTIMATE(records, candidateRFs)
2: C ← len(candidateRFs)
3: R← len(records)
4: ParserRuntime← 0 . Average parser runtime
5: RFRuntimes[C]← 0 . Average RF runtimes
6: B[C,R]← 0C,R . C ×R matrix of bits
7: for (j, record) ∈ records do
8: update running avg. ParserRuntime with parser(record)
9: for (i, RF ) ∈ candidateRF do

10: update running avg. RFRuntimes[i] with RF on record
11: if RF ∈ record then

12: B[i, j]← 1
return B, ParserRuntime, RFRuntimes

RF as a bitmap. The optimizer leverages this data structure when

scoring cascades with its cost model (§5.4) to compute the joint

passthrough rates of multiple RFs efficiently.

Algorithm 1 summarizes the full parameter estimation procedure.

The optimizer first initializes a C × R bit-matrix, where C is the

number of possible RFs and R is the number of sampled records.

For each sampled record, the optimizer updates an average of the

full parser’s running time in CPU cycles (e.g., using the x86 rdtsc

instruction). Sparser can use any full parser, such as Mison. Then,

for each RF, the optimizer applies the RF to the sampled record and

measures the running time in CPU cycles. If RF i passes the record

j, bit i, j is set to 1 in the matrix. After sampling, the optimizer

has a populated matrix representing the records in the sample that

passed for each RF, the average running time of each RF, and the

average running time of the full parser.

5.3 Cascade Generation and Search Space
The third step in the optimizer is to generate valid RF cascades

from the query predicate. Recall that, for a cascade to be valid in

Sparser’s optimizer, at least one RF from each conjunctive clause

in the query predicate must fail before discarding a record. RF cas-

cades are thus binary trees, where non-leaf nodes are RFs, leaf nodes

are decisions (parse or discard), and edges represent whether the RF

passes or fails a record. Figure 6 shows an example query predicate

with examples of generated valid and invalid cascades. By consid-

ering at least one RF from every conjunctive clause, the optimizer

only generates valid cascades, which may have false positives—but

no false negatives—when evaluated on a given record.

The optimizer enumerates all cascades up to depth D that meet

the above constraint. Our optimizer uses a pruning rule to prune

the search space further by skipping cascades where two RFs from

the same conjunction have overlapping substrings (e.g., a cascade

which searches for "Athena" and "Athe"). For completeness, the

optimizer also considers the empty cascade (i.e., always parsing

each record) to allow efficient formats such as Parquet to skip raw

filtering altogether for queries that will exhibit no speedup. In our

implementation, we set D = max(# Conjunctive Clauses, 4) RFs,

and generate up to 32 possible candidate RFs. If there are more than

32 possible RFs, we select 32 by picking a random RF generated

from each token in a round-robin fashion. For the queries in §7, we

show that these choices still generate cascades with overall parsing

time within 10% of the globally optimal cascade.

5.4 Choosing the Best Cascade
Given a set of candidate cascades, the optimizer’s final task is

to choose the best cascade. To make this choice, the optimizer

evaluates the expected per-record CPU time of each cascade using a

cost model, and selects the one with the lowest expected cost.

3. Invalid cascade ("Gree"must 
consider "Jupi" when it fails)

(name = "Athena" AND text = "Greetings")
OR name = "Jupiter"

Pass (right branch)Fail (left branch)

P

"Athe"

"Gree""Jupi"

PD "Jupi"

PD

1. Valid cascade 2. Valid cascade

"Gree"

"Jupi"

PD

P

"Athe"

"Gree""Jupi"

PD PD

Parse PDiscard D

Figure 6: A set of RF cascades for the predicate in Listing 2. The

third cascade does not check an RF from both conjunctive clauses

on some paths and is thus invalid. The second cascade does not

check all RFs in a conjunction but is still valid, since it checks one

RF from each conjunctive clause.

Table 2: Estimating joint probabilities using the bit-matrix. B[i, ...]
indicates accessing the sampled bits for RF i. Bit i, j is set if RF i
passed sampled record j. Bitwise operators (¬,∧) use SIMD.

Given a C ×R bit-matrix of estimates B:

Pr[a] popcnt(B[a, . . .])/R
Pr[¬a] popcnt(¬B[a, . . .])/R
Pr[a, .., z] popcnt(B[a, . . .] ∧ . . . ∧B[z, . . .])/R

The cost of an RF cascade depends on ci, the cost of executing the

ith RF in given cascade, Pr[executei], the probability of executing

the ith RF, as well as cparse and Pr[executeparse], which represent

the respective cost and probability of executing the full parser. The

optimizer measures the passthrough rates of the individual RFs in

the previous step, as well as the execution times of the RFs and

the full parser (ci and cparse respectively). However, for any RF i
that relies on other RFs to pass or fail, Pr[executei] will be a joint

probability. For example, in the example cascade x → y → z, the

RF z will only execute after the first two RFs passed the record;

therefore, Pr[executez] = Pr[x, y], where Pr[x] and Pr[y] are the

passthrough rates of x and y the optimizer previously measured.

The challenge is that these joint probabilities are not necessarily

independent (i.e., Pr[x, y] 6= Pr[x] Pr[y]). For example, an RF that

searches for the substring "Gree" may be highly correlated with an

RF that searches for the substring "ting", because both may indi-

cate the presence of the string "Greetings". Our evaluation shows

that a strawman optimizer that does not consider these correlations

achieves parsing throughputs 2.5× lower than Sparser, because the

strawman chooses an inferior cascade.

Another strawman solution is to estimate the joint passthrough

rates of multiple RFs directly by executing RF cascades on the

sample of records described in §5.2. However, executing each

combination of RFs on the sample is inefficient, since this requires

executing a combinatorial number of cascades.

Instead, Sparser’s optimizer uses the bit-matrix representation

(§5.2) to quickly estimate the joint passthrough rates using only

sample-based measurements of the individual RFs. Recall that the

matrix stores as a single bit whether an RF passes or fails each record

in the sample (a 1 if the record passed the RF, and 0 otherwise). The

passthrough rate of RF i is thus the number of 1s (i.e., the popcnt)

of the ith row, or bitmap, in the matrix. Conversely, the probability

of any RF i not passing a record is the number of 0s in row i. The

joint passthrough rate of two RFs i and k is the number of 1s in the

bitmap after taking the bitwise-and of the ith and kth bitmaps.

The key advantage to this approach is that these bitwise oper-

ations have SIMD support in modern hardware and complete in



1-3 cycles on 256-bit values on modern CPUs (roughly 1ns on a

3GHz processor). The matrix thus allows the optimizer to quickly

estimate joint passthrough probabilities of RFs. This optimization

allows Sparser to scale efficiently and accurately to handle com-

plex user-specified query predicates that combine multiple predicate

expressions. Table 2 summarizes the matrix operations.

With an efficient methodology to accurately compute the joint

probabilities, the optimizer scores each cascade and chooses the one

with the lowest cost. Let R = {r1, . . . , rn} be the set of RFs in the

RF cascade. To evaluate CR, the expected cost of the cascade on a

single record, Sparser’s optimizer computes the following:

CR =

(

∑

i∈R

Pr[executei] · ci

)

+ Pr[executeparse] · cparse.

As an example, consider the first cascade in Figure 6. The probabili-

ties of executing each RF in the cascade are:

Pr[executeAthe] = 1,

Pr[executeGree] = Pr[Athe],

Pr[executeJupi] = Pr[¬Athe] + Pr[Athe,¬Gree],

Pr[executeparse] = Pr[¬Athe, Jupi]+

Pr[Athe,Gree] + Pr[Athe,¬Gree, Jupi].

The cost of the full cascade is therefore:
∑

i∈{Athe,Gree,Jupi,parse}

Pr[executei]× ci.

§7.4 shows that, with the bit-matrix technique to compute joint

probabilities, the optimizer adds at most 1.2% overhead in our

benchmark queries, including sampling and scoring time.

5.5 Periodic Resampling
Sparser occasionally recalibrates its cascade to account for data

skew or sorting in the underlying input file. §7 shows that recali-

bration is important for minimizing parsing runtime over the entire

input, because a cascade chosen at the beginning of the dataset may

not be effective at the end. For instance, consider an RF that filters

on a particular date, and the underlying input records are also sorted

by date. The RF may be highly ineffective for one range of the file

(e.g., the range of records that all match the given date in the filter)

and very effective for other ranges. To address this issue, Sparser

maintains an exponentially weighted moving average of its own

parsing throughput. In our implementation, we update this average

on every 100MB block of input data. If the average throughput

deviates significantly (e.g., 20% in our implementation), Sparser

reruns its optimizer algorithm to select a new RF cascade.

6. IMPLEMENTATION
We implemented Sparser’s optimizer and RFs in roughly 4000

lines of C. Our implementation supports mapping query predicates

to RFs for text logs, JSON, Avro, Parquet, and PCAP, the standard

binary packet capture format [48]. RFs leverage Intel’s AVX2 [8]

vector extensions. Other architectures feature similar operators [42].

JSON. Our JSON implementation uses two state-of-the-art JSON

parsers: Mison [36] and RapidJSON [49]. Sparser assumes that the

input bytestream contains textual JSON records (e.g., a Tweet from

the Twitter Stream API) terminated by a newline character (similar

to other systems such as Spark [57, 62]). Sparser uses SIMD to find

the start of each record by searching for the newline, and applies the

RF cascade on the raw byte buffer, where each RF searches until

the following newline. If the record passes the full cascade, Sparser

passes a pointer to the beginning of the record to the full parser.

Otherwise, Sparser skips it and continues filtering the remaining

bytestream. Our implementation also supports case-insensitive

search for ASCII (i.e., letters A–Z). These characters have upper

and lowercase values that differ by 32 (e.g., ’a’ - ’A’ = 32), so

Sparser can use SIMD to convert a search query and the target text

to all lowercase to perform a case-insensitive search.

Our implementation has a few limitations. First, the JSON stan-

dard allows floating-point values to be formatted using scientific

notation (e.g., 3.4 vs. 34E-1). Sparser does not support searches

for data represented in this way. Second, Sparser does not support

values that have different string representations encoding the same

numerical value (e.g., due to loss in precision, such as 0.99.. vs.

1.0). For both of these cases, users can set a flag to specify that

numerically-valued fields may be encoded in this way, and Sparser

will treat predicates over them as requiring a full parse. We found

that both cases did not appear in our machine-generated real-world

datasets. Sparser can handle integer equality queries (e.g., searches

for user IDs) by searching for substrings of the integer.

Finally, the RFC 8259 JSON standard [10] allows any character to

be Unicode-escaped (e.g., the character "A" and its escaped Unicode

representation, "\u41", should be considered equal). To handle

Unicode escapes, Sparser additionally searches each record for the

"\u" escape and falls back to a slow path if this sequence is found.

This is the only valid alternate representation of a character permitted

by the JSON standard2: the standard does not allow unescaped

whitespace (except space) in string literals [10] (e.g., a tab literal in

a string is disallowed and must be represented using the Unicode

escape or "\t"), so the Unicode is the only special case. Other

characters such as "\" must also be escaped in JSON, but similarly

only have a single possible non-Unicode-escaped representation.

Binary Formats. For binary data, records are not explicitly delim-

ited (e.g., by newlines), so Sparser does not know where to start or

stop a search for a given RF. Rather than search line by line, Sparser

treats the full input buffer as a single record and begins searching

from the very beginning of the buffer. When an RF finds a match,

Sparser uses a format-specific function for navigating and locating

different records in the file. In our implementation, this function

moves a pointer from the last processed record by the full parser to

the record containing the match. The function also computes the

end of the matched record (in most binary formats, this is the start

of the record plus the record length, stored as part of the data) and

returns both the pointer to the matching record and the length back

to Sparser’s search function to check the remaining RFs within the

byte range. If all RF matches pass, Sparser calls the callback again

and the record is processed just as before. Otherwise, Sparser resets

its record-level state and continues.

Integration with Spark. We also integrated Sparser with Spark [5]

using Spark’s Data Sources API. The Data Sources API enables

column pruning and filtering to be pushed down to the parser itself,

in line with the core tenets of Sparser. The API passes individual

file partitions (which map to a filename, byte offset, and length) to

a callback function; these arguments are then passed via the Java

Native Interface (JNI) to call into Sparser’s C library. This means

that Sparser runs its calibration, raw filtering, and parsing steps on

a per file-partition basis, rather than on a single file. Sparser reads,

filters, and parses data, writing the extracted fields directly to an

off-heap buffer allocated in Spark to store the parsed records.

2The "/" is the only exception and has three valid representations.



Table 3: Queries used in the evaluation. §7.1 elaborates on the datasets and sources of the queries.

Query Name Query Selectivity (%)

Twitter 1 COUNT(*)WHERE text LIKE ‘%Donald Trump%’AND date LIKE ‘%Sep 13%’ 0.1324
Twitter 2 user.id, SUM(retweet_count)WHERE text LIKE ‘%Obama%’GROUP BY user.id 0.2855
Twitter 3 id WHERE user.lang == ‘msa’ 0.0020
Twitter 4 distinct user.id WHERE text LIKE ‘%@realDonaldTrump%’ 0.3313
Censys 1 COUNT(*)WHERE p23.telnet.banner.banner != null AND autonomous_system.asn = 9318 0.0058
Censys 2 COUNT(*)WHERE p80.http.get.body LIKE ‘%content=wordpress 3.5.1%’ 0.0032
Censys 3 COUNT(*)WHERE autonomous_system.asn=2516 0.0757
Censys 4 COUNT(*)WHERE location.country = ‘Chile’AND p80.http.get.status_code != null 0.1884
Censys 5 COUNT(*)WHERE p80.http.get.servers.server LIKE ‘%DIR-300%’ 0.1884
Censys 6 COUNT(*)WHERE p110.pop3.starttls.banner != null OR p995.pop3s.tls.banner != null 0.0001
Censys 7 COUNT(*)WHERE p21.ftp.banner.banner LIKE ‘%Seagate Central Shared%’ 2.8862
Censys 8 COUNT(*)WHERE p20000.dnp3.status.support=true 0.0002
Censys 9 asn, COUNT(ipnt)WHERE autonomous_system.name LIKE ‘%Verizon%’GROUP BY asn 0.0002
Bro 1 COUNT(*)WHERE record LIKE ‘%HTTP%’AND record LIKE ‘%Application%’ 15.324
Bro 2 COUNT(*)WHERE record LIKE ‘%HTTP%’AND (record LIKE ‘%Java*dosexec%’OR record LIKE ‘%dosexec*

Java%’)

1.1100

Bro 3 COUNT(*)WHERE record LIKE ‘%HTTP%’AND record LIKE ‘%http*dosexec%’AND record LIKE ‘%GET%’ 0.5450
Bro 4 COUNT(*)WHERE record LIKE ‘%HTTP%’AND (record LIKE ‘%80%’OR record LIKE ‘%6666%’OR record

LIKE ‘%8888%’OR record LIKE ‘%8080%’)

12.294

PCAP 1 * WHERE http.request.header LIKE ‘%GET%’ 81
PCAP 2 * WHERE http.response AND http.content_type LIKE ‘%image/gif%’ 1.13
PCAP 3 Flows WHERE tcp.port=110 AND pop.request.parameter LIKE ‘%user%’ 0.001
PCAP 4 Flows WHERE http.header LIKE ‘%POST%’AND http.body LIKE ‘%password%’ 0.0095

7. EVALUATION
We evaluate Sparser and the raw filtering approach across a variety

of workloads, datasets, and data formats. We find that:

• With raw filtering, Sparser accelerates diverse analytics work-

loads by filtering out records that do not need to be parsed.

Sparser can improve the parsing throughput of state-of-the-art

JSON parsers up to 22×. For distributed workloads, Sparser can

improve the end-to-end runtime of Spark SQL queries up to 9×.

• Sparser can accelerate parsing throughput of binary formats such

as Avro and Parquet by up to 5×. For queries over unstructured

text logs, Sparser can reduce the runtime by up to 4×.

• Sparser’s optimizer improves parsing performance compared

to strawman approaches, selecting RF cascades that are within

10% of the global optimum while only incurring a 1.2% runtime

overhead during parsing.

7.1 Experimental Setup
We ran distributed Spark experiments on a 10-node Google Cloud

Engine cluster using the n1-highmem-4 instance type, where each

worker had 4 vCPUs from an 2.2GHz Intel E5 v4 (Broadwell),

26GB of memory, and locally attached SSDs. We used Spark v2.2

for our cluster experiments. Single-node benchmarks ran on an Intel

Xeon E5-2690 v4 CPU with 512GB of memory. All single-node

experiments were single-threaded—we found that Sparser scales

linearly with the number of cores for each workload, and omit these

results for brevity.

Our experiments ran over the following real-world datasets and

queries, with some experiments running over a subset of the data.

Table 3 summarizes the queries and their selectivities.

Twitter Tweets. We used the Twitter Streaming API [60] to collect

68GB of JSON tweets. We benchmarked against 23GB of the

data for our single-node experiments, and the entire dataset for our

distributed experiments. We obtained queries from [36, 54].

Censys Scan. We obtained a 652GB JSON dataset from Censys [25],

a search engine broadly used in the Internet security community.

We benchmarked against 16GB of the data for our single-node ex-

periments, and the entire dataset for our distributed experiments.

Each record in the dataset represents an open port on the wide-area

Internet. Censys data is highly nested: each data point is over 5KB

in size. We obtained the queries over Censys data by sampling

randomly from the 50,000 most popular queries to the engine. Raw

data is available at [17].

Bro IDS Logs. Bro [11] is a widely deployed network intrusion de-

tection system that generates ASCII logs while monitoring networks.

Network security analysts perform post-hoc data analyses on these

logs to find anomalies. We obtained a 10GB dataset of logs and a

set of queries over them from security forensics exercises [12–14].

Packet Captures. To evaluate Sparser’s applicability in other do-

mains, we obtained a 5GB trace of network traffic from a university

network. Traffic is stored in standard binary file format called

PCAP [47], which stores the binary representation of individual

network packets. We selected queries for this trace from [22,27,29],

which represent real workloads over captured network traffic, such

as searching for insecure network connections.

7.2 End­to­End Workloads

Spark Queries. To benchmark Sparser’s effectiveness parsing JSON

in a production-quality query engine, we executed the four Twit-

ter queries and nine Censys queries (all of which are over JSON

data) from Table 3 on our 10-node Spark cluster and measured the

end-to-end execution time.

Figures 7 and 8 show the end-to-end execution time of native

Spark (which uses the Jackson JSON parser [31]) vs. Sparser in-

tegrated with Spark via the Data Source API [52]. Data is read

from disk and passed to Sparser as chunks of raw bytes. Sparser

runs its optimizer, chooses an RF cascade, and filters the batches

of data, returning a filtered bytestream to Spark. Spark then parses

the filtered bytestream into a Spark SQL DataFrame and processes

the query. The presented execution time includes disk load, parsing

(in Sparser, this includes both the optimizer’s runtime and filtering),

and querying. In each query, Sparser outperforms Spark without

Sparser’s raw filtering by at least 3×, and up to 9×.









the date field has high temporal locality in the input file—the date

LIKE ‘%Sep 13%’ predicate selects all the data in some range, but

none in the rest. We benchmarked Sparser both with and without

its resampling step on this query, and Figure 17 shows the result.

During the initial sampling, Sparser finds that the date predicate

is highly selective and includes a substring RF based on "Sep 13".

However, in the range where the date does match, the RF no longer

remains selective. With periodic resampling, Sparser detects this

change and recalibrates its RF cascade to search for a substring of

"Donald Trump", rather than a substring of the date. By including

this step in the optimizer, Sparser’s parsing throughput over the

entire input file is 25× faster than it would be otherwise.

8. RELATED WORK

Processing Raw Data. Many researchers have proposed query en-

gines over raw data formats. NoDB [3] proposes building indices

incrementally over raw data to accelerate access to specific fields.

Alagiannis et al. [4] and others [30] consider storage layouts and

access patterns for query processing over raw data, and examine how

to adapt to workloads online. ViDa introduces JIT-compiled access

paths for adapting queries to underlying raw data formats [33–35].

Slalom [44] monitors access patterns to build indices for fast in-situ

data access. SCANRAW uses parallelism to mask in-situ data ac-

cess times via pipelining [19, 20], while Abouzied et al. [1] propose

masking load times using MapReduce jobs. While these approaches

propose full query engines over raw data, raw filtering focuses on

the problem of filtering and loading it as quickly as possible using

format-agnostic RFs and an optimizer. Existing raw processing

systems can thus use raw filtering in a complementary manner to

filter before downstream processing.

Parsers for Semi-Structured Data. For JSON parsing, the Mison

JSON parser [36] is the closest to Sparser in that it takes both filtering

expressions to apply to the data and a set of output fields to project as

part of its API. Mison always begins by building a structural index

using SIMD and bit-parallel operators. The index finds special

JSON characters such as colons and brackets to create a mapping

from byte offset to field offset. Mison then builds another data

structure called a pattern tree to speculatively jump to the desired

field position using this structural index, and then applies predicates

to the retrieved fields. We showed in §7 that just building the

structural index in Mison is slower than rejecting RFs with Sparser

on selective workloads. In addition, because Mison searches for

format-specific delimiters to construct its index, its techniques are

not applicable to binary formats that eschew delimiters, such as

Avro and Parquet. Sparser is designed to work across both textual

and binary formats, and speeds up queries across both. Nevertheless,

since Sparser only filters data and optimized parsers [31, 49] extract

values from data quickly, the approaches are complementary.

For XML, many approaches used optimized automata to parse and

filter XML efficiently [16,23,24,28]. In contrast, this work relies on

SIMD instructions rather than automata to leverage data-parallelism

in modern hardware. Similar to Mison, Parabix [15] uses SIMD

instructions to parse XML, and Teubner et al. [56] and Moussalli et

al. [39, 40] devise algorithms to leverage data-parallelism on GPUs

and FPGAs to accelerate XML filtering and parsing. These systems

still extract structural information about the format and, like with

optimized JSON parsers, necessarily spend more time than an RF-

based search for filtering data. Existing work on fast XML parsing

is again complementary with raw filtering, because these systems

can use raw filtering to filter data efficiently before parsing.

Predicate Ordering. Sparser’s optimizer reorders predicates to op-

timize overall runtime and is inspired by a long lineage of work on

predicate ordering in database systems. Babu et al. [9] propose a

way to order conjunctive commutative filters to minimize runtime

overhead by adaptively measuring selectivities and considering cor-

relations across filters. The algorithms incur runtime overhead while

filtering when accounting for correlations and explores the tradeoffs

among ordering quality, decreased overhead, and algorithm conver-

gence. Raw filtering instead uses a new SIMD-enabled optimizer to

find an optimal depth-D ordering based on sampled selectivity esti-

mates while always considering filter correlations, and also supports

disjunctions of predicates. Scheufele et al. [51] propose an algorithm

for optimal selection and join orderings but only consider the cost

of individual predicates. Ma et al. [38] similarly order predicates

using only their individual costs and selectivities, while Sparser

considers correlations among the predicates. Vectorwise [50] uses

micro-adaptivitiy to dynamically tune query plans: Sparser uses

a similar resampling-based approach to tune its cascade dynami-

cally in order to avoid a computationally expensive parse. Lastly,

Sparser’s approach of combining multiple RFs into an RF cascade

is inspired by previous work in computer vision, most notably the

Viola-Jones object detector [61]. In Viola-Jones, a cascade is a

single sequence of increasingly accurate but increasingly expensive

classifiers; if any classifier is confident about the output, the cascade

short-circuits evaluation, improving execution speed. In Sparser, an

RF cascade is a binary tree, and the ordering of RFs in the tree is

determined by their execution costs and joint passthrough rates.

Fast Substring Search. String and signature search algorithms are

commonly used in network and security applications such as in-

trusion detection. DFC [21] is a recent algorithm for accelerating

multi-pattern string search using small, cache-friendly data struc-

tures. Other work [53] accelerates multi-pattern string search using

vector instructions or other optimizations [43, 59]. These signature

search algorithms, however, are primarily designed for settings with

thousands of signatures, while Sparser focuses on quickly rejecting

records that do not match a small number of filters, allowing it to

work effectively with a sequence of simple tests. Sparser also uses

an optimizer to choose an RF cascade based on the input data.

9. CONCLUSION
We presented raw filtering, a technique that accelerates one of

the most expensive steps in data analytics applications—parsing un-

structured or semi-structured data—by rejecting records that do not

match a query without parsing them. We implement raw filtering in

Sparser, which has two key components: a set of fast, SIMD-based

raw filter (RF) operators, and an optimizer to efficiently select an RF

cascade at runtime. Sparser accelerates existing high-performance

parsers for semi-structured formats by 22× and provides up to an

order-of-magnitude speedup on real-world analytics tasks, including

Spark analytics queries and log mining.

10. ACKNOWLEDGEMENTS
We thank our colleagues at Stanford and the VLDB reviewers

for their detailed feedback. This research was supported in part

by affiliate members and other supporters of the Stanford DAWN

project—Facebook, Google, Intel, Microsoft, NEC, SAP, Teradata,

and VMware—as well as Toyota Research Institute, Keysight Tech-

nologies, Hitachi, Northrop Grumman, Amazon Web Services, Ju-

niper Networks, NetApp, and the NSF under CAREER grant CNS-

1651570. Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation.



11. REFERENCES
[1] Abouzied, Azza and Abadi, Daniel J and Silberschatz, Avi.

Invisible loading: access-driven data transfer from raw files

into database systems. In Proceedings of the 16th

International Conference on Extending Database Technology,

pages 1–10. ACM, 2013.

[2] Agarwal, Rachit and Khandelwal, Anurag and Stoica, Ion.

Succinct: Enabling Queries on Compressed Data. In NSDI,

pages 337–350, 2015.

[3] Alagiannis, Ioannis and Borovica, Renata and Branco, Miguel

and Idreos, Stratos and Ailamaki, Anastasia. NoDB: efficient

query execution on raw data files. In Proceedings of the 2012

ACM SIGMOD International Conference on Management of

Data, pages 241–252. ACM, 2012.

[4] Alagiannis, Ioannis and Idreos, Stratos and Ailamaki,

Anastasia. H2O: A Hands-free Adaptive Store. In Proceedings

of the 2014 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’14, pages 1103–1114, New

York, NY, USA, 2014. ACM.

[5] Armbrust, Michael and Xin, Reynold S and Lian, Cheng and

Huai, Yin and Liu, Davies and Bradley, Joseph K and Meng,

Xiangrui and Kaftan, Tomer and Franklin, Michael J and

Ghodsi, Ali and others. Spark sql: Relational data processing

in spark. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, pages

1383–1394. ACM, 2015.

[6] Apache Avro. https://avro.apache.org.

[7] Apache Avro 1.8.1 Specification.

https://avro.apache.org/docs/1.8.1/spec.html.

[8] IntelAVX2.

https://software.intel.com/en-us/node/523876.

[9] Babu, Shivnath and Motwani, Rajeev and Munagala, Kamesh

and Nishizawa, Itaru and Widom, Jennifer. Adaptive ordering

of pipelined stream filters. In Proceedings of the 2004 ACM

SIGMOD international conference on Management of data,

pages 407–418. ACM, 2004.

[10] Bray, Tim. RFC 8259: The Javascript Object Notation (JSON)

Data Interchange Format. 2017.

[11] Bro. https://www.bro.org/.

[12] Bro Exchange 2013 Malware Analysis. https:

//github.com/LiamRandall/BroMalware-Exercise.

[13] Network Forensics with Bro.

http://matthias.vallentin.net/slides/bro-nf.pdf,

2011.

[14] Understanding and Examining Bro Logs. https://www.bro.

org/bro-workshop-2011/solutions/logs/index.html.

[15] Cameron, Robert D. and Herdy, Kenneth S. and Lin, Dan.

High Performance XML Parsing Using Parallel Bit Stream

Technology. In Proceedings of the 2008 Conference of the

Center for Advanced Studies on Collaborative Research:

Meeting of Minds, CASCON ’08, pages 17:222–17:235, New

York, NY, USA, 2008. ACM.

[16] Candan, K Selçuk and Hsiung, Wang-Pin and Chen, Songting

and Tatemura, Junichi and Agrawal, Divyakant. AFilter:

adaptable XML filtering with prefix-caching suffix-clustering.

In Proceedings of the 32nd VLDB, pages 559–570. VLDB

Endowment, 2006.

[17] Censys. Research Access to Censys Data.

https://support.censys.io/getting-started/

research-access-to-censys-data, 2017.

[18] Writing a Really, Really Fast JSON Parser.

https://chadaustin.me/2017/05/

writing-a-really-really-fast-json-parser/, 2017.

[19] Cheng, Yu and Rusu, Florin. Parallel in-situ data processing

with speculative loading. In Proceedings of the 2014 ACM

SIGMOD international conference on Management of data,

pages 1287–1298. ACM, 2014.

[20] Cheng, Yu and Rusu, Florin. SCANRAW: A Database

Meta-Operator for Parallel In-Situ Processing and Loading.

ACM Trans. Database Syst., 40(3):19:1–19:45, Oct. 2015.

[21] Choi, Byungkwon and Chae, Jongwook and Jamshed,

Muhammad and Park, Kyoungsoo and Han, Dongsu. DFC:

Accelerating String Pattern Matching for Network

Applications. In NSDI, pages 551–565, 2016.

[22] Wireshark Filters.

http://www.lovemytool.com/blog/2010/04/

top-10-wireshark-filters-by-chris-greer.html.

[23] Diao, Yanlei and Altinel, Mehmet and Franklin, Michael J and

Zhang, Hao and Fischer, Peter. Path sharing and predicate

evaluation for high-performance XML filtering. ACM

Transactions on Database Systems (TODS), 28(4):467–516,

2003.

[24] Diao, Yanlei and Franklin, Michael J. High-performance

XML filtering: An overview of YFilter. IEEE Data Eng. Bull.,

26(1):41–48, 2003.

[25] Durumeric, Zakir and Adrian, David and Mirian, Ariana and

Bailey, Michael and Halderman, J Alex. A search engine

backed by Internet-wide scanning. In Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications

Security, pages 542–553. ACM, 2015.

[26] Gallant, Andrew. ripgrep is faster than grep, ag, git grep, ucg,

pt, sift. https://blog.burntsushi.net/ripgrep.

[27] TShark Tutorial and Filter Examples.

https://hackertarget.com/

tshark-tutorial-and-filter-examples/.

[28] He, Bingsheng and Luo, Qiong and Choi, Byron.

Cache-conscious automata for XML filtering. IEEE

Transactions on Knowledge and Data Engineering,

18(12):1629–1644, 2006.

[29] Analyze HTTP Requests with TShark.

http://kvz.io/blog/2010/05/15/

analyze-http-requests-with-tshark/.

[30] Idreos, Stratos and Alagiannis, Ioannis and Johnson, Ryan and

Ailamaki, Anastasia. Here are my data files. here are my

queries. where are my results? In Proceedings of 5th Biennial

Conference on Innovative Data Systems Research, number

EPFL-CONF-161489, 2011.

[31] Jackson. https://github.com/FasterXML/jackson.

[32] nativejson-benchmark.

https://github.com/miloyip/nativejson-benchmark.

[33] Karpathiotakis, Manos and Alagiannis, Ioannis and Ailamaki,

Anastasia. Fast queries over heterogeneous data through

engine customization. PVLDB, 9(12):972–983, 2016.

[34] Karpathiotakis, Manos and Alagiannis, Ioannis and Heinis,

Thomas and Branco, Miguel and Ailamaki, Anastasia.

Just-in-time data virtualization: Lightweight data management

with ViDa. In Proceedings of the 7th Biennial Conference on

Innovative Data Systems Research (CIDR), 2015.

[35] Karpathiotakis, Manos and Branco, Miguel and Alagiannis,

Ioannis and Ailamaki, Anastasia. Adaptive query processing

on RAW data. PVLDB, 7(12):1119–1130, 2014.

[36] Li, Yinan and Katsipoulakis, Nikos R and Chandramouli,

Badrish and Goldstein, Jonathan and Kossmann, Donald.



Mison: a fast JSON parser for data analytics. PVLDB,

10(10):1118–1129, 2017.

[37] libpcap. http://www.tcpdump.org.

[38] Ma, Lu and Au, Grace Kwan-On. Techniques for ordering

predicates in column partitioned databases for query

optimization, July 3 2014. US Patent App. 13/728,345.

[39] Moussalli, Roger and Halstead, Robert J and Salloum,

Mariam and Najjar, Walid A and Tsotras, Vassilis J. Efficient

XML Path Filtering Using GPUs. In ADMS@ VLDB, pages

9–18. Citeseer, 2011.

[40] Moussalli, Roger and Salloum, Mariam and Najjar, Walid and

Tsotras, Vassilis J. Massively parallel XML twig filtering

using dynamic programming on FPGAs. In Data Engineering

(ICDE), 2011 IEEE 27th International Conference on, pages

948–959. IEEE, 2011.

[41] Mühlbauer, Tobias and Rödiger, Wolf and Seilbeck, Robert

and Reiser, Angelika and Kemper, Alfons and Neumann,

Thomas. Instant loading for main memory databases. PVLDB,

6(14):1702–1713, 2013.

[42] ARM NEON.

https://developer.arm.com/technologies/neon.

[43] Norton, Marc. Optimizing pattern matching for intrusion

detection. Sourcefire, Inc., Columbia, MD, 2004.

[44] Olma, Matthaios and Karpathiotakis, Manos and Alagiannis,

Ioannis and Athanassoulis, Manos and Ailamaki, Anastasia.

Slalom: Coasting through raw data via adaptive partitioning

and indexing. PVLDB, 10(10):1106–1117, 2017.

[45] Apache Parquet. https://parquet.apache.org.

[46] apache/parquet-format.

https://github.com/apache/parquet-format.

[47] Development/LibpcapFileFormat - The Wireshark Wiki.

https://wiki.wireshark.org/Development/

LibpcapFileFormat.

[48] Libpcap File Format. https://wiki.wireshark.org/

Development/LibpcapFileFormat.

[49] RapidJSON. https://rapidjson.org.

[50] Răducanu, Bogdan and Boncz, Peter and Zukowski, Marcin.

Micro adaptivity in vectorwise. In Proceedings of the 2013

ACM SIGMOD International Conference on Management of

Data, pages 1231–1242. ACM, 2013.

[51] Scheufele, Wolfgang and Moerkotte, Guido. Optimal ordering

of selections and joins in acyclic queries with expensive

predicates. RWTH, Fachgruppe Informatik, 1996.

[52] Spark SQL Data Sources API: Unified Data Access for the

Apache Spark Platform.

https://databricks.com/blog/2015/01/09/.

[53] Stylianopoulos, Charalampos and Almgren, Magnus and

Landsiedel, Olaf and Papatriantafilou, Marina. Multiple

Pattern Matching for Network Security Applications:

Acceleration through Vectorization. In Parallel Processing

(ICPP), 2017 46th International Conference on, pages

472–482. IEEE, 2017.

[54] Tahara, Daniel and Diamond, Thaddeus and Abadi, Daniel J.

Sinew: a SQL system for multi-structured data. In

Proceedings of the 2014 ACM SIGMOD international

conference on Management of data, pages 815–826. ACM,

2014.

[55] tcpdump. http://www.tcpdump.org.

[56] Teubner, Jens and Woods, Louis and Nie, Chongling. XLynx:

an FPGA-based XML filter for hybrid XQuery processing.

ACM Transactions on Database Systems (TODS), 38(4):23,
2013.

[57] The Apache Foundation. JSON Datasets.

https://spark.apache.org/docs/latest/

sql-programming-guide.html#json-datasets, 2015.

[58] TShark. https:

//www.wireshark.org/docs/man-pages/tshark.html.

[59] Tuck, Nathan and Sherwood, Timothy and Calder, Brad and

Varghese, George. Deterministic memory-efficient string

matching algorithms for intrusion detection. In INFOCOM

2004. Twenty-third AnnualJoint Conference of the IEEE

Computer and Communications Societies, volume 4, pages

2628–2639. IEEE, 2004.

[60] Introduction to Twitter JSON.

https://developer.twitter.com/en/docs/tweets/

data-dictionary/overview/intro-to-tweet-json.

[61] Viola, Paul and Jones, Michael. Rapid object detection using a

boosted cascade of simple features. In Computer Vision and

Pattern Recognition, 2001. CVPR 2001. Proceedings of the

2001 IEEE Computer Society Conference on, volume 1, pages

I–I. IEEE, 2001.

[62] Zaharia, Matei and Chowdhury, Mosharaf and Das, Tathagata

and Dave, Ankur and Ma, Justin and McCauley, Murphy and

Franklin, Michael J and Shenker, Scott and Stoica, Ion.

Resilient distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing. In Proceedings of the 9th

USENIX conference on Networked Systems Design and

Implementation, pages 2–2. USENIX Association, 2012.


